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Abstract: We study the characteristic exponents of the Hamiltonian system of n
(^2) point masses m\,...,mn freely falling in the vertical half line {q \ q ^ 0}
under constant gravitation and colliding with each other and the solid floor q = 0
elastically. This model was introduced and first studied by M. Wojtkowski. Hereby
we prove his conjecture: All relevant characteristic (Lyapunov) exponents of the
above dynamical system are nonzero, provided that m\ ^ ^ mn (i.e. the masses
do not increase as we go up) and

1. Introduction

In his paper [W-I] M. Wojtkowski introduced the following Hamiltonian dynamical
system with discontinuities: There is a vertical half line {q \ q ^ 0} given and n
(^ 2) point particles with masses m\ ^ m2 ^ ^ mn > 0 and positions 0 ̂
q\ ^ #2 ^ ^ qn are moving on this half line so that they are subjected to a
constant gravitational acceleration a = — 1 (they fall down), they collide elastically
with each other, and the first (lowest) particle also collides elastically with the hard
floor q = 0. We fix the total energy

n
J-J Y^H - 2^

i=\

by taking H — 1. The arising Hamiltonian flow with collisions (M, {ι/^ t G IR},μ)
(μ is the Liouville measure) is the subject of this paper.

Before formulating the result of this article, however, it is worth mentioning
here three important facts:

(1) Since the phase space M is compact, the Liouville measure μ is finite.
(2) The phase points x G M for which the orbit {ψt(x)\t G R} hits at least

one singularity (i.e. a multiple collision) are contained in a countable union of
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proper, smooth submanifolds of M and, therefore, such points form a set of μ
measure zero.

(3) For μ-almost every phase point Λ: G M the collision moments of the orbit
{\jjt(x)\t G IR} do not have any finite accumulation point, see the Appendix.

In the paper [W-I] Wojtkowski formulated his main conjecture pertaining to the
dynamical system (M, {φt t G IR},μ):

Wojtkowski's Conjecture. If m\ ^ πi2 ^ ••• ^ mn > 0 and m\^= mn, then all but
one characteristic (Lyapunov) exponents of the flow (M,{ι//t \ t G R}, μ) are
nonzero.

Remarks.

1. The only exceptional exponent zero must correspond to the flow direction.
2. The condition of nonincreasing masses (as above) is essential for establishing

the invariance of the symplectic cone field - an important condition for obtaining
nonzero characteristic exponents. As Wojtkowski pointed out in Proposition 4 of
[W-I], if n = 2 and m\ <m2, then there exists a linearly stable periodic orbit, thus
dimming the chances of proving ergodicity.

In pursuing the goal of proving this conjecture, Wojtkowski obtained the fol-
lowing results in [W-I]:

Proposition 1. For every ε > 0 there is a δ > 0 such that ίfm\ > m2 > - - - > mn > 0
and mι~m" < δ, then (M, {ψ* \ t G IR},μ) has exactly one zero characteristic expo-
nent except possibly on a set of μ measure < ε.

Proposition 2. If there are exactly I groups of particles with equal masses, I ^ 2,
containing k\,...,k\ particles respectively, the greatest common divisor of k\,...,k\
is one and m\ ^ m2 ^ ^ mn > 0, then {ψ*} has exactly one zero characteristic
exponent on a set of positive Lίouville measure.

Proposition 3. If n = 3 and m\>πi2> m^, then {φ1} has exactly one zero char-
acteristic exponent μ-almost everywhere.

In the subsequent article [W-II] Wojtkowski replaced the linear potential U(q) =
q of constant gravitation by a varying gravitational force with potential U(q) for
which U'(q) > 0 and U"(q) < 0. (The usual gravitational potential U(q) = -^

belongs to this category!) He proved there that in the falling ball system with such
a potential U(q) all relevant characteristic exponents are nonzero almost everywhere.

The result of this paper is a slightly weakened version of Wojtkowski's
conjecture:

Theorem. If m\ > m^ ^ m^ ^ ^ mn > 0, then μ-almost everywhere all but one
characteristic exponents of the flow (M, {ψ* \ t G !R},μ) are nonzero.

We are closing this brief introduction by mentioning that in his work [Ch]
N.I. Chernov significantly relaxed a condition of the Liverani-Wojtkowski local
ergodicity theorem for symplectomorphisms, [L-W]. (This theorem is a generaliza-
tion of the celebrated Theorem on Local Ergodicity for semi-dispersing billiards by
Chernov and Sinai, [S-Ch].) The ominous condition is the "proper alignment" of
the singularity manifolds, Condition D in Sect. 7 of [L-W]. This condition is easily
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seen to be violated by the system of falling balls (see Sect. 14.C of [L-W]), but the
relaxed condition 5' of Chernov's paper [Ch] is very likely to hold for this system.
However, checking the condition 5' (the transversality of the stable and unstable fo-
liations) for the falling ball model seems very difficult, if not hopeless. Henceforth,
here we do not aim at proving the ergodicity of the system.

For a more detailed introduction to this subject, and for a thoroughly assembled
collection of references and historical remarks, the reader is kindly referred to the
introduction of the paper [W-I].

Remark. It is easy to see that the studying of the falling point particles on the
vertical half line {q \ q ^ 0} is not a restriction of generality as compared to
the systems of 1-D balls (hard rods) of length 2r. Namely, the simple change
in the kinetic data #/ ι—> qι — (2z — l)r, f/ ι—» Vj, HQ ι—> HQ — ^X^=ι(2* — l)/w/ (the
change of the fixed level of energy) establishes an isomorphism between the hard
rod system and the point particle model.

2. Prerequisites

The upcoming brief survey of our dynamical system and the related technicali-
ties will narrowly follow the approach of Sects. 1-3 of [W-I]. A thorough de-
scription of the falling ball model and detailed references can be found in that
article.

We consider the following Hamiltonian system with discontinuities: Given the
vertical half line {q \ q ^ 0}, n (^ 2) point particles (one dimensional "balls" la-
belled by 1,2,...,«) with positions 0 5g q\ ^ #2 ^ ^ qn are moving in that
half line so that they fall down under a constant gravitational acceleration a — — 1,
they collide with each other elastically whenever they hit each other, and the
first particle bounces back from the hard floor q = 0 elastically when it hits
the floor. Denote by vt = qi the velocity, by /?/ = ra^ the momentum, and by

hi = ntiqi -f \m^ — mtqi + -̂ the energy of the zth ball. (The quantity w/#/ is the
potential energy arising from the gravitation.) The extended phase space (without
fixing the energy) of this mechanical system is then

N = {(q,p)£ Rπ x R/ΊO ^ q\ ^ - - • ^ qn} . (2.1)

The manifold (with boundary) N carries the usual symplectic form

co = Σ dqt Λ dpi = Σ dhi Λ dvt . (2.2)
i=\ i=\

The Hamiltonian function is H(q, p) = Σ"=\ h* anc^ tne arising Hamiltonian flow
{ι//t 1 1 G R} is determined by the usual formalism

*~_1~_*L
(/ = !,...,«) between collisions.

A collision of type (/, i -\- 1) (/ = 1,..., n — 1) occurs when qi — qi+\. Then the
velocities and the momenta of the colliding particles get transformed according to
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the law of elastic collisions:

(24)

where yz = ^'+^!+1» see also (3) of [W-I]. (Here the superscript — (+) refers to the
kinetic data measured right before (after) the considered collision.)

At a floor collision q\ = 0 we obviously have

\Ό*+=~Όl- (2-5)
(Pι=-Pι -

We introduce the following notations for the several components of the boundary
<3N of N:

f δNf - {(#, p) e N I qt = qί+l and ± (vt - vi+l) < 0}
, ,n-ι ,~τ+ (2 6)

for / = 0,...,« — 1, where, by convention, q$ = VQ = 0. Then the collision map Φz :
δN~ —> δN+ (/ = 0,..., w — 1), determined by (2.4)-(2.5) and by the condition that
the positions do not change at collisions, turns out to be a symplectic diffeomorphism
of δNz~ onto δN+, see Sect. 2 of [W-I]. (Here the (In — 1 )-dimensional manifold
δN naturally inherits the pseudo-symplectic structure ω |~δN, i.e. the restriction of ω
to δN.)

Now we fix the total energy by taking H = HQ = 1, and consider the restriction
of the Hamiltonian flow with collisions {ψ* t G 1R} to the energy hypersurface

The corresponding boundary components of M are denoted by δM and
The (invariant) Liouville measure v in the extended phase space N is defined via

the volume element i^ = ω Λ Λ ω (the nih exterior power of ω). The correspond-
ing conditional Liouville measure μ on M can then be obtained as the contraction
ΪF(^) of the 2«-dimensional volume element i^ by a vector field {F(x) x e M}
for which DF(H) = 1. Under our assumptions the phase space M is compact and,
therefore, the measure μ is a finite, {^}-invariant Borel measure on M. The subject
of this paper is the Hamiltonian flow with collisions (M, {^},μ).

Factorization with respect to the flow direction. We will frequently use another
coordinate system (δh,δv) in the tangent space

For every interior point x — (q, p) of M we define the codimension-one linear sub-
space 3ΓX of the tangent space ^~XM of M at x as follows:

(2.8)
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It is clear that the subspace ^ of ^M is transversal to the velocity vector

V(x) = ̂ (

(in (δh.δυ) coordinates) of the flow {ι//t \ t G R}.
Since the ω-orthocomplement of the tangent vector V(x) (x G intM) in ^N is

precisely the space ^M, we infer that the 2-form ω[~^M naturally descends to
the factor space

i U G Rl = .

and it is a nondegenerate 2-form on that space. Moreover, the composition of the
inclusion ^~x ̂  ̂ M and the projection ^M — > 3?~XM/VX provides a natural identi-
fication i : ^x -> &~XM/VX. The linearization (derivative) D\j/\x) :
maps the line J^ onto ^(x) and, therefore, it descends to a mapping

Thus, by using the above mentioned identification ι, we can (and will) think
of D\l/l(x) as a mapping D\l/l(x) : 2ΓX — » ^(^. The facts that the collision maps

Φι : δMj~ — > δM/" are symplectomorphisms and { t / ^ | / G R } i s a Hamiltonian flow
between collisions together imply that the linearization Dψ^x) : ^ — > $~ψt(x) pre-
serves the nondegenerate 2-form ω.

The invariant cone field. The symplectic linear space ^N is the direct sum V\ Θ ¥2
of the Lagrangian subspaces

In Sect. 4 of [L-W] Liverani and Wojtkowski introduced the nondegenerate quadratic
form Q in ^N associated with the decomposition ^N = V\ θ VΊ as follows:

Q((δh, δv)) = (δh; δv) = δhiδVi . (2.9)
/=!

The corresponding positive cone (sector) Cx C ^N between the Lagrangian sub-
spaces V\ and VΊ is then defined as follows:

Cx = {(δh,δv) G ̂ N I Q((δh,δυ)) ^ 0} . (2.10)

We will use the restriction of the quadratic form Q to the space ^ and the inter-
section Cx Π έ7χ9 also (a bit sloppily) denoted by Q and Cx. It is worth noting here
that the (g-orthocomplement of the line Vx in ^N is precisely the space 5^M and,
therefore, the form Q descends to a nondegenerate quadratic form (also denoted by
β) on the factor space &xM/Vx = yx.

Wojtkowski shows in Sect. 4 of [W-I] that if m\ ^ m^ ^ ^ mn, then for
every t > 0 the linearized mapping D\l/*(x) : ^x —> &ψt(X) is β-monotonic, i.e. for
every tangent vector y G ̂  one has Q[(Dψl *(x))(y)] ^ Q(y) or, equivalently, the
cone field C is invariant:

(Dφ*(x))(Cx) C Cm (2.11)

for every t > 0, x € intM, ψ'(x) 6 intM.
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Definition 2.12. Let {\l/\x)\t ^ 0} be a nonsίngular, positive orbit, x £ intM.
We say that the cone field C is eventually strictly invariant along the orbit
{ψ*(x) t §: 0} iff there exits a number to > 0 such that

or, equivalently, Q[(D\l/to(x))(y)] >0for every Oή=y eCx.

A major result (Theorem 5.1) of [W] is the following one:

Theorem on Nonzero Characteristic Exponents. If the cone field C is eventually
strictly invariant along {φl(x) \ t ^ 0} for μ-almost every x £ M, then all char-
acteristic exponents A/(JC) of the cocycle (<3M+, Ψ,DΨ,μ0) are different from zero
for μo-almost every x £ 3M+.

In Sect. 3 we will just check the conditions of this theorem for the falling ball
system introduced before.

3. The Strict Invariance of the Cone Field (Proof of the Theorem)

In this section we will be studying the strict cone invariance along a non-singular
trajectory

{tff'(*)| t e R} - { ( q ι ( t ) 9 . . . 9 q n ( t ) ' , v l ( t ) , . . . , Ό n ( t ) ) \ t e R}

of the Hamiltonian flow with collisions {ψ* t £ 1R} introduced in Sect. 1. We will
always assume that m\ > m2 ^ w3 ^ ^ mn > 0 and t — 0 is not a moment of
collision. Through references it was shown in the previous section that the quan-
tities (δh δv) = (δh\,...,δhn\δv\,...,δvn) (where we always assume ]ζ"=1 δhj > =
Σί=ι δvi = 0) serve as suitable symplectic coordinates in the codimension-one sub-
space y~x of the tangent space ^M of M at the phase point x — (#ι(0), . . . ,#«(());
ϋι(0),...,ι;n(0)). Recall that the linear space 9^ is transversal to the flow direction
and the restriction of the canonical symplectic form (2.2) of M is nondegenerate on
yx. We also recall from the previous section that the individual energy of the /th

particle is hi — mz ̂  + \rn{Ό\ — miql -f -̂ and, therefore, δhi = niiδqi + miVjδvi —
πiiδqi + Viδpi.

It follows from Wojtkowski's arguments between the Theorem and Proposition 1
of Sect. 5 of [W-I] that in order to check the eventually strict invariance of the cone
field along the studied nonsingular trajectory {ψ^x) \ t £ R} it is enough to prove
that

(A) for every vector Oφ(0;<St;) £ ̂  there exists a t > 0 such that

g[DiA'((0;^))]>0
and

(B) for every vector Oφ((5/z;0) £ ̂  there exists a t > 0 such that

β[Z)f ((<$/*; 0))]>0.

Moreover, Wojtkowski's mentioned arguments from Sect. 5 of [W-I] actually
contain the proof of (A), provided that m\ > πii ^ ^ mn > 0. Here we briefly
review his ideas. The formula (13) of [W-I] says that a tangent vector of the form
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(0; δv) does not get changed at all by the linearization DΦo of the collision map ΦQ
corresponding to the floor collision. Suppose that a collision of type (/, / + 1 ) occurs
at time t^. Denote the corresponding collision map by Φz as in [W-I]. Suppose for
a while that /wz >mί+\. Equations (10) and (11) of the above article say that after
pushing the tangent vector (Q δv) through the collision (/,/ + 1), the value of the
β form on the image Z)Φ/((0; δv)) either becomes positive, or δv^(tk) — δv^+l(tk)
and δυ+(tk) = δv~(tk).

On the other hand, it also follows from (10) of the mentioned paper that in
the case m/ = mί+\ the linearization DΦi of the collision map Φz simply inter-
changes δυt and δυί+l: δυf ( t k ) = δv7+l(tk)9 δv++l(tk) = δv~(tk\ δv+(tk) = δvj~(tk)

for y φ/,/ H- 1, and δh+ — δh~ = 0. Therefore, it is quite reasonable to re-label the
particles dynamically at every such collision by simply interchanging the labels /
and / - h i . This is equivalent to allowing the particles with equal masses to freely
penetrate through each other precisely the same way as Wojtkowski did in [W-I].
Then, as long as the β form remains zero on the images of (0; δv), the images
of (Q δv) under the linearization of the flow {φl \ t £ R} remain the same, and
δvf = δvj if the particles / and j collide on the considered trajectory segment. Since
each particle / with ml < m\ must eventually bounce back from a heavier particle,
and 1 is the sole heaviest particle by our assumption m\ >mι, we obtain that every
δvj must be the same. By our convention Σ"=i δv; = 0 (we are always dealing with
vectors from ^), however, we infer that δv = 0, provided that all future images of
the considered tangent vector (0; δv) have zero β form.

Thus, in order to prove the Theorem, it is enough to show that (B) holds true
for μ-almost every x £ M. This is what we are going to do.

We begin with the definition of the "neutral space" J/% of the nonsingular phase
point x. (To be more accurate, Jfx is going to be the neutral space of the positive
orbit {ψ ( x ) \ t ^ 0}.) The linear subspace Λ^ of 3ΓX will be the precise analogue
of the neutral space ^o(S^'°°^x) of a positive orbit in a semi-dispersing billiard,
originally and essentially introduced by Chernov and Sinai in [S-Ch], and later
heavily used by Kramli, Szasz and myself in the several proofs of ergodicity for
hard ball systems, [K-S-Sz I-II, Sim, S-Sz I-II].

Definition 3.1.

Λς := {(δh\ 0) € ̂  I Q[D^((δh\ 0))] = 0 Mt ^ 0} .

It is easy to convince ourselves that, indeed, J^x is a linear subspace of ̂ . The
main result of this section (immediately proving the theorem) is

Main Lemma 3.2. For μ-almost every (nonsingular) phase point x £ M we have
Λί = {0}.

Proof. The proof will be based on a few lemmas. Denote by 0 < t\ < ti < <
fjt/Όo the sequence of all collision moments on the positive orbit {ψ*(x) \ t Ξg 0}.
(These collision moments do not have a finite accumulation point, see the Ap-
pendix.) It is obvious that the tangent vector Dι/^((<5/z; 0)) := (δh(t); δv(t)) does not
change between collisions (after the natural identification of the tangent spaces of
M at different points). Between the Theorem and Proposition 1 of Sect. 5 of [W-I]
Wojtkowski proved that for any neutral vector (δh\ 0) £ Jfx we necessarily have that

(1) δv(t) = 0, i.e. D^((<5λ; 0)) = (δh(t) Q) W ^ 0;
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(2) δh (ft) = δh+(tk) and δh\(tk) — 0 if the first particle bounces back from
the floor at time ft, i.e. #ι(ft) = 0;

(3) δh+(tk) = R*δh~(tk) if ft is a moment of an (ί,ι + 1) collision (1 ^ / ^
H — 1), where RΪ is the following « x n matrix:

(3.3)

" I 0

o ' - .
0 ...

0 ...

0 0

.0 0

o o-

: : 0 0

7ι i - y / •-- o
ι + y , -yt ••• o

: : ••• 0

0 1.

Here γ, = ^+ !̂'+1 and the four entries containing yz fill up the intersections of the

/th and /h rows and columns. (For property (3), see also (10) of [W-I].)

Lemma 3.4. For every vector (δh\ 0) G J^x we have Σ"=l

Σn

i==l δhi(t)Όi(t) - 0 for all t ^ 0.

Proof of Lemma 3.4. Consider the quantity

= 0 and, hence,

well defined for all t ^ 0. The obvious relation j-tδhi(t) = 0 implies that between
collisions

and

-W(ί) = Σ Όi(t)δhi(t) = (V(t)' δh(t))

"dP

(3.5)

(3.6)

(Here we took advantage of the fact that ΰ/ = — 1 is the gravitational acceleration.)
Thus w(t) is a linear function of t between collisions. It is a straightforward con-
sequence of (2) that the function w is continuous and it even does not change
its slope at a collision with the floor. If, on the other hand, a collision of type
(z, i + 1) takes place at time ft (1 ^ z ^ w — 1), then we have that g/(ft) = ^/+i(ft)
and the compound velocity vector v(t) gets transformed by the matrix Rj at time
ft: v+(tk) = RiV~(tk), see (9) of [W-I]. These facts and property (3) imply that

= w~(ft) and

dt
0) = {5Λ(ίt + 0);

= (δh(tk - ̂

0)} = (Kίδh(tk - 0);^

- 0)} - w(ft - 0) .

- 0))

Here we used the obvious relation /?? = !. We have seen therefore that
(inhomogeneous) linear function of t ^ 0.

(3.7)

is an

Sublemma 3.8. The function w(t) is bounded (t ^ 0).
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Proof. It is enough to prove that the quantity Σ/Li ^[<5/z/(0]2 is a constant
function of t, since the positions qt(t) are obviously bounded. However, the
quantity

Σ -[δht(t)]2 = Eδhi(t)δqi(t) = (δh(t)'9δq(t))
i=l mi i=l

is constant between collisions and, by (2), it does not change its value at a floor
collision. Furthermore, if a collision of type (/,/ +1) takes place at tk9 then the vector
δq(t) = D~λδh(t) - where D = diag(raι,. . .,mn) is the diagonal matrix with the
masses as entries - gets transformed by the matrix D~1R*D = Rί9 i.e. δq(tk + 0) =
Riδq(tk — 0). Therefore, according to (3), we see that

(δh(tk + 0); δq(tk + 0)} = (Rίδh(tk - 0)'9Rtδq(tk - 0)) = (δh(tk - 0); δq(tk - 0)) .

(The above arguments are precisely the arithmetic background of the conservation
of the kinetic energy at an (/,/+ 1) collision.)
Hence the sublemma follows. D

The assertion of the sublemma, together with (3.5), now proves Lemma 3.4. D

Finishing the Proof of Main Lemma 3.2. Set

χd = {x G M I x is nonsingular and dimΛ^ = d} (3.9)

for d = 0, !,...,« — 1. We want to show that for every d > 0 the set Xd has μ
measure zero. Fix a number d > 0 and an arbitrary phase point XQ G Xd. We will
prove that XQ has a suitably small, open neighborhood UQ in M with μ(Xd Π t/o) = 0.

First choose a number τ > 0 with the following properties:

(i) τ is not a moment of collision in the positive trajectory of XQ;

(ii) Λί0 = ^({^(XQ) I 0 ^ t ^ τ}), i.e. the relation (Vf, 0 ^ t ^ τ)
= 0 implies that (Vf ^ 0) Q[D^((6h\Q})} = 0.

It is a very important consequence of properties (1)— (3) above that the neutral
space of a finite orbit segment is completely determined by the symbolic collision
sequence of that segment, i.e. by the types of collisions] Therefore, one can surely
find a small, open neighborhood UQ of JCQ in M such that for every element y G UQ
we have that

(i); the symbolic collision sequence of {^(y) | 0 ^ t ^ τ} is the same as of

and τ is not a collision moment of these orbit segments;
( i i) 'ΛWθO|0^^τ}) = Λί0.

Then we conclude that
= ^ U 1),

Therefore, we get that Λfy = J 0̂ for every y e UQ nXj. According to Lemma 3.4,
however, the compound velocity vy of such a point y = (qy,vy) G U^Γ\Xd is nec-
essarily perpendicular to the δh part of every neutral vector (<5/j;0) £ «Λ^0. Since
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J 0̂ Φ{0} and the velocities vy of all points y e UQ fill out an open subset of R",
we see that, indeed, μ(t/o Π Jζ/) = 0.

This finishes the proof of Main Lemma 3.2 and, therefore, the proof of the
Theorem, as well. D

Appendix. Degenerate Orbits

We begin with a simple observation. Assume that we are given a phase point
c = (q9 p) G M with the property that there are k particles (1 ^ k < n) stuck on
the floor with zero energy, i.e. q\ = - = qk — 0, p\ — - - = pk = 0. Then the only
natural way of defining the collisions of the orbit {\l/t(x)\t G 1R} is such that these
particles will remain standing still forever on the floor with zero energy. We call
these trajectories the degenerate ones.

Proposition A.I. Suppose that the trajectory {ψ*(x) \ t G R} is nondegenerate.
Then the collision moments of this orbit can not accumulate at any real
number t. In other words, there can only be finitely many collisions in finite time.

Proof. Assume the opposite, i.e. that there is a (say, positive) accumulation point
of collision moments. Denote by ft the smallest one of such positive accumulation
points. Then all collision moments of the open interval (0, t$) form an increasing
sequence 0 < t\ < t2 < - - < tQ such that limm_+oo tm = tQ. Denote, as usual, by σ^ =
(ikJk + 1) (0 ^ ik ^ n — 1) the type of the collision taking place at time t^ where
(0,1) means the collision with the floor. We say that an integer i (Q ^ i ^ n — 1)
is essential if and only if there are infinitely many natural numbers k with ίk — i.
By classically known results ([G I-II, V]), without the floor collision there can only
be finitely many collisions in finite time. Therefore, the set of essential indexes /
has the form {0,1,... ,#}, 0 ^ a ^ n — 1. We can assume that the origin t = 0 is
already chosen in such a way that ik ^ a for every positive integer k. We are now
focusing on the limit \imt/stoVi(t) of the velocities Vi(t) of the particles as

Lemma A.2. For every i, 1 ^ / ^ a -f 1, the limit

exists.

Proof. We start with the case / — a -f 1. Since va+\ = —1 between collisions and
Va+\(tk) > v~+l(tk) for ik = a, we conclude that

oo

t/*to k=l

This settles the case i = a -f 1.
Suppose now that I ^ i ^ a and the lemma has been proved for / + 1,..., a -f 1.

Then again we have ύj — — 1 between collisions of type i — I or / and v^~(tk) >

v~j~(tk) if ik = i' — 1, while vf(tk) < ι?/~fe) ^ z^ = z Since the lemma is supposed
to be valid for / + 1,..., a + 1, one concludes that

Y \v~/ j L I
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Thus, an argument similar to the one yielding (A. 3) provides

limι;I (0 = ϋ«(0)-ίo- Σ [«Γfe)-t?M)]+ Σ [v+(tk) - v^(tk)] . (AA)
'/'« k,ik=i k,ik=i-\

Hence the lemma follows. D

Finally, since there are infinitely many collisions of type (/,/ + 1) (0 g / ^ a)9

we conclude that uz~(*o) ^ ι£n(*o) (following from the fact that vf (tk) < v++l(tk)
for ik = 0 and, similarly, v^fo) ^ uz~(fo). (Here we use the natural convention
ϋo(0 — O ) Thus t;z~(ίo) = 0 for / = 1,...,α + 1 and, therefore, limt/sto qi(t) = 0, as
well.

However, the subsystem {1,2,...,α+ 1} can not just lose its positive energy!
The obtained contradiction finishes the proof of Proposition A.I. D

Remark. As it has been shown in [B-F-K] (Theorem 2 and Corollary 1), the number
of collisions in a unit time interval is bounded in any semi-dispersing billiard that is
non-degenerate in the sense of Definition 1 of [B-F-K]. Since a small perturbation
of a degenerate trajectory clearly provides an arbitrarily high number of collisions
in unit time, we conclude that there is no way to introduce any Riemannian metric
in the configuration space Q in such a way that

(i) all sectional curvatures of that metric are nonpositive,
(ii) the smooth components of the boundary 3Q are convex from inside Q,

(iii) the flow {ψ1} is induced by the geodesic flow in Q and by the usual law
of reflections at the boundary <9Q, and

(iv) the flow {φ1} is non-degenerate in the sense of [B-F-K].
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