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Abstract: We define an invariant of a three manifold equipped with a flat bundle
with vanishing homology. The construction is based on Morse theory using several
Morse functions simultaneously and is regarded as a higher loop analogue of various
product operations in algebraic topology. There is a heuristic argument that this
invariant is related to perturbative Chern—Simons Gauge theory by Axelrod—Singer,
etc. There is also a theorem which gives a relation of the construction to open string
theory on the cotangent bundle.
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0. Introduction

Let M be a 2n dimensional manifold and N be its #» dimensional submanifold. We
consider a current 7y such that Ty(w) = fN . We try to justify the integral

A{TN/\TN. (0.1)

(We remark that Ty A Ty itself is not well defined.) One way to do so is to take a
perturbation N’ of N so that N’ and N are transversal to each other and consider

!Partially supported by Grants-in-Aid for Scientific Research on Priority Areas 231 “Infinite Analysis”



38 K Fukaya

fM Ty AN Tns. It is easy to see that Ty A Ty, is a delta current supported at the
intersection N N N’. Therefore |, v In ATy is the intersection number N ¢ N' =
N e N. What is important here is that the integral |, v In A Ty is independent of
the perturbation N’.

There is an alternative way to get the same answer. Namely we choose a har-
monic n form Ay which represents the De-Rham cohomology class of N. Then again
/; v A by is well defined and gives the self intersection number N o N.

We can continue in a similar way to define the secondary invariant as follows.
Let M = A C M? be the diagonal. Assume that T, is an exact current. (In fact
this never happens. But we can find this kind of situation by working with a local
coefficient.) We choose an n — 1 form w on M? such that dw = T4. Assume that
M is three dimensional. Then the integral

JoroAw (0.2)
M?

is a number. By modifying this integral |, w2 @A @A o, an invariant of a 3 mani-
fold is discovered by Axelrod-Singer [AS], Bar—Natan [Ba], Guadagnini—Martinelli—
Mintchev [GMM], Kontsevich [Ko], etc. We discuss their result a bit more in Sect. 8.
Their construction is based on harmonic theory and hence is an analogy of the sec-
ond method we mentioned above to justify (0.1).

On the other hand, we can also imitate the first approach. Namely we can use an
appropriate intersection number to justify (0.2). To perform this kind of construction
is the purpose of this paper.

To do so, we need to find a cycle X such that X = 4. Such an X can be
found as follows. Choose a Morse function f. Let M(f) be the set of all pairs
(x,y) € M? such that x, y lie on the same gradient line of f. One can easily find
that a connected component of the boundary of M(f) is a diagonal A. Hence the
intersection number M (f1) e M(f,) ® M(f3) should be related to (0.2).

Let us here review various results related to the contents of this paper. First it
was discovered by [As, Ba, GMM, Ko] that an integral like f 2 @A\ Ao gives the
second term of the expansion of Witten’s invariant [W2, Kh, ReT] that is a Chern—
Simons gauge theory. The first term of this expansion is basically the Analytic
torsion of Ray—Singer and was discussed by Witten [W2]. Axelrod—Singer, etc.
defined a hlgher term also.

In fact it is not yet proved that the construction of Axelrod-Singer, etc. really
gives the expansion. What they did is to give an argument of physical level of
rigor to show that this is an expansion of the Witten invariant and also they proved
rigorously that the invariant is independent of the various choices involved.

Witten in [W3] found that Chern—Simons Gauge theory on a 3-manifold M is
equivalent to the open string field theory of its cotangent bundle 7*M. However
to make the latter rigorous in a mathematical sense is not easy and remains yet an
open question. (See Sect. 8 for more discussion about it.)

Floer studied the pseudo-holomorphic disk with Lagrangian boundary condition
to define his celebrated Floer homology for Lagrangian intersection [F11]. In the
case of the cotangent bundle he proved that Floer homology between 0 section and
its Hamiltonian perturbation is equal to the usual homology of the manifold. The
problem to define Floer homology for Lagrangian intersection in a more general
situation is studied by Oh [Oh]. The author introduced an A4°°-structure on Floer
homology [Ful, Fu2]. In the case of the cotangent bundle T*M, it is proved by



Morse Homotopy and Chern—Simons Perturbation Theory 39

Oh and the author that the 4°°-structure of Floer homology is equivalent to one for
M [FO]. The latter is described by using Morse theory. The main idea to do so is
to use several Morse functions at once. This idea is due to the author [Fu2, Fu3]
and to M. Betz and R. Cohen [BC] independently. Roughly speaking we consider
the moduli space of maps from a graph to M such that each edge is a gradient
line of some Morse function. The A°°-structure then corresponds to the case when
the graph is a tree. The result of Oh and the author says that the case of a tree is
equivalent to the 0-loop amplitude of open string field theory on 7™*M.

Betz—Cohen studied also the graph which is not a tree. They announced that
characteristic classes of a manifold are described in that way. The author in [Fu3]
also studied the case when the graph is not a tree. However the discussion there
was not yet satisfactory.

The main point of this paper is that the Morse theory for a graph which is not
a tree gives Chern—Simons perturbation theory. The author does not yet prove that
they really coincide. What is proved in this paper is that (for the 2 loop amplitude)
there is a well defined invariant based on Morse theory.

We can generalize our result with Oh to this case and show that our invariant
is related to open string theory (see Sect. 8). Thus in a sense our construction is a
rigorous mathematical definition of a 2 loop open string amplitude on the cotangent
bundle of a 3 manifold.

It is remarkable that our construction is similar to the construction of Chern—
Simons Perturbation theory in many points. Also in Sect. 8 we discuss some heuristic
argument which suggests that our invariant coincides to Chern—Simons Perturbation
theory. This idea is closely related to Witten’s work on Morse theory [W1].

Note that the invariant we introduced here is a secondary invariant to the
(co)homology group (with cup product). Also here the homology group is stud-
ied from the point of view of singular theory (since Morse function gives a cell
decomposition.) With this respect Reidemeister torsion is another natural secondary
invariant of the (co)homology theory with local coefficient. In Chern—Simons per-
turbation theory analytic torsion of Ray—Singer [RS] appeared as the first invariant.
The coincidence of Reidemeister and Analytic torsion was established by Cheeger
[Ch] and Miiller [Mii]. Our conjecture that the invariant in this paper coincides with
one by Axelrod-Singer, etc. may be regarded as the higher genus analogue of this
theorem of Cheeger—Miiller.

The organization of this paper is as follows:

In Sect. 1 we define our invariant. Roughly speaking it is obtained by counting
the order of the set of solutions of an appropriate ordinary differential equation, with
appropriate weight.

The proof that this number is independent of various choices is based on the
study of compactification of the moduli space of the solution of an ordinary differ-
ential equation. There are basically two points to clarify. To define an intersection
number M(f;) e M(f;) ® M(f3), there are two problems. One is that the boundary
of M(f1) is not in fact equal to the diagonal A. There is another boundary that is
the set of pairs (x, y), where x is in an unstable manifold of grad f with respect
to a critical point p of f and y is in the stable manifold of the same critical point
p. We need to add various correction terms to settle this problem.

In Sect. 2, we discuss the point mainly related to this problem.

Based on it the well-definedness of our invariant is proved in Sects. 3-5.
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In Sect. 6, we discuss another problem with the transversality of M(f1) e M(f2) ®
M(f3). Namely these submanifolds are not transversal to each other at the diago-
nal, even if we choose f; generic. We need to use an appropriate blow up of the
diagonal of M2. This construction is similar to the argument of compactification of
configuration space due to Fulton—Macpherson [FM] and Kontsevich [Ko], which
was used also by [AS] and [Ko].

In Sect. 7 we discuss orientation of our moduli space.

In Sect.8 we describe some ideas related to the problem that our invariant
is equal to both Chern—Simons perturbation theory and open string theory of the
cotangent bundle.

The result of this paper was announced in [Fu4] without proof.

During the preparation of this paper, the author visited Maryland University,
Hong Kong University of Science and Technology, Newton Institute, International
Center of Theoretical Physics and Stanford University. The author would like to
thank these universities and institutes for their hospitalities.

The author would also like to thank Professor Hiraku Nakajima for his excellent
explanation of Chern—Simons perturbation theory to the author. He also would like
to thank T. Gocho who pointed out an error on sign in the preliminary version.

1. Statement of the Result

Let M be a compact oriented 3 manifold and ¢ be a flat vector bundle on it. In this
section we define a number Z,(M; f1, f2, f3; &) by fixing a metric on M and three
generic functions f1, f2, f3 on M. The proof that it is invariant of these choices will
be given in Sects. 2—7.

The number Zy(M; f1, f>, f3; &) is a sum of Zo(M; f1, f2, f3; &) and correction
terms. We first define the leading term.

For a function f on M, let dij’,: M — M be the one parameter group of diffeo-

morphisms associated to grad f. Namely it satisfies

45?,(x) =X
D' (x) .
—5 | = erad f( @)

=ty

Let f1, f2, f3 € M. We put
Mo(f1; fr, f3) = {(x, y;11,1,5) € M? X RY| @) (x) = y,i = 1,2,3}. (L.1)

Lemma 1.2. For generic f1, f2, f3, the space M o(f1, f2, f3) is an oriented mani-
fold of dimension 3 — dim M.

Lemma 1.3. If dim M = 3, then for generic f1, f2, f3, the space M o(f1, f2, f3) is
compact.

These lemmas are proved in Sect. 2.

For t,%,t3 > 0, we define a metric on @ as follows. Let e;, j = 1,2,3 be the
edges of length #,1,1; respectively. We take two vertices vy, v, and attach each of
the edges of e; to vy, vs.
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V1 V2

€3

Fig. 1.

For an element (x, y; t1,%,83) of M o(f1, f2, f3) we associate a map [ : @ — M
as follows. We put I(vi) =x, I(v2) =y, and on the edge e; we define I(¢) =
@;J(x). (Here we identify e; = [0,#;].) By the definition of .#Zo( f1, f2, f3) this map
is continuous at v,. Hereafter we regard an element of .#e(f1, f2, f3) as such a
map.

We next associate a weight y(/, ) to each element / : ® — M and a flat vector
bundle ¢ as follows. We define element y; € 71(0), i = 1,2,3,4 by

-1
yl =ez oer,

—1
Y2 =e3 oey,

—1
y3 :el 063,

-1 — _
Y4a =e, oe3 oelloe20e3loe1,

Roughly speaking, yi,72,73 are boundary loops of one of the ribbon structures
of the ®-graph, while y, is the boundary loop of another ribbon structure of the
@-graph. Now we put

3
21,8 = —[[1 Tr(Holg(Z(7:)) + Tr(Hole(14(74)) (1.4)

Here Holg(¢) is the holonomy homomorphism of the flat bundle ¢ along the loop
¢. Now we define

Definition 1.5.

Z@(f1,f2)f3;£): Z EIX(I’é)-
IetMo(f1, /2 f3)

Before going to the next step, let us rewrite our weight by using Lie algebra
bundle ¢ = Ad¢. More generally we consider a flat bundle ¢ over M, whose fibre
has a structure of semi-simple Lie algebra compatible with the flat structure. By
using a canonical invariant inner product, we have an inner product on ¢ which
is also compatible with the flat structure. Let I € #o(f1, f2, f3). We choose an
orthonormal basis ey,...,edqmg of ¢, for x = I(vi). We put

dim
X(I’ C) = Zg <[ei9 ej]’ek><[P€l(ei)aPes(ek)]’Pez(ej)> . (16)

i,7,k=1

Here P, : ¢x — ¢, is the parallel transport along the path /(e;).
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Lemma 1.7. If ¢ is a C? bundle with flat su(2) structure and if ¢ = Ad¢, then we
have

2x(L, &) = x(Lg).

Proof. We embed su(2) — gl(2; C) and choose e so that e, ...,e; is an orthonor-
mal basis of gl(2;C) and ey, e;,e; is an orthonormal basis of su(2). Then since e
is in the center, we have

3
X(L Q) = . Zk: 0 <[eiaej]a ek>([Pel(ei)aPes(ek)LPEZ(ej)) . (18)
1, ], K=

We then find that (1.8) is equal to

3
-2 ; . (eie), €) (Fe,(€:)Fe;(€)), Py (€r))
1, ], K=

+2 (eie), ) (Fe,(€))Fe, (€:), Fey(€k)) - (1.9)

3
i,J,k=0

(Here e;e; etc. denotes the product of matrix.)

It is straightforward to see that (1.9) is independent of the choice of orthonor-
mal basis. So we change our basis and take f; ® f/, i,j = 1,2. Here fi,f, is an
orthonormal basis of &, and f!,f? is its dual basis. Using this basis the first term
of (1.9) is

2 3 (G U)E @), © 1) (P (f; ® V)P, (1 @ 1), P, (f; ® 1)

2
i j k=1

2
2 ; (Pel (f, )9 Pes (fl )) (Pel (fj )a Pez (fj )) <Pez (fk ), Pe; (fk )) .

I

i k=1
3
=2 Hl Tr(Hole(y:)) -

Similarly we find that the second term of (1.9) is equal to 2Tr(Hols(y4)). The proof
of Lemma 1.7 is now complete.
We define

Zo(f1, f2, f3:6) = > + x(,¢)
1€ o(f1, f2, f3)

for a flat Lie algebra bundle ¢. Here + is determined by the orientation of
M o( f1, f2, f3), which is discussed in Sect. 7.

We put
Y. Zo(e1f1,62/2,83/356) . (1.10)

1
8 g==1

Zo(f1, f, f3:6) =

We thus defined the leading term of our invariant. To define correction terms,
we first introduce the Witten complex [W1] with local coefficient. Let f: M — R
be a Morse function. We put

G fi0)= D ¢p-
PECH(S)
n(p)=k
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Here Cr(f) is the set of critical points of f and #(p) is its Morse index.
We define the boundary operator 0 : Cy(M; f;¢) — Cr_1(M; f;¢) as follows. Let
n(p) =n(q) + 1. We are going to define the component dp, : ¢, — ¢, of 0. Fol-
lowing the definition of the usual Witten complex, we use the moduli space

dt
i —grad f

Mp,q)=S¢:R—>M tlir_n {t)=p
Jim 4=

In case the Morse function f is generic and n(p) = 5(g) + 1, this space is an ori-
ented manifold of dimension one. The group R acts on it by translation of parameter.
Let ./ (p,q) be the quotient space of this action. We then define 0y : g, — ¢4 by

b= Y P
‘eM(p.q)

Here F, is the parallel transportation along the arc Z, and the sign is determined by
the orientation of the moduli space .#(p,q).

Lemma 1.11. 00 =0, H.(C«(M; f;¢),0) = H.(M;¢).

Here the right-hand side is the homology with local coefficient. The proof of
Lemma 1.11 is a straightforward analogue of the result in the case when ¢ is trivial.
The proof in that case is given by various authors. See for example [Sc].

Now we go back to our problem to define correction terms. We make use
of the assumption H(M;c) =0. By Lemma 1.11 it follows that the chain com-
plex (C.«(M; f;¢),0) is acyclic. Hence so is End(C.(M; f;¢),0). The element
id € End(C«(M; ), 0) is a cycle. So there exists an element g, € End(C.(M; f;¢))
of degree one such that dgy . = id. (Namely do gy .+ gy .00 =id.) We call such
dr,c a combinatorial propagator. We remark that combinatorial propagator is not
unique. But we prove later that the invariant we define using it is independent of
the choice of combinatorial propagator.

Now let ¢; € End;(C.(M; fi;¢)). We are going to define Zg(c1, &, &; f1, f2,
f3;¢) etc. We put

a= 3 dp.glpl®lql".
n(p)=n(g)+1
Here c¢(p,q) € Hom(gy,¢p). For n(p)=n(g)+1, we define a moduli space
M o(1,0,0)( P> q; [1, f2, f3) as follows:
Mm@ = p

Mo,0,00( PG [1, [, 3) = (x, ¥, 1) € M* x RS t_leloo P.(y)=¢
P (x) = y,i =2,3

As in the previous case, an element of the moduli space .#o(1,,0,0)(P.q; f1, f2, f3)
can be regarded as a map from a graph to M. Namely let ©(1,0,0) be the graph
obtained by cutting the first edge e; of the ®-graph. Then @(1,0,0) has 4 edges,
el,el, ey, e3. For an element (x, y;1,), we let e} be mapped to the gradient line of
/1 joining x to p,e? is mapped to the gradient line of f] joining ¢ to y. ey, e; will
be mapped to the gradient line of f5, f3 joining x to y respectively.
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Let I:©(1,0,0) — M be a map identified to an element of .#e1,0,0)( 2, 4; /1,
2, f3). We define a weight x(/,¢) € Hom(c,,c,) as follows. Let u €¢,, v€Eg,.
Let e; be an orthonormal basis of ¢,. We then put:

(L)) = 5 (P e o) (B Poeed. Pae)) - (112)
Js

Now we define

Z@(C’Q’g;fl’fz’f:;;g): Z iTr(C(Pa(I)OX(I,Q)) (113)

1€ M 0(1,0,00( P, G f15 125 f3)

Here the sign is defined by making use of the orientation of the moduli space. (see
Sect. 7.) Using it we define

Zo(fis fr £3:9) = Zo(f1s fr £3:) — Zo(d 12 B B f1 oo f5:0)
—Z@(Q’gfz’ Q, flafZ»f:.’:;g) - Z@(Qa Q’gf3;f1’ﬁaﬁ;g)
+Z@(gf1’gf2’®9f1’.f2,f3;g) +Z@(gﬁ’®’gﬁ>fl’ﬁ’f3,g)

+Z@(g’gﬁﬁgf3;f1)f2’f3;g) —Z@(gﬁ’gfzagﬁ;fbﬁaf?ng)
(1.14)

We then put

Zo(e1f1,62/2.83f3;6) . (1.15)
g==1

FNg

Z@(fl’fZ’f?};g) =

(See Remark 1.17 the reason why we take 1/4 in place of 1/8.) The numbers defined
in (1.14), (1.15) may depend on the choice of combinatorial propagators.

To obtain a number independent of the choice of functions f; and the
Riemannian metric g of M, we need to do a similar construction for the graph
A in Fig. 3. We first consider

Pl (x)=x
Mpf1, for fa) = { (5, y3 11,00, 1a) € MP X R | DL() =y
Ph(x)=y

Fig. 2.
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Fig. 3.

However, in fact, it turns out that this moduli space is empty, for generic f;. The
reason is that there is no periodic orbit of gradient flow except the trivial loop at
critical point.

Thus the leading term corresponding to the graph A is zero. But the correction
term may be nonzero, which we are now going to define. Let p;, g; be critical
points of f; for i = 1,2. Assume that #(p;) = n(g;) + 1. We put

3 2 —
Jim & (x) = py
im @ (x) = g1
Mact0,1(P1>q1 P3:435 [1 fas f3) = (5, 1, 1) € M x Ry tiifrnoo 2.(y)=p3
Jim @ (y) = g3
Ph(x)=y

We let A(1,0,1) be the graph obtained by cutting A at two points (Fig. 4). A(1,0,1)
consists of 4 edges e}, e, e}, e3,e4. We define x(1,¢) : ¢p, ® cp, — ¢p ® ¢y, by

(UL @ VU @ V) = 3 ([P (), Py (], ) ([P (), Po (@], P (V)

i
Here e; is an orthonormal basis of ¢,. We then define, for ¢; € End(C«(M, f,¢))

ZA(clagac3;.f19f4af3) = Z

P91, P3,43 L€ Mp1,0,1)(P1,915 P2,925 [1, f4, /3)
ETr((c1(p1,91) ® e3(p3,93)) 0 x(1,5)) -

We define Z,(cy1,c4,c¢3; f1, f4, f3) in a similar way. Using them we define

N 1
Zs(f1, fan f3) = 3 ZilZA(1,0,1)(951/1,@,053]3;81f1,83f3,84f4)
&=

1
—3 Zil ZA0,100(Ge1 fi>Gea ies s €1 S 1,84 f 4,63 f3)
&=
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Fig. 4.

We remark here that C.(M; —f;¢) = C.(M; f;¢)*. Hence we have End(C.(M;
—f3¢)) = End(C.(M; f;¢)*). We identify gr and g_, by this isomorphism.
We finally define

Zy(f1: for f3 S56) = Zo(frs far [336) — Za(frs f» fa3€)
_ZA(f17f4af3;g)_ ZA(f49f25ﬁ;g)' (1*16)

Remark 1.17. We remark that the order of the group of isomorphisms of the ©@-
graph is 12 and one of graph A (graph in Fig. 3) is 8. Hence

1 1
1—2(terms related to ©) — g(terms related to A)

1
= ﬁ(Z((terms related to @) — 3(terms related to A))
is the natural way to sum up contributions from two different graphs. This is the
reason why we take 1/4 in place of 1/8 in (1.15). Since we take 3 different choices
{fi fi} € {f1, f2, f3}, we did not put the factor 3 in (1.16).
Now our main result of this paper is as follows.

Main Theorem 1. Let ¢, ¢’ be the flat Lie algebra bundles with the same Lie
algebra g as their fibres. Assume H*(M;c) = H*(M;¢") = 0. Then the difference,
Zo(f15 f2, 3, 456) — Za(fr, f2, [, fas6") is independent of the choice of the

Riemannian metric and functions f1,..., fa and combinatorial propagators.

We next assume that M is a homology sphere. Then the Witten complex for the
trivial flat bundle is almost acyclic. More precisely we consider the augmentation
homomorphism C.(M, f;g9) — g for * =0,3. Here we regard g as a trivial flat
bundle. Let C®4(M, f; g) be its kernel. This complex is acyclic. Therefore we can
perform the same construction to obtain Z,(f1, /2, f3, fa;g). In fact in this case the
weight is independent of the element of moduli space and depends only on g. This



Morse Homotopy and Chern—Simons Perturbation Theory 47

is because all holonomy is trivial. Let ng be this number. (ng2) = 23 -2 =6 for
example.) Then z3(f1, /2, f3, f4; 8) = ngZo(f1, f2, /3, f4;1). We now have:

Main Theorem II. Let ¢ be the flat Lie algebra bundle with the same Lie algebra
g as their fibres. Assume H*(M;c) = 0. Then the difference, Z»(f1, f2, f3, fa;¢) —
ng Z2(f1, f2, f3, f4; 1) is independent of the choice of the Riemannian metric and
functions fi,..., fa and combinatorial propagator.

We remark that our invariant is well defined also for Lie algebra bundle of
positive characteristic (if cohomology vanishes) provided the characteristic is not 2
or 3.

Since the correction terms we put look rather complicated at first sight, the
author would like to add here some heuristic discussion to show where they come
from.

Let us go back to the idea explained in introduction. Namely we consider the set

M(f)={(x,y) € M*|3t > 0 P(x) = y}.

The boundary of this set is, roughly speaking, the union of the diagonal and

M(frid)= U {(x,y)ele lim #4(x) = p=_lim d>',(y)}.
peCr(f) —00 t——00

(see Lemma 2.4.) We put
M5 p,p) = {(x,y) € M?| lim @(x) = p= lim_ @}(y)} -

As explained in introduction, if we take M (f) such that d.4( f) is the diagonal,
then
#AM(f1) NAM(f2) N AM(f3))

is the invariant we want to define. To find such a ./Z(f), we need to find .#’( f) such
that 0.4'(f) =\J #(f; p, p). Our correction term comes from these components.

To explain the reason why the contribution of .#’(f") is calculated by the terms
we add, let us consider the following situation. We assume that Cr(f) = {p;,¢; : i =
1,...,N}, such that n(p;) = n(q;) + 1, #.4(pi,q;) = 1, and that .#(x, y) is empty
for any other pair x, y with #(x) = #(») + 1. In fact this assumption is never satisfied
because the homology group (with trivial coefficient) of M is always nontrivial. We
put this assumption only to simplify the explanation.

We then have that our combinatorial propagator is > [ p;] ® [¢;]*. We now put

1

M(f)=\ {(x,y) € M| lim @)(x) = p;, lim &(y) = q,} .

We then find that 0.4'(f) = J A(f; pi, p:) U U (S qi,q;) as required. Also
we see that

HM'(F1) VM) VA S3)) = Zo(g 1, B B i for [ trivial).

This explains the origin of our correction terms related to ©.
To understand why we need to consider the other graph A, we need to consider
the transversality at diagonal. One important remark is that for any choice of f; two
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submanifolds .#( f1) and .#(f2) are never transversal to each other at diagonal. In
fact
dim (A (f1) N A(f;)) = dim of diagonal = 3,

while
dim A(f1) + dim A(f>) — dimM? = 0.

Therefore we need to study carefully what happens in the neighborhood of
diagonal. We remark that this is related to the framing of our manifold M, since
the framing of M gives a way to perturb the diagonal. This is probably related to
the fact that Witten’s invariant [W2] depends on the choice of framing. However
in this paper we do not use framing directly. Maybe framing is introduced in some
sense implicitly when we choose our Morse functions.

We remark that in our situation the transversality at diagonal is related to the
compactification of the moduli space #(f1, f2, f3) we introduced. As we discuss in
next section, the end of this moduli space occurs in two ways. One is the case when
t; — oo. This end is related to the boundary component .Z(f; p, p) we discussed
above. The other case is when #; — 0. This is related to the transversality we are
discussing now.

In Chern—Simons Perturbation theory, two constructions are used to handle the
problem related to the transversality of diagonal. One is to consider another graph
A and the other is to cancel anomaly by introducing another term. These two phe-
nomena both have an analogy in our approach.

First we consider also another graph 4. These terms are used to cancel the effect
of ends such that one of #; — 0. (see the end of Sect. 3.)

The other is related to the case when all of #; — 0. This causes some anomaly
term also. We kill them by taking the difference of invariant related to two different
flat bundles. In place of taking the difference of an invariant determined by different
flat bundles there may be an alternative way in the case of homology spheres. We
will discuss it informally in Sect. 8.

2. Transversality and Compactness

We begin by proving Lemma 1.2 The idea of the proof is similar to one used
in various topological field theories (see for example [FU]) and is described as
follows. We first consider the union of moduli spaces | J recooon A (1, 12, f3). We
then prove that this space is an infinite dimensional manifold. It then follows that

A (f1, f2, f3) is a manifold for generic f}, f2, f3.
We are going to write f in place of (fi, f2, f3) for simplicity. We define P

M xR3 — M by
Pr(psti 2, t3) = (P} (p), PL(P), PL(P)) -

Let 4 = M C M? be the diagonal. By definition we have .#g( f )= cPf?l(A ). By
moving f and also moving the metric we have
@ : M x RS x Met x (C®°(M))> — M>.

Here Met is the set of all metrics of M.
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Lemma 2.1. The map @ is transversal to A.

Proof. Let (p;t1,h,t3; f ,g) be an element of ®~!(4). It suffices to show that the
differential of @ is surjective at this point. We choose disjoint open subsets U;, i =
1,2,3 of M such that U; N U,epo,y &/ (p)+ @ and Ui N U,ep,y 87 (p) = & for
i=j. By restricting @ to {(p;t1,t,t3)} x Cg°(Ur) x C§°(Up) x C§°(Us) x {g}, we
obtain ev : C§°(Uy) x C§(Uy) x C$°(Us) — M3, (Here Cg° is the set of smooth
function of compact support.) Namely

ev(hl, hZa h3) = (¢j‘:+hl(p), ¢Z+h2(p)a ¢}§+h3(p)) .

Let V; €T, ol p)M, i =1,2,3 be arbitrary tangent vectors. By our choice of U; we

can find 4; such that
4ot (p)

:K‘
ds

s=0
It follows that the differential of @ at (p;t, 6,5, f1, f2, f3,9) is surjective. The
lemma follows.

We remark that we use the fact #; > 0 in the proof of the lemma. If we generalize
the map @ so that it is defined at the point ¢; = #, = 3 = 0, then the lemma may
not hold. (We discuss this point a bit later in this section, when we study the
compactness, and we discuss it in more detail in Sect. 6.)

By Lemma 2.1, the set ®~!(4) is an infinite dimensional manifold. We con-
sider the projection m: @~ !(4) — Met x (C*°(M))3. Then by a simple counting
argument, we obtain the following:

Lemma 2.2. 7: &~'(4) — Met x (C¥(M))* is a Fredholm map of index 3 —
dim M.

We remark that we do not assume that dimM = 3 up to this point. We now
assume it. Then by Lemma 2.2 and Sard—Smale theorem [Sm], the space .#g( f )=
dﬁ}l(A) is 0 dimensional for generic choice of / and metric. We thus proved the first
statement of Lemma 1.2 We postpone the discussion about orientation until Sect. 7.
We next turn to the proof of the compactness. Before going there we remark that
the following one parameter family version of Lemma 1.2 holds. (This is used in a
proof of well-definedness in later sections.)

Let ( ﬁl), g1),( f:z),gz) be two elements of Met x (C*°(M))? such that transver-
sality holds for them. We consider a path L joining them. Then Lemma 2.2 and the
Sard—Smale theorem again implies that:

Lemma 2.3. For generic L the space, n~ (L) = U( 7 aeL Mo( f ,g) Iis one dimen-
sional manifold with boundary = — Me( f;l), g1) U Mg( f_22),g2).

We hereafter put #g(K) = U(f,g)eK Mo(f,9).
Now we begin the discussion of the compactness. First of all we remark that if
we fix (#,1,13) then the space

{(p:t1, 00,135 [, I(ps 1, 12, 13) € Mo (fr9),(fr9) €K}



50 K Fukaya

is compact (if K is compact.) This is a consequence of the fact that our moduli space
is the set of solutions of an ordinary differential equation. The analysis one needs
to prove this compactness is fairly easy. (In various kinds of topological field
theories (such as Yang—Mills theory or pseudo holomorphic curve) one proves
a similar compactness theorem using the a priori estimate of partial differential
equations.)

Therefore to study the compactness we only need to consider the case when one
of #; goes to zero or infinity. This is similar to the bubbling phenomenon which
appears in various kinds of topological field theories.

We first study the case when #; — oo. In case there is only one Morse function,
the study of “bubble” of this kind was used in the proof of the fact that the Witten
complex is a complex (namely 00 = 0.) The argument used there can be applied to
our situation without change. (See [Sc] for the detailed account of this argument.)
Here we recall the result we need for our purpose. Let £ : [0,4] — M be a sequence

of lines such that
dt;
{ PR

ti — o0

Assume also that p; = £(0) converges to p € M and ¢; = £(t;) converges to g € M.
We assume also that p,q €Cr(f). Then we have:

Lemma 2.4. There exists xi,...,x; € Cr(f) and gradient lines m; joining x; and
Xji1. Also there exists a gradient line m,, m, joining p, x; to xi, q respectively,
such that the image of ¢; :[0,t;] — M converges to the union of m; and mp, my,
with respect to the Hausdorff distance.

We are going to apply this lemma to study the compactification of our moduli
space. We first remark that Cr(f;) N Cr(f;)+(J at the only codimension 3 subset
of (C*®(M))3. Since we are considering only at most a 1 dimensional family, we
always assume Cr(f;) NCr(f;) = & for i#j. Hereafter we write (C®°(M))* for
such a subset for simplicity.

Now we suppose ;) € Ho( ﬁi),gi), and that lim;_, oo ( f('i),gi) =( f, g). We also
assume that I;) is identified to (x;, yi; t1,¢i), &2,i)» £3,(;)) such that ¢; ;) > C for some
positive C independent of i.

We assume that the sequence I(;) diverges. Then at least one of ¢; ;) converges
to infinity (for some j =1,2,3.) Let us assume for simplicity that # ;) — oo and
the other two are bounded. In fact by a counting argument (similar to those we are
going to discuss) we find that in a 0 or 1 dimensional family of ( f ,g) only one of
tj ) can go to infinity.

Now we apply Lemma 2.4 to the restriction of [;y to the first edge. The as-
sumption that x; = I(;(0) converges to x € M and y; = I;)(t;) converges to y € M
is satisfied (after taking a subsequence), since the restriction to I;) to the other two
edges converges. The other assumption that x, y ¢Cr(f1) is also satisfied since x * y.
Thus the image of the first edge e; by the map Ij;) splits into the union of several
gradient lines. Again by a counting argument (which we are soon going to discuss)
we may assume that the limit will be the union of 2 gradient lines both of which
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contain a critical point p of f;. We then define the following moduli space:
3 ! —
Jim &, (x) = p
Mo,0,0)/( D, P fis o, f3) = { (v, yito,15) € M*> x R} | lim D7(y) = p
B (x)=y, j=23

By moving f and the metric in a set K C (C®(M))’ x Met, we define
Meo1,0,0)(id,K) as follows:

Mo,0,0(id,K)= | U Aeq,00(p p; f1, f2, f3) -
(frg)ek PEC(f)

We then can prove that .#g(i,0,0y(id, (C°(M ))® x Met) is an infinite dimen-
sional manifold in a way similar to the proof of Lemma 2.1. We find that the
projection g(1,0,0y(id, (C®(M))* x Met) — (C*®(M))* x Met is a Fredholm map
of index —1. The calculation of the index is done as follows. In the definition of
Meq,0,0)(p, p; f) there are 2 variables moving on M and two positive numbers.
For the equation, the first equation puts #(p) conditions. The second equation puts
3 —n(p) equation. The two equations in the third line puts 3 conditions each. In
total the index is 3 x2+2—n(p)— 3 —n(p)) —6=—1.

Thus using the Sard-Smale theorem again, we find that, in the case when we
fix a generic f there is no such an end. And in case f moves in a generic one
dimensional set there are finitely many points like that.

Next we turn to the case when one of ¢;;), say # ;) goes to zero. Namely

we assume that (x;, yi; 1, (i) B2, (i) 13,(5) = 1(,') € JZ’@(f(i),g,-), lim;_, o h,o) = 0,
limi_,oo(f:,.),gi) = (f,g). By assumption lim;_, #;,;) =0 we have (by taking a
subsequence if necessary) that lim; . x; = lim;_, o, ; = x. Since Cr(f2) N Cr(f3) =
&, we may assume without loss of generality that x ¢Cr(f3). Then there are two
cases.

Case 1. x ¢Cr(f2). In this case we have lim;_, ;) = lim;_,00 13,5y = 0. We can
then use the fact cﬁ}j:g;(xi) = y; to show that three vectors grad fj(x), j = 1,2,3 are

parallel to each other.

Case 2. x € Cr(f2). In this case we find grad fj(x), j = 1,2 are parallel. Since
grad fo(x) = 0, we may say that three vectors grad fi(x), j = 1,2,3 are parallel also
in this case.

Here we say that grad fi(x) and grad fi(x) are parallel if there exists a non-
negative number r;,7; such that r;grad f;(x) = r;grad fj(x) and (r;,7;)#(0, 0). (This
notation is a bit different from usual one, since we avoid, for example
grad fi(x) = —grad fi(x).)

Now we put
R(f) = {x € M|grad Ji(x) j =1,2,3 are parallel to each other} .
For K C (C®(M))? x Met we put

RK) = {((f,9).%)|(f.9) € K.x € R()}.
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Lemma 2.5. R((C®(M))> x Met) is an infinite dimensional manifold. And the map
7 R((C®(M))® x Met) — (C®(M))* x Met is a Fredholm map of index —1.

The proof of the first statement is a standard transversality argument and the
proof of the second statement is a simple dimension counting.

Lemma 2.5 and Sard—Smale theorem imply that for generic (f,g), the set R(f)
is empty. Thus we have proved the following:

Lemma 2.6. For generic ( f ,g) the space Mg( f ,g) is compact.

This completes the proof of Lemma 1.2 except orientation.

We turn to study .#g(L) for the generic one dimensional space L C (C*®°(M))? x
Met. We already discussed most of the phenomena which can occur. One is
described by the space Hg(1,0,0)(L) U Ho(0,1,0)(L) U Me(,0,1)(L) (which corresponds
to the case when ¢; — o0o) the other is described by the set R(L). For each element
of Mo1,0,00(L) U Me,1,00(L) U Me,0,1)(L) we can construct an end of #g(L)
homeomorphic to [0,00). This fact is based on a converse to Lemma 2.4 which
was also proved and used in the construction of the Witten complex.

We can prove also that, for each element of R(L), there exists an end of #g(L)
which is homeomorphic to [0,00), if L is generic. The proof of this fact is more
delicate and will be given in Sect. 6. We observe that elements of .#g(L) which are
in an end corresponding to an element of R(L) are of small diameter. Hence they
are contractible. This fact is important since it follows that the weight associate to
such an element is independent of the flat bundle ¢. Therefore, since we consider
the difference of invariants obtained from 2 flat bundles, the contribution from this
kind of end cancels automatically. We summarize our result as follows.

Lemma 2.7. Let L C (C®(M))} x Met be a generic arc joining two generic
elements of (C*(M))? x Met. Then there exists a one dimensional compact man-

ifold € Me(L) with boundary such that Me(L) is its interior and € Mo, L( f ) —
Meo,1(f) = Meo1,0,0)(L) U Mo(0,1,0)(L) U Meo(0,0,1)(L) UR(L).

In later sections, we use this and similar lemmas to prove the well-definedness
of our invariant.

3. Independence of Combinatorial Propagator

To prove our main theorem (independence of invariant of various choices) we first
consider, in this section, the independence of the combinatorial propagator. We
assume that we have two choices g fl,g}1 of the combinatorial propagator for the first
Morse function fi and assume that other combinatorial propagators g, i = 2,3,4
are the same. And we prove that the resulting invariants are the same.

Since the Witten complex of local coefficient are acyclic by our assumption,
there is # € Endy(C.(M; f1;¢) such that 0h = g — g}l. We put

h= >  hpLe)pl@a].
n(p1)=n(g1)+2

We are going to study the moduli space .#g1,0,0)(p1,91) in the case n(p;) =
n(q1) + 2. (Since we fix f; here we omit them in the above notation.) In this case
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the moduli space is one dimensional. (One needs transversality to prove it. It can be
proved in the same way as in the last section.) We need to know the ideal boundary
of this moduli space #e(1,0,0)(P1,41)-

Lemma 3.1. Aoq100)(p1,91) is an interior of a compact oriented one dimensional
manifold € Mo 00)(p1,91) such that

06 Mo100)(P1,91) = U M(pr, p}) % Mo ,00)(PYq1)
n(p)=n(pi)—1

U U Aewon(pi.qy) x (g1, q1)
n(g})=n(gq1)+1

U U  Aeaio(pi,q1; p2, p2)
P2€Cr(f2)

U U  Aeao(pi1,q1; p3, p3) U Lo (pi.q1).
p3€Cr(f3)

Let us explain the notations above. We define

1 t —
t'i}& d)fl(x) - ply
im @ () = g
Mo,01) (1,915 P3, p3) = § (%, y: 1) € M? X Ry, Jlim @7 (x) = ps,
Jim_@%,(0) = g5

PE(x) = y J
and
im &7 (x) = pi
Foa,00(f,9; P1,q1) = {x €M t_ljinoo L (x) =qi
grad f>(x) is parallel to grad f3(x)

Other notations are defined in a similar way.

D3 pP3 X

Fig. 5.
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Proof. The proof of Lemma 3.1 goes almost in the same way as Sect. 2.
Let (x;, y,,t(’) tg’) ) € Moq,0,0(P1,91) be a divergence sequence. Then by taking
a subsequence if necessary, we may assume that one of the following happens.

M4 -

@) &

3) x, converges to a point in the boundary of the unstable manifold of p;,
(4) y; converges to a point in the boundary of the stable manifold of g1,
(5) £ —0or ) —o0.

It is straightforward to see that cases (1)~(5) correspond to the 1~5% term of
the right-hand side of Lemma 3.1. It is easy to see that, for each element in 1~4%
term of the right-hand side of Lemma 3.1, there exists an end of .#p1,0,0)(P1,91)
corresponding to it. We postpone to Sect. 6, the proof of the fact that there is also
an end of #e(1,0,00( p1,¢1) corresponding to each element of y@(l,o,o)(f,g; P1,91)-
We here prove that Fg(1,0,0)( f ,g; P1,q1) 1s zero dimensional.

We prove this fact again by using transversality. We put

F0(1,0,0,2 = U U “ewoo(f-g; pq1)-

oo 3 71,91 €Cr(/})
([29)E(Co= (M) x Mt n(py)=n(qy)+2

We then have:

Lemma 3.2. The space Sg(1,0,0),2 is an (infinite dimensional) manifold and the
projection: Fo(1,0,0),2 — (C°(M ))* x Met is a Fredholm map of index 0.

Lemma 3.2 is a consequence of the usual dimension counting and transversality.

It follows immediately from the lemma that 5”@(1,0,0)0? ,J; P1,q1) is zero dimen-
sional for #(p;) = n(q1) + 2. The proof of Lemma 3.1 is now complete.

In order to deduce identities from Lemma 3.1, we are going to define a num-
ber Zg(1,1,0y(c1,¢2, &) for ¢ € Endy(Ci(M; f156)), ¢2 € Endi(Ci(M; f2;6)). Let us
write

¢ =2 cippgdlpl®lgl*, j=12.

An element of the moduli space #g(1,1,0)(P1,91; P2,q2) is regarded as a map
I1:0(1,1,0) — M. Here ©(1,1,0) is a graph obtained by cutting the © graph at
two points, one on the first edge and the other on the second edge. We define the
weight x(I) : 7, @ np, — Hg @ ng, as we did in Sect. 1. We now put

Zoa0(c,e, P = Y > £ Tr(x(1) o (c1(p1,91) ® c2(p2,92))) -
P1,41,02,92 1€ Mo(p1,q1,p2,92)

To study the fifth term we define

ZSo(1,0,00(c1, T, F) = > £ Tr(x({) o (c1(p1,91)) -

p1.91 I€S0x,0,00(P1,91)

Here x(I):n, — nq4 is a parallel transport along the gradient line of f; containing
x. (Here we regard x € M.)
Now Lemma 3.1 implies:
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Lemma 3.3.

Zo1,0.0)(97» D D) = Zo(1,0.00(9 5D D) — Zoq,1,0)(h, id, &)
—Zoq,0,1)(h, &, id) — ZSe,0,0y(h, &, ) -

We can also prove the following formula:

Zoaan(05-95:95) = Zoa)(dh»95-94) — Zea.11)(h, 09,9 1)
—Zo11)(h, g 55091) - (34)

Equation (3.4) follows from the following description of the boundary of moduli
spaces:

06 Mo(1,1,0)(P1, 415 2,925 P3,93)

= U A(pi, p)) x Meai1y(P1>q15 P2>q25 P3:3)
n(py)=n(p1)—1

U U Agq1) x Mo11y(p1,91; P2.92; P3,93)
n(gy)=n(q1)+1

U U M(p2, py) X Mo, P q1; Phy 25 P3.93)
n(py)=n(p2)—1

U U AGhq) x Meur(p1,91; P2r G P3-93)
n(g5)=n(g2)+1

U U M(p3, Py) X Mo, P1,q1; P2, 25 P53 q3)
n(py)=n(ps)—1

U U s g3) x Moa 1y (p1,91; P2y 925 P3:5) -
1(g3)=n(g3)+1

We can prove this equality in a way similar to Lemma 3.1. We remark that we do
not need the term Fg(1,0,0y(P1,91).

To consider the term Zg(1,1,0)(91,9 s, &) and like that, we need to study another
kind of degeneration. To describe it we use the following moduli space:

,_lj_rgloo P/ (x) = p1,
Jim 0f (x) = g1

Mo,1,x)(P1:91; P2, G2) =X EM | t

llm ¢f2(x) = p23

t—+00

20 =1

(This moduli space is the case when #; =0.) We can assume that unstable and
stable manifolds of fi, f, f3 are transversal to each other. So in case n(p;) =
n(q1) +2, n(p2) = n(q2) + 1, the space Meo,1,x)(P1,91; P2,q2) is 0-dimensional
and compact. Using this space we can describe the boundary of the moduli space
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Me,1,0)(P1,41; P2,q2) as follows:

0% Mo(1,1,0)(P1,91; P2,92)

= U AM(pi,p)) ¥ Meui0)(Ph.q1; P2.92)
n(p)=n(pi1)—1

U U Al q1) x Moo P1,455 P2, q2)
n(gy)=n(g1)+1

U U M(p2, Py) X Mo10)( P15 15 Ph,q2) -
n(py)=n(p2)—1

U U M(Gh,q2) X Mo 10)(P1,91; P25 G5)
n(g3)=n(q2)+1

U U  Aeqi(pi,q1; P2,92; p3, p3)
P3€Cr(f3)

U Meo1,1,x)(P15,915 P2, q2) - (3.5)

We define the number Z@(l,l,){)(l’l, gfz,Q) using the moduli Space ﬂ@(l,l,X)(Pl,
q1; P2,q2) in a similar way. Then (3.5) implies the following:

Zo11,00(0%-95 D) = Z6(1,0.0)(d 195> D) + Zo(,1,0)(h, 89 1, &)
+Zo(1,1,0(1, 91,51d) + Zoa1,x) (1 913, F) . (3.6)
Now we use the fact that dg, = id. Then Lemma 3.3, (3.4), (3.6) imply:

Lemma 3.7.
Zo(f29) = Zo(f>9) = Zoarx)(h g D)+ Zoa.xiy(h, B 45)
+ZSo(1,1,0)(h, &, &) .

We next sum them up for signs ¢; of f;. We then remark the following:
Lemma 3.8.

Z80(1,0,0)(f1, f2, f3: h 1y, &, D) = —ZSe1,0,0(— f1, f2, f35h— 1, B, D) .

P 4

Py a3

Fig. 6.
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Proof. We first remark that the equality between moduli spaces se(p1,q1; f1, /2,
f3) = Mse(q1, p1; — f1, 2, f3). The orientation is opposite as we will see in Sect. 7.
We remark also that the isomorphism End(C.(M; f;¢)) = End(Cu(M; —f;¢)) is
obtained by c[p] ® [¢]* — c[q] ® [p]*. The lemma then follows immediately from
the definition.

Using Lemmas 3.7 and 3.8 we have

Lemma 3.9.
4Z2u(fr9) —4Ze(fr9) = X . Zo(1,1,x)(&1 /1, €212, €3 135 P, £ Ger f30 D)
€1,82,83= 1
+ Y Zeaxn(&ifi.efre3 35k 5, By Gesss) -
8|,62,€3=:tl

The proof that this last term cancels with the corresponding term related to the
other graph A uses the Jacobi identity and is similar to an argument in Chern—
Simons Perturbation theory. We are going to explain it here.

We perform the same construction using the other graph A and obtain the

equality
8Z—Zx) = Y Zaanx)hefirGer s DNELS15E2f25 €0 f2)

e1,8,6=%1

+ > Zaaxn (e s, B Ge s Ne1f1,eafa, 83 13)
61,82,£4=:tl
Here the number Z 1,1, x)(%e, £ 9e, 13- & )€1 /1, €2 /2, €4 f4) is defined by using moduli
space A 1,1,x)(P1,91, P2,92)(e1 f1,€2 /2, €4 f4), which is a component of the bound-
ary of M 41,1,00(P1, 91, P2,92)(€1 /1, €2./2, €4 f4) corresponding to # = 0.

We next remark the following obvious facts:
Mo1,x)(P1:91, P2, ) f15 2. £f3) = Me,1,x)(q1, P1s P2, 02 )(— f1, f2, £ 13)
= Mo1,1,x)(P1,91,92, P2)(f1, — f2, £ 13)
= Mo1,1,x)(q1, P1:92, P2 X— f1, = f2, £ /3)
= M 11,1,x)(P1, 915 P2, q2)(f15 f2, £ 1)
= M 10,1,x)(P1,91,92, P2)(f1,— f2, £ f2)
= M 10,,x)(q1, P> P2, @2 )(— f1, f2. £ f4)

= Ma1,1,x)(q1, 1,92, 2= f1.—f2. £ f4)
(3.10)

and also a similar formula with p,, ¢,, f2 replaced by ps,qs, f3 holds. To show the
cancellation we need to discuss the weights.

The moduli space in Formula (3.10) is also described as the set U(p;) N S(g1) N
U(p2) N S(g7). Here U(+) is the unstable manifold and S(-) is the stable manifold.
Hence for each point x of U(p;)NS(q1)NU(p2)NS(q2), there are 4 gradient
lines joining it to p1,q1, p2,q2 respectively. Let P, x : Gp — Gx, Fy x 1 g — Gx bE
the parallel translation along these paths. The weight of x gives a map ¢, ® ¢4 —
Sp» ® Gq,. But the weight does depend on the moduli space whose element x is
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regarded as. Let us regard x € A o(1,1,x)(P1,91, P2,92; f1, f2, £ f3). In other words,
x is regarded as a map from the @-graph such that the third edge is mapped to the
point x. Therefore, for u € G, v € ¢p,, U’ € g, V' € ¢,,, the weight is given by

> [Py xtts By, xv]s ) (e, qu,xv/]’ Pqn,xu/> = —([[By, .21, sz,xv]aqu,x“,]’qu,xV/> .

1

(See Fig. 7a.) The weight as an element of Me1.1,.x)(q1, P1, P2,92; — f1, f2, £ f3) is
([[qu,x”/a &z,xv]’Ppl,xu]’qu,xw> = _<[[sz,xvs Pq,,xu’],ﬂ,l,xu],qu,xv’) :

(This sign in the formula is related to the orientation and is explained in Sect. 7.)
For Mo1,1,x)(P1,91,92, P2; f1,—f2, £ f3) the weight is

([P, xt4s qu,xvl], Pqn,xu/]asz,xV> = —([Bpy, x4, qu,xvl]’ (Fps,xvs qu,xul]>
= +<[l)[7l,)fu’ [PPZ,Xva qu,xul]]a R]z,xvl>
= - <[[sz,).’v> qu,xu’]> Ppl,xu],qu,xV’> .
And for Me(1,1,x)(q1, P1,92, P2; — f1, — f2, £ f3) we have
- <[[Pp1,xu’ sz,xv]5 qu,qu]’ qu,xv,> .
For another graph e%A(l,I,X)(‘]l, D1> P2,92; f1, f2, = f4) the weight is

Z([qu,xu,, P]Il,xu]a ei) <[ei5 sz,xv]’ qu,xvl> = <[[Pq1,xu/a 1’1)],]{“]3 sz,xv]a qu,xv/>
1

(Fig. 7b). One can check that the weight for .# 41,1,x)(q1, P1,92, D25 f1, — f2, £14),
etc. is also ([[Py, xt//, Py, xul, Py, xV], Py xV').
Then by the Jacobi identity

[[Ppl,xu’ F;?z,xv]ﬂqu,Xul] + [[sz,xv’qu,xu’]aP:D],xu] + [[R]y,xul,l?pl,xu]’}}?z,xv] = 0 .
(3.11)

)41 q, P ql

a b

Fig. 7a, b.
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Those terms cancel. To see this we show that in the formula

1
-< > Zeuyx)(ef1, /2.8 135 ke, £i5 G g5 D)

4 e1,&,63==%1

+ > Z@(I,X,I)(Slfl,32f2983f3;h81f1,ggagf3))

e1,6,8==%1

1
——( Yo Zaax) (P £y G for DNELS1, 6212, €4 14)

8 e1,6,64==11

+ > Zaax) (e f, DsGe 5 )61 f15 €8 Sar 83 f3 ))

&1,62,64==%1

the coefficient of each of the terms in (3.11) is —1/2. In fact, the term
[Py, x4, By, xV], Py, <] appeared twice in Zgi,1,x)(---) or Zeu,x1(---), hence its
coefficients is —1/2. One can show that the coefficient of [[F,, v, Py, <u'], Fp, ul.
On the other hand [[P,, ', P, cu], Py, V] appeared 4 times in Zu1x)(---) or
Za1,x1)(- - -). Therefore its coefficient is again —1/2. Thus we proved the inde-
pendence of our invariant of the combinatorial propagator.

4. Independence of Morse Functions I

We next consider a one parameter family ( fs, gs) € (C®(M))* x Met(M) and show
that ( fo,go) and ( f 1»g1) give the same invariant. Unfortunately the proof is rather
long and technically complicated. It seems that one needs to develop some kinds of
homotopical algebra to get rid of the mess in this and the next sections. The reader
who is interested in only a basic idea and not so much technical detail may skip
the next section.

Before starting the proof let us give an informal explanation of well definedness.
One typical way how the Morse function changes is death or birth of critical points.
Namely for example we can consider a family

Sis(x1,X2,x3) = X7 + 5% — x5 —x3 .
Then a pair of critical points will die at s = 0. Let p,q be these critical points such
that n(p) + n(q) = 1. We then find that the combinatorial propagator for s < 0 has
a component [ p] ® [q]*.

Let us assume that there is a family of elements in (x5, Yy, 6 5,55) €
Mo1,0,0)(p,9 : fi,5, f2, f3), and try to find what happens when s = 0. Let’s assume
moreover that (f,,13;) are bounded. Then when s =0 we have an element of
Meo1,0,00(0, 0 : fr0, f2, f3). One can expect after passing zero a new element of
M o1,0,0)(f1,5> f2, f3) Will be born. Hence our invariant will be the same. To make
this argument rigorous is the purpose of this and the next sections.

The proof of invariance of the Morse function is done in two steps. First we
assume that Witten complexes are the same for ( fs, gs), s € [0,1], (Sect. 4). Next
we conisder the case when the Witten complex changes.

To simplify the notation we assume that Cr(f;;), i = 1,2,3, s € [0,1] are inde-
pendent of s. (We can always do it by using an appropriate diffeomorphism of M,
since we are assuming that the Witten complex is independent of s.)
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We consider the moduli space #g(L), where L = {( f;, gs)ls € [0,1]}. In Sect. 2,
we gave a compactification of this moduli space such that €.#g(L) — Me(L) =
.ﬂ@(l,o,o)(L)Uﬂ@(o,l,o)(L)U %@(O,O,l)(L)- Here ﬂ@(l,O,O)(L) is a moduli Space of
maps from the graph ©(1, 0, 0) to M, such that the two exterior vertices go to the
same point in Cr(f ). This moduli space is of zero dimension. By exactly the same
formula we used to define the weight for elements of .Zg(1,0,0/(p>¢; f1, f2, f3), we
define x(1,¢): ¢, — ¢, for each element I € g1 0,0y(L). We put

Zo(1,0,00(L; s id, &, ) = > + Tr(x(£,9)) -
1€ Me1,0,0y(L)

Then Lemma 2.7 implies that

Lemma 4.1.
(Zo(f1:9) — Zo(f:9)) — (Zo(f1:6') — Zo(fy; <))
= Zo,0,00(L; ¢ id, B, D) — Zoq,0,0)(L; ¢'5 id, &, &)
+Zo(0,1,00(L; 6; &, id, &) — Zoo,1,00(L; ¢'s B, id, &)
+Zo0,0,)(L; 6 &, &, id) — Zo,0)(L; ¢'s &, B, id) .

Proof. Lemma 2.7 implies that ¥.#o(L) gives a cobordism between . g( fO)U
—/%@(fl) and Aeg(1,0,0)(L) U Me0,1,0)(L) U Mo(0,0,1)(L). Since bundles are flat the
weights are compatible. The space ¥.# (L) is noncompact but for elements in the
end the weights are the same for ¢,¢’. The lemma follows.

We next study the change of the correction terms. First we remark that since we
assume that the Witten complex is the same, we can choose the same combinatorial
propagator for f;, s €[0,1].

For pi1,q1 € Cr(f1) with n(p1)=n(q1)+1 and p € Cr(fz), we define
Mo,1,00(P1,q1, p, p) for each fs, s € [0,1] in a way similar to Sect. 3. We take its
union over all s and denote it by .#e1,1,0)(L; p1, g1, p, p). By a similar transver-
sality argument as before we find that .#oq,1,0)(L; p1,91, p, p) is a 0 dimensional
compact oriented manifold. Also each element I of .#p1,1,0)(L; p1,91, p, p) induces
amap x(1,6);6p ®Cp, — Cp ® Gy, We then define

Zo,1,00L; G g5,1d, B) = > + Tr(x(L,¢) o id @ g(p1,q1)) -
1€ Mo1,1,0)(L; p1,91,P)

Here g(p1,q1) is a coefficient of combinatorial propagator.
We define
Jim 97 ()= p
Foa,00(L; proq1) = § (%s) €M x [0,1]| lim &F (x) = g1
grad fs(x) is parallel to grad f3 ,(x)
In case when n(p1) = n(q1) + 1 this is a compact oriented 0 dimensional manifold.

(In Lemma 3.2 it was #(p;) = #(q1) + 2. But here we put an extra parameter s.)
Using this moduli space we define

8Z6(1,0,00,(L; 695, F) = > + Tr(x(1,¢) o g(P1,q1)) -
I€S%q,1,00L(P1,q1)

Now in a way similar to Lemma 3.3 we have the following:
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Lemma 4.2.

Zo41,0,0(f13 5 95 D, D) — Zo(1,0,0/( [0 S 951, B D)
= Zo(1,1,00(L; ;09 11, &, &) + Zo(1,1,00(L; S G 13 id, &)
+Zoq,01)(L; 6 91, B,id) + SZo(1,00)(L; 9 11, &, &) -
Since dgs, = id. we find that the first term of right-hand sides of Lemma 4.2 cancels
with the first term of the right-hand si{e of Lemma 4.1.
To discuss the change of Zg(1,0,0)(f156: 95,95, ) we need to define

Mo, 1,x)(L; p1,915 P2,92)

Jdim @f ()= pi, lim @} (x)=aq
=< (x,8) €M x[0,1]|" 7.7 . T s '
) MO i 01, () = pay Jim_ ), () = a2

If n(p;) = n(gq;) + 1, this space is of 0 dimensional. Using it we define the number
Zo,1,x)(L;6; 95,95, ) in a way similar to Sect. 3. Then we have

Zoa.1.0)(f15 S 9595, D) — Zo1,0) fo: S 95> 70 D)
=Zo1,1,00(L, ;09 1,91, D) + Zo1,1,00(L, S 9 11,09 1, &)
+Zoa, 1)L, S 95,9 5,id) + Zoa,,x)( L, S 91,95, D) -

Thus using Lemmas 4.1 and 4.2 we can prove the following lemma in a way similar
to Lemma 3.9.

Lemma 4.3.

420(f1,9:¢) — Z0(f0r9:9)) — 4Zo(f1,9:6") — Zo(for 95 <))
= > (Zeu,1,x)(EL; S Ger s G oo D) + Zo(,x,1)(EL; G5 Gs, £ By Ges 1)

e1,62,83=%1

+Z80(1,1,0(EL; 6 B> 9er 0 96 5)) — 2. (Zoa,1,x)(EL; S5 e, £i2 Ger o> D)

£1,6,6==1

+Zo(1,x,1)(EL; ¢'; Ger 11> B> Ges 13) + Z8S0(1,1,0)(EL; 5 &, Ger 132 G 1)) -

Here we denote L = {(&1f1,5, &2./2,5, €3 f3.5,9s)|s € [0,1]}. Now the rest of the proof
is completely parallel to one of Sect.3. Namely using the Jacobi identity we find
that the right-hand side of Lemma 4.3 cancels with a similar contribution from
another graph A. Thus we find

2(f1.9:¢) — 22(f 9:6) = Zo(f1,9:¢") — Z2(for 95 ¢")

in the case when the Witten complex does not change for s € [0, 1].
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5. Independence of Morse Functions 11

Next we consider the case when the critical point set and the boundary operator
change. Let L = {(f;,gs) € (C®(M))* x Met(M)|s € [0,1]} be a generic one pa-
rameter family of metrics and functions.

For simplicity we assume that f;; is independent of s for i=2,3,4. Let
C.«(M;c; fi1,5) be the Witten complex for f ;.

We first recall the proof of the fact that C.(M;c; f1,0) is chain homotopy equiv-
alent to C.(M;¢; f1,1). (In fact they are both acyclic in our case. But we use the
explicit chain homotopy equivalence which (in the general case) is used to show
that a chain homotopy type of Witten complex is independent of the choice of
Morse function.) Let p € Cr(f1,0), ¢ € Cr(f1,1) such that n(p) = n(g). We define
a moduli space .Z;(p,q; f1.s) as follows. We choose and fix a smooth function
¥ : R — [0, 1] such that

¥(s)=0 fors < —1,

and
xs)y=1 fors>1.

We put

ds

;l,—t(t) = —grad, ;) f1,()(Z(?)),
M(p,q; fr5) = R—>M Jim () = p,

lim () =4

Here grad,) is the gradient with respect to the metric g,;). We omit this suffix
from now on, since the metric g,(,) is always used to take the gradient of f1 ().
M1(p,q; fi,5) is a 0-dimensional compact oriented manifold. We define ¢, :
Sp—Gq by
Ppg= 2 P
1eML(p, g fis)

We thus obtain ¢ : C«(M;¢; f1,0) — Co(M; 65 f1.1)-
Lemma 5.1. 05, 09 =¢@o0p,.

Proof. Let n(p)=1n(q)+1. We obtain a one dimensional moduli space
Mi(p,q; f1,5) in a similar way. Its boundary is described as:

0M(p,g; 1) = (M(p, D5 f1,0) X ML (P q; /1)) U (M(p,q'5 1) X MG g5 f1,1)) -

The lemma follows.
We can prove that ¢ is a chain homotopy equivalence as follows. Using an
equation

d¢
S0 = —grad i, o(40)
in a similar way, for p € Cr(fi,0), 9 € Cr(fi,1), we define a moduli space

M—1(q, p; f1,s) and a chain map ¥ : C.(M;; f1,1) — Cu(M;¢; f1,0). Chain homo-
topy between ¢ and the identity is obtained as follows. Choose a sufficiently
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large positive number S. We consider the equation

—grad f1.1(£(1)) —S+1<t<S—1.

dt —grad fie45(£(t)) t < —-S+1
—(t) =
at _gradfl,x(s—t)(/(f)) t>85-1

Using this equation we have a 0-dimensional moduli space #(p,q; f1,5;S) for p,q €
Cr(f1,0), with n(p) = n(q). We find

W @)pg = > TPy (5.2)
€M (p,g: /1,55)

The proof of (5.2) is a gluing argument which is now standard in topological
field theory. (See [Sc].)
For r € [0,1] we consider the equation

s —grad [, (£(1)) ¢ < =S+1
E(t) = { —grad f1 .(£(2)) -S+1<t<S—-1.
—grad fi,ms—n((1)) t>8—1
Let n(p)=n(q)— 1. Using the above equation we obtain a moduli space
Moara( P, q; f1,5,8) of 0 dimension. (In fact we need to perturb a bit to achieve
transversality. But we omit the discussion about it for simplicity.) Using it we ob-
tain Hpy = Zt’eﬂpm(p,q;fl,s;S) =+ P,. This is a map of degree +1. We have

Lemma 5.3. Hod;,+ 05, 0H=1—yq.

We omit the proof.
Now let g5, be the combinatorial propagator for C.(M; f1,0;¢). We consider
the following moduli space for p,q € Cr(f1,0):

Mo1,0,0)(f3 p,4;5)
1:6(1,0,0) — M,ty,t, > 0 N

dI
pri gradf, on e; =[0,5]
di
y =gradf; on e3 =[0,5]
CE _ gradfl,x(,_s) if t € [S—1,00) C[0,00) = el
= Un,B)| dt | eradfip if £ €[0,5—1)C[0,00) X ey
dl gradfl,x(—-s—t) if t € (—OO, -5+ 1] .g (_0090] = €1,2
— =< gradfip if te[-S+1,0])
at C (~00,0] X ey,

lim I(t)=p t€[0,00)= ey,
t—+o00
. lim I(t)y=q t€[0,00)X e
——00

If n(p)=mn(g)+1 then M oq,0,0)( f ; D,q;S) 1s a compact 0 dimensional space.

Using it and the moduli space #g(1,0,0)( f;; p,q) (which we defined in Sect. 1),
we define homomorphisms W(6(1,0,0);S): ®¢, — D¢, and W(0O4(1,0,0)):
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D¢ — gy as follows:

VVP,q(@(l’OaO)Ng) = Z ix(lag),
I€Mo(,0,0(f3P.0:5)
W,q(0s(1,0,0)) = > + 1) -

I€Mo1,0,0/(fi;2.9)

Let g5, =3 95, () p] ®[q]" : By — ®n, be a combinatorial propagator
for f1,1. We put

Zo(1,0.0/( 158594, D D) = Tr(gy,, o W(0(1,0,0),5)) .
We recall
Zo(1,0,0)(f1: S 951,- > B) = Tr(gy,, 0 W(O(1,0,0))) .
Lemma 5.5. For large S, we have

Wp,(0(1,0,0),8) = > @ p © Wy g1(Oo(1,0,0)) 0 iy 4.
rq

The lemma follows from the following homeomorphism, which is proved by a
usual gluing argument:

Mo 00 f3p0:8)= U Mi(p, D fis)
p'q' €Cr(fi,0)

x Mo1,0,0)(f3 P'sq") X M1 (q'sq; fis) -
By Lemma 5.5 we have
Z@(I,O,O)(f; &85 9h,,0,8) = Tr(gs, o W(O(1,0,0),5))

Tr(gs, 0@ o W(6(1,0,0))0y)
= Tr(Yogys,0@oW(0(1,0,0)). (5.6)

We next remark that
Lemma 5.7. yogy, o ¢+ H is a combinatorial propagator of f .
Proof. By Lemmas 5.1 and 5.3 we have
Ofieo(ogp,00+H)+(ogs, 0c@+H)odys,
=¥0(05,°95,+95. 005,000+ 0,0 H+Hods,) =1

as required.

Since our invariant is independent of the combinatorial propagator, we may
choose g7, =y ogys, 00+ H.

We thus have

Zo(1,0,00( 136 S 950D D) = Zow,0.0) fo3 & 9fi.0 3, D)
“Tr(H o W(0o(1,0,0))).  (58.1)
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Next, in a way similar to define .57, 7ip.q;S), we define
M 1.0)( S5 15915 P2.q2; S) as follows:

Mo 1,0\ [5 P1,q15 P2.42;S)

IZ@(I, 1,0)—9M t,t3 > 0,r €[0,1]
dl
_t = gradf2 on €21,€22
lim I(t) = p, on ey
t—+o00
lim I(t)=¢q, on ey
t——00

ar_ grad f3on e3 = [0, 1]

={un)| % ~
’ ar {gradfl,x(t—S) if t€[S—1,00)C[0,00)= ey
dt | gradfio if 1€[0,§—1)C[0,00) ey,
dl {gradfl,x(_s_t) if t€(—00,—S+1]C (—00,0] [aW)
— = gradfl,o if te[-S+1,0]
dt C(—00,0] e

lim I(t)=p, t€][0,00) e

t—+00

lim I(t)=¢q1 t€(—00,0]= e
t——0o0

Taking the combinatorial propagator g, and using the moduli space
Mo,1,0(f15 P1,q15 P2,q2; S), we define W(1,gy,,0) such that

(W(1,95,0))v) = 3 2 2

PL9uP1 92 T€M o110/ f13 21,915 P2,923S) ¢

(gfz(p25 q2) o X(Ia C) o (upl ® ei)’ Vg, & ei> .

Here e; is an orthonormal basis of ¢,,.
Similarly we obtain W(O(l,gs,,97,)) and W(O(1,0,g7,)). We can define
Z@(l,l,o)(fl;g; S;9.-97,, ) etc. in a similar way. Namely we put
Zo010(f1:68: 95,5915 D) = Tr (g, © W(O(1,41,,0))) ,

and so on. In a way similar to the proof of (5.8.1) we have:

Z@(1,1,0)(J?1; GS50597 D) = Zo10)( fo; S 90912 D)

—Tr(H o W(@(l,gfz,()))) ) (5.8.2)
Z@(l,o,l)(fl;C;S;gﬁ,l,g,gfg) = Z@(l,l,@)(fo;G;gf.,o,g,gf;)

~Te(H o W(0(1,0,g1,))),  (5.83)
Zoa ) (F1568:9 5.5 972:973) = Z001,1.0) fo3 G fios 9125 975)

—Tr(H o W(@(19gf29gf3))) . (5.84)
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etc. We thus found a relation between Zg( ( f1;8;--+) and Zo¢ fo; -++). Summing
up we got

—32(20(1,0,0)(571; ;856 firs D5 D) — Z01,0,0)(E 03 G Ges f00 B> D))
+%Z(Z@(1,1,0)(5f1; 85 Ger fin>Gerfar D) — Zo(1,1,0(Ef0; & 91 fros Jeaf2r D))
+%Z(Z@(1,0,1)(5f1; ;S5 9ei > B Gerfs) — Zow.oy(Ef ;¢ 91 fr0s D593 13))
_%Z(Z@(l,l,l)(gfl; G385 Gor firs Geafor 9o ) — 2O, L,1(ES 13 G5 G fi00 Gs £ Gonf )
+%Z(ZA(LO,1)(5f1; G383 9o firs D5 Gonts) — Zat,0,.1)ES 13 G Goufior s Genss)
+%Z(ZA(1,1,0)(§J?1; G839 fins Gerfar D) — Za1,1,0)E1 G Gofro Gorfar D))
_éZ(ZA(I,l,l)(gjﬁ ;S5 Gefir> Geafas Geafa) — ZaanEfs 6 9er fios GerfarGeafs))
—%Z(ZA(l,l,l)(Efl; G385 Ger fiar Goa a0 Gears) — Za 1 0)ET1 G Gor fion Goa o Gea )
_ +%ZTr(H o WA(6(1,0,0))) - %ZTr(H o WH(O(1,9,7,,0)))

—%ZTT(H o W7(0(1,0,9:,))) + %ZTr(H o W7 (0(1,9s, 12,96, 13)))

g TR 0 (AL, 0,007, ))) = g STHCH © Wig(A(L, s, 0))

1 1
+§ZT1‘(H O Weg (AL, Gea s Ges i) + g 2TH(H © Wep(A(L, G 12 Gea 1)) - (5.9)

We next are going to find a relation between Zg,,0( fl;g; 9., D, D) etc.

and Zg(1,0,0)( fl;g; 91,3, D) etc. For this purpose we use the following moduli
space.

A
¥ (ut)
1_
L 1 II\L Ly
0 s-1 S S+1 u-S—1 u-S u-S+1 u

Fig. 8.
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Hereafter we write ZB(1 o o)(Ef1;S;sid, @, D) = Z81 o 0)(Ef1: 6. 83 id, &, &) —
Zgt 0.0\ 136585 1d, B, D), ete.

fﬂgzrﬁo,o)(f; P:4;S)

( 1:0(1,0,0) =M, b, >0,rc[0,1]
d
7 =gradf, on e; =[0,1]
dl N
i gradf; on e3 =[0,4]
grad f1y-sy+r(1—ye~sy) if £ € [§ —1,00)
ar _ C[0,00) = e,
_ dt ) gradfy,, if £€[0,5—-1)
- (I, t23t3ar) g [0,00) o er
grad f1y(r+5)+r(1—ye+sy)  if £ € (=00, =S + 1]
dl C (—o00,0] = e
dt ) gradfi,, if te[-S+1,0]

C (—00,0] = ey,
lim I(t)=p te[0,00)=e

t—+o00

tlll‘_l‘l I(t)=q te(—00,0]=e,

If n(p) =#n(g)+ 1 this moduli space is one dimensional. Its boundary is given
as

QME o) (fs 23 S) = Mor,0,0(f; P, S) U — Mo, 0,0/ o3 P+q)
VU (fi05 P P') X Mro,0(f3 P45 S)

p
UM 0.0/ F5 223 S) X M(f1,1:4,9)
ql

U U AMy),0(f5 P4 P2, P25 S)
P2€Cr(2)

U U Mo (509 p3, p3:S) -
P2ECr(f3)

It implies
~Zo(1,00(f5 653951 D, D) + Zo01,0,0/(Jo3 S 91115 D> D)
= Zotro0\ 36 8:id, B, D) + 25110/ f36: S35y 1d, )
+Z£)a(rla,1,o)(f; 8595, D, id) .
Here we put for example

Zg?la,l,O)(f,Sagl,l,ld,Q)= U :I:Tr((gl,l ®1d)ox([,g)) .
Ie‘/”l(’-)a(r?,l,o)(ﬂpaqipz,Pz;S)
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Now we perform a similar cancellation argument to Sect. 3 and obtain the fol-
lowing formula:

%Z(Z@(I,O,O)(gfﬁS; G fir» 85 D) — Z@(I,O,O)(gfl;gslﬁ,l’ B, ))
_%Z(Z@(I,I,O)(gfl;'s? Ger firs Gerf2s D) — Zo(00)ES 13 G fins Gor o0 D))
—%E(Z@(l,o,l)(gfl;S; Gerfiss D5 9es13) = 200,008 13 9 f» D Ges 15))
+%Z(Z@(1,1,1)(5f1;5; Gor fins Gea s Ges 1) = 200, 1,0ET 13 o for>Ger 20 Ges 1))
+%Z(ZA(1,0,1)(5f1 15 Gen firs Ds Genfs) = Za,o)EL 13 G fins Do Gos 1))
+%E(ZA(1,1,0)(5J?] 385 Ger firs Jerfar D) — ZA(1,1,0)(5J71;gs.f,,.,gezfz, )
_éZ(ZA(l,l,l)(gj?l;S; Gor firs Genfas Gefs) = Za, L0 EF 3 G fins Goo foo G f3))

= SR o B3 S:id, B D)+ ST o 5 e D)
+%ZZ<‘33T{"’,0,1)(5J71;S; id, B, Ge,1,) — %sza?il,l)(gf];& id, Ge, 125 Ges f5)

1 D7 o 1 D7
"‘gzdzzzzr]i],o)(ef];S; id,ge,f,, &) + gzzﬁ?f(),])(gf];S; id, B, Ges 1) -
€ €

€

1 I 1 a2 o
_gzxzﬁ?fhn(gfl;s; ldagﬁzfz’g&tfa) - gzzﬁ?r{jm)(gfl;S; ld7g84f4,g83f3 )- (5.10)
&

We next study the right-hand side of (5.10). To study the first term, we define

the moduli space .Zo(f;;S,r). We choose a function 9 : {(u,1)|t € [0,u],u > 0} —
[0, 1] such that if # > 25 + 10 we have (Fig. 8)

0 if te[0,S—1]

1t —3S8) ifte[S—1,5+1]
Hu,t) =< 1 if te[S+ Lu—25-2]

yu—-S—1¢t) ifteu—-S—1Lu—-S+1]

0 if tefu—S+1,u]

(We define ¢ in the case u < 25 + 10 also. However the above condition is not
assumed in the case u < 2§ + 10.) We then put:

1:0 — Mt,t,t; >0,
dl
7 gradf> on e; = [0,1]
Mo(f:8,r) = Lt to,t,7) | dI
o(f;S,r) L, t,t3,1) ;i?zgradﬁ on €3 22 [0, 13]
dl , N
\ i grad f1.1—ri9(n,n if t € e 2[0,1]
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This moduli space has boundaries and ends. The boundary corresponds to » =
1,0. If » = 0, this space is equal to %@(fl ).

On the other hand, there are ends of the moduli space Ure[o,l] Me( fl ;S,7) which
comes from bubbling of the first edge, namely the case when t1 — o0. They corre-
spond one to one to the moduli space we used to define Z, (1 0,0)( fl,S id, 3, D).
(We remark that the first edge splits between S+ 1 and 1; — S — 1.)

There are other ends corresponding to t, — oo, 3 — 0O or ti — 0. But they will
cancel to each other if we consider the other terms. (see Sect. 3,4 and (5.11).)

Using the moduli space of the case » = 1, namely .#o( fl;S, 1), we define:

Zo(f;S LB, 3. = ¥ £ulo).

I€4o(f}38,1)

We define Zg(o,1,0( fl;S, 1, &,9r,, ) etc. in a similar way. Then we obtain
TS 001320, 8.2) = 75 2003 5:. 91, 2)
T 2 T 3514, D) + 52 T35, G0 )
+éZZﬂ‘ZT“1 0)(3f1;S§ id,ge, /s D) + %Zzﬁ?ﬁao 1)(81?1;& id, B, Ges ;)
"%;Zﬁﬁl,l)(gfﬁ&id»g&zzfz’gmﬁ) ;;Zﬁ?rlal 1)(5fl;S;id,ge4ﬁ’gssﬁ)
~ 1 (S267:5.1:0.0.2) - T207:2.2.2))

(Z Zo0.1.0)Ef ;8. 1; Bs Ger iy D) — Z Z00,1,0(Ef 13 B 9er oo Q))
&

I |

Z Z@(O,O,l)(§f1 38,1, 3, B, 965) — Z Z@(o,o,l)(gfﬁ B, DB 9es s ))
&

EN I
/\

(Z Zowo,1,)(Ef1:8 15 B, Ger 155 er f5) — Z:Z@(O,l,l)(gf]; B> 9es 15> 93 /3 ))
&

4; |

OO

—Z 101,00 Ef 8,1 B, Ger s D) + ZZA(OO &8 D, D des)

> Zao,, 1)(8f1,S L B, 9055 9ess) — ZZA(O 1, 1)(8f1,® ge;pr&;ﬁ;))

g

o] I
7N

(Z A0, 1, 1)(8f1,S L B, Geufir Gy ) — ZZA(O L D, gs4ﬁugegf3))
(5.11)

oolv—‘

&
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We remark terms . .Z0,0,1)(€. fl;S, 1; B, &, G r;) etc. may be nonzero while
> Z40,0,1)(E. f 1 D, D, ge, r,) must be zero. (The equation we put on the first edge in

the definition of the moduli space we use to define ) .Z40,0,1)(€ fl 381 B, B, 96, 13)
is a time dependent gradient flow equation. So it may have a nontrivial closed orbit.)

Our next step is to compare the left-hand side of (5.11) to terms related to
Tr(H o W(0O(1, 0, 0))), etc. In the following we write W{O(1, 0, 0)), etc. in place
of W(O(1,0,0)), etc. in case we use (&1 f1,5,€2./2,€3/3) to define them.

Lemma 5.12.

T 26035, 2.8.2) = 1T Zo00(FFi5S. 1 8.6 D)
—%%:Z@(o,o,l)(gfl;& L, B, D, Gesps) + %%:Z@(O,l,l)(gfl;S, 1,96 1595 15)
—I-%;ZA(o,l,O)(Efl;S, L, 905, B)+ %;ZA(O,O,I)(gfl;S’ L, B, 96 5)
—%§Zm¢ﬂﬁl&h®4m@%ﬁ)

-3 (z:z@(s%;@, 2.2 + LTr(H o W(6(1,0, om)

(ZZ@(O 1.0)(Efo; DsGer s D) + ETY(H o Wx(O(1, gszfz’o)))>

-lklv—‘

ZZ@(OO W&o B D, gcsfs)+ZTr(H° W:(O(1, 0, gs;ﬁ))))

/'\

ZZ@(OI 1)(8f05 @agazfpg%fz) + ZTT(HO W(@(l gszfpgb‘;f}))))

=] o

Tr(H o We(A(1,90,15,0))) + §Z Tr(H o We(A(1,0,9e, 1))

OOI'—‘ 0| M= -l>|'—‘ -lkl

1
=22 Te(H o We(A(L, 9e, - 9es 1)) — '§Z Te(H o We(A(L, 9oy fi>9es 13))) -

Before proving Lemma 5.12 we remark that (5.9), (5.10), (5.11) and Lemma 5.12
imply that fo and fl give the same invariant.

To prove Lemma 5.12 we use the following moduli space which is simi-
lar to but different from .4 g( fl;S,r). We choose a function = : {(u,1)|t € [0,u],
u > 0} — [0,1] such that if u > S+ T + 10 we have

0 if +e[0,8—1]
1t —T) if te[T—1,T+1]
Eut)=14{ 1 if re[S+1,25—1]

WT+S—1—1) ifte[T+S—1L,T+S+1]
0 if te[T+S+1,u]
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( 1:0->M, t,tt3 >0,

dl
7 =gradf, on e; =[0,5]

Mo(f38,T,r) = Lty to,13,7) | dI

(f ) (4a i gradf3; on e3 = [0,#]

di .
E = gradfl,,g(,l,,) if tee = [O,tl] J

The space |J,¢f,1) Ho( 738, T,7) has boundaries and ends. The boundary is
—Mo(fS,T,0)U Mo(f;S,T,1). The set Mo(f;S,T,0) is equal to Lo(f,). We
next prove that the ends of Ure[O,l]ﬂ@( f ;S, T,r) corresponding to the case when
t1 — oo is equal to Up,qur(f.,o)/”@(l,O,O)(P’ q; fo) X Myara(q, p; f1,5,8) if S and T
are sufficiently large. Here we recall that pan(q, p; fi1,5,S) is the moduli space we
used to define H. .

To show the behaviour of the end of Ure[m] Mo(f; S, T,r) described above, we

first remark that the ends in question correspond to the following set. (We remark
that the first edge splits between S+ 7 + 1 and #.)

I:60(1,0,0) = M,t2,t3 > 0, p € Cr(fip)

dl
= —gradfy one; =[0,5]
dl
7 =gradf; on e; =[0,4]
grad fi0 ift€[S+T+1,00] Ceny

dl gradfl,,l(_,+s+r) ifte[S+T-1,S4+T+1]Ce,

U S (Lo, 13,7, p) - = &radfis ifte[T+1,S+T—1]Cey,
’ grad f1, ry—s) ifte[T-1,T+1]Cey
gradfio ift€[0,T —1] Cey
dI
E'-:gfadfl,o on ejp = (—00,0]

lim I(t)=p, ifte e =1[0,00)
t——+00

) lir_n I(t)=p, ifteey=(—00,0]

= (wt)

| | | | ';t
0 T-1T T+1 /S+T'\ u

S+T-1 S+T+1

Fig. 9.
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We consider the behavior of this moduli space when T — co. We then find,

by a gluing argument, that this space is homeomorphic to .#e1,0,0)(p,9; fo) X
Mpara(q, D f1,5,5).  Therefore by counting elements of the end of

Ure[o,l] M o( f ; S, T,r) corresponding to the case when #; — oo with weight, we
obtain Tr(H o Wz(©(1,0,0))).
Thus we obtain the following:

Zo(E/:8; T3 1; &, &, &) = Tr(H o We(O(1,0,0))) + Zo(Efo; &, &, &) (5.13)

We have a similar formula for graph ©(1,1,0), etc. Therefore, to complete the proof
of Lemma 5.12, it suffices to prove the following Lemma 5.13. We put

Zo([sS T L@, BB = S o).

1€Mo(f3S.T,1)

Lemma 5.14. If S and T are sufficiently large, then we have
]. -7 1 7
1 ZZ@(ﬁfl;S, I.,J,3,0) - 7 ZZ@(O,I,O)(3ﬁ§Ss T,1; . e, 150 &)
& &
1 = 1 .
_ZZZQ(O,O,I)(Sf; ST.L S, B, Gesy) + i > Zoin(EN: S T 1 B, Ges s es )
13 &
1 . | »
+— ZZA(O,l,O)(ﬁf;S, T,V B, G D) + 5 ZZA(O,O,I)(Sf;Ss 0,13, &, 9o 1)
——EZA(OH)(Sfl,S 1,15, Ger fo0 Gea fi) EZA(OH)(Efl,S T, &, Geafer G fy)
=7 ZZ@(E'f];S, L, 8, ) — 1 229(0,1,0)(5f;5, L &, Ge, 130 )
£ &
1 o ! =
—ZZ:Z@(O,OJ)(Ef];S, L &, D, 9e, 1) + ZZ:Z@(O,I,I)(Eﬁ;Sa L &, 90,1095 13)
&€ &
1 L 1 =
t3 ZZA(O,I,O)(Bfi§S7 L &, Gy, D)+ 5 ZZA(O,O,l)(Sf;S, LD, &, 9e5)

——ZZA(OH)(Bf,S,l,@ 9o fs Gea fi) ZZA(OII)(sfi,S L &, Geafis Geafs ) -

Proof. We write Egr,Us to specify their dependence of S, 7. We may assume that
they depend smoothly on S. We define a three parameter family of functions Ng 7.4
for § > 0,7 > S, 4 € [0,1] such that

Nsr0 = Zs7 5 (5.15.1)

Ngr1 = Us . (5.15.2)

We put By =AT + (1 —A4)S,B, =AS+T)+ (1 —A4)u—S). Then for u >
T+ S + 10 we have

0 if t €[0,B, — 1]
wWt—B)) ifte[B — 1B +1]
Nsra(u,t) =< 1 if te[B +1,B,—1]. (5.15.3)

2By —1t) ift€[By—1,By+1]
0 if 1 €[By+1,u]
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We now put
U:0 — Mttt >0,
dl ~
-, —@adfs on e =[0,n]
7.8 T,A) = { (Lt 1, t3) |dI

ﬂ@(f,S, H ) (’ 1,52, 3) E:gradﬁ on e3g[05t3]
dI : ~
E = gradfl,NS,T,A(tl,t) if tee= [0,4] ),

This is again a 0 dimensional space for each fixed S,7 and 4. Moving
A € [0, 1] we obtain a one dimensional manifold. By (5.14.1) and (5.14.2) its bound-
ary is the union .#g( f S, DU —AMo( f ; S, T,1). These moduli spaces are the one
we used to define right-and left-hand sides of Lemma 5.13. So to complete the
proof of Lemma 5.13 we only need to show that the contribution from the ends of
UAG[O,]] ,/%@(f; S, T,A4) cancels.

To study the end of UAe[o,l] ﬂ@(f; S,T,4) we use the following:

Lemma 5.16. There exists Sy, Ty, C such that if S > Sy then there is no element
of UAe[o,l] Me(f;S,T,A) such that t, > C, and C > Sy + Ty + 10.

Proof. If Lemma 5.16 is false we have a sequence of elements (/;,#,;,%,;,13,;) of
J%@(f;Si, T;,A;) such that S; — oo, T; — 00,t,; — oo and #; > S; + 7; + 10. By
dimension counting it suffices to consider the case when A4; converges and #;, 13,
converges to some positive number. Then by (5.13.3) [; splits into 2 gradient lines
of time dependent gradient vector flow and an element of . g(10,0)( f(;, p,q) for
some p,q. Therefore we have an element of .#g1,00)( f(;, D.q) X M (q,7; fis) X
M (1, p; fi.5). (Remark that the parameter 4 does not play a role here. Hence we
loose one freedom this way. This is the basic reason why the lemma holds.) This
space is empty by simple dimension counting. We get a contradiction.

Lemma 5.16 implies that if we choose S sufficiently large, then there is no end
of Uyeo) Mo(f;8,T,A) corresponding to #, — oo.

Now we are ready to repeat the argument we did many times. Namely the end
coming from # — 00,3 — 00 or #, — 0,3 — 0 cancels after summing them up
with other similar terms. The proof of Lemma 5.14 is now complete.

We thus completed the proof of Main Theorems I, II, assuming some lemmas
on transversality and orientation.

6. Compactification of Configuration Space and Transversality at Diagonal

In this section we discuss the moduli space Lo(1,0,0)( f ,9d; P1,41) we introduced in
Sect. 3 and similar moduli spaces which appeared when a non-simply connected
subgraph degenerates to a point. To clarify the idea, we consider a more general
situation. Probably one can use these ideas to prove the well-definedness of higher
loop amplitude.

Let I be a graph. We assume that each vertex of I' has more than three edges
or has only one edge. The vertex with one edge is called an exterior vertex and
otherwise it is called an interior vertex. An edge is called an exterior edge if it
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contains an exterior vertex. Otherwise it is called an interior edge. We also fix an
orientation to each edge.

Let I be the set of all possible ways to assign a positive number ?, to each
interior edge e.

We associate a Morse function f, to each edge of I And also we choose a
point p, to each exterior vertex of I'. We assume that p, is a critical point of the
function f,, where e is the unique edge containing v.

We consider the following moduli space:

(t.) € Ir
[: I —-M
dile

M(T; £, B) = { ((t),]) ] dt
dl|.

= gradf, on an interior edge e = [0, 7]

= gradf, on an exterior edge e = (—00,0]

tlim I|,(t)= p, V€ e is an exterior vertex
——00

There is a natural projection #(I; f ,0)— Jr. For example if I' =@ then
WALCH f ) is the moduli space #o( f1, f2, f3) we studied before.

We put A(T'; V, p) = J Zev ML f , D). Here V is a sufficiently small neighbor-
hood of f in (C®(M))* and B = (py)veexterior vertex- (Here k is the number of interior
edges.) We choose ¥ so small that the critical point set of f; where (f{, f3, fi) €V

is identified to the critical point set of f;. Then the expression .#(I'; f, P) makes
sense. We have again a map #(I'; p) — Ir.

Lemma 6.1. .Z(I';V,p) is a C*-manifold and nr:. H(I';p)— Ir is a
submersion.

Lemma 6.1 is verified by a straightforward transversality argument similar to
one in Sect. 2, where we proved the corresponding transversality result already for
the graph we use.

The transversality at the point where one of the numbers is 0 is of different
problem. In fact transversality does not hold in the most naive sense. To see this,
let us consider

e : interior vertex } ~ De

€Ir = {(te) t, =0 = R>o0-

This is a (partial) compactification of Jr. We define €.#(T; f , ) in a way
similar to (I f , D) but requiring I(e)=point if z, = 0. There is a natural map
n:CMT, f, P) — €Ir. €I is a manifold with corners. In other words, €I
is a stratified set such that each stratum is a manifold. (We put €I = {(t.) €
€Ir|#{e|te = 0} = k}.) One may ask if each cycle L C ¥Jr is transversal to = :
€M(T; f, p) — €Tr. However this is not the case. This is a problem related to
the anomaly we discussed. Let us give an example in the case when the dimension
of the manifold is 2 (Probably a similar problem occurs in higher dimension.)
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We put
f] ()C, y) =xe 7,

ﬁ(x’ y) =X,
f3(x, y) =xe’.

One can easily see that the moduli space ¥.#(0O; f ) is a line R and the map
MO; ) — To = R, hits the origin. (See Fig. 10.)

This picture is quite stable. Namely by perturbing f, f5, f3 we still find a sim-
ilar situation that is the map #(0; f) — $Tg = R, still hits the origin. Thus
L = {(0,0,0)} is not transversal to the map 7 : 6.4(0O; ) — ¢ Te.

As we discussed already, to handle a similar problem, we can consider the
subsets of the points where gradient lines are parallel, to analyze this problem. To
do it more systematically we are going to use compactification of the configuration
space similar to one in [FM, Ko]. However, there is a small difference, caused by
the fact that we break the symmetry (isomorphism of the graph) by introducing
different Morse functions to different edges.

Roughly speaking, we take the real blow up of ¥Jg =R, along each

%y T,k < m, and obtain Ir. More precisely we proceed as follows. We choose and
fix a maximal tree T C I'. For each edge e C I' — T we choose one of its vertices
and attach e to T at this vertex. We thus obtain a tree T and a surjection J : T — I'.
Let Coint(I") be the set of all vertices of 7 which is mapped to an interior vertex
of I' and let Cy (1) be the set of all interior edges of I'. We regard an element of
Ciine(I') as an edge of T as well. We say that 4 C Cyn(I") is connected if there
exists a connected subset of T such that 4 is the set of all edges contained in it. Our
space JT is a stratified set whose stratum corresponds one to one to the following
set X(I'). An element 2 of X(I') is a set of subsets of Cjn(I") such that

IfA,BeZ ANB+(¥ then A C B or B C A. (6.2.1)

If 4 €% then 4 is connected (6.2.2)

>
1]

grad f; grad f, grad f,
Fig. 10.
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Let 4 € . We consider the set of all e € Cyj(I") such that e € 4 and that if
e€BCABec % then B=A. Let V(A4) denote this set.
For each & € X(I') we define I (&) as follows:

Map(Cyjm(I') — Ry)

~y

T(Z) =

We define ~, as follows. For ¢ € Map(Cijne(I') = R;), r € Ry, and 4 € & we

consider )
Yy — {t(e) if e ¢ V(4)
rt(e) if e € V(4)

Then we put ¢ ~, t'. We let ~, be the equivalence relation generated by this relation.
It is by definition the union of all I (%).
If = ¢ then 7(&) = Ir. Hence I D Ir. The map n: I — €T is de-
fined as follows:

if t i hat
() (e) = {6(8) if there is no 4 € & such that e € V(4) ‘

otherwise

The topology of 7 is defined as follows. Let #; € I. We suppose that £;(e) con-
verges to an element of R for each e. We say that ¢’ < e if ;(e’)/;(e) is bounded.
We say e ~ ¢ if e < € and ¢’ < e. We assume furthermore that lim;_,..t(e')/t:(e)
converges to a positive number for each e ~ ¢'.

We define & = {{e € C1im(I')|e < eo}|eo € Crim(I")}. We define & so that an
element of it is a connected component of an element of Z. For each 4 € &, we
choose ey € Cyjne(I") such that

A =4, = the connected component of {e € Co(I")|e < e }containing ey € Z.

Let e € Cyjn(I"). Take ey such that e € 4,, and e ~¢p. (In other words,
e € V(4g).) We put too(e) = lim;ooti(e)/ti(ep). And we let lim,; .04 be the ~;,
equivalence class of t,,. We remark that this element (up to equivalence) is inde-
pendent of the choices of ey.

We thus defined the limit of the sequence of elements of Jr. The limit of the
elements to I is defined in a similar way. Let us describe this set 7 explicitly
in the case we need.

First we consider the graph ©(0,0,1). Then the tree T is as in Fig. 12.

X(©(1,0,0)) consists of 6 elements &, {{e1}},{{e2}}.{er,e2},{{er},
{e1,e2}}, {{e2},{e1,e2}}. The set F(Z) for each of this four is R:,R,,R,,

© (0,0,1)

Fig. 11.
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Fig. 12.

Fig. 13.

{(’(e‘)’(ez»lt(e‘ M@)>0} o~ (0, 1), one point and one point, respectively. Gluing them
together we obtain the 2 manifold with corners in Fig. 13.

Then ./@(070,1) — J8(0,0,1) is an isomorphism outside (0,0), and n~1(0,0) is iden-
tified with an arc.

Next we consider I' = @. Our tree 7 is given by Fig. 14.

The space o is given by Fig. 15. In other words, ©~!(0,0,¢) is an arc and
n~1(0,0,0) is given by Fig. 15.

We go back to the general case and will construct a space M(I') for each
manifold M. This space M(I") is a compactification of the following configuration
space:

{p: Coin(T) — M|p(v)=% p(v'), if there exists an edge of T joining v and v'}.

M(T) is a stratified set. The strata is indexed again by the same set X(I'). Here
we regard X(I') as the set of all #~ consisting of subsets of Cyine(7) satisfying the
following conditions:

IfA,BeW,ANB+( then A C B or BCA. (63.1)

If 4 € # then A is connected. Here we say that 4 is connected if there exists
a connected subcomplex of 7 such that A is the set of all interior vertices of 7.
(6.3.2)

{v} e# for each v € Cyju(T). (6.3.3)

Let us verify that the set of all such #” is equal to the set of all Z satisfying
(6.2). Let # satisfy (6.3). Let 4 € # with #4 = 2. Let B4 be the set of all
interior edges e such that both of the vertices of e is contained in 4. We put Z(#")



78 K Fukaya
Vi

€

Y, V.
0 2
€

€3

V3

Fig. 15.

= {B4|d € W,#4 = 2}. 1t is easy to see that #~ — Z(¥") is the required one to
one correspondence.

Now for #" € X(I') we associate a space M(#") as follows. We say that an
element 4 € ¥~ is maximal if it is maximal with respect to the inclusion. An el-
ement of M(#") consists of p : {all maximal elements of #'} — M and u(4) for
each element 4 € #°. We describe u(A) later. The condition for p is as follows.
Let 7(#") be the tree obtained from 7' by shrinking each maximal element to a
point. (Here we regard each element 4 € #~ as a connected subcomplex.) Then p
associates a point of M to each vertex of T(#"). We assume that p(v)=+ p(v') for
each of the vertices of 7(#") which are joined by an edge.

We next describe u(A4). First we consider the case when A4 is maximal. We
consider all elements A(#") of #  contained in 4. (4 ¢ A(#").) Let us take all
elements of A(#") which are maximal among elements of A(#"). Let A,(#") be
this set. Then
Map(An(#") = TyuM)

~

u(d) €

Here we say ui(4) ~ uy(4) if there exists r € Ry and u € Tp)M such that
u1(4)(B) = ruz(A)(B) + u for each B € A,,(#").
Next let B € 4,(#"). We define B(#") and B,(#") in the same way. Then

c Map(B,(#") — Tu(A)(B)(Tp(A)(M))).

~

u(B)

Here ~ is defined in a similar way. We remark that if u;(4) ~ uy(4) then there is
a canonical isomorphism T, 4y3)(Tpay(M))) = Tuyayay(Tpay(M))).

We continue in the same way and define u(C) for each C € #°. The space
M(#") is the correction of all such (p,u). We remark that if #5 = {{v}jve
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Fig. 16.

Co,im(r )} then

M#o) = {p: Coim(T) — M|p(v)* p(v'),

if there exists an edge of T joining v and v'}.

We have an obvious topology on M(#") so that M(#") is a smooth mani-
fold. We put M(I') = U"tI/eX(I‘)M (#"). We define a topology on it as follows. For
simplicity we define a limit of the sequence p; € M({{v}|v € Com(I")}) only. We
assume that p;(v) converges for each v € Cojn(I"). Let poo(v) be its limit.

We first define %" € X(I'). For each v € Coin(I") we consider the set of all
v € Cojmt(I") such that poo(v) = poo(¥'). Let 4, be the connected component of
this set containing v. A maximal element of #" is 4, for some v € Coin(I").

We identify 4, with a connected subcomplex of I'. Let C}in(4,) be the set of all
interior edges of this subcomplex. Let e,e’ € Cyjn(4,). Let vi(e) and v,(e) be the
vertices of this edge. We say e < ¢’ if d(pi(vi(e)), pi(v2(e))/d(p:(vi(e)), pi(v2(e'))
is bounded as i — oo. Here 4 is a distance function for a Riemannian metric of
M. (We fix it but the construction is independent of it.) We let 4,, be the con-
nected component of {€’ € Cyjm(4,)|le’ < e} containing e. 4,, may be regarded as
a connected subcomplex of 4,. We define 4,(#") by

AW) = {Ayle € CLm(AN} ULV € 4,).

We thus defined #°. We define p : {all maximal elements of #'} — M by
Poo(dy) = Poo(V).

Let 4, be a maximal element of #'. We next define u(4,): (4y)u(#) —
Tpoois,(M). We remark that poo(4y) = peo(v). We fix elements vo,v € 4,, such
that if v,vg € 4’, A’ € # then A’ = A4,. For V' € B,B € (4,),(¥#"), we set

exp, by (£i(V))

d(pi(v), pi(VO))> = TPDO(V)(M)

u(4,)(B) = lim <

in case the right-hand side converges. We remark that u(4,)(B) is independent of
the choice of v/ € B and the ~4 equivalence class of u(4,) is independent of the
choice of v and vy.

Next let B € (4,)n(#"). We define u(B) : Bu(#") — Tuw)(TpooyM). We fix
v/, vy € B such that v.,vo € B B' € #', B’ C B imply B’ = B. Let C € B,(#"). We
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choose v/ € C and put
pl(c) - (D expp (v)) (epr (v/)(v”))'

Here exp,, (V") € Tpon)(M), and Dexp,,: Texp,,}'v><p.(v'))(T (M) = Ty, M

is a differential of the exponential map. Hence p,(C) = (Dexp p,(v))_‘(exp;i}v,)(v” ))
is an element of T vy TpmM). Its norm is almost equal to d(pi(v),

exp (P
pi(v")). We put

p(C)
m) € Tewz? () TrmM)

if the right-hand side converges. Again this limit is independent of v € C. And the
equivalence class of u(B) is independent of v/, v;.

We continue in this way and define u for each element of #.

We thus described the topology of M(I') = |, xaryM (#"). We can prove that
M(I') is a smooth manifold with corners.

We are going to define a map & : M X Ir % (C®°(M))" x Met — M(I'). This
map is a generalization of one we defined at the beginning of Sect. 2. Here m is
the number of interior edges. We remark that both M(I') and I are stratified sets.
Their strata both correspond one to one to the set X(I'). Our map @ respects this
stratification. We are going to define @ for each stratum.

In case Z = & which corresponds to #" = {{v}|v € Coin(I')} our definition is
as follows. We first recall

M) ={p: Coim(T) — M|p(v)* p(+'),

if there exists an edge of 7 joining v and v/}

u(B)(C) = 11m (

and
I (Z) =Map(Crm(I') — R,)

in this case. We fix an interior vertex vo. Then for each v € Cyin(T) there is
a unique minimal path 7, joining it to vo. We put £, =e;, U---Uey), such
that vy € e1, €y Nejp1p, = one point, and v € ey),. Then for t € IT(Z)=
Map(Ciin(I') — R;) we put

U p.t(f) )W) = (@ 00 0() (p).

)y

(We recall that @’(e”) is the exponential map of the vector field grad f£,,.)

We next con31der the case when 2 = {4,} such that 4, N 4; = ¢ for i< ;. This
corresponds to the case # = {4;} U {{v}|v € Coim(I")}. (Here 4; is a connected
subcomplex of T, which is regarded both as a subset of Cyn(I") and Copjne(T).) Let
T (Z) be the tree obtained by shrinking each of the elements of & = {4;} to a
point. An element ¢ of J(Z) determines an element of Map(Cyin(7 (Z)) — Ry).
Then in the same way as above we obtain p : {all maximal elements of # '} — M.
(Remark that the vertex of T# corresponds to a maximal element of #°.) Next
we determine u(4;). ¢ also determines an element of ¢ : Cjn(4;) — R4 (up to an
equivalence 4 ~ r - t;). Since T is a tree there is a unique vertex v; of 4; which is
closest from vg. For v € Cp;ini(4;) there is a unique minimal path #;, in 4; joining
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vto v Let £iy = ej1,y U+ Uejg),y such that v; € e;1,,e;, Ne;jy1, = one point,
Vv € e,y We put
u(d)(v) =3 teijy)grad fe, -
J

We then define @(p,t,(fe),g) = (t,u).
The definition of @ for general strata is similar.

Lemma 6.4. The map ® : M x I x (C(M))" x Met — M(I') is a smooth map
between manifolds with corners. Its restriction to each stratum is a submersion.

The lemma is a direct consequence of the definition and the straightforward

transversality argument.
Now we can use Lemma 6.4 to construct a compactification of the moduli space

M(T; f B). We first consider the submanifold of

M) ={p: Co,iT) — M|p(v)F(V'),
if there exists an edge of T joining v and v'}.
We fix Morse functions f, for each exterior edge e of I'. And we fix a critical

point p, for each exterior vertex v. We consider the set ¥ of all elements of M ()
such that

If v/ is an interior vertex joined by e to a exterior vertex v. Then p(V') is
contained in the unstable manifold of p, of the gradient vector field grad f,
(6.5.1)

If v,v' € Coie(T) such that J(v) =J(v'), then p(v) = p(V'). (6.5.2)
The following lemma is immediate from the definition.
Lemma 6.6. ~'(Y)N(M x I x {(f.)} x {g}) is equal to M(T'; f, B). Here the

component of f is f. in the above formula for interior edge e and is f, in (6.5.1)
for exterior edge e.

We next use the following:

Lemma 6.7. For generic f,, the closure Y of Y in M(I') is a manifold with
corners. For each strata M(W") of M(I') the codimension of M(#W )NY depends
only on the Morse index of p, and the combinatorial type of the graph and is
independent of W'

Proof. Let (p,u) € M(#"). We describe the condition for this element in 7.
Let 4 be a maximal element of #". The condition for p(4) € M is

If v is an interior vertex joined by e to an exterior vertex v and if v/ € 4, then
p(A4) is contained in the stable manifold of p, of the gradient vector field grad f,.
(6.8.1)

Next we consider a pair v,V of vertices of T such that for J(v) = J(v') we put
conditions for such pairs. Let us describe those conditions. Let 4,4’ € #~ be the
maximal element such that v € 4 and V' € 4’. If A+A4’ then we assume

p(4) = p(4d"). (6.82.1)
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If A = A’ we need to put conditions on u. Let B,B’ be the maximal element of
A(#") such that v € B and V' € B'. If B+B’ then we put

u(B) = u(B'). (6.8.22)

If B =B’ we choose the maximal elements of B(#") containing v,v'. We con-
tinue in this way. It is straightforward to see that these conditions describe Y.

The co-dimension for each stratum is found from these descriptions. Namely we
put dim M conditions for each pair v,v' of vertices of T such that J(v) =J(V').
(Note that condition (6.8) is applied once for each such pair).

The number of conditions corresponding to each exterior edge is the Morse index
and is independent of the stratum.

The proof of Lemma 6.7 is complete.

Using Lemma 6.7 we obtain:

Lemma 6.9. ¢~'(Y) is a manifold with corners. The projection ®~(Y) — It x
(C®(M))Y" x Met is a Fredholm map. This projection respects stratification. The
index of the restriction to each stratum is the same.

The tarnsversality we used in earlier sections follows immediately from
Lemma 6.9.

7. Orientation

In this section we define an orientation of our moduli spaces and verify compatibility
of them in various contexts. We first define an orientation of #p(f1, 12, f3). We
regard it as an intersection of three submanifolds of dimension 4 in M?, as we
discussed in introduction. Namely we put

M(f)={(p,%(p))| p € Myt > 0} C M>.

We regard it as an image of the map ¥ : M x Ry — M?,(p,1) — (p, ¥(p)).
Then an orientation of M induces one on M(f). We recall Mo(f1, /2 f3)=
M(f1) NM(f2) N M(f3). Hence we define a sign for each point on #o(f1, f2, f3)
induced from the orientation of M? and M(f;). Thus .#e(fi, f2, f3) is an oriented
0-dimensional manifold.

We remark that there is a diffeomorphism 7t : #p(f1, f2, f3) — Ho(—f1,— f2,

=) (P gt . 1) = (g, pi i, 2, 13).
Lemma 7.1. 1 is an orientation preserving diffeomorphism.

We recall that we took the sum over #g(e1f1,62/2,€3/3). Hence if T were
orientation reversing then our invariant would be always 0.

Proof of Lemma 7.1. Let J: M xRy — M x Ry be an orientation preserving
diffeomorphism ( p,t) — (cbf_l(p),t). AndR:M XM — M xM,(p,q) — (g, p) be
an orientation reversing diffeomorphism. We remark that ¥_ ; = Ro ¥, oJ. Hence
the lemma is a consequence of the following:

Sublemma 7.2. Let V;, i = 1,2,3 be oriented linear subspaces of an oriented vector
space V and R:V — V be an orientation reversing isomorphism. Orientations of
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V; induces one on R(V;). Then R|y,nv,ar, : Vi NVaN V3 — R(Vi)NR(V2)NR(V3)
is orientation preserving.

Proof. One finds that R|y,ny, : V1 N V2 — R(V1) N R(V,) is orientation reversing.
Hence R|y,nr,nr, is orientation preserving, as required.

We next turn to the orientation of #e100)(p,q; f1, f2, f3), etc. We consider
stable and unstable manifolds. Namely:

U(p) = {x eM| lim &(x)= p} ,

S(p) = {x eM| lim &(x)= p} :
We remark that

Mo00) (P, G5 [1, 2, f3) = (S(p) x U(q)) N M(f2) "M(f3) .

Therefore orientations of stable and unstable manifolds determines orientation of
Mo 00)(P,; f1, f2, f3). The most natural way to define orientation of stable and
unstable manifolds is to modify the definition of the Witten complex a bit as follows:

D spelp.el
PECI(f),n(p)=k
¢ is an orientation of S(p)

C(M; f¢) = —
Here [p,¢] ~ —[p,—¢]. Then the orientation of .#([p,¢,],[q,£;]) is automatically
fixed. Namely the orientation ¢ of S(p) and the orientation of M determines an
orientation of U(p). Therefore the orientation of .Z([p,¢,],[g,¢,]) = S(p) N U(q)
will be fixed. Using this orientation and induced orientation on .Z([p,é,],[q,¢,])
we can determine the sign in the definition of d,,.
Also we can determine the orientation of .#g1,00)([p,&],[q,841; f1, f2, 13)
= (S(p) x U(@)) N M(f2) " M(f3).
We next discuss the compatibility of this orientation to one for #e(f1, f2, /3).
Let us consider a one parameter family L of ( f ,g). We fix an orientation of L. Then
Mo(L) = U( fufofsg)EL Meo(f1, f2, f3) is an oriented one dimensional manifold. One

of its boundary components is given as |Ju.s.s0et Mo1,00)( P> P; f1, f2, f3)- As be-
PECK))

fore we can define orientation of | Ji.s.50er Mo(100)(ps P; f1, /2, f3). To prove that
PECI(f])

these orientations are compatible we only need to prove the following:

Lemma 7.3. Jui.snoe S(p) x U(p) is a  boundary  component  of
)

PECH(f

Uispoossgrer M(S). Their orientations are compatible.

Proof. The problem is local so we only need to work in a neighborhood of a
critical point p of f; ;. Then by using the Morse lemma, we may assume that f is
a standard quadratic function. In that case the lemma is easy to verify by looking
at the spaces directly.

We need to verify compatibility of the orientation in various contexts. First com-
patibility of orientation in Lemma 3.1 is an immediate consequence of Lemma 7.3.
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More interesting is the statement on orientation for Lemma 3.8. Let us state it more
precisely.

We consider two moduli spaces U(ﬁ,fz,ﬁ;g)eL ///@(1,0,0)(p,.q; f1, f2, f3) and
U(f;,fz,ﬁ;g)EL Mo(100)(q, s — f1, f2, f3). Their closures both contain

Z(1,0,0)( 1,915 /1, f2, f3) = F(1,0,0)(q1, p1; = f1, f2, f3) -

We are going to compare orientations attached to each term of the element of
&L(1,0,0)(p1,q15 /1, 12, f3) = L(1,0,0)(q1, p1; — f1, f2, f3)

Lemma 7.4. The orientations of &(1,0,0)(p1,91; f1, f2, f3) and ¥(1,0,0)(q1, p1;
—f1, f2, f3) are opposite to each other.

Proof. We put
L(fr f3) = {(x,x) € M? | grad f5(x) is parallel to grad f3(x)} .

S(f2, f3) is a component of the boundary of M(f2) N M(f3), and hence is an
oriented manifold. We remark that & ( f>, f3) is contained in the diagonal. We have

L(1,0,0)(p1,q1;5 f1, f2, 13) = (S (p1) X U (@) N L (f2, f3) »

Z(1,0,0)(q1, p1; = /1, /2, f3) = (S—5(q1) X Uz, (p1)) N L(f2, f3) -

We remark that Sy, (q1) is the same manifold as U_ £, (g1). We may assume that their
orientations coincide. S;(p1) X Us(q1)— U (q1) XS5 (p1)=S-4(q1)XU_(p1) is
an orientation preserving diffeomorphism. The lemma then follows from the fact that
if R: V — V is orientation reversing, and R : V; — R(V;) is orientation preserving,
then R|y,Ar, : V1 N V2 — R(V1) N R(V,) is orientation reversing.

We next turn to the compatibility of the orientation we used at the end of Sect. 3.
Namely we prove:

Lemma 7.5. Aoq,1,x)(P1,q15 P2, 92)(f1, f2, f3) and Me1,1,x)(q15 P15 P2,92) =11, f2,
f3) has an opposite orientation to each other.

Proof. Let 4 C M? be the diagonal. Then

Meo1,1,x)(P1, 915 P2, 32)(f15 f2, 3) =(S7(p1) X Up (q1)N(Up(p2) XS5 (g2))N4

Mo,1,x)(q15 P15 P2, 32)(f15 [2, [3)=(S— 1 (q1) X U— (11 NN (Up(p2) X S5 (q2))N4 .

The lemma therefore follows from the same argument as Lemma 7.1.

There are many other cases for which we need to verify the compatibility of
orientations. But the argument for them are the same as those we discussed in this
section already.
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8. Concluding Remarks

As we mentioned in the introduction, we conjecture that the invariant discussed in
this paper coincides with Chern—Simons Perturbation theory by Axelrod—Singer, etc.
We here discuss a heuristic argument to “show” this conjecture.

We first recall the definition of the 2-loop amplitude of Chern—Simons Pertur-
bation theory briefly. Let ¢ be a flat g bundle on a compact oriented 3 manifold
M such that H*(M;c) = 0. Let Q¥(M;¢) be the set of all smooth k-forms on M
with a ¢ coefficient and let d : Q¥(M;c) — Q¥1(M;c) be the exterior derivative.
Since our bundle ¢ is flat we have di1dy = 0. The assumption H*(M;¢) =0 is
then equivalent to kerd, = Imdj_;.

We fix a Riemannian metric on M and consider an orthonormal complement
(kerdy)* of kerd;, = Imd,_;. The restriction of d; to (kerd )" is an isomorphism:
(kerdy )t — kerdy.1. Let d] ' be its inverse.

We consider the bundle Hom(n}¢, n5¢) on M?. Here m; : M> — M is the pro-
jection to the i component.

Definition 8.1. A section P € I'(M*\4; Hom(m}c, nic) ® A2(M?)) is said to be a
propagator if
4 'w)x) = [ PCx,y)Au(y)dy
YEM

holds for each u € kerdy, .

We next define the @-trace: End(g)®* — R for each semi simple Lie algebra g.
Let e; be an orthonormal basis of g. We put

Tro(u1 @ u, @ u3) = Zk ([er, ej], ex) ([ur(e:), uz(e;)], us(er)) -
i),

Now the leading term of the 2 loop amplitude of Chern—Simons Perturbation
theory is given by

| Tie(P(x,y) AP(x,y) A P(x,)) . (82)
(x, y)em?

We recall here that P(x, y) A P(x, ) A P(x, y) € Af, ,(M?) ® Hom(gy,¢,)®*. Hence

Tro(P(x, y) A P(x, ) A P(x, y)) € AJ, ,\(M?). So (8.2) gives a number. It is proved
in [AS] that (8.2) together with correction terms (terms related to the other graph
A, etc.) is independent of the Riemannian metric, etc.

We conjecture that this invariant coincides with ours. We remark that the validity
of this conjecture implies an integrability or rationality theorem of Chern—Simons
Perturbation theory.

In [W1] Witten introduced a perturbation of De-Rham complex and Laplace
operator using a Morse function. Let us propose to use this perturbation to verify
the above conjecture as follows.

Let G(t;x, y) € Hom(y,6,) ® (6P, 4} ® A’)) be the Green kernel of the Laplace
operator. Namely if we put

u(t,x) = f <G(ta X, y)> u(y)> I/OIM 5
yYEM
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then
lim u(t,x) = u(x)
t—0
du _ _
dr = Au

In other words G(t;x, y) is the Schwartz kernel for e~*4. We recall the formula
(e o]
[e dt=7"".
0
Since there is no harmonic form, it follows that
o0
A7 = [edr.
0

We remark that d—! = 64~!. Therefore we have:
o0
P=(0®x) [ G(t;x,y)dt .
0
We put

P(t;x,y) = (6 @ x)G(;x, y) -
We then have

J fdS Trg(P(x, y) A P(x, y) A P(x,y))

M?

J TTTdfldfzdlsTr@(P(h;x,y)/\P(tz;x,y)/\P(tg;x,y)). (8.3)
000

We now try to perturb the Laplace operator using the Morse function f;. Let us
consider the norm
<u7 v>ﬁ,s = f (u(x), v(x))efi(x)/eds )
M

&

Let 6% be the dual operator to d with respect to this norm. We put 49 = 0% od
+do 5Lf Then
1
= A+ TLoguar -
Here Ly is the Lie derivative by the vector field X. We let G, 1(¢;x, y) be the
Green function of 4%. Using it we define
Py r(t;x,y) = (0, 5, @ ¥)Gg 1 (%, y) ,
and
o0 00 0O
[dxdy [ [ [ dudtrdtsTro(Pe, 1 (t1;%,9) A Po (125 %, ¥) A Py (135X, ) . (8.4)
M2 000

We expect that after suitable normalization this integral also gives the leading term
of the 2 loop amplitude of Chern—Simons Perturbation theory.

Let us then see what happens when ¢ goes to zero. We remark the leading term
of A% =4+ %Lg grads; s the Lie derivative. Hence after suitable normalization we
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find that e~ "4+ tLlegais) g g~ thesmis (@g’/‘e)*. Therefore G, 1 (¢;x, y) will be a delta
measure supported on M(f;). Thus the limit of (8.4) is an integral of the current
supported at the set M(f1) N M(f2) N M(f3). This shows that this limit is equal to
our leading term Z,(M; f1, f2, f3;G). However to show that our invariant coincides
with Chern—Simons Perturbation theory, we need to discuss how the correction term
occurs. The author does not know how to do it.

Let us turn to the other topic, that is the relation of our Morse theory invariant
to open string theory. (The discussion here is rigorous unless otherwise specified.)
For this purpose we consider a domain D with genus 0 and 3 boundaries. Let
A;, i =1,2,3 be Lagrangian submanifolds in 7*M. We choose an almost complex
structure J on T*M tamed by the standard symplectic structure. We put

J:TD —TD, J?>= -1,
o) ¢:D—=TM, Jo=q¢J
@(0:D) C 4;

~

M(Ay, Ay, A3) =

Here (J,¢) ~ (P*J,0o0 ¥). And 04 = 014U 0,4 U 034 is the decomposition to
connected components. Now we choose functions f1, f2, f3 € C*°(M) and put A; =
Ay, ={(x,dfi(x)|x € M)}.

Lemma 8.5. For generic f1, f2, f3 € C°(M) the space M (Ay,, Ap,, Ay,) is a smooth
manifold of dimension 3 —dim M. If M is 3-dimensional this space is compact
also.

We omit the proof. The main point is that the moduli space of complex structures
on D is real 3 dimensional.
Now imitating the proof of [FO] we can prove the following:

Theorem 8.6. If ¢ is sufficiently small and f1, f2, f3 € C°(M) is generic then
M(Agq,, Agpy, Aggy) is homeomorphic to Me(f1 — fa, [ — f3, f3 — f1).

We do not prove this theorem here since its proof is completely parallel to [FO].

We next mention some trouble to use this idea to show that the open string on
T*M is equivalent to the Morse homotopy of M. We remark that in Theorem 8.6 we
find Mo(f1 — f2, /2 — f3, f3 — f1). This space is a bit special compared to the gen-
eral Ao(g1,92,93). Namely g; + g» + g3 = 0 is satisfied automatically. This causes
some trouble for our construction, since we took #g(&191,8292,6393) for & = +1.
The condition g; + g + g3 = 0 is not preserved by this symmetry. This symmetry
was necessary for the cancellation argument.

Namely to cancel the effect from, for example, the degeneration of the second
edge, we need to sum up two terms, one from g;,g; and the other from —gi,gs.
(Here g, can be arbitrary.) So to preserve the relation g; + g> + g3 = 0 we need to

put g» — g2 + 2g;. This corresponds to the matrix (; (1’) The other two symmetries

we need are (70 9) and (} ). These matrices generate an infinite subgroup of

GL(2;Z). (The symmetry we used in this paper is a finite group (Z/2Z)*.) Then
there is trouble to take the average.

There is another trouble. From the point of the open string it is natural to
consider the ribbon graph rather than the graph. In the case of the @-graph this
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corresponds to consider another Riemann surface as well. Namely we need to take
D’ = T? — Disk. We can try to imitate the construction .#(A;, Ay, A3) and define

J:TD' = TD', J* = —1,
;@) |@:D' —T*M, Jo=q¢J
@(@D") C A

~

J%]y](/l) =

(Here 1,1 in the suffix means that our Riemann surface D’ is of genus 1 and 1
boundary component. In that sense one we used before is .y 3(Ay, Ag, Af).)

However in fact for this moduli space transversality never holds. In fact we can
easily see that elements of .4 (A) are constant maps to the origin. Hence the actual
dimension is dim M, while the formal dimension is (3 — dim M )(2g + k — 2). (Here
g is the genus and & is the number of boundary component. In the case of .4 1(A)
the formal dimension is hence 3 — dim M.)

This fact is parallel to a similar problem in closed string theory. Namely we
consider the moduli space of holomorphic map ¢ from the genus one (or higher)
(closed) Riemann surface X to a symplectic manifold X such that ¢*(c!(X)) =0,
then we have a moduli space homeomorphic to X, that is the set of constant maps.
The virtual dimension of this moduli space is 2¢g(3 — dim M) and is different from
the actual dimension. This problem was studied by Ruan-Tian [RuT] using the
inhomogeneous perturbation. Maybe there is an approach to our open string setting
also using inhomogeneous perturbation.

This problem will cause a trouble to generalize Theorem 8.6 also. Namely the
homeomorphism in this case should be

My (Aep) = Mo(f — [, f = fof = 1)

We can not perturb Mo(f — f,f — f,f — f) = #5(0,0,0) ! to achieve transver-
sality in a similar way discussed in this paper.

The author yet does not know how to overcome these problems, define the open
string amplitude and prove that it coincides to our invariant in the case of the
cotangent bundle.

Finally we discuss another way to handle the anomaly of the Morse theory
version of Chern—Simons perturbation theory. Our argument here is not rigorous, so
we put “” in the Lemmas below and mention 8.9 as a conjecture. We recall that the
reason we need to take two flat bundles and take the difference is the degeneration
of the moduli space parametrized by

R(f)={x e M|grad fi(x) j=1,2,3 are parallel to each other}

RL) = {((f,9).x)|(f,9) € Lx € R(f)}.

(See Sect.2.) Here L is a one dimensional subspace of (C*®(M))* x Met. We are
going to discuss another way to cancel this degeneration. For two functions f, 1/,
we consider the space

S(f,f') = {x € M|grad f(x) is parallel to grad f’(x)},

and put _ _
S =SUHUS1, ).
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(We recall that our notation that the two vector is parallel was a bit unusual.) We
have:

“Lemma 8.7”. For generic f, f' the space S(f, ) is a compact one dimensional
oriented manifold.

Proof. The proof that S(f, /') is one dimensional at a regular point is a counting
argument we discussed many times. It is also easy to see that S(f, ') is smooth
outside the critical point of f or f’. Let us consider a critical point p of f. Let
0B,(p) be the boundary of a small metric ball of radius ¢ centered at p. Then
the restriction of grad f to 0B.(p) is regarded as a map from "' to R"\{0}.
The degree of this map is &1 according to the parity of the Morse index. By
choosing ¢ small grad f is almost constant here. Therefore S(f, f') N dB,(p) and
S(—f, )N dB,(p) both consists of one point. The lemma follows immediately.

Now we consider S(f1, f2) and S(f2, f3). For generic f; they intersect only at
Cr(f2). There is exactly 2#Cr(2) choices to perturb S(fi, f2) so that it does not
intersect to S( /2, f3). Let S(f1, f2;¢) be those perturbations. We put

Lk(f1, 25 fou f3) = 27D ST LK(S(fr, f23€).8(fo 13)) -

Here Lk denotes the linking number. To make it symmetric we take

Lk(f1, f2, 3) = %(Lk(fl,fz;fz,ﬁ) + Lk(f2, f3; 13, 1) + Lk(f3, f15 f1, f2)) -

They we have the following:

“Lemma 8.8”. For a generic path L joining (f,g) and (f',g') we have
S H#R(EL) = 4Lk(f') = LK(f)) -

“Proof ”. The linking number Lk(f1, f2; f2, f3) changes if and only if S(f1,f2)
intersects with S(f2, f3) outside Cr(f2). This intersection is exactly the point of
R( f ). The lemma follows.

These “lemmas” may suggest

Conjecture 8.9. Under the assumption of Main Theorem II, the number Z,( f1, f>,
S35 fa56) — FLK(f1, f2, f3) s an invariant of (M;).

References

[At] Atiyah, M : The geometry and physics of Knots Cambridge: Cambridge University Press,
1990

[AS] Axelrod, S., Singer, I: Chern Simons perturbation theory I In: Proceeding of the XXth
DGM Conf. S. Catto and A. Rocha eds, Singapore: World Scientific, 1992, II. J. Diff.
Geom. 39, 173-213 (1994)

[BC] Betz, M, Cohen, R.: Graph moduli spaces and Cohomology Operations. Turkish J Math
18, 23-41 (1995)

[Ba] Bar-Natan, D.: Perturbative aspects of the Chern—Simons topological field theory PhD
thesis, Princeton University, 1991



90
[Bi]
[Ch]
[F11]
[F12]
[FU]

[Ful]

[Fu2]

[Fu3]

[Fud]
[FO]

[FM]
[GMM]
[Kh]

[Ko]

[Mii]
[Oh]
[RS]
[ReT]
[RuT]
[Sc]
[Sm]

[W1]
fwz]

[w3]

K Fukaya

Bismut, J : The Witten complex and the degenerate Morse inequalities J Diff. Geom 23,
207-240 (1986)

Cheeger, J : Analytic torsion and heat equations Ann Math 109, 259-322 (1979)
Floer, A.: Morse theory for Lagrangian intersection. J Diff. Geom 28, 513-547 (1988)
Floer, A : Witten’s complex and infinite dimensional Morse theory. J Diff Geom 30,
207-221 (1989)

Freed, D and Uhlenbeck, K : Instanton and four manifolds. MSRI Publication I, Berlin:
Springer Verlag, 1974

Fukaya, K : Floer homology for 3-manifolds with boundary In: “Topology Geometry and
Field theory”. K Fukaya, M. Furuta, T Kohno and K Kotchik, eds., Singapore: World
Scientific, 1994, pp 1-23

Fukaya, K : Morse homotopy, 4°° Category and Floer homologies In: The Proceedings
of the 1993 GARC Workshop on Geometry and Topology, H.J Kim ed, Seoul National
University, pp. 1-102

Fukaya, K : Morse homotopy and its quatization To appear in the Proceeding of Georgia
International Conference of Topology

Fukaya, K.: Morse theory and topological field theory To appear in Suukgaku exposition
Fukaya, K, Oh, Y: O loop open string on contangent bundle and Morse homotopy
Preprint

Fulton, W, Macpherson, R : A compactification of configuration space Ann. Math 139,
183-225 (1994)

Guadagnini, E., Martinelli, M., Mintchev, M : Perturvative aspects of Chern Simons field
theory Phys Lett., B 227, 111 (1989)

Kohno, T : Invariants of 3-manifolds using representations of mapping class group I
Topology 31-2, 203-230 (1992)

Kontsevich, M.: Feynman diagram and low dimensional topology. In: “Proceeding of First
European Congress of Mathematics” Progress in Mathematics, 120 Birkhduser, Boston,
97-122 (1994)

Miiller, W : Analytic torsion and R-torsion of Riemannian manifold Adv Math 28,
233-305 (1978)

Oh, Y : Floer cohomology of Lagrangian intersections and Pseudo-holomorphic disks
Commun Pure Appl. Math. 46, 949-994 (1993)

Ray, D, Singer, I: R-torsion and the Laplacian on Riemannian manifolds Adv Math 7,
145-210 (1971)

Reshetikhin, N, Turaev, V : Invariants of 3-manifolds via link polynomial and quantum
groups. Invent. Math. 103, 547-597 (1991)

Ruan, Y, Tian, G.: Mathematical theory of quantum cohomology. Preprint

Schwartz, M : Morse homology. Progress in Mathematics 111, Basel: Birkhauser, 1993
Smale, S: An infinite dimensional version of Sard’s theorem Ann. Math. 87, 213-221
(1973)

Witten, E : Supersymmetry and Morse theory. J Diff. Geom. 17, 661-692 (1982)
Witten, E : Quantum field theory and Jones polynomial Commun. Math Phys 121, 351
(1989)

Witten, E.: Chern-Simons Gauge theory as a string theory. In: “The Floer Memorial
Volume”, Hofer, Taubes, Winstein, Zehnder, eds., Boston: Birkhduser, 1995, pp 637—
678

Communicated by R.H. Dijkgraaf





