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Abstract: We define an invariant of a three manifold equipped with a flat bundle
with vanishing homology. The construction is based on Morse theory using several
Morse functions simultaneously and is regarded as a higher loop analogue of various
product operations in algebraic topology. There is a heuristic argument that this
invariant is related to perturbative Chern-Simons Gauge theory by Axelrod-Singer,
etc. There is also a theorem which gives a relation of the construction to open string
theory on the cotangent bundle.
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0. Introduction

Let M be a In dimensional manifold and N be its n dimensional submanifold. We
consider a current TV such that TV(ω) = JN ω. We try to justify the integral

fTNΛTN. (0.1)
M

(We remark that TN Λ TN itself is not well defined.) One way to do so is to take a
perturbation Nr of N so that Nr and N are transversal to each other and consider

1 Partially supported by Grants-in-Aid for Scientific Research on Priority Areas 231 "Infinite Analysis"
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IM TN Λ TV. It is easy to see that TN A TN> is a delta current supported at the
intersection NΠNf. Therefore JMT^AT]^f is the intersection number N N' =
N N. What is important here is that the integral JM T^ Λ 7V is independent of
the perturbation N'.

There is an alternative way to get the same answer. Namely we choose a har-
monic n form hN which represents the De-Rham cohomology class of TV. Then again
JM ^N Λ hN is well defined and gives the self intersection number N N.

We can continue in a similar way to define the secondary invariant as follows.
Let M = A C M2 be the diagonal. Assume that TΔ is an exact current. (In fact
this never happens. But we can find this kind of situation by working with a local
coefficient.) We choose an n — 1 form ω on M2 such that dω = 7^. Assume that
M is three dimensional. Then the integral

/ ω A ω A ω (0.2)
M2

is a number. By modifying this integral JM2 ω Λ ω Λ ω, an invariant of a 3 mani-
fold is discovered by Axelrod-Singer [AS], Bar-Natan [Ba], Guadagnini-Martinelli-
Mintchev [GMM], Kontsevich [Ko], etc. We discuss their result a bit more in Sect. 8.
Their construction is based on harmonic theory and hence is an analogy of the sec-
ond method we mentioned above to justify (0.1).

On the other hand, we can also imitate the first approach. Namely we can use an
appropriate intersection number to justify (0.2). To perform this kind of construction
is the purpose of this paper.

To do so, we need to find a cycle X such that dX = A. Such an X can be
found as follows. Choose a Morse function / . Let M(f) be the set of all pairs
(x,y) e M2 such that x,y lie on the same gradient line of / . One can easily find
that a connected component of the boundary of M(f) is a diagonal A. Hence the
intersection number M(f\) M(f2) M{fo) should be related to (0.2).

Let us here review various results related to the contents of this paper. First it
was discovered by [As, Ba, GMM, Ko] that an integral like JM2 co A ω A ω gives the
second term of the expansion of Witten's invariant [W2, Kh, ReT] that is a Chern-
Simons gauge theory. The first term of this expansion is basically the Analytic
torsion of Ray-Singer and was discussed by Witten [W2]. Axelrod-Singer, etc.
defined a higher term also.

In fact it is not yet proved that the construction of Axelrod-Singer, etc. really
gives the expansion. What they did is to give an argument of physical level of
rigor to show that this is an expansion of the Witten invariant and also they proved
rigorously that the invariant is independent of the various choices involved.

Witten in [W3] found that Chern-Simons Gauge theory on a 3-manifold M is
equivalent to the open string field theory of its cotangent bundle T*M. However
to make the latter rigorous in a mathematical sense is not easy and remains yet an
open question. (See Sect. 8 for more discussion about it.)

Floer studied the pseudo-holomorphic disk with Lagrangian boundary condition
to define his celebrated Floer homology for Lagrangian intersection [Fll]. In the
case of the cotangent bundle he proved that Floer homology between 0 section and
its Hamiltonian perturbation is equal to the usual homology of the manifold. The
problem to define Floer homology for Lagrangian intersection in a more general
situation is studied by Oh [Oh]. The author introduced an ^-structure on Floer
homology [Ful, Fu2]. In the case of the cotangent bundle T*M, it is proved by
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Oh and the author that the ^4°°-structure of Floer homology is equivalent to one for
M [FO]. The latter is described by using Morse theory. The main idea to do so is
to use several Morse functions at once. This idea is due to the author [Fu2, Fu3]
and to M. Betz and R. Cohen [BC] independently. Roughly speaking we consider
the moduli space of maps from a graph to M such that each edge is a gradient
line of some Morse function. The A°° -structure then corresponds to the case when
the graph is a tree. The result of Oh and the author says that the case of a tree is
equivalent to the 0-loop amplitude of open string field theory on T*M.

Betz-Cohen studied also the graph which is not a tree. They announced that
characteristic classes of a manifold are described in that way. The author in [Fu3]
also studied the case when the graph is not a tree. However the discussion there
was not yet satisfactory.

The main point of this paper is that the Morse theory for a graph which is not
a tree gives Chern-Simons perturbation theory. The author does not yet prove that
they really coincide. What is proved in this paper is that (for the 2 loop amplitude)
there is a well defined invariant based on Morse theory.

We can generalize our result with Oh to this case and show that our invariant
is related to open string theory (see Sect. 8). Thus in a sense our construction is a
rigorous mathematical definition of a 2 loop open string amplitude on the cotangent
bundle of a 3 manifold.

It is remarkable that our construction is similar to the construction of Chern-
Simons Perturbation theory in many points. Also in Sect. 8 we discuss some heuristic
argument which suggests that our invariant coincides to Chern-Simons Perturbation
theory. This idea is closely related to Witten's work on Morse theory [Wl].

Note that the invariant we introduced here is a secondary invariant to the
(co)homology group (with cup product). Also here the homology group is stud-
ied from the point of view of singular theory (since Morse function gives a cell
decomposition.) With this respect Reidemeister torsion is another natural secondary
invariant of the (co)homology theory with local coefficient. In Chern-Simons per-
turbation theory analytic torsion of Ray-Singer [RS] appeared as the first invariant.
The coincidence of Reidemeister and Analytic torsion was established by Cheeger
[Ch] and Mϋller [Mu]. Our conjecture that the invariant in this paper coincides with
one by Axelrod-Singer, etc. may be regarded as the higher genus analogue of this
theorem of Cheeger-Mϋller.

The organization of this paper is as follows:

In Sect. 1 we define our invariant. Roughly speaking it is obtained by counting
the order of the set of solutions of an appropriate ordinary differential equation, with
appropriate weight.

The proof that this number is independent of various choices is based on the
study of compactification of the moduli space of the solution of an ordinary differ-
ential equation. There are basically two points to clarify. To define an intersection
number M(f\) M ( / 2 ) M ( / 3 ) , there are two problems. One is that the boundary
of M(/i) is not in fact equal to the diagonal A. There is another boundary that is
the set of pairs (x>y), where x is in an unstable manifold of grad / with respect
to a critical point p of f and y is in the stable manifold of the same critical point
p. We need to add various correction terms to settle this problem.

In Sect. 2, we discuss the point mainly related to this problem.
Based on it the well-definedness of our invariant is proved in Sects. 3-5.
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In Sect. 6, we discuss another problem with the transversality of M{f\) M ( / 2 )
M{f^). Namely these submanifolds are not transversal to each other at the diago-
nal, even if we choose / generic. We need to use an appropriate blow up of the
diagonal of M2. This construction is similar to the argument of compactification of
configuration space due to Fulton-Macpherson [FM] and Kontsevich [Ko], which
was used also by [AS] and [Ko].

In Sect. 7 we discuss orientation of our moduli space.
In Sect. 8 we describe some ideas related to the problem that our invariant

is equal to both Chern-Simons perturbation theory and open string theory of the
cotangent bundle.

The result of this paper was announced in [Fu4] without proof.
During the preparation of this paper, the author visited Maryland University,

Hong Kong University of Science and Technology, Newton Institute, International
Center of Theoretical Physics and Stanford University. The author would like to
thank these universities and institutes for their hospitalities.

The author would also like to thank Professor Hiraku Nakajima for his excellent
explanation of Chern-Simons perturbation theory to the author. He also would like
to thank T. Gocho who pointed out an error on sign in the preliminary version.

1. Statement of the Result

Let M be a compact oriented 3 manifold and ξ be a flat vector bundle on it. In this
section we define a number Z 2 ( M ; / i , / 2 , / 3 ; ξ) by fixing a metric on M and three
generic functions / i , / 2 , / 3 on M. The proof that it is invariant of these choices will
be given in Sects. 2-7.

The number Z 2 ( M ; / i , / 2 , / 3 ; ξ) is a sum of Z<9(M;/i,/2,/3; ξ) and correction
terms. We first define the leading term.

For a function / on M, let Φί: M —> M be the one parameter group of diffeo-

morphisms associated to grad / . Namely it satisfies

P°f(x) = x

dt
t=t0

L e t / 1 ? / 2 , / 3 G M . We put

ΛTβ(/i,/2,/3) = {(*,J>;ίi,f2,f3) e M2 x R^lΦ^x) = M = 1,2,3} . (1.1)

Lemma 1.2. For generic /i,/2,/3, ίλe ^αce Jie^fx 5/25/3) w fl^ oriented mani-
fold of dimension 3 — dimM.

Lemma 1.3. 7/" dimM = 3, then for generic /h/2,/3, ίλe .ψαce ^Θ(/I5/2^/3) ^

These lemmas are proved in Sect. 2.
For t\,t2,h > 0, we define a metric on 0 as follows. Let ey, 7 = 1,2,3 be the

edges of length t\,t2,t3 respectively. We take two vertices vi,v2 and attach each of
the edges of ej to vi,v2.



Morse Homotopy and Chern-Simons Perturbation Theory 41

Fig. 1.

For an element (x,y9t\,t2,t3) of Jt©{f\,fi,h) we associate a map / : Θ —> M
as follows. We put / ( v i ) = x , I(v2) = y, and on the edge ey we define I(t) =
Θlj (x). (Here we identify βj — [O9tj].) By the definition of J^eifi.fi.h) this map
is continuous at V2. Hereafter we regard an element of Jiθ(f\ 5/25/3) as such a
map.

We next associate a weight χ(7, £) to each element / : Θ —• M and a flat vector
bundle £ as follows. We define element yz £ πi(Θ), / = 1,2,3,4 by

71 = eϊλ oex ,

72 = e^Γ1 0^2,

74 ~ ^2 ° ^3 ° 1̂ 0^2°^^ O Θ\ .

Roughly speaking, 71,72,73 are boundary loops of one of the ribbon structures
of the 0-graph, while 74 is the boundary loop of another ribbon structure of the
(9-graph. Now we put

Xtf O = - Π Tr(Hol^(/*(7/)) + Tr(Hol^(/*(74)) (1.4)

Here Hol^(/) is the holonomy homomoφhism of the flat bundle ξ along the loop
tf. Now we define

Definition 1.5.

Zθ(fuf29f3\ξ)= Σ

Before going to the next step, let us rewrite our weight by using Lie algebra
bundle ς = Aάξ. More generally we consider a flat bundle ς over M, whose fibre
has a structure of semi-simple Lie algebra compatible with the flat structure. By
using a canonical invariant inner product, we have an inner product on ς which
is also compatible with the flat structure. Let / £ J(θ(f\> fi>h)> We choose an
orthonormal basis ei,...,edim^ of ςx for x — I(v\). We put

dimg

Z(ΛC)= Σ ([^ejl^HίPe^lP^e^lP^ej)). (1.6)
Uj,k=\

Here Pβι : ςx —* ςy is the parallel transport along the path I{βi).
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Lemma 1.7. If ξ is a C2 bundle with flat su(2) structure and if ς = Ad£, ί/zerc we
have

2χ(I,ξ) = χ(I,ς).

Proof We embed su(2) —> gl(2;C) and choose eo so that eo,...,β3 is an orthonor-
mal basis of gl(2;C) and ei,e2,β3 is an orthonormal basis of su(2). Then since eo
is in the center, we have

X(lζ)= Σ ([e/,e7 ],e,)([^1(e, ) ,^ 3 (e0],^ 2 (e 7 )>. (1.8)
i,j,k=O

We then find that (1.8) is equal to

- 2 Σ {eieh*k){PeMi)Pe2(ej\Pe^k))
i,j,k=O

+2 Σ (etej^iPe^Pe^lPe^k)). (1.9)
/,M=o

(Here ezey etc. denotes the product of matrix.)
It is straightforward to see that (1.9) is independent of the choice of orthonor-

mal basis. So we change our basis and take f/φf7', ij = 1,2. Here fi,f2 is an
orthonormal basis of ξx and f^f2 is its dual basis. Using this basis the first term
of (1.9) is

i,j,k=\

= 2 Σ (pβl(i;o,
ij,k=l

= 2ΠTr(Holί(yI ))
/ = 1

Similarly we find that the second term of (1.9) is equal to 2Tr(Hol^(y4)). The proof
of Lemma 1.7 is now complete.

We define

zβ(/i,/2,/3;ς)= Σ ±x(Λς)

for a flat Lie algebra bundle ς. Here ± is determined by the orientation of
Λίθίfufiih), which is discussed in Sect. 7.

We put

ZΘ(fuf2,f3;ς)=l Σ ZΘ(ε1/1,ε2/2,ε3/3;ς). (1.10)
δ e,=±l

We thus defined the leading term of our invariant. To define correction terms,
we first introduce the Witten complex [Wl] with local coefficient. Let / : M —• R
be a Morse function. We put

Ck(M;f;ς)= 0 ςp.
pecrif)
η{p)=k
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Here Cr(/) is the set of critical points of / and η{p) is its Morse index.
We define the boundary operator d : Q ( M ; / ; ς ) —> Q _ i ( M ; / ; ς ) as follows. Let
η(p) — η(q) + 1. We are going to define the component dpq : ςp —> ςq of d. Fol-
lowing the definition of the usual Witten complex, we use the moduli space

•,*) = lim ({{) = p

lim

In case the Morse function / is generic and η(p) = η(q) + 1, this space is an ori-
ented manifold of dimension one. The group R acts on it by translation of parameter.
Let Jί{p,q) be the quotient space of this action. We then define dpq : ςp —> ςq by

Σ

Here Pf is the parallel transportation _along the arc
the orientation of the moduli space Jί{p,q).

, and the sign is determined by

Lemma 1.11. dd = 0, H*(C*(M;f;ς),d) = #*(M;ς).

Here the right-hand side is the homology with local coefficient. The proof of
Lemma 1.11 is a straightforward analogue of the result in the case when ς is trivial.
The proof in that case is given by various authors. See for example [Sc].

Now we go back to our problem to define correction terms. We make use
of the assumption H{M\ς) — 0. By Lemma 1.11 it follows that the chain com-
plex (C*(M;/;ς), d) is acyclic. Hence so is End(C*(M;/;ς), d). The element
id G End(C*(M; ς), d) is a cycle. So there exists an element 0/>ς G End(C*(M; / ; ς))
of degree one such that dgf,ς = id. (Namely d o QJ?ς + Qfjζ o d = id.) We call such
£//?ς a combinatorial propagator. We remark that combinatorial propagator is not
unique. But we prove later that the invariant we define using it is independent of
the choice of combinatorial propagator.

Now let a e End/(C*(M;/; ;ς)). We are going to define ZΘ(cu0,0;fuf2,
fy,ς) etc. We put

c\= Σ c(p,q)[p]®[q]*.
η(p)=η(q)+\

Here c(p,q) G Hom(ς^, ς^). For η(p) = η(q) + 1, we define a moduli space

Λtθ(i,o,o)(p,q',fuf2,f3) as follows:

As in the previous case, an element of the moduli space
can be regarded as a map from a graph to M. Namely let Θ( 1,0,0) be the graph
obtained by cutting the first edge e\ of the <9-graρh. Then 0(1,0,0) has 4 edges,
e\,e2,e2,ei. For an element (x9y,t29t3)9 we let e\ be mapped to the gradient line of
/i joining x to p,e2 is mapped to the gradient line of f\ joining q to y. ^2,̂ 3 will
be mapped to the gradient line of /2,/3 joining x to y respectively.
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Let / : 0(1,0,0) —> M be a map identified to an element of
h*h\ W e define a weight χ(/,ς) G Homίς^ς^) as follows. Let u e ςp, ve ςq.
Let ez be an orthonormal basis of ςx. We then put:

),v> =

Now we define

ZΘ(c,0,0;/1,/2,/3;ς) = Σ

(1.12)

±Tr(c(p, 9 )o χ (/,ς)). (1.13)

Here the sign is defined by making use of the orientation of the moduli space, (see
Sect. 7.) Using it we define

, gf29 0 ; fuf2, fcς)- ZΘ{0,0, gf3 fu f2, fc ς)

g/2

We then put

-I

Σ) Z
4: Σ
4 e,=±l

, fif/2, gf/3 /i, fiy h\ ς ) .

(1.14)

(1.15)

(See Remark 1.17 the reason why we take 1/4 in place of 1/8.) The numbers defined
in (1.14), (1.15) may depend on the choice of combinatorial propagators.

To obtain a number independent of the choice of functions ft and the
Riemannian metric g of M, we need to do a similar construction for the graph
A in Fig. 3. We first consider

JIJA) = { (x,y,tι,t2,t4) € M2 x R3,
Φ'}ι(x) = x

φ%(y) = y

= y

Fig. 2.
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Fig. 3.

However, in fact, it turns out that this moduli space is empty, for generic /}. The
reason is that there is no periodic orbit of gradient flow except the trivial loop at
critical point.

Thus the leading term corresponding to the graph A is zero. But the correction
term may be nonzero, which we are now going to define. Let pu qt be critical
points of fi for ί = 1,2. Assume that η(pi) = η(qd + 1. We put

x R+ lim Φf3(y) = P3

lim Φ^iy) = q3

We let Λ(1,0,1) be the graph obtained by cutting A at two points (Fig. 4). Λ(l,0,1)
consists of 4 edges e\,e\,e\,e\9e^. We define χ(I,ς) : ςPι (8) ς^3 —> ς̂ j (8) ς 3̂ by

Here ez is an orthonormal basis of ςx. We then define, for ct G Endi(C*(M,/, ς))

uqλ)® c3(p3,q3)) o χ(I9ς)) .

We define ZΛ(C\,C4,C3; f\9 f^ f3) in a similar way. Using them we define

δ e/=±l

8 ε,=±l
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el

Fig. 4.

We remark here that C*(M; - / ; ς) = C*(M; / ; ς)*. Hence we have End(C*(M;
—f'>ζ)) = End(C*(M;/;ς)*). We identify g/ and #_/ by this isomorphism.

We finally define

= zΘ(fuf2,f3;ς)-zΛ(fuf2,f4;ς)

-ZΛ(fuf4,f3;ς)- ZΛ{f4,f2,fi;ς). (1.16)

Remark 1.17. We remark that the order of the group of isomorphisms of the Θ-
graph is 12 and one of graph A (graph in Fig. 3) is 8. Hence

—(terms related to Θ) — -(terms related to A)

1
= — (2((terms related to Θ) - 3(terms related to A))

is the natural way to sum up contributions from two different graphs. This is the
reason why we take 1/4 in place of 1/8 in (1.15). Since we take 3 different choices
{fίJj} ^ {/i,/2,/3}, we did not put the factor 3 in (1.16).

Now our main result of this paper is as follows.

Main Theorem I. Let ς, ς' be the flat Lie algebra bundles with the same Lie
algebra g as their fibres. Assume H*(M; ς) = H*(M; ςf) = 0. Then the difference,
Z2(fuf2,f3,f4',Q)- Z2(/i,/2,/3,/4;ς') is independent of the choice of the
Riemannian metric and functions f \ , . . . , f^ and combinatorial propagators.

We next assume that M is a homology sphere. Then the Witten complex for the
trivial flat bundle is almost acyclic. More precisely we consider the augmentation
homomorphism C*(M,/;g) —> g for * = 0,3. Here we regard g as a trivial flat
bundle. Let C£e d(M,/;g) be its kernel. This complex is acyclic. Therefore we can
perform the same construction to obtain Z2(/i,/2,/3,/4;g). In fact in this case the
weight is independent of the element of moduli space and depends only on g. This
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is because all holonomy is trivial. Let nQ be this number. (ΛSU(2) = 2 3 — 2 = 6 for

example.) Then z2(fuf2,f3,falQ) = n^iihJi*h>U\ ι) W e n ° w

Main Theorem II. Lei ς be the flat Lie algebra bundle with the same Lie algebra
g as their fibres. Assume H*(M;ς) = 0. Then the difference, Z2(f\,f2,f3,fa;ς) —
w gZ 2(/i,/ 2,/3,/4; 1) is independent of the choice of the Riemannίan metric and
functions fa,..., fa and combinatorial propagator.

We remark that our invariant is well defined also for Lie algebra bundle of
positive characteristic (if cohomology vanishes) provided the characteristic is not 2
or 3.

Since the correction terms we put look rather complicated at first sight, the
author would like to add here some heuristic discussion to show where they come
from.

Let us go back to the idea explained in introduction. Namely we consider the set

{(x,y) G M2\3t > 0 Φ'f{x) = y} .

The boundary of this set is, roughly speaking, the union of the diagonal and

((*,>,) G M2\ lim ΦUx) = p= lim ΦUy)} .

(see Lemma 2.4.) We put

; p,p) = {(*,y)eM2

As explained in introduction, if we take J((f) such that dJί(f) is the diagonal,
then

#(J(A)nJ(f2)nJ(f3))
is the invariant we want to define. To find such a «/#(/), we need to find Jί\f) such
that dJi'(f) = U ^ ( / > A/O Our correction term comes from these components.

To explain the reason why the contribution of Ji'(f) is calculated by the terms
we add, let us consider the following situation. We assume that Cr(/) = {pi,qi : i —
1,...,7V}, such that η(pi) = η(qi) + 1, #Jί(pi,qi) = 1, and that Jt{x,y) is empty
for any other pair x, y with η(x) = η(y) + 1. In fact this assumption is never satisfied
because the homology group (with trivial coefficient) of M is always nontrivial. We
put this assumption only to simplify the explanation.

We then have that our combinatorial propagator is Σ ι [Jp/ ] ® [#/]*• We now put

= U {(x>y) e M2\ l̂i

We then find that dJl'(f) = U ^ ( / A, Pi)V\J ^(fl QuQi) as required. Also
we see that

W , ) n ^ ( / 2 ) n J(J3)) = Zβίflf/,, 0 , 0 ; / 1 , / 2 , / 3 ; ίπwα/).

This explains the origin of our correction terms related to Θ.
To understand why we need to consider the other graph Λ, we need to consider

the transversality at diagonal. One important remark is that for any choice of f two
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submanifolds J({f\) and J((fi) are never transversal to each other at diagonal. In
fact

άim(Jί(fι)n Ji(fi)) ^ dim of diagonal = 3 ,

while
dim Jί{fx) + dim Ji(f2) - dimM2 = 0 .

Therefore we need to study carefully what happens in the neighborhood of
diagonal. We remark that this is related to the framing of our manifold M, since
the framing of M gives a way to perturb the diagonal. This is probably related to
the fact that Witten's invariant [W2] depends on the choice of framing. However
in this paper we do not use framing directly. Maybe framing is introduced in some
sense implicitly when we choose our Morse functions.

We remark that in our situation the transversality at diagonal is related to the
compactification of the moduli space ^C/1,/2,/3) we introduced. As we discuss in
next section, the end of this moduli space occurs in two ways. One is the case when
tt —> oo. This end is related to the boundary component Jl{f\ p, p) we discussed
above. The other case is when */ —> 0. This is related to the transversality we are
discussing now.

In Chern-Simons Perturbation theory, two constructions are used to handle the
problem related to the transversality of diagonal. One is to consider another graph
A and the other is to cancel anomaly by introducing another term. These two phe-
nomena both have an analogy in our approach.

First we consider also another graph A. These terms are used to cancel the effect
of ends such that one of U —* 0. (see the end of Sect. 3.)

The other is related to the case when all of tt —• 0. This causes some anomaly
term also. We kill them by taking the difference of invariant related to two different
flat bundles. In place of taking the difference of an invariant determined by different
flat bundles there may be an alternative way in the case of homology spheres. We
will discuss it informally in Sect. 8.

2. Transversality and Compactness

We begin by proving Lemma 1.2 The idea of the proof is similar to one used
in various topological field theories (see for example [FU]) and is described as
follows. We first consider the union of moduli spaces U/zGCoo(M)ey^(/i'/2'/3) We
then prove that this space is an infinite dimensional manifold. It then follows that
^C/1,/2,/3) is a manifold for generic f\jijz.

We are going to write / in place of (f\,f2^/3) for simplicity. We define Φ?:

M x R^ -> M by

Let A = M c M3 be the diagonal. By definition we have JΪΘ(f) = Φ~X(Δ). By

moving / and also moving the metric we have

Φ : M x R̂ _ x Met x (C°°(M))3 -> M 3 .

Here Met is the set of all metrics of M.
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Lemma 2.1. The map Φ is transversal to A.

Proof. Let (p;t\,t2,t3',f,g) be an element of Φ~ι(A). It suffices to show that the
differential of Φ is surjective at this point. We choose disjoint open subsets Uu i =
1,2,3 of M such that Ut Π U e [ ( U ] &tfl(p)*0 and Ut Π \Jte[Oίtj] φ{\p) = 0 for
1+7. By restricting Φ to {(p;tut2\t3)} x CJ°(£/i) x CJ°(^2) x φ ί ^ ) x {#}, we
obtain ev : C£°(Γ/i) x Cg°(U2) x C£°(ί/3) -> M 3 . (Here Co°° is the set of smooth
function of compact support.) Namely

Let F; G Γφί^ vM, / = 1,2,3 be arbitrary tangent vectors. By our choice of Ui we

can find hi such that

ds
s=0

It follows that the differential of Φ at (p;h,t2,t3,fι,f2,fi,g) is surjective. The
lemma follows.

We remark that we use the fact tι > 0 in the proof of the lemma. If we generalize
the map Φ so that it is defined at the point h = t2 = h = 0, then the lemma may
not hold. (We discuss this point a bit later in this section, when we study the
compactness, and we discuss it in more detail in Sect. 6.)

By Lemma 2.1, the set Φ~ι(A) is an infinite dimensional manifold. We con-
sider the projection π : Φ~ι(A) —> Met x (C°°(M))3. Then by a simple counting
argument, we obtain the following:

Lemma 2.2. π : Φ~λ{A) -> Met x (C°°(M))3 is a Fredholm map of index 3 -
dimM.

We remark that we do not assume that dimM = 3 up to this point. We now

assume it. Then by Lemma 2.2 and Sard-Smale theorem [Sm], the space J^θ(f) =

Φ~-}{A) is 0 dimensional for generic choice of/ and metric. We thus proved the first

statement of Lemma 1.2 We postpone the discussion about orientation until Sect. 7.
We next turn to the proof of the compactness. Before going there we remark that
the following one parameter family version of Lemma 1.2 holds. (This is used in a
proof of well-definedness in later sections.)

Let (/(i), 0i)?(/(2)>02) be two elements of Met x (C°°(M))3 such that transver-
sality holds for them. We consider a path L joining them. Then Lemma 2.2 and the
Sard-Smale theorem again implies that:

Lemma 2.3. For generic L the space, n~ι{L) = UrfgΛeL^Θ(f,g) is one dimen-

sional manifold with boundary = —J?e(f(\yg\) U ^βif^gi)-

We hereafter put JίΘ(K) = \J{ffg)eKJ(e(f,g).
Now we begin the discussion of the compactness. First of all we remark that if

we fix (t\9t2,h) then the space

{(p;tl9t2,t3;f,g)\(p;tut2,h) e JΐΘ(f,g),(f,g) e K}
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is compact (if K is compact.) This is a consequence of the fact that our moduli space
is the set of solutions of an ordinary differential equation. The analysis one needs
to prove this compactness is fairly easy. (In various kinds of topological field
theories (such as Yang-Mills theory or pseudo holomorphic curve) one proves
a similar compactness theorem using the a priori estimate of partial differential
equations.)

Therefore to study the compactness we only need to consider the case when one
of ti goes to zero or infinity. This is similar to the bubbling phenomenon which
appears in various kinds of topological field theories.

We first study the case when tx —> oo. In case there is only one Morse function,
the study of "bubble" of this kind was used in the proof of the fact that the Witten
complex is a complex (namely dd = 0.) The argument used there can be applied to
our situation without change. (See [Sc] for the detailed account of this argument.)
Here we recall the result we need for our purpose. Let ή : [0, U] ̂ M b e a sequence
of lines such that

b 7 = g r a d / .
W , -• oo

Assume also that pi = ^(0) converges to p G M and qt = ^(tj) converges to q G M.
We assume also that p,q φCr(/). Then we have:

Lemma 2.4. There exists x\9...,Xk G Cr(/) and gradient lines rnj joining xj and
Xj+\. Also there exists a gradient line mp, mq joining p, Xk to x\, q respectively,
such that the image of ^ : [0, ti\ —> M converges to the union of nij and mp, mq

with respect to the Hausdorff distance.

We are going to apply this lemma to study the compactification of our moduli
space. We first remark that Cx(f) Π Cr(fi) φ 0 at the only codimension 3 subset
of (C°°(M))3. Since we are considering only at most a 1 dimensional family, we
always assume Cτ(fi)nCτ(fj) = 0 for i+j. Hereafter we write (C°°(M))3 for
such a subset for simplicity.

Now we suppose / ( 0 e J^βif^yQi), and that l i m z ^ o o ( / | 0 , ^ ) = (/,#). We also

assume that 1^ is identified to {x^yΰ ίi,(o^2,(θ^3,(θ) s u c n t n a t 0,(0 > ^ f° r s o m e

positive C independent of /.
We assume that the sequence /(z) diverges. Then at least one of tj^ converges

to infinity (for some j = 1,2,3.) Let us assume for simplicity that t\t^) —* oo and
the other two are bounded. In fact by a counting argument (similar to those we are
going to discuss) we find that in a 0 or 1 dimensional family of (/,#) only one of
tjt(i) can go to infinity.

Now we apply Lemma 2.4 to the restriction of /(/) to the first edge. The as-
sumption that Xf = I(i)(0) converges to x G M and yt — I(i)(tj) converges to y G M
is satisfied (after taking a subsequence), since the restriction to /(z) to the other two
edges converges. The other assumption that x9 y φCr(/i) is also satisfied since xή=y.
Thus the image of the first edge e\ by the map /(/) splits into the union of several
gradient lines. Again by a counting argument (which we are soon going to discuss)
we may assume that the limit will be the union of 2 gradient lines both of which
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contain a critical point p of f\. We then define the following moduli space:

l,0,0)(P>P'>fuf29f3) = xR 2
•+

7 = 2,3

By moving / and the metric in a set K C (C°°(M))3 x Met, we define
as follows:

} = \J U Ji&{\A0)(p> P\ fu fi>h)-
(f,g)eκ pecxifi)

We then can prove that J?0(ifo^)(id,(C°°(M)γ x Met) is an infinite dimen-
sional manifold in a way similar to the proof of Lemma 2.1. We find that the
projection ^θ(i,o,θ)(W,(C°°(Af))3 x Met) -> (C°°(M))3 x Met is a Fredholm map
of index — 1. The calculation of the index is done as follows. In the definition of
<4K&(i,o,o)(P9 PI f) t n e r e a r e 2 variables moving on M and two positive numbers.
For the equation, the first equation puts η(p) conditions. The second equation puts
3 — η(p) equation. The two equations in the third line puts 3 conditions each. In
total the index is 3 x 2 + 2 - η(p) - (3 - η(p)) - 6 = - 1 .

Thus using the Sard-Smale theorem again, we find that, in the case when we
fix a generic / there is no such an end. And in case / moves in a generic one
dimensional set there are finitely many points like that.

Next we turn to the case when one of f^ ), say t\^η goes to zero. Namely

we assume that (*,-, yt\ tχΛi), f2>(/), t3Λi) = / ( ί ) e JίeU^y go, lim, _>oo *i,(, ) = 0,
limz _»o o(/φ,0z ) = (/, g). By assumption lim^oo t\^i) — 0 we have (by taking a
subsequence if necessary) that Hindoo*/ = lim/^oo yι = x. Since Cr(/ 2) Π Cr(/ 3) =
0 , we may assume without loss of generality that x φCr(/3). Then there are two
cases.

Case 1. x φCr(/2). In this case we have lim/-,^ ί2,(0 = Hmz _+oo t^) = 0. We can

then use the fact Φl ̂ Axi) = yt to show that three vectors gradj^C*), j = 1,2,3 are

parallel to each other.

Case 2. x e Cr(/ 2). In this case we find grad fj(x\ j = 1,2 are parallel. Since
grad/2(x) = 0, we may say that three vectors grad jf}(x), j = 1,2,3 are parallel also
in this case.

Here we say that grad/Xx) and grad^(x) are parallel if there exists a non-
negative number ri,rj such that r;grad/(x) = rygrad Jj(x) and (r/,r /)φ(0, 0). (This
notation is a bit different from usual one, since we avoid, for example
grady (x) = - g r a d ^ (x).)

Now we put

R(f) = { iG MI grad fj(x) j = 1,2,3 are parallel to each other} .

For K C (C°°(M))3 x Met we put

• = {((f,g),χ)\(f,g) e κ,x e R(f)}.
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Lemma 2.5. R((C°°(M)Ϋ x Met) is an infinite dimensional manifold And the map
π : R((C°°(M))3 x Met) -• (C°°(M))3 x Met is a Fredholm map of index - 1 .

The proof of the first statement is a standard transversality argument and the
proof of the second statement is a simple dimension counting.

Lemma 2.5 and Sard-Smale theorem imply that for generic (/,#), the set R(f)
is empty. Thus we have proved the following:

Lemma 2.6. For generic (/,#) the space Jί@(f,g) is compact.

This completes the proof of Lemma 1.2 except orientation.
We turn to study Ji@(U) for the generic one dimensional space L C (C°°(M))3 x

Met. We already discussed most of the phenomena which can occur. One is
described by the space ^#<9(i,o,o)(£) U JΪΘ(O,I,O)(L) U ̂ 6>(o,o,i)(£) (which corresponds
to the case when tj —> oo) the other is described by the set R(L). For each element
of J?Θ(\,O,O)(L) U J%Θ(O,\,O)(L)U ^#<9(o,o,i)(£) we can construct an end of Jί@(L)
homeomorphic to [0,oo). This fact is based on a converse to Lemma 2.4 which
was also proved and used in the construction of the Witten complex.

We can prove also that, for each element of R(L), there exists an end of Jί@{L)
which is homeomorphic to [0, oo), if L is generic. The proof of this fact is more
delicate and will be given in Sect. 6. We observe that elements of J4Q(L) which are
in an end corresponding to an element of R(L) are of small diameter. Hence they
are contractible. This fact is important since it follows that the weight associate to
such an element is independent of the flat bundle ς. Therefore, since we consider
the difference of invariants obtained from 2 flat bundles, the contribution from this
kind of end cancels automatically. We summarize our result as follows.

Lemma 2.7. Let L C (C°°(M))3 x Met be a generic arc joining two generic
elements of (C°°(M))3 x Met. Then there exists a one dimensional compact man-
ifold (βJteiL) with boundary such that Jί@{L) is its interior and

JίΘ{QAl)(L)\JR(L).

In later sections, we use this and similar lemmas to prove the well-definedness
of our invariant.

3. Independence of Combinatorial Propagator

To prove our main theorem (independence of invariant of various choices) we first
consider, in this section, the independence of the combinatorial propagator. We
assume that we have two choices g/{, g'^ of the combinatorial propagator for the first
Morse function f\ and assume that other combinatorial propagators gf.9 i = 2,3,4
are the same. And we prove that the resulting invariants are the same.

Since the Witten complex of local coefficient are acyclic by our assumption,
there is h G End2(C*(M;/Ί;ς) such that dh = g^ — g'^. We put

h= Σ Kpl9q2)[pι]®[qir.
>/Oi )=>7(?i )+2

We are going to study the moduli space <J?Θ(i,o,θ)(P\,<ϊ\) m the case η(p\) =
η(q\) -f 2. (Since we fix f here we omit them in the above notation.) In this case
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the moduli space is one dimensional. (One needs transversality to prove it. It can be
proved in the same way as in the last section.) We need to know the ideal boundary
of this moduli space

Lemma 3.1. ^Θ(\,o,θ)(p\,q\) is an interior of a compact oriented one dimensional
manifold ^^6>(i,o,o)(/?i?#i) such that

q\) = U

U U JΪΘ(\,i,Ό)(Puqim,P2,P2)
P2eCτ(f2)

,?i; Pi,P3) U

Let us explain the notations above. We define

and

>qύ pii pi) = lim ΦUx) = p3,
t—>oo J i

φ'l(χ) = y

( j imoΦ} |(x) = j P l

lim ΦΛx) = qx

grad/2(x) is parallel to grad fi(x)

Other notations are defined in a similar way.

Pi

Fig. 5.
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Proof The proof of Lemma 3.1 goes almost in the same way as Sect. 2.

Let (#1, j//,4 j 4 ) ^ ^Θ(i,o,θ)(/?i5^
ri) be a divergence sequence. Then by taking

a subsequence if necessary, we may assume that one of the following happens.

(1) 4 —> oo,
(2) 4 ° -> oo,
(3) JC/ converges to a point in the boundary of the unstable manifold of p\,
(4) yi converges to a point in the boundary of the stable manifold of q\,

(5) 4 ° -> 0 or 4° -> 0.

It is straightforward to see that cases ( 1 ) ^ ( 5 ) correspond to the l ~ 5 t h term of
the right-hand side of Lemma 3.1. It is easy to see that, for each element in l~4 t h

term of the right-hand side of Lemma 3.1, there exists an end of ^Θ(\,Q,0)(P\^\)
corresponding to it. We postpone to Sect. 6, the proof of the fact that there is also
an end of J?Θ(i,o,θ)(Puq\) corresponding to each element of Sf©{\tw)(f >9\ P\,<ϊ\)
We here prove that £f&{\,w)(f>9\ P\,<1\) is zero dimensional.

We prove this fact again by using transversality. We put

0),2 U U
(/,όf)E(C°°(M))3xMet

We then have:

Lemma 3.2. The space ^Θ(i,o,o),2 is an (infinite dimensional) manifold and the
projection: ^<9(i,o,o),2 —• (C°°(M))3 x Met is a Fredholm map of index 0.

Lemma 3.2 is a consequence of the usual dimension counting and transversality.

It follows immediately from the lemma that ^<9(i,o,o)(/>0;P\^\) is zero dimen-
sional for η(p\) = η(q\) + 2. The proof of Lemma 3.1 is now complete.

In order to deduce identities from Lemma 3.1, we are going to define a num-
ber Zβ(i,i> O)(ci,c2,0) for c\ G End 2(C*(M;/i;ς)), c2 G Endi(C*(M;/ 2;ς)). Let us
write

cj = Σ Cj(Pj> <lj)lPj\ ® [«/]*, 7 = 1.2.

An element of the moduli space J?Θ(\,ι,o)(pι,qι', Pi,qi) is regarded as a map
/ : 0(1,1,0) —> M. Here 0(1,1,0) is a graph obtained by cutting the 0 graph at
two points, one on the first edge and the other on the second edge. We define the
weight χ(I) : ηpι <g> ηP2 —» ηqx (8) ηq2 as we did in Sect. 1. We now put

•2,0)= Σ Σ ±Tr(/(/)o(ci(/?i,^i)(g)C2(/72,^2))).
Pι,qι,P2,q2

To study the fifth term we define

ZSβ (i,o,o)(ci,0,0)= Σ Σ
Pι,q\ / ^

Here χ(7) : ^^ -> ηq is a parallel transport along the gradient line of f\ containing
x. (Here we regard x G M.)

Now Lemma 3.1 implies:
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Lemma 3.3.
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-Zβ(i,0,i)(A, 0 , id) -

We can also prove the following formula:

, 0,0)

(3.4)

Equation (3.4) follows from the following description of the boundary of moduli
spaces:

U Jΐ(pup\) x

u U

u U

u

u
η

u

Ji{q'2yq2) x

We can prove this equality in a way similar to Lemma 3.1. We remark that we do
not need the term ^Θ(i,o,θ)(/Ί^i)

To consider the term Z<9(i?i)o)(^/i?6
f/2? 0 ) a n d like that, we need to study another

kind of degeneration. To describe it we use the following moduli space:

xeM

lim Φί(x) =

lim
ί—>-o

(This moduli space is the case when ί3 = 0 . ) We can assume that unstable and
stable manifolds of f\,f29/3 are transversal to each other. So in case η(p\) =
17(01)+ 2, η(p2) = r\(q2)+\, the space Jtθ{\χx)(puq\\P2Ά2) i s 0-dimensional
and compact. Using this space we can describe the boundary of the moduli space
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,1,Q)(Puqιl P2 follows:

U

U

U

U

U

,ι,0)(p'ι,qi;P2,q2)

Λθ(\,i,0)(puqΊ;P2,q2)

Ji(p2,p
f2)

χ\)(Puq\\P2,q2\P'i,Pi)

(3.5)

We define the number ZΘ(\χχ)(h9gf290) using the moduli space Jt&{\,\,x)(p\,
q\\ pi^qi) m a similar way. Then (3.5) implies the following:

ι,gf2,0) + ZΘ(ιχ0)(h,dgf2,0)

Now we use the fact that dg^ = id. Then Lemma 3.3, (3.4), (3.6) imply:

Lemma 3.7.

,gf2,0) + ZΘ{hxΛ)(h, 0,gf3)

We next sum them up for signs ε7 of fj. We then remark the following:

Lemma 3.8.

Fig. 6.
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Proof. We first remark that the equality between moduli spaces *Ms&(p\,q\', /\, fi>
f3) — JisΘ(q\τP\\ —/\,h,h\ The orientation is opposite as we will see in Sect. 7.
We remark also that the isomorphism End(C*(M;/;ς)) = End(C*(M; - / ς)) is
obtained by c[p] <g) [q]* ι-> c[q] ® [/?]*. The lemma then follows immediately from
the definition.

Using Lemmas 3.7 and 3.8 we have

Lemma 3.9.

4Z/

Θ(f,g)-4ZΘ(f,g) = Σ ^Θ(\,ι,x)(s\ f 1^2/2, £3/3; hειfι,gε2f2,0)
εi,ε2,e3=±l

+ Σ zΘ(\,x,i)(ειf\,ε2f2,ε3f3',hειfι,0,gε3f3).
εi,ε2,fi3=±l

The proof that this last term cancels with the corresponding term related to the
other graph A uses the Jacobi identity and is similar to an argument in Chern-
Simons Perturbation theory. We are going to explain it here.

We perform the same construction using the other graph A and obtain the
equality

%(Z'A-ZΛ) = Σ
ei,ε2,fi4=±l

+ Σ Z/i(i,x,i)(7*εi/i, 09ge3f3)(ε\f 1, £4/4, £3/3) •
±l

Here the number ZΛ(\χx)(hειfι9gε2f2,0)(ειfu£2/2,^/4) is defined by using moduli
space J%Λ(I,I,X)(PI><1\9 P2,^2X^1/1,^2/2,^4/4), which is a component of the bound-
ary of ^A(\χo)(puquP2,q2)(eifu 62/2,^4/4) corresponding to r4 = 0.

We next remark the following obvious facts:

( PU P

= Λf θ(i,i,x)(qu Pi,q2, P2X-f 1,-/2, ±f3)

= ΛίΛ(\,\,X)(P\,qi, P2,q2)(/l,/2,±/4)

q\,q2, P2)(/u-/2,±A)

χx){q\,P\,q2, P2X-/1, -h, ±/A) 1

(3.10)

and also a similar formula with pi,q2,/2 replaced by /?3,<73,/3 holds. To show the
cancellation we need to discuss the weights.

The moduli space in Formula (3.10) is also described as the set U(p\) Π S(q\) Π
U(f2) Π % 2 ) Here ί/( ) is the unstable manifold and S( ) is the stable manifold.
Hence for each point x of U(p\)Γ\S(q\)nU(p2)Γ\S(q2)9 there are 4 gradient
lines joining it to puq\,pi,q2 respectively. Let PPι,x : ςPi -> ςx, Pίi>JC : ς^ -> ςx be
the parallel translation along these paths. The weight of x gives a map ςPι 0 ςqι -*
ςP2 0 ςq2. But the weight does depend on the moduli space whose element x is
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regarded as. Let us regard x e Jfθ(\,ιtx)(PuquP2,q2lfuf2,±fi). I n o t n e r words,
x is regarded as a map from the <9-graph such that the third edge is mapped to the
point x. Therefore, for u e ςPι> v e ςP2, uf e ςqι, vf G ςq2, the weight is given by

Σ([^i,χ^^2,χV],e I )([eI ,Pft,xv
/],/^1,xιι

/) = -([[PPuXu,PP2,xvlPquXu'lPq2,xv').

(See Fig. 7a.) The weight as an element of MΘ(Uhχ)(qupup2,qr, -fι,fi,±h) is

{[[PquXu',Pp2,χVlPPuXu],Pq2,xv'} = -{[[PP2,xv,PquXu'lPPuXu],Pq2,xv').

(This sign in the formula is related to the orientation and is explained in Sect. 7.)

For MΘ(χλ,X){px,qλ,q2,p2; f\,-fi,±h) the weight is

([[PPuXu,Pq2,xv'lPquXu'lPP2,xv) = -{{PPuXu,Pqi,xv'l [PP2,xv,Pqι,xu'])

And for Mθ(i,ι,x)(quP\,V2,Pϊ, ~f\,~f2,±h) we have

For another graph JlΛ(\,\,x){q\,P\,Pi,qi\ fuh,±fa) the weight is

(Fig. 7b). One can check that the weight for JίΛ{\χx)(q\, Puq2,P2',fu - / 2 , ± / 4 ) ,
etc. is also ([[PquXu!\PPλ,xu\PP2,xv\Pq2,xv

f).
Then by the Jacobi identity

[[PPlίXu9PP2tXv]9PquXu'] + [[PP2,xv,PquXu
flPPuXu] + [[PquXu

f

9PPuXu]9PP2tXv] = 0 .
(3.11)

Pi <l\
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Those terms cancel. To see this we show that in the formula

^ \εi,ε2,ε3=±l

+ Σ ί
εi,ε2,ε3=±l

- o ( Σ ZΛ(\,\,x)(hειfι,gε2f2,0)(ειfuε2f2,ε4f4)
* \εi,ε2,ε4=±l

+ Σ 4̂(i,A;i)(Afii/p 0^63/3 Xfii/iί^A 63/3) )

the coefficient of each of the terms in (3.11) is —1/2. In fact, the term
[[PPuXu,PP2,xv],PquXu

f] appeared twice in Z < 9 ( u ,χ ) ( •) or ZΘ (i j X ) 1 )( •), hence its
coefficients is —1/2. One can show that the coefficient of [[PP2iXv,PquXu'],PPuXu].
On the other hand [[PquXu',PPuXu],PP2iXv] appeared 4 times in ZA{\,\,X){- •) or
Z/i(i,;sr,i)(* *)• Therefore its coefficient is again —1/2. Thus we proved the inde-
pendence of our invariant of the combinatorial propagator.

4. Independence of Morse Functions I

We next consider a one parameter family (fs,gs) E (C°°(M))3 x Met{M) and show
that (/o,0o) a n d (/i,0i) give the same invariant. Unfortunately the proof is rather
long and technically complicated. It seems that one needs to develop some kinds of
homotopical algebra to get rid of the mess in this and the next sections. The reader
who is interested in only a basic idea and not so much technical detail may skip
the next section.

Before starting the proof let us give an informal explanation of well defmedness.
One typical way how the Morse function changes is death or birth of critical points.
Namely for example we can consider a family

/l,j(*l9*29*3)=*i +SX\ ~x\ ~x\ .

Then a pair of critical points will die at s = 0. Let p, q be these critical points such
that η(p) + η(q) = 1. We then find that the combinatorial propagator for s < 0 has
a component [p] <g> [q]*.

Let us assume that there is a family of elements in (xs, Ys,ti,sJ?>,s) E
^Θ(i,o,θ)(f>q •' Λ^/2,/3), and try to find what happens when s = 0. Let's assume
moreover that (̂ 2,5̂ 3,5) are bounded. Then when s — 0 we have an element of

O, 0 : /i,o,/2,/3). One can expect after passing zero a new element of
/2>/3) will be born. Hence our invariant will be the same. To make

this argument rigorous is the purpose of this and the next sections.
The proof of invariance of the Morse function is done in two steps. First we

assume that Witten complexes are the same for (fs9gs), s e [0,1], (Sect. 4). Next
we conisder the case when the Witten complex changes.

To simplify the notation we assume that Cr(fiiS), i = 1,2,3, s E [0,1] are inde-
pendent of s. (We can always do it by using an appropriate diffeomorphism of M,
since we are assuming that the Witten complex is independent of s.)
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We consider the moduli space MQ(L), where L — {(fs,gs)\s G [0,1]}. In Sect. 2,
we gave a compactification of this moduli space such that ^Jί^iL) — M@(L) =
^(9(i,o,θ)(^)U^(9(o,i,o)(^)U^9(o,o,i)(^). Here Jfθ(i,o,θ)(L) is a moduli space of
maps from the graph (9(1, 0, 0) to M, such that the two exterior vertices go to the
same point in Cτ(f^s). This moduli space is of zero dimension. By exactly the same
formula we used to define the weight for elements of ̂ Θ(I,O,O)(A#?/I>/2>/3)> we
define χ(l,ς) : ςp —> ςp for each element / G ̂ Θ(i,o,o)(^) We put

zβ(i,o,o)(£; ς; id, 0,0) = E ± Tv(x(l ς))

Then Lemma 2.7 implies that

Lemma 4.1.

i ; ς) - ZΘ(/0; ς)) - (ZΘ{fύ ς') - ZΘ(f0; ς'))

ZΘ{ιΛo)(L; ς; W, 0,0) - ZΘ(ιA0)(L; ς'; id, 0 , 0 )

; ς; 0 . w, 0 ) - zβ(0, i,o)(£; ς'; 0, w, 0 )

; ̂ ' 0 ' 0 ' w ) ~ zΘ(o,o,i)(̂ ; ς7; 0 , 0 , id).

Proof. Lemma 2.7 implies that ^yMβ{L) gives a cobordism between JΐΘ(f0)U

—Jt@(J() and e/̂ Θ(i,o,o)C£) U ̂ Θ(θ,i,θ)(^) U ̂ 0(o,o,i)(^) Since bundles are flat the
weights are compatible. The space ^JίeiL) is noncompact but for elements in the
end the weights are the same for ς, ςr. The lemma follows.

We next study the change of the correction terms. First we remark that since we
assume that the Witten complex is the same, we can choose the same combinatorial
propagator for fs, s G [0,1].

For p\,qι G Cr(/i) with η(p\) = η(q\) + 1 and p G Cr(/ 2), we define

^Θ(i,i,o)(P\>q\>P>p) f° r e a c n Λ? s ^ [0,1] in a way similar to Sect. 3. We take its
union over all s and denote it by J(®(\^^(L\p\,q\,p,p). By a similar transver-
sality argument as before we find that JiQ{\^\$)(L\p\,q\,p>p) is a 0 dimensional
compact oriented manifold. Also each element / of J%Θ(i,i,0)(Xm

9 p\,q\,p, p) induces
a map χ(/, ς); ςp (g) ςpι -> ςp (g) ς^,. We then define

ZΘ(\χQ)(L\ς\gfιJd90) = X) ± Tr(χ(/,ς) o W 0 g(p\9qι)).
/G^θ(i,i,o)(^;pi,ίi,/?)

Here g(p\,q\) is a coefficient of combinatorial propagator.
We define

[0,1]

grad fi,s(x) is parallel to grad

In case when η(p\) = η(q\) + 1 this is a compact oriented 0 dimensional manifold.
(In Lemma 3.2 it was η(p\) = η(qi) + 2. But here we put an extra parameter s.)
Using this moduli space we define

Σ
Now in a way similar to Lemma 3.3 we have the following:
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Lemma 4.2.

Zβ(i,o,o)(/i ς; #/, ,0,0)- ZΘ(hO,o)(fo> £ 9f\ > 0> 0 )

= ZΘ{\,ho)(L; ς; dgfι, 0,0) + ZΘ(hh0)(L; ς; gfιjd, 0)

+ZΘ(h0,\)(L; ς; gfι, 0 , /rf) + SZΘ(ιΛ0)(L; ς; gf/,, 0 , 0 ) .

Since dg/j = w/. we find that the first term of right-hand sides of Lemma 4.2 cancels
with the first term of the right-hand side of Lemma 4.1.

To discuss the change of Z<9(l5o,o)(/i;ς;0/i,0/2,0) we need to define

ί , l i m φ / l s ( χ ) = .Pi> l i m φ / l s ( χ ) = 4 i ]
= <(χ,s)eM x[o,i] γini°° φ 7 ( . _ '~^° , ' _ i.

I ί ^ + OO ^2'5 'ί—»~CX) ^2>* J

If /̂(/7Z) = η(qi) + 1, this space is of 0 dimensional. Using it we define the number
^ £;0/IJ 0/25 0 ) in a way similar to Sect. 3. Then we have

ς; dgfγ, g/2,0) + ZΘ(<h i,o)(4 ς; g/x, Sgf20)

,i,i)(A ς; 9fl9gf2> id) + ̂ β(i,i,z)(A c; QfrQfr 0)

Thus using Lemmas 4.1 and 4.2 we can prove the following lemma in a way similar
to Lemma 3.9.

Lemma 4.3.

4(Zθ(fl9g; ς) - ZΘ(f0, g; ς)) - 4(Zθ(fl9g; ςf) - Zθ(f0, g; ς'))

Σ

- Σ
εi,ε2,ε3=±l

Here we denote SL = {(εi/i5lS, £2/2,5, £3/3,5,^)!^ G [0,1]}. Now the rest of the proof
is completely parallel to one of Sect. 3. Namely using the Jacobi identity we find
that the right-hand side of Lemma 4.3 cancels with a similar contribution from
another graph A. Thus we find

in the case when the Witten complex does not change for s e [0,1].
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5. Independence of Morse Functions II

Next we consider the case when the critical point set and the boundary operator
change. Let L = {(fs,gs) G (C°°(M))3 x Met(M)|s e [0,1]} be a generic one pa-
rameter family of metrics and functions.

For simplicity we assume that fitS is independent of s for / = 2,3,4. Let
C*(M;ς;/i5iS) be the Witten complex for f\tS.

We first recall the proof of the fact that C*(M; ς; /i> 0) is chain homotopy equiv-
alent to C*(M;ς;/ii). (In fact they are both acyclic in our case. But we use the
explicit chain homotopy equivalence which (in the general case) is used to show
that a chain homotopy type of Witten complex is independent of the choice of
Morse function.) Let p G Cr(/i? 0), q G C r ( / U ) such that η(p) = η(q). We define
a moduli space Jiι{p,q\f\,s) as follows. We choose and fix a smooth function
χ : R -> [0,1] such that

χ(s) = 0 for s < - 1 ,

and

We put

χ(s) = 1 for s

lim

lim

> 1 .

= -grad

ί(t) = Pi

fit) = q

R - + M

Here gradχ(7) is the gradient with respect to the metric gχ(t). We omit this suffix
from now on, since the metric gχ^ is always used to take the gradient of /i,χ(o

JiL(p,q\f\,s) is a 0-dimensional compact oriented manifold. We define

ζP - • ζq b y

= Σ ±JV.

We thus obtain φ : C*(M;ς;/i,0) -» C*(Af;ς;/ u).

Lemma 5.1. dfx, o φ = φ o 3/1>0.

Proof. Let f/(/7) = f/(̂ ) + 1. We obtain a one dimensional moduli space
J#L(p,q\f\,s) in a similar way. Its boundary is described as:

ί(p,q;f\) = (Jί(p,P\/i,o) X Λ(L(P',q\ f\)) U (J?L(P,q'\ f\) x Jf(q',q\ A,l))

The lemma follows.
We can prove that φ is a chain homotopy equivalence as follows. Using an

equation

in a similar way, for p G Cr(/ 1 0 ) , ^ G Cr(/i?i), we define a moduli space
M-iXq, p\ f\tS) and a chain map ι̂  : C * ( M ; ς ; / u ) -^ C*(M;ς;/ 1 ? 0). Chain homo-
topy between ^ φ and the identity is obtained as follows. Choose a sufficiently
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large positive number S. We consider the equation
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—(0 = { -grad/u(AO)dt l
" 5 + 1 < t < S - 1 .

Using this equation we have a O-dimensional moduli space
Cr(/,,o), with η(p) = η(q). We find

q;f\ S;S) for ;?,<

(5.2)

The proof of (5.2) is a gluing argument which is now standard in topological
field theory. (See [Sc].)

For r G [0,1] we consider the equation

t < -S + 1
- 5 + 1 < t < S - 1 .

Let η(p) = η(q) — I. Using the above equation we obtain a moduli space
^pamiPiqifi^^S) of 0 dimension. (In fact we need to perturb a bit to achieve
transversality. But we omit the discussion about it for simplicity.) Using it we ob-
tain Hpq = ΣίeJtpm(p,q;fU,S) ±P^' T m ' S ί S Ά m a P θ f &&** + L W e h a V e

Lemma 5.3. H o d/l0 + dfl0 oH = I —ι//φ.

We omit the proof.
Now let #/1 0 be the combinatorial propagator for C*(M;/i j 0;ς). We consider

the following moduli space for p,g € Cr(/i,o):

1,0,0

— = grad/2 on e2 = [0, t2]

— = grad/3 on e3 = [0, t3]at
^L _ / 8®dfι,χ(t-S) if t G [S - 1, oo) C [0, oo) = ^ij
J 7 ~ \ grad/i!o if ί e [0,5 - 1) C [0,oo) ^ β1?1'
,. f g tad/ l Λ ( _ s _ 0 if / G (-oo, - 5 + 1] C (-oo, 0]

— = I gradΛo if fet-S+U)])

lim I(t) = p t G

lim 7(0 =
ί—• — oo

G [0, oo) = eλ 2

If η(p) = rj(q) + 1 then ^©(i,o,o)(/; P,q',S) is a compact 0 dimensional space.
Using it and the moduli space Λ^Θ(i,o,θ)(Λ; i?>#) (which we defined in Sect. 1),
we define homomorphisms W(θ(l'9090);S) : θςp-+Φςq and
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Θς^ —» Θς^ as follows:

,0),S)= Σ ±χ(/ ,ς) ,

WPtq(θs(l,090)) = Σ ±χ(/,ς).

Let gfyi j = ΣgflΛ(p,q)[p] ® [#]* : Θ ^ —» Θ ^ be a combinatorial propagator
for /i5i. We put

We recall

Lemma 5.5. For large S, we have

Wp3q(Θ(i9 o, o\s) = Σ φP,p
f ° ^ v ( ® o ( i , o, o)) o ι/^.

The lemma follows from the following homeomorphism, which is proved by a
usual gluing argument:

),o)(/; p,qιS) — U ^ ( A / J / M )
P':

By Lemma 5.5 we have

Zθ(lAO)(f;ς;S;gΛi,0,0) = Ίτ(gΛloW(Θ(l,0,0),S))
= Ύτ(gflloφoW(Θ(l,0,0))oψ)

= Ύr(ψ ogflloφo W{Θ{\, 0, 0))) . (5.6)

We next remark that

Lemma 5.7. ψ o g^ λ o φ + H is a combinatorial propagator of f\^.

Proof. By Lemmas 5.1 and 5.3 we have

as required.
Since our invariant is independent of the combinatorial propagator, we may

choose gAo = ψ o gfιι o φ + H.
We thus have

z<9(i,o,o)(/i ς; S; gAι, 0 , 0 ) = zΘ(i?o,o)(/o; ς; g/U09 0 , 0 )

-Tr(//o^(<9 0 (l,0,0))). (5.8.1)
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Next, in a way similar to define

)(f>Pι>4ι>Pi'te'S) a s f o l l o w s :

io o)
(fl p9q',S), we define

\Puq\\P29q2\S)

7:0(1, 1,0)->M, t2it3 > 0, r e [0,1]
dI

— = g r a d / 2 on e2tUe2t2

lim I(t) = pi on e2 x
t-^ +oo

lim I(t) = 2̂ on 2̂ 2
ί—>—00
— = grad/3θn e?> = [09t3]
at
dj__{ grad/i^-s) if ί G [5 - l,oo) C [0,oo) ^ eXΛ

dt~\ grad/1,0 if * G [0,5 - 1) C [0,oo) ^ β l ϊ l

,, ( grad/iΛ(_5_0 if ί G (-00, - S + 1] C (-00,0] ^ eh2

?- = { gradΛo if ί G [ - S + l , 0 ]

I
lim 7(0 = px t G [0,oc) = e u

lim 7(0 = 01 ί G (-oo,0] ^^1,2

Taking the combinatorial propagator gf2 and using the moduli space

,i,0)(/i; Puqil Pi,qi\S\ we define W(l,gf2,0) such that

<0U0/2,o)(iO,v>= Σ Σ

e, ) .

Here ez is an orthonormal basis of ςP2.

Similarly we obtain W{Θ{\,gfl,gh)) and W(Θ(l,0,gf3)). We can define

ZΘ{\,\,o)(f\',ζ',S;gflΛ,gf2,0) etc. in a similar way. Namely we put

Zθ{iΛ,θ)(fi',ς',S'9gAl9gf290) = Ύτ(gflΛ

and so on. In a way similar to the proof of (5.8.1) we have:

-Tτ(HoW(θ(l9gf290))), (5.8.2)

Zθ(i,o,\)(fι',Q',S;gfltl909gf3) =

-Tr(i/oίF(β(l, 0,0/3))), (5.8.3)

-Tτ(HoW(θ(l9gf29gh)))9 (5.8.4)
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etc. We thus found a relation between Z<ς>( ){fx S; •) and Zg>( )(/ 0 ; •)• Summing
up we got

4 ΣXz<9(i,o,o)(έ7i ς; S; , 0 , 0 ) - Z<9(I,O,O)(A/O; ς; #εi/i,0> 0>

1 ς; S;

ς ^β,/^

; ς; ̂ , 0, ς;

2*9*1/4) -

\, \,\)(βf\

0, 0))) - ^

Wef(Λ(l, gε4fί,gε3fl))) + ^ .(5.9)

We next are going to find a relation between Z<9(i?o,o)(/i;£;0/i1?0>0) etc.

and Z0(i ?o,o)(/i;ς;#/i1 ?0>0) e t c For this purpose we use the following moduli
space.

0 5 - 1 S 5 + 1 M-5-1 u-S u-S+l

Fig. 8.
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Hereafter we write Z%£AO)(εfι;S;id9090) =

tra ( ~f> n C"\
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'0(1,0,0)'

—
at

—

2,t3 > 0 , Γ G [0,1]

= grad/2 on e2 = [09t2]

=grad/3 on e3 = [O,f3]

r grad/i,χ(/_lS)+r(i_χ(/_S)) if ί G [5 - l,oo)
_ J C [ 0 , c » ) ^ e u

~ 1 grad/lιΓ if *e [0,5-1)
I C [ 0 , o o ) ^ β u

u

if ίG [-5+1,0]
C (-oo,0] *eh2

ί
grad/i,r

lim 7(0 = P ί G [0,oo)^ei i

lim 7(0 = q t G (-oo,0] = βi 2
> CX)

If /̂(/>) = η(q) + 1 this moduli space is one dimensional. Its boundary is given
as

p'

u U
P2£Cτ(f2)

u U

It implies

; ς; 5; ^/lt l, 0 , 0 ) + zθ(i,o,o)(/o; ς; g/lΛ, 0,0)

4a(T,o,o)(/; ς; *; ̂  0 ' 0 ) + 4a

(T,i,o)(/; c; s; gAι, w, 0

Here we put for example
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Now we perform a similar cancellation argument to Sect. 3 and obtain the fol-
lowing formula:

1

^Σ(Z<9(1,O,1

1,

1

8

1

8

1

, 0,

2 , # ε 3 ^

2,0))

^εi/u

2> 0 ) + 1 ,; 5; w, 0,^/3)

/,)- (5 io)

We next study the right-hand side of (5.10). To study the first term, we define
the moduli space Jf@(f\\S,r). We choose a function i? : {(«,f)|ί G [0,u],u > 0} —>
[0,1] such that if u > IS + 10 we have (Fig. 8)

ΓO if ί€ [0,5-1]
χ(t-S) if ίe [5-1,5+1]
l if te [ 5 + 1 , M - 2 5 - 2 ]

χ(u-S -t) if ί G [M - 5 - 1,« - 5 + 1]
0 if ί G [ M - 5 + 1 , M ]

(We define ϋ in the case u < 2 5 + 1 0 also. However the above condition is not
assumed in the case u < IS + 10.) We then put:

: Θ->Af,*i,f2,f3 > 0,

ϊΘ(f;S,r) = (I,tut2,t3,r)

— = grad/2 on e2 = [0, t2]

— =grad/ 3 on e3 ^ [0,ί3]

— = grad/i, i_ r + ^ l 5 θ if t e eλ ^ [09tx]
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This moduli space has boundaries and ends. The boundary corresponds to r =

1,0. If r = 0, this space is equal to Jfθ(f\)

On the other hand, there are ends of the moduli space Ure[θi] ^θ{f\\S,r) which

comes from bubbling of the first edge, namely the case when t\ —• oo. They corre-

spond one to one to the moduli space we used to define Z1^OQ^fl;S;id,0,0y

(We remark that the first edge splits between 5 + 1 and t\ — S — 1.)
There are other ends corresponding to t2 ^ oo, t3 -+ oo or tt —> 0. But they will

cancel to each other if we consider the other terms, (see Sect. 3,4 and (5.11).)

Using the moduli space of the case r — 1, namely M@{JX\S^ 1), we define:

i'M 0,0,0)= Σ ±z(Λς).

We define ZΘ(o,i,o)(/i;5, l ; 0 , # / 2 , 0 ) etc. in a similar way. Then we obtain

ε H ε

Σ Z a ? i)(e/i S; id, 0, g^h) + T

0 ε ° έ*

;S,ι-,0,0,0)-

T (ΣZΘ(O,O,I)(?/I;^i;0,0,^3/3)-ΣzΘ(o,o,i)(ε/i;0,0,^3/3))
^ V £ ε4 /

ε

"9)-
*> ε

1

(5.11)
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We remark terms ΣrzΛ(o,o,i)(^/i;£ 1;0,0,#ε 3 / 3 ) etc. may be nonzero while
ΣrzΛ(θ>o,i)(ε/i> 0,0,Qε3f3) must be zero. (The equation we put on the first edge in
the definition of the moduli space we use to define Σr z^(θ,o,i)(ε/i»^ U 0>0>9ε3f3)
is a time dependent gradient flow equation. So it may have a nontrivial closed orbit.)

Our next step is to compare the left-hand side of (5.11) to terms related to
Tr(H o W(Θ(1, 0, 0))), etc. In the following we write W^Θ{\, 0, 0)), etc. in place
of W(Θ(l, 0, 0)), etc. in case we use (£1/1,5,22/2,£3/3) to define them.

Lemma 5.12.

1 1
~Σ Zθ(εf\> S> 1; 0 , 0 , 0 ) — τΣz<9(o,i,θ)(έyij£, 1; 0 , #ε2/2>0)
^ ε ^ ε

1 1

^ ε ^ ε

1 1

1

* ε

1
\ (Σ^Θ(sf0; 0,0,0) + ΣΎr(H o ̂ (β(l, 0,

,O, f e ^

,0,9*

Before proving Lemma 5.12 we remark that (5.9), (5.10), (5.11) and Lemma 5.12
imply that / 0 and fx give the same invariant.

To prove Lemma 5.12 we use the following moduli space which is simi-
lar to but different from JίΘ(fλ\S,r). We choose a function Ξ : {(u,t)\t G [0,κ],
u > 0} -> [0,1] such that if u > S + T + 10 we have

( 0 if f G [ 0 , 5 - 1 ]
χ(t-T) if f G [ Γ - 1,Γ+ 1]
1 if ίG [ 5 + 1 , 2 5 - 1]
χ(Γ + 5 - 1 - 0 if t G [T + 5 - 1, Γ + 5 + 1]
0 if ίGΓΓ+ 5+1,1/1
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(I9tι9t29t39r)

I: Θ ->M, t\9t29t3 > 0,

dl
— =grad/ 2 on e2 = [09t2]

dl
— grad/3 on e3 =

= grad/i,rS(/l,o if *

The space Ure[θi] e / ^®(/ '^ '^ r ) n a s boundaries and ends. The boundary is

-JίΘ(f'9S,T90)UJ(θ(f;S,T,l). The set Jfθ(f;S9T90) is equal to Jίθ(f^\ We

next prove that the ends of \Jrβ[0 i^βif', S, T,r) corresponding to the case when

h -• oc is equal to UA^Cr(/1 ( 0) ̂ ( i ^ , 0 ) ( A q fo) x ^aUq, PI f\,s,S) if S and Γ
are sufficiently large. Here we recall that Jfv^a(q, p\f\,s,S) is the moduli space we
used to define H.

To show the behaviour of the end of UrG[o i] ̂ &{f\ S, Γ, r) described above, we
first remark that the ends in question correspond to the following set. (We remark
that the first edge splits between S + T + 1 and t\.)

7:β(l,0,0)->M,ί2,ί3

u (I,t29t39r9p)

— = grad/3 on e3 = [0, t3]

grad/i,0 if ί G [S + Γ + 1, oo] C eu

grad/i , r χ ( _^ + Γ ) if ί G [S + Γ - 1,5 + Γ + 1] C

— =grad/i,0 on

= < grad/i?r

grad/l.rχCί-ί)

, grad/i,o

,2 = (-00,0]

= /?, if/ eeu ^ [0,oo)

= /?, it ί G ei52 = (—00.

if t G [ Γ + 1,5 + Γ - 1] C

if ί G [ Γ - l , Γ + l ] C

if t G [ 0 , Γ - 1] C β l ) 1

lim
—> + o o

lim
—> — OO

Ξ (u,t)

i y j i

Γ-1Γ Γ+l

5 + Γ - l

Fig. 9.



72 K Fukaya

We consider the behavior of this moduli space when T —> oo. We then find,

by a gluing argument, that this space is homeomorphic to J^Θ(\,o,θ)(p,gifo) X

^para(^? P\ f\,s,S)- Therefore by counting elements of the end of

UrGΓOi] ̂ θiflS* T,r) corresponding to the case when t\ —•>• oo with weight, we

obtain Tr(// o ^((9(1,0,0))).
Thus we obtain the following:

Z Θ ( ε ^ ; ^ ; Γ ; l ; 0 , 0 , 0 ) = Tr(//o^(6)(l,O,O))) + Z 0(ε7 o; 0 , 0 , 0 ) . (5.13)

We have a similar formula for graph (9(1,1,0), etc. Therefore, to complete the proof
of Lemma 5.12, it suffices to prove the following Lemma 5.13. We put

±χ(/,ς).Zθ(fx\SJ9\\ 0,0,0)=

Lemma 5.14. If S and T are sufficiently large, then we have

;5,ra; 0,0,0)-2

iS^

lS,T,l;0^

- o ΣZ/i(o,i,i)(e/ί £ 1; 0,gε2/2,gε4f4) - « Σ Z ^(O,U)(A/I £ l;0,gε4f4,gε3/3).
or o r

Proof. We write S^r, ̂  to specify their dependence of 5, Γ. We may assume that
they depend smoothly on S. We define a three parameter family of functions ̂ s,τ4
for S > 0, T > 5, A e [0,1] such that

Rsj o = £fcRsj o

We put Bλ=AT
T + S + 10 we have

(5.15.1)

XsAi =$s (5.15.2)

- A)S,B2 = A(S + Γ) + (1 - ^)(M - ^) . Then for u >

0 if t e [0,Bι - 1]
χ{t-Bx) if ί G ^ - l,5i + l]
1 if ί e [5i + l , 5 2 - 1] .
χ(B2-t) if / G [ 5 2 - 1,̂ 2 + 1]
0 ifte[B2 + l,u]

(5.15.3)
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We now put

: Θ->M,tι,t29t3 > 0,

^ on e2*έ[0,t2]

',S,T,A) = (I,ti,t2,t3) — =grad/ 3 on e3 9έ [0,t3]

—

This is again a 0 dimensional space for each fixed S, T and A. Moving
A G [0,1] we obtain a one dimensional manifold. By (5.14.1) and (5.14.2) its bound-
ary is the union Jt@(f;S9l)U—Jt@(f;S,T9l). These moduli spaces are the one
we used to define right-and left-hand sides of Lemma 5.13. So to complete the
proof of Lemma 5.13 we only need to show that the contribution from the ends of
U^e[o,i] ̂ &{f\ S, T,A) cancels.

To study the end of \JAe^0^J^©(f;S9T9A) we use the following:

Lemma 5.16. There exists So, Γo, C such that if S > So then there is no element

of LU[o,i] Λίθif S, T,A) such that h > C, and C > So + To + 10.

Proof If Lemma 5.16 is false we have a sequence of elements (Jut\,ut2,uh,i) of
MΘ(f\SuTuAi) such that St -> oc,7; -> oo,fi,, -> oc and t u > Si + Tt + 10. By
dimension counting it suffices to consider the case when Af converges and t2^t^i
converges to some positive number. Then by (5.13.3) 7f splits into 2 gradient lines
of time dependent gradient vector flow and an element of ^<9(i,o,o)(/o> p,q) for
some p,q. Therefore we have an element of ^6>(i,o,o)(/o>p,q) xJίι{q,r\ fiiS) x
M-ι(r, p\ f\,s)> (Remark that the parameter A does not play a role here. Hence we
loose one freedom this way. This is the basic reason why the lemma holds.) This
space is empty by simple dimension counting. We get a contradiction.

Lemma 5.16 implies that if we choose S sufficiently large, then there is no end

of UΛG[01] ^θ(f',S,T,A) corresponding to t\ —• oc.
Now we are ready to repeat the argument we did many times. Namely the end

coming from f2 —• oo, ί3 —• oo or t2 —• 0, t3 —> 0 cancels after summing them up
with other similar terms. The proof of Lemma 5.14 is now complete.

We thus completed the proof of Main Theorems I, II, assuming some lemmas
on transversality and orientation.

6. Compactification of Configuration Space and Transversality at Diagonal

In this section we discuss the moduli space #0(i,o,o)(/>0;/>i5#i) we introduced in
Sect. 3 and similar moduli spaces which appeared when a non-simply connected
subgraph degenerates to a point. To clarify the idea, we consider a more general
situation. Probably one can use these ideas to prove the well-definedness of higher
loop amplitude.

Let Γ be a graph. We assume that each vertex of Γ has more than three edges
or has only one edge. The vertex with one edge is called an exterior vertex and
otherwise it is called an interior vertex. An edge is called an exterior edge if it
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contains an exterior vertex. Otherwise it is called an interior edge. We also fix an
orientation to each edge.

Let 3Γγ be the set of all possible ways to assign a positive number te to each
interior edge e.

We associate a Morse function fe to each edge of Γ. And also we choose a
point pv to each exterior vertex of Γ. We assume that pv is a critical point of the
function fe, where e is the unique edge containing v.

We consider the following moduli space:

',/,?)=<

(te) e
I :Γ M

—^- — grad/e on an interior edge e = [0, te]at

— ^ — grad/e on an exterior edge e = (—oo,0]
at
lim I\e(t) = Pv v G e is an exterior vertex

t—• — o o

There is a natural projection Ji(Γ\f,p)-*3ΓΓ. For example if Γ — Θ then

Jί(Θ\f) is the moduli space Jiβ(f\,fi,f3) we studied before.

We put Jί{Γ\ V, p) = {Jfev ^(τ\ f> PI Here V i s a sufficiently small neighbor-
hood of/ in (C°°(M))k and p = (/?v)v:eχterior vertex- (Here k is the number of interior
edges.) We choose V so small that the critical point set of f( where (/[.f^fi) £ V

is identified to the critical point set of ft. Then the expression Jί(Γ\f,p) makes
sense. We have again a map J((Γ\ p) —> ^~r-

Lemma 6.1.
submersion.

Ji{T\ V, p) is a C°°-manifold and πΓ : Ji(T\ p) is a

Lemma 6.1 is verified by a straightforward transversality argument similar to
one in Sect. 2, where we proved the corresponding transversality result already for
the graph we use.

The transversality at the point where one of the numbers is 0 is of different
problem. In fact transversality does not hold in the most naive sense. To see this,
let us consider

r —
e : interior vertex
L > 0

This is a (partial) compactification of ?Γγ. We define ^y£(Γ;f,p) in a way
similar to Jί(T\ / , p) but requiring /(e)=point if te = 0. There is a natural map
π : WJKίΓ; / , p) -> ^ ^ r . ^ ^ ? is a manifold with corners. In other words, Ή^Γ
is a stratified set such that each stratum is a manifold. (We put ^k^r — {(te) €

te = 0} = k}.) One may ask if each cycle L C ^^~Γ is transversal to π :
,p) —> ̂ ^ r However this is not the case. This is a problem related to

the anomaly we discussed. Let us give an example in the case when the dimension
of the manifold is 2 (Probably a similar problem occurs in higher dimension.)
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Mx9y) =xe-y,

fi(χ,y) = *,

fs(x,y) =xey.

One can easily see that the moduli space ^Jί(Θ f) is a line R and the map

Ji{Θ\f) -^ ^Θ= Rio h i t s the origin. (See Fig. 10.)

This picture is quite stable. Namely by perturbing /i,/2,/3 we still find a sim-

ilar situation that is the map Jt{Θ\ / ) —> ̂ ZΓQ = R3>0 still hits the origin. Thus

L = {(0,0,0)} is not transversal to the map π : <gJ((Θ;f) -> V^θ.
As we discussed already, to handle a similar problem, we can consider the

subsets of the points where gradient lines are parallel, to analyze this problem. To
do it more systematically we are going to use compactification of the configuration
space similar to one in [FM, Ko]. However, there is a small difference, caused by
the fact that we break the symmetry (isomorphism of the graph) by introducing
different Morse functions to different edges.

Roughly speaking, we take the real blow up of ^ZTQ = R3>0 along each

^k^rΛ < w, and obtain <#r. More precisely we proceed as follows. We choose and
fix a maximal tree T C Γ. For each edge e C Γ — T we choose one of its vertices
and attach e to T at this vertex. We thus obtain a tree T and a surjection J : T —> Γ.
Let CΌ,int(O be the set of all vertices of T which is mapped to an interior vertex
of Γ and let C\jΏt(Γ) be the set of all interior edges of Γ. We regard an element of
CΊ,int(O a s a n edge of T as well. We say that A C Ci5int(Γ) is connected if there
exists a connected subset of T such that A is the set of all edges contained in it. Our
space $~r is a stratified set whose stratum corresponds one to one to the following
set X(Γ). An element JT of X(Γ) is a set of subsets of Ci,mt(Γ) such that

If A,B e &AΠBΦ0 then A CB or BCA. (6.2.1)

If A e Si then A is connected (6.2.2)
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Let A G JΓ. We consider the set of all e G C\jnt(Γ) such that e G A and that if
e eB CA,B e & then B = A. Let V(A) denote this set.

For each 2£ G X(Γ) we define 5~( JQ as follows:

We define ~ z as follows. For t G Map( C U n t (Γ) -> R+), r G R+, and A G & we
consider

ί(e) if e ^ F(^4)

rί(e) ifeeV(A)'

Then we put t ~z t'. We let ~ z be the equivalence relation generated by this relation.

3~r is by definition the union of all ^"(JΓ).

If 2£ = 0 then ^ ( 0 ) = ^ ? . Hence J~Γ D ̂ Γ. The map π : # r -* <^V is de-
fined as follows:

= Γ f(e) if there is no A G JΓ such that e G K(Λ)
10 otherwise

The topology of §~γ is defined as follows. Let tt G 2ΓT. We suppose that U(e) con-
verges to an element of R^o f° r each e. We say that e' -< e if ti(ef)/ti(e) is bounded.
We say e ~ ef \ϊ e < e' and e ; ^ β. We assume furthermore that l i m ^ o o ^ e ' ) / ^ )
converges to a positive number for each e ~ e ;.

We define J^o = {{^ € Ci, int(Γ)|e ^ eo}|βo G Ci ϊ int(Γ)}. We define JT so that an
element of it is a connected component of an element of ^ 0 For each A G «3Γ, we
choose βo G Ci?int(Γ) such that

^ z= ^ e o = the connected component of {e G Co(Γ)\e -< e0}containing eo G «2Γ.

Let β G Ci?int(Γ). Take βo such that e E Aeo and e ~ βo. (In other words,
e G V(Aeo).) We put ίoo(^) = lini/-^oo^(^)A/(^o) And we let lim/_,0Oίί be the ~ 2

equivalence class of t^. We remark that this element (up to equivalence) is inde-
pendent of the choices of eo

We thus defined the limit of the sequence of elements of &τ The limit of the
elements to 3~γ is defined in a similar way. Let us describe this set ?Γγ explicitly
in the case we need.

First we consider the graph 0(0,0,1). Then the tree T is as in Fig. 12.
JΓ((9(l,0,0)) consists of 6 elements 0 , {{ei}}, {{^2}}, {^1,̂ 2}, {{^i}?

{eue2}},{{e2},{eue2}}. The set ^"(JT) for each of this four is R+,R + ,R + ,
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Fig. 13.

t G l u i n g

together we obtain the 2 manifold with corners in Fig. 13.

Then «̂ Θ(o,o,i) —• ^Θ(o,o,i) is an isomorphism outside (0,0), and π - 1 (0,0) is iden-
tified with an arc.

Next we consider Γ = Θ. Our tree T is given by Fig. 14.

The space 3?~Θ is given by Fig. 15. In other words, π~1(0,0,ί) is an arc and
π " 1 (0,0,0) is given by Fig. 15.

We go back to the general case and will construct a space M(Γ) for each
manifold M. This space M(Γ) is a compactification of the following configuration
space:

{p Cotmt(T) —» M\p(v)ή=p(v'\ if there exists an edge of T joining v and v;}.

M(Γ) is a stratified set. The strata is indexed again by the same set X(Γ). Here
we regard X(Γ) as the set of all ΊV consisting of subsets of Cotmt(T) satisfying the
following conditions:

If A9B e Ψ*,AnBφ0 then A C B or B C A. (6.3.1)

If A G #~ then A is connected. Here we say that A is connected if there exists
a connected subcomplex of T such that A is the set of all interior vertices of T.

(6.3.2)

{v} G HT for each v e C0,mt(^). (6.3.3)

Let us verify that the set of all such 1V is equal to the set of all Z satisfying
(6.2). Let HT satisfy (6.3). Let A G IT with #A ^ 2. Let BA be the set of all
interior edges e such that both of the vertices of e is contained in A. We put
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Fig. 15.

= {BA\A e W,#A ^ 2}. It is easy to see that iV -> Z(iΓ) is the required one to
one correspondence.

Now for HΓ G X(Γ) we associate a space M{W) as follows. We say that an
element A G iΓ is maximal if it is maximal with respect to the inclusion. An el-
ement of M(iίr) consists of p : {all maximal elements of W} —> M and u(A) for
each element A G Ψ". We describe u(A) later. The condition for p is as follows.
Let T(W) be the tree obtained from T by shrinking each maximal element to a
point. (Here we regard each element A G ΪV as a connected subcomplex.) Then />
associates a point of M to each vertex of T{iΓ). We assume that p(v) + p(v') for
each of the vertices of T{iΓ) which are joined by an &dgG.

We next describe u(A). First we consider the case when A is maximal. We
consider all elements A(iΓ) of W contained in A. (A $A(W).) Let us take all
elements of A(iΓ) which are maximal among elements of A{iΓ\ Let Am(i^) be
this set. Then

Tp{A)M)

Here we say u\(A) ~ U2(A) if there exists r G R + and u G TP^)M such that
uχ(A)(B) = ru2(A)(B) + u for each B e Am(1T\

Next let B G Am{iV\ We define B(iT) and Bm(iT) in the same way. Then

u{B)

Here ~ is defined in a similar way. We remark that if u\(A) ~ U2(A) then there is
a canonical isomorphism TuM){B)(Tp{A)(M))) ^ TUl{Am(Tp{A)(M))).

We continue in the same way and define u(C) for each C G τιF. The space
is the correction of all such (p,u). We remark that if ΨQ = {{v}\v e
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Fig. 16.

CoM(Γ)} then

= {p : C0M(T) - M\p(v)Φp(vf\

if there exists an edge of T joining v and v'}.

We have an obvious topology on M{iV) so that M(iV) is a smooth mani-
fold. We put M(Γ) = \J^reX^Γ>)M(iΓ). We define a topology on it as follows. For
simplicity we define a limit of the sequence pt e M({{v}|v E Co5int(T)}) o n ly We
assume that pt(v) converges for each v G Co,int(D Let Poo(v) be its limit.

We first define IV E X(Γ). For each v e C0M(Γ) we consider the set of all
v' € Cb,mt(O such that Poo(v) = Poo(v'). Let Av be the connected component of
this set containing v. A maximal element of IV is Av for some v E CQ^Γ).

We identify Av with a connected subcomplex of Γ. Let C\;m\(Av) be the set of all
interior edges of this subcomplex. Let e,e' E C\;λX&{Av\ Let V\(e) and vi(e) be the
vertices of this edge. We say e -< e' if d(pi(v\(e)\ Pi(v2(e))/d(pi(v\(e')), Pi(v2(ef))
is bounded as / —> oo. Here d is a distance function for a Riemannian metric of
M. (We fix it but the construction is independent of it.) We let AViβ be the con-
nected component of {er E Ci^ i^v) !^ <̂ ̂ } containing e. Avβ may be regarded as
a connected subcomplex of Av. We define Ax{iV) by

= {Av,e\e e clM(Av)} u {{/}!/ e ^v}

We thus defined #^. We define z?^ : {all maximal elements of IV} —> M by
)(^v) = Ax>(v).
Let ^ be a maximal element of iV. We next define u(Av): (̂ 4v

TPoo(Av)

h if

(M). We remark that = /?oo(v). We fix elements v o , v e i v , such
that if v, vo E ̂ ; , Af eiV then ^ ; = v4v. For v' eB,B e {Av)m{iV\ we set

= Urn

in case the right-hand side converges. We remark that u(Av)(B) is independent of
the choice of V E B and the ~ar equivalence class of u(Av) is independent of the
choice of v and vo

Next let B e (Av)m(iT). We define u(B): Bm(iV) -> Tu{B)(TPoo{v)M). We fix
v', vj E 5 such that v', v'o e B' Bf e Ψ", B' C B imply B' = B. Let C E £ m ( iT) . We
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choose v" € C and put

p,(C) = (DexppMΓι(exp-{vΊ(v")).

Here exp-^/v") e TPι(vΊ(M), and Z)expA(v) : T ^ - ^ ^ ^ ^ , ) ^ ) ) - f ΓA(^)M

is a differential of the exponential map. Hence p, (C) = (DexppM)~ι(exp~l,Jv"))

is an element of T' -ι (Λ(V<))(TΛ(V)^O Its norm is almost equal to d(pi(v'),

Pi(v")). We put

if the right-hand side converges. Again this limit is independent of v" G C. And the
equivalence class of u{B) is independent of v'9v'o.

We continue in this way and define u for each element of if.
We thus described the topology of M(Γ) = U ^ € X ( Γ ) M ( ^ ) . We can prove that

M(Γ) is a smooth manifold with corners.
We are going to define a map Φ : M x i ? x (C°°(M))m x Met -> M(Γ). This

map is a generalization of one we defined at the beginning of Sect. 2. Here m is
the number of interior edges. We remark that both M(Γ) and 3~γ are stratified sets.
Their strata both correspond one to one to the set X(Γ). Our map Φ respects this
stratification. We are going to define Φ for each stratum.

In case Z — 0 which corresponds to if — {{v}|v G Co,int(Ό} o u r definition is
as follows. We first recall

M(if) = {p : C0,int(Γ)

if there exists an edge of T joining v and V}

and

in this case. We fix an interior vertex v0. Then for each v G Co,int(T) there is
a unique minimal path iv joining it to v0. We put fv — e\fV U U ̂ (v),v such
that vo G ei,Vίe/,v Π ei+\ίV = one point, and v G ̂ (V),v Then for t G 3Γ(£g) =
Map(CU n t(T) -> R + ) we put

Φ(p,t,(felg)(v) - ( Φ * ^ } o o φf^) (p).

(We recall that Φ^ e i v ) is the exponential map of the vector field grad feiv )

We next consider the case when 2£ — {A{\ such that A{ ΠAj = 0 for i+j. This
corresponds to the case if = {Ai} U {{v}|v G Cb,int(T)} (Here At is a connected
subcomplex of Γ, which is regarded both as a subset of C\jnt(Γ) and Co,int(^) ) Let
3Γ(&) be the tree obtained by shrinking each of the elements of 3£ = {A^} to a
point. An element t of ^"(Z) determines an element of Map(Ci,int(^(^)) —> R+).
Then in the same way as above we obtain p : {all maximal elements ofif} —> M.
(Remark that the vertex of T% corresponds to a maximal element of if.) Next
we determine u(Aj). t also determines an element of tf : Cî ntC î) ~^ R+ (UP to an
equivalence U ~ r ίz ). Since Γ is a tree there is a unique vertex vz of ̂ 4Z which is
closest from v0. For v G Co,int(^/) there is a unique minimal path {^ in Ai joining
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v to vz . Let /;5v = βiχv U U eitki(v\v such that vz G ^ ,i,v,^ ,y> Π ^ ,y+i,v = one point,

v G β | Λ ( V ) , v . W e put

Σ
j

We then define Φ(p,t,(fe),g) = (*,«).
The definition of Φ for general strata is similar.

Lemma 6.4. 7%e map Φ : M x #p x (C°°(M))m x Met —> M(Γ) is Λ smooth map
between manifolds with corners. Its restriction to each stratum is a submersion.

The lemma is a direct consequence of the definition and the straightforward
transversality argument.

Now we can use Lemma 6.4 to construct a compactification of the moduli space

Jl(Γ\ fp). We first consider the submanifold of

M(0) = {p : C0,int(Γ)

if there exists an edge of T joining v and v'}.

We fix Morse functions fe for each exterior edge e of Γ. And we fix a critical
point pv for each exterior vertex v. We consider the set Y of all elements of M ( 0 )
such that

If v1 is an interior vertex joined by e to a exterior vertex v. Then p(vf) is
contained in the unstable manifold of pv of the gradient vector field grad fe

(6.5.1)

If v, V G C0,int(T) such that J(v) = J(v'), then p(y) = p(v'). (6.5.2)

The following lemma is immediate from the definition.

Lemma 6.6. Φ~ι(Y) Π(M x ^? x {(fe)} x {#}) is equal to M{T\f,p). Here the
component of J is fe in the above formula for interior edge e and is fe in (6.5.1)
for exterior edge e.

We next use the following:

Lemma 6.7. For generic fe, the closure Y of Y in M(Γ) is a manifold with
corners. For each strata M{W) of M(Γ) the codimension of M{iΓ)Γ\ Y depends
only on the Morse index of pv and the combinatorial type of the graph and is
independent of W.

Proof. Let (p,u) G M(Ψ*). We describe the condition for this element in Y.
Let A be a maximal element of ΊV. The condition for p(A) G M is

If V is an interior vertex joined by e to an exterior vertex v and if v' G A, then
p(A) is contained in the stable manifold of pv of the gradient vector field grad fe.

(6.8.1)

Next we consider a pair v, V of vertices of T such that for J(v) = J(vf) we put
conditions for such pairs. Let us describe those conditions. Let A, A' G iV' be the
maximal element such that v £ A and vf G A'. If AΦAf then we assume

(6.8.2.1)
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If A = A! we need to put conditions on u. Let B, B' be the maximal element of
A{1V) such that v £ B and v' e B''. If B+B' then we put

u(B) = u(Bf). (6.8.2.2)

If B = B' we choose the maximal elements of B(iΓ) containing v, V. We con-
tinue in this way. It is straightforward to see that these conditions describe 7.

The co-dimension for each stratum is found from these descriptions. Namely we
put dim M conditions for each pair v,v' of vertices of T such that J(y) = J(vf).
(Note that condition (6.8) is applied once for each such pair).

The number of conditions corresponding to each exterior edge is the Morse index
and is independent of the stratum.

The proof of Lemma 6.7 is complete.
Using Lemma 6.7 we obtain:

Lemma 6.9. Φ~ι(Y) is a manifold with corners. The projection Φ~ι(Y) —> ZΓΓ x
(C°°(M))m x Met is a Fredholm map. This projection respects stratification. The
index of the restriction to each stratum is the same.

The tarnsversality we used in earlier sections follows immediately from
Lemma 6.9.

7. Orientation

In this section we define an orientation of our moduli spaces and verify compatibility
of them in various contexts. We first define an orientation of ^ Θ ( / I , / 2 , / 3 ) . We
regard it as an intersection of three submanifolds of dimension 4 in M 2 , as we
discussed in introduction. Namely we put

M(f) = {(/>, Φ}(p)) \P€M,t>0}CM2.

We regard it as an image of the map Ψf :M xR+ ^ M2,{pj) μ-> (p, Φf(p)).

Then an orientation of M induces one on M(f). We recall fh
M(f\)ΠM(f2) ΠM(fs). Hence we define a sign for each point on Cfff)
induced from the orientation of M2 and M(f). Thus Jt®(J\, fa, f{) is an oriented
O-dimensional manifold.

We remark that there is a diffeomorphism τ : Jie(f\if2>h) —• ^©(—f\>—fi>
-hX(p,q\t\,t2,tϊ) ι-> (q,p;tι9t2,t3).

Lemma 7.1. τ is an orientation preserving diffeomorphism.

We recall that we took the sum over <y#6>(εi/i,82/2,^3/3). Hence if τ were
orientation reversing then our invariant would be always 0.

Proof of Lemma 7.1. Let J : M xR+ -^ M xR+ be an orientation preserving
diffeomorphism (p,t) 1—> (ΦΓλ(p),t). And R : M x M —> M x M,(p,q) \-+ (q, p) be
an orientation reversing diffeomorphism. We remark that Ψ-f = R o Ψf o J. Hence
the lemma is a consequence of the following:

Sublemma 7.2. Let Vu i = 1,2,3 be oriented linear subspaces of an oriented vector
space V and R : V —> V be an orientation reversing isomorphism. Orientations of
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Vi induces one on R(Vi). Then R\Vιnv2nvz :VχΠV2nV3 -> R(V\) ΠR(V2) ΠR(V3)
is orientation preserving.

Proof. One finds that R\vιnv2 : V\ Γ) V2-> R(Vχ) ΠR(V2) is orientation reversing.
Hence R\vιnv2nv3 is orientation preserving, as required.

We next turn to the orientation of ^Θ(i,o,θ)(p,qm

9 f\, fz, f3), etc. We consider
stable and unstable manifolds. Namely:

U(p) =lxeλί\ Jim^ Φ}{x) = p\ ,

S(p) = \x e M I lim Φ/(x) = p\ .
(̂  t—>+oo J J

We remark that

X U(q))ΠM(f2)ΠM(f3) .

Therefore orientations of stable and unstable manifolds determines orientation of
^<9(I,O,O)(A#?/I ,/2,/3) The most natural way to define orientation of stable and
unstable manifolds is to modify the definition of the Witten complex a bit as follows:

Θ Qp [p,e]
p£Cr(f),η(p)=k

,-, ,-. , r v ε i s a n orientation of S(p)

Ck(M; f; ς) = .

Here [p,ε] ~ —[p,—ε]. Then the orientation of J?([p,£p],[q,εq]) is automatically
fixed. Namely the orientation ε of S(p) and the orientation of M determines an
orientation of U(p). Therefore the orientation of ^([p9εp],[q,εq]) = S(p) Π U(q)
will be fixed. Using this orientation and induced orientation on J?([p,εp],[q,εq])
we can determine the sign in the definition of dpq.

Also we can determine the orientation of ^Θ(\oo)([p,εp],[q,εq];fι,f2,f3)
= (S(p) x U(q))nM(f2)DM(f3).

We next discuss the compatibility of this orientation to one for Jte(f\>h,h)>

Let us consider a one parameter family L of (/, g). We fix an orientation of L. Then

JΊQ{L) — U ^ f2fyg)eL <^Θ(fu fi> fa) is a n oriented one dimensional manifold. One

of its boundary components is given as {J(ΛJ2J3,(»eLJίΘnoo)(p,Plfuf2,f3) As be-
pecrt/i)

fore we can define orientation of ( J ^ ^ ^ ^ e i ^6>(i,o,θ)(A /?; f\, f2, f 3 ) . To prove that
/>ecrt/i)

these orientations are compatible we only need to prove the following:
Lemma 7.3. {Jσ\,f2f3,g)eL S(p) x U(p) is a boundary component of

P<ΞCrC/j)

U(/i /2/3 g)eL-M(f)- Their orientations are compatible.

Proof The problem is local so we only need to work in a neighborhood of a
critical point p of fis. Then by using the Morse lemma, we may assume that / is
a standard quadratic function. In that case the lemma is easy to verify by looking
at the spaces directly.

We need to verify compatibility of the orientation in various contexts. First com-
patibility of orientation in Lemma 3.1 is an immediate consequence of Lemma 7.3.
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More interesting is the statement on orientation for Lemma 3.8. Let us state it more
precisely.

We consider two moduli spaces \J{fιj2j2.g)eL^Θ(\,o,θ)(P^lfuf2,f3) and

Ό l - f \ , f 2 , f 3 ) ' Their closures both contain

We are going to compare orientations attached to each term of the element of

Lemma 7.4. The orientations of ^( l ,0,0)(/?i ,#i;/ i ,/ 2 ,/ 3 ) and
—/19/29/3) cire opposite to each other.

Proof. We put

ί) = {(*>*) e M2 I grad /2(x) is parallel to grad /3(x)} .

£f(fi,f-i) is a component of the boundary of M{fι) ΠM(fi), and hence is an
oriented manifold. We remark that S^ift, f$) is contained in the diagonal. We have

We remark that S^{q\) is the same manifold as U-fλ(q\). We may assume that their
orientations coincide. 5/1(^i)x£^1(^i)^^1(^i)XiS/1(^i)=ιS'_/1(^i)xC/_/1(/7i) is
an orientation preserving diffeomorphism. The lemma then follows from the fact that
if R : V —> V is orientation reversing, and R : Vj —> ^(F/) is orientation preserving,
then i^l^n^ ^1 Π F2 —> i?(Fi) Γ\R(V2) is orientation reversing.

We next turn to the compatibility of the orientation we used at the end of Sect. 3.
Namely we prove:

Lemma 7.5. J(θ(iχx)(pi,quP2,q2)(fuf2,f3) and J(e{i,i,x)(quPuP2,q2)(-fuf2,
/ 3) has an opposite orientation to each other.

Proof Let A C M2 be the diagonal. Then

The lemma therefore follows from the same argument as Lemma 7.1.
There are many other cases for which we need to verify the compatibility of

orientations. But the argument for them are the same as those we discussed in this
section already.
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8. Concluding Remarks

As we mentioned in the introduction, we conjecture that the invariant discussed in
this paper coincides with Chern-Simons Perturbation theory by Axelrod-Singer, etc.
We here discuss a heuristic argument to "show" this conjecture.

We first recall the definition of the 2-loop amplitude of Chern-Simons Pertur-
bation theory briefly. Let ς be a flat g bundle on a compact oriented 3 manifold
M such that # * ( M ; ς ) = 0. Let Ωk(M;ς) be the set of all smooth &-forms on M
with a ς coefficient and let <4 : Ωk(M;ς) —> Ωk+ι(M;ς) be the exterior derivative.
Since our bundle ς is flat we have <&+i<& = 0. The assumption H*(M;ς) = 0 is
then equivalent to kerdk = Imί&-i

We fix a Riemannian metric on M and consider an orthonormal complement
1 of ker<4 =Im<4-i The restriction of dk to (ker^)- 1 is an isomorphism:

—• ker<4+i Let d^x be its inverse.
We consider the bundle Hom(π*ς, π | ς ) on M2. Here πz : M2 —»M is the pro-

jection to the /th component.

Definition 8.1. A section P G Γ(M2\zl;Hom(π|ς,πJ ίς) 0 Λ2(M2)) is said to be a
propagator if

d-\u){x)= f P(x,y)Au(y)dy
yGM

holds for each u G ker<&+i

We next define the Θ-trace: End(§)®3 —> R for each semi simple Lie algebra g.
Let ez be an orthonormal basis of g. We put

TrΘ(uι 0M2 <8)«3> = Σ (ίei>ej],ek)([uι(ei)9u2(ej)]9U3(ek)) .
UjΛ

Now the leading term of the 2 loop amplitude of Chern-Simons Perturbation
theory is given by

/ ΊτΘ(P{x, y) Λ P(x, y) A P(x9 y)). (8.2)
(x,y)eM2

We recall here that P(x9 y) A P(x, y) A P(x, y) e A^y)(M2) 0 Hom(ςx, ςy)®3. Hence

TTΘ(P(X9 y) Λ P(x9 y) Λ P(x9 y)) G Λ6

{x^y)(M2). So (8.2) gives a number. It is proved

in [AS] that (8.2) together with correction terms (terms related to the other graph

Λ9 etc.) is independent of the Riemannian metric, etc.
We conjecture that this invariant coincides with ours. We remark that the validity

of this conjecture implies an integrability or rationality theorem of Chern-Simons
Perturbation theory.

In [Wl] Witten introduced a perturbation of De-Rham complex and Laplace
operator using a Morse function. Let us propose to use this perturbation to verify
the above conjecture as follows.

Let G(t\x9 y) G Hom(ςx, ς^) 0 ( 0 Z A!x 0 Λ*y) be the Green kernel of the Laplace
operator. Namely if we put

u(t9x)= f (G(t;x,y),u(y))VolM,
yeM
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then
( \im u(t,x) = u(x)

\ft=-Λu
In other words G(t;x,y) is the Schwartz kernel for e~tΔ. We recall the formula

Since there is no

We

We

We

remark that d

put

then have

harmonic

-ι=δΔ~

1

Je-'λdt =
0

form, it follows

oo

A~λ = Je
0

"*. Therefore we

that

~tΔdt.

have:

oo

P = (ί(g>*)/G(ί;^j)ώ.
0

P(t;x,y) = (<5 (g) χ

/ fdS TvΘ(P(x, y) Λ P(x, y) Λ P(x, y))
M2

oo oo oo

= / / / fdhdt2dt3ττΘ(P(tύx,y)ΛP(t2;x,y)ΛP(t3;x,y)). (8.3)
M1 0 0 0

We now try to perturb the Laplace operator using the Morse function fi. Let us
consider the norm

(u,v)fl,ε = J(u(x),v(x))e^dS.
M

Let δεr be the dual operator to d with respect to this norm. We put A\ — δε^ o d

d ' δ ε hdoδε

frΎheΆ

= A + -L ε g r ady;
o

Here Lx is the Lie derivative by the vector field X. We let GεjXt;x,y) be the
Green function of A\. Using it we define

PεJι(t;x,y) = (δεJi 0 *)GεJι(t;x,y),

and

oo oo oo

/ dxdyj f fdtιdt2dt3TrΘ(PεjXtι;x,y)ΛPεj2(t2;x,y)ΛPcj3(t3;x,y)). (8.4)
M2 0 0 0

We expect that after suitable normalization this integral also gives the leading term
of the 2 loop amplitude of Chern-Simons Perturbation theory.

Let us then see what happens when ε goes to zero. We remark the leading term
of A£

fι = A + ̂ Lεgrady; is the Lie derivative. Hence after suitable normalization we
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find that e-^+ί***-^) « e"*L***f* « ( Φ ^ / ε ) * . Therefore GεJι(t;x,y) will be a delta
measure supported on M(f). Thus the limit of (8.4) is an integral of the current
supported at the set M(f\) ΠM(/2) ΓλM{f3). This shows that this limit is equal to
our leading term Z2(M;fι,f2,f3',ς). However to show that our invariant coincides
with Chern-Simons Perturbation theory, we need to discuss how the correction term
occurs. The author does not know how to do it.

Let us turn to the other topic, that is the relation of our Morse theory invariant
to open string theory. (The discussion here is rigorous unless otherwise specified.)
For this purpose we consider a domain D with genus 0 and 3 boundaries. Let
Λi9 i — 1,2,3 be Lagrangian submanifolds in T*M. We choose an almost complex
structure J on T*M tamed by the standard symplectic structure. We put

(J,φ)

v φ(δiD) C At
,Λ2,Λ3) =

J:TD->1Ό, J2 = -l,

φ:D^ T*M, Jφ = φJ

Here (7, φ) ~ (Ψ*J, φ o ψ). And dΛ = d\Λ U d2Λ U d3Λ is the decomposition to
connected components. Now we choose functions /h/2,/3 G C°°(M) and put Λj —
Aft = {(x.df^x) \x G M)}.

Lemma 8.5. For generic /h/2,/3 G C°°(M) ίλe space e/#(Λ/i,Λ./2,Λ/3) w a smooth
manifold of dimension 3 — dim M. If M is 3-dimensional this space is compact
also.

We omit the proof. The main point is that the moduli space of complex structures
on D is real 3 dimensional.

Now imitating the proof of [FO] we can prove the following:

Theorem 8.6. If ε is sufficiently small and /h/2,/3 G C°°(M) is generic then
Jf(ΛBfl9ΛBf29Λεf3) is homeomorphic to JίΘ(fχ - fl9fi - /3,/3 - f\\

We do not prove this theorem here since its proof is completely parallel to [FO].
We next mention some trouble to use this idea to show that the open string on

Γ*M is equivalent to the Morse homotopy of M. We remark that in Theorem 8.6 we
find Ji@(f\ — f2.f1 — fi»h — / i ) This space is a bit special compared to the gen-
eral Jte(9i,929d3)' Namely g\ + #2 + 93 — 0 is satisfied automatically. This causes
some trouble for our construction, since we took J(Θ(^\9\^292^393) f° r εi — ϋ
The condition g\ + gi + #3 — 0 i s n °t preserved by this symmetry. This symmetry
was necessary for the cancellation argument.

Namely to cancel the effect from, for example, the degeneration of the second
edge, we need to sum up two terms, one from g\,g3 and the other from —g\,g3.
(Here #2 can be arbitrary.) So to preserve the relation g\ + #2 + 93 = 0 we need to
put #2 •—*• 9i + 2#i. This corresponds to the matrix ( j J). The other two symmetries
we need are ( " J J ) and ( J j ) . These matrices generate an infinite subgroup of
GL(2;Z). (The symmetry we used in this paper is a finite group (Z/2Z)3.) Then
there is trouble to take the average.

There is another trouble. From the point of the open string it is natural to
consider the ribbon graph rather than the graph. In the case of the <9-graph this
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corresponds to consider another Riemann surface as well. Namely we need to take
D' — T2 — Disk. We can try to imitate the construction J?(Λι,Λ2,Λ3) and define

φ : Df -> T*M, Jφ = φj

φ(dD') C A

(Here 1,1 in the suffix means that our Riemann surface Dr is of genus 1 and 1
boundary component. In that sense one we used before is Jί§^(Λfλ,Λf2,Λf3).)

However in fact for this moduli space transversality never holds. In fact we can
easily see that elements of Ji\,\(Λ) are constant maps to the origin. Hence the actual
dimension is dimM, while the formal dimension is (3 — dimM)(2# + k — 2). (Here
g is the genus and k is the number of boundary component. In the case of Jί\^{Λ)
the formal dimension is hence 3 — dimM.)

This fact is parallel to a similar problem in closed string theory. Namely we
consider the moduli space of holomorphic map φ from the genus one (or higher)
(closed) Riemann surface I to a symplectic manifold X such that φ*{cι(X)) = 0,
then we have a moduli space homeomorphic to X, that is the set of constant maps.
The virtual dimension of this moduli space is 2g(3 — dimM) and is different from
the actual dimension. This problem was studied by Ruan-Tian [RuT] using the
inhomogeneous perturbation. Maybe there is an approach to our open string setting
also using inhomogeneous perturbation.

This problem will cause a trouble to generalize Theorem 8.6 also. Namely the
homeomorphism in this case should be

JiχM&f) I JίΘ{f -fj-fj-f).

We can not perturb Jίθίf — f,f — f,f ~ f) = « ^ Θ ( 0 , 0 , 0 ) ! to achieve transver-
sality in a similar way discussed in this paper.

The author yet does not know how to overcome these problems, define the open
string amplitude and prove that it coincides to our invariant in the case of the
cotangent bundle.

Finally we discuss another way to handle the anomaly of the Morse theory
version of Chem-Simons perturbation theory. Our argument here is not rigorous, so
we put " " in the Lemmas below and mention 8.9 as a conjecture. We recall that the
reason we need to take two flat bundles and take the difference is the degeneration
of the moduli space parametrized by

R(f) = {x e M I grad fi(x) j = 1,2,3 are parallel to each other}

R(L) = {((?,g),x) I (/,#) e L,x G R(f)} .

(See Sect. 2.) Here L is a one dimensional subspace of (C°°(M))3 x Met. We are
going to discuss another way to cancel this degeneration. For two functions / , / ' ,
we consider the space

S(f,f) = {xeM\ grad f(x) is parallel to grad / '(*)} ,

and put _ _

') = S(f,f')US(-f9f).
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(We recall that our notation that the two vector is parallel was a bit unusual.) We
have:

"Lemma 8.7". For generic f,f the space S(f,f) is a compact one dimensional
oriented manifold.

Proof. The proof that S(f,ff) is one dimensional at a regular point is a counting
argument we discussed many times. It is also easy to see that S(f,f) is smooth
outside the critical point of / or / ' . Let us consider a critical point p of / . Let
dBc(p) be the boundary of a small metric ball of radius ε centered at p. Then
the restriction of grad / to dBε(p) is regarded as a map from Sn~ι to R"\{0}.
The degree of this map is ±1 according to the parity of the Morse index. By
choosing ε small grad / ' is almost constant here. Therefore £ ( / , / ' ) Π dBε(p) and
S(—f,f')ndBε(p) both consists of one point. The lemma follows immediately.

Now we consider S(f\,f2) and S(f2,fi). For generic f they intersect only at
Cr(/ 2). There is exactly 2# C r ( / 2 ) choices to perturb S(f,f2) so that it does not
intersect to S(f2,f?>). Let S(f\,f2;ε) be those perturbations. We put

Lk(Jufi\fi,h) =
ε

Here Lk denotes the linking number. To make it symmetric we take

λ

f2J,)

They we have the following:

"Lemma 8.8". For a generic path L joining (f,g) and (f\gf) we have

"Proof". The linking number Lk(f\,f2;f2,fτ,) changes if and only if S(f\,f2)
intersects with S(f2,fτ>) outside Cr(f2). This intersection is exactly the point of
R(f). The lemma follows.

These "lemmas" may suggest

Conjecture 8.9. Under the assumption of Main Theorem II9 the number Z2(f,f2,
/ 3 , / 4 ; ς ) - fZ^(/i,/2,/3) is an invariant of (M\ς).
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