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Abstract: We consider constructing the higher order Hamiltonian structures on the
dual of the Lie algebra from the first Hamiltonian structure of the coadjoint orbit
method. For this purpose we show that the structure of the Lie algebra g is inherited
to the algebra of vector fields on g* through the solution of the Modified Classical
Yang—Baxter equation (Classical » matrix). We study the algebra that generates the
compatible Poisson brackets.

Introduction

Let D be a ring of differential operators and E be a ring of pseudo-differential
operators. We have a direct sum decomposition such as

E =D ($) E_l,
where E_; is a subring of E consisted of pseudo-differential operators whose
orders are at most —1. For P € E, we abbreviate ProjepP and Proje; P as
P, and P_ respectively. Let L be a momc p order differential operator, L =

0P +ap_1(x)0P"! + .-+ + ag(x), where = 2. We define the space of § functions
K such as

N { Z ai, imé(i])(xi[ ) T 6(i"1)(xim)|ai1 in € C} )
s sim

We regard that
K=@ &" C"™(R),

n=0

where C™°°(R) is distribution of R. Let M be a space of functional of L such as

M:{F(L):. DR PO 8 PR GO s ,f;,"eK}
11

s 5im’jl’ sJm
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We call M as phase space. The phase space M is generated by
ap_l(xp_l),...,ao(xo), Xp—15-+-5X0 €R

in the following sense

Jis sJm (jl)(x“) . (j'n)(xz,,,)

11, lm 11

= [ o [ oo —xi) 0, — xi,) X @V (i)

-am (v, )dyi, - - dy;,

o0 oo
3y —x)a idy - [ 8, — xi,)a™ (vi)dy,,
—oc0 —o0
. . (S . .
= lel: :{: f (_)Jl 5(11)(%’1 — Xi )ail(yil )dyil
—00
m . .
: f (—)]'”5(]”')()% = Xi,, )ai, (Vi, )AYi,
— 00

= [ [ = ey —xi)

—00 —00

. 5(j’")(J’im —xi,)a (yiy) - @, (¥i, )i, - - - Ay,

Then we only have to consider the functional such as

o0 o0
Fiy= 3 [ [ fu G xi,)ai () - @i, (33, ), - - dx,,
—o0

i1, »im—o00

where fi . (xi,...,%;,) € K. Thus we can regard the functions a,_i(x,—1),...,
ag(xo) Xp—1, ..., X% € R as generators of M. If F € M has the parameter x, we call

F as function of x and sometime; denote F(x). We define the functional derivative

Oa (Y)
6a,(zx) such as 5755 o = 0;;0(x — y) and

6F(L) Z Z f Tfih Jim @iy (xil ) T aiu—l(xiu—l )aiy+l(xip+l)

5ai(x) i, im p=1— —00
.- aim(xim) X 5i”,5(x — x,'” )dx,-l cee dx,-m.

From the above definition gF (L) has parameter x. Then it is legitimate to write gap (é;

as & (L)(x) For P € E, we write P_; as coefficient of 0~! of P. The inner product
of E is defined as follows:

= }O(PQ)_ldx, P,Q €E.
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Put Z =z, 1(x)07~! 4 .- zo(x). We define the gradient VF(L) by
P

L FLtiz)= (Z, VF(L)).
dt|_

It is easy to see that VF(L) = Zf:ol ﬁ*i_l‘s—g((lf—)(x). For F(L),G(L) € M, we define
the Poisson bracket by [1],

{F,G} = (L,[VF,VGY)).

By the following property of the bracket we only have to calculate on generators,

I T L% atoaiasdy. @)
00 —00 7

a;

{F(L),GW)} = < 2

0<ijsp-1—

In other words, we can see the Poisson bracket as a contravariant skew symmetric
2-tensor

[o olNe o}

wl(dFs dG) = Z f f lj(x y) (x)-—(J/)dXdy,

0<ij<p—1—00 —0o0

where @'(x,y) = {ai(x),a;/(»)} and dF =3, , | [7o, & (x)day(x). By defini-
tion, Va;(x) = 0;7715(x — z). Then we have

{a:(x)a;(»)} = (L[07'6(x —2),0:7"8(y — 2)])

> (" o 1)ak(yw(“)(x—y)
k—p=i+j+1

- (" I l)ak(xw)(y —x).
Notice that the resulting Poisson structure is linear with respect to the coefficients

of L. A vector field v on M is defined as follows:

WF(L)) = Z J o (x)dx

i=0 —oo

We mean that o(L) = ZJ‘.:OI v(a;(x))d/. Furthermore we see that v(a;(x)) =

JZ5 0i(»)8(x — y)dy = v(x). Then we have v(L) = Z;:OI v;(x)07 and v(F(L)) =

(v(L), VF(L)). We define the Hamiltonian vector field XIE}’l for HeM by
X2(G)={H,G}, GeM

Notice that 1
Xy (G)=(L,[VH,VG]) = ([L,VH],,VG).
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On the other hand X;,"I(G) is equal to (X,‘;,’] (L), VG). This leads us to

Xg'(L) = [L, VH]. (0.2)

In general, on the manifold X, the Schouten bracket [w,#] is defined as follows,
where w,# are contravariant skew symmetric £ and / tensors respectively.

i([o,n])t = (=) i(w)di(n) + (=) i(n)di(w))r,

for any covariant skew symmetric £ + / — 1 tensor ¢, where i is inner derivative and
d is exterior derivative. The reader can refer precise definition of i and d in the next
section. In particular w is 1-form, that is, w is a vector field v on X, the Schouten
bracket [v,7] is called Lie derivative of # with respect to v. By easy calculation, we
see that the contravariant skew symmetric @ defines a Poisson structure on X if and
only if [w,w] = 0. Since L is a p™ monic differential operator, one can construct
B, € E satisfying
(B, L] = L™, nz -1,

where the coefficients of B, are differential polynomials of that of L. It is easy to see
that v,(L) = [~B,—,L], n = —1 define the vector fields on M. Adler and Moerbeke
shows the following facts.

Theorem 0.1. [3].

1 [Un, Om] = (M — 1)V,

) XLy = —(k + DI(VHLYY_ — (I*VH)_L) k= —1,
where VH € E is defined by [L, VH] = [L, VH].

In particular they show that X/ 19'] is a vector field of second Hamiltonian struc-
ture of KdV equation defined by Gel’fand-Dikki [4-6]. Put o* = —‘k—l[vk_l,wl],k >
1. They show that o', w?, ... define the compatible Poisson structures.

Theorem 0.2. [3]. Put w = o' + - -- + ok, where Ay, ..., 4 € C. It holds that
[w,w] = 0.

Roughly speaking, Theorem 0.2 is induced from (1) of Theorem O0.1.

Let L =0+ a;(x)0~" + ay(x)d~2 + - -- be a Lax operator of the KP hierarchy.
We can define the phase space M as in the previous case. By Watanabe, the first
Hamiltonian structure is defined on the Lax operator of the KP hierarchy [16]. To
get the second Hamiltonian structure of the KP hierarchy systematically, it is natural
to consider to apply the method of Adler and Moerbeke. To apply this method to
the Lax operator of the KP hierarchy, there is an obstacle. In the case of L € D, L
satisfies L, = L and L_ = 0. These properties are necessary to prove Theorem 0.1.
Although the Lax operator of the KP hierarchy does not have these properties. One
can easily show that R = Proj, — Projg_ satisfies the Modified Classical Yang



Higher Order Hamiltonian Structures for MCYB Equation 761
Baxter Equation (MCYBE)
[RX,RY] — R([RX, Y]+ [X,RY]) = —[X, Y], X YE€E. (0.3)

The motivation of this paper is to find suitable R€ End E satisfying (0.3) that the
operator %(R + 1)P and _TI(R — 1)P taking the place of Py and P_ for P€ E
to avoid the obstacle mentioned above. To this purpose we study what relation
the vector fields should satisfy to generate the compatible Poisson structures like
Theorem 0.2 in the general Lie algebra.

Let g be an infinite dimensional Lie algebra and R € End g is the classical »
matrix, that is, R satisfies (0.3). If one assumes R? = 1, then g is decomposed
into the eigenspaces of g, and g_ of R, where g, = {x € g|Rx =x} and g_ =
{x € g|Rx = —x}. Since R is the classical r matrix, g+ are Lie subalgebras. In
this case %(R + 1) and _Tl(R — 1) are projection to g, and g_ respectively. From
R= %(R +1) - _TI(R — 1), R is the difference of the projection. In this paper we
study a little more complicated case. We assume that R has three eigenvalues 1,0, —1
and g is decomposed into the corresponding eigenspace, g = g+ @ go ® g—. Since
R is a classical » matrix, g4 and gy are Lie subalgebras, especially gy is abelian.
Moreover we assume that the invariant and nondegenerate inner product (,) is
defined in g. Since R satisfies (0.3), g+ and g_ are isotropic and gy is orthogonal
to g+ with respect to (,). We can choose the generators of g,,ej,ey,..., that of
g—, f1, f2,-.., and that of gg, &y, Ao, ... satisfying

(ei, f7) = 0ijs (hihj) = 0y

Put L =Lie; + Lres + - -+ € g+. We denote the commutative algebra over C gen-
erated by Li,L,... as 4. For F(L) € A, we define VF(L) by %;’—tz—)h:o:
(Z,VF(L)), for Z € g;. In this case VF(L) =}, 51;—2” fi. The Poisson bracket
on A4 is defined by

{F,G} = —(L,[VF(L), VG(L))). (0.4)

Let w' be a contravariant skew symmetric 2-tensor which corresponds to {, }. Fur-

thermore we define the Hamiltonian vector field for H € 4, X;,"l (F)={H,F}. By
(0.4) and invariance of (,), we have

X2 (L) = —R([L, VH]) mod go,

where R, = %(R + 1). If there is B € 4 ®c g such as [B,L] € g,. One can see that
v(L) =[R_(B),L] is a vector field on A4, where R_ = %(R —1). Let [v,w'] be the
Lie derivative of w! with respect to v. We have

T
XLy = R, ([R_ (j—f - (Z—f) ) (R+([L, VH])),LD mod go.

In this paper we do not treat the associative algebra but the Lie algebra. Thus we
can not define L". For this reason we consider B_;, By, By, ... € g such as

[Bn,L] = Kn(L) € g+ (0-5)
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Instead of considering L", we impose the following 2-conditions on K.

(i) The invariance of vector fields on L with respect to dK,, n= —1, that is, if
v(L) is vector fields on L then dK,(v) = v.
It is easy to see that [B,,K,,(L)] = dK,,(K,(L)) € g+. Then we assume

m+n .
(i) dKn(Kn(L)) = 3_ BppKi(L), By € C.
i=—1

Put B, = ) ;> Bye + Yz B! f;. Under the situation [B,, L] = K,(L) € g, we can
determine the coefficients of Bﬁ,,ﬁ‘n,i =1,2,... From assumption (ii), the commuta-
tion relations of B,’s are obtained such as

m+n k
[Bm’Bn] = Z amana
k=1

where akX, = bk — bk . We define the vector fields v,(L) by v,(L) = [R_(B,),L],
n = —1. With some technical conditions, we have the following results.
The commutation relations of B,,n = —1 are inherited to v,, n = —1,

m+n

@ [Oms 0n] = = D2 V-
k=—1

Put 0**! = [0y, w'], k = 0. Then w*, k = 1 define the compatible Poisson struc-
tures, that is, for any linear combinations of @ = A;w' + - - - + AxwF it holds that

an [w,w] = 0.

Section 1. Let g be an infinite dimensional Lie algebra and R be an element of
End g satisfying the Modified Classical Yang-Baxter Equation (MCYBE),

[RxaRJ’]—R([RX,y]‘f‘[x,RJ’]):—[an’], X,y €4g. (11)

We suppose that g is decomposed into the eigenspace of R such as

g=9g+DgoDg-,

where
g+ = {x € g|Rx = +x}, go = {x € g|Rx = 0}.

Let (,) be an invariant nondegenerate inner product on g. We also assume that R
is skew symmetric with respect to (,), i.e. (Rx, y) = —(x,Ry), x,y € g. We denote
R, and R_ as Ry = (Rzﬂ. Notice that R,x =0, x€g_, R_x=0, x € g, and
Rix = :t%x, x € go. We also notice that R, x = x (resp. R_x = —x) implies x € g
(resp. x € g_).
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Proposition 1. The eigenspaces g, and g_ are subalgebras of g. Moreover g, is
abelian.

Proof. 1t is easy to see that
[R:I:xaR:I:y] = Rﬂ:[-x’ J’]R, XYy €qg,

where [x9y]R = %([Rx,y] + [)C,Ry]) If X,y € g+,[x, y] = [R+X,R+J’] = R+[x9y]R‘
Notice that

S0RE )+ D5 RyD) = 50571+ [53]) = [ 01

Then we see that R [x, y] = [x, y] for x, y € g,. It implies [x, y] € g+. We can show
g— to be a subalgebra in the same way. Suppose x, y € gy, then

[x, ] = 4[Rix, Ry y] = 2R ([Rx, y] + [x,Ry]) =0.  QED.
Proposition 2. [g1,g0] C g+.
Proof. Suppose x € g, and y € go. Then we have

1
Rilx,»] = 2R, 5([Rx, ] + (% RY]) = 2[Ry Ryy] =2 5, 3] = [3].

We can show [g_,go] C g— in the same way. Q.E.D.

Proposition 3. Fach g, and g_ are isotropic with respect to (,). Moreover gq is
orthogonal to g.

Proof. Assume that x,y € g. From skew symmetry of R, we see that (x,y) =
(Rix,y) = —(x, R_y). Since y € g, R_y =0, then (x, y) = 0. We can show the
case of g_ in the same way. Suppose x € g, and y € go. Thus.

<x’y> = <Rx>y> = <x’_Ry> = <x30> =0.

We can show (x,y) =0, where x € g_, y € gy, in the same way. Q.E.D.

Proposition 4. We can choose the basis of g,{e,}2; C g+, {fa}2 Cg— and
{hn},ﬁl C Jdo such as (e,‘,f}> = 5ij and <h,‘,hj> = 5,']‘.

Proof. At first we take e; 0. From the assumption of nondegeneracy of (,), we
can take f € g, such that (e, f1) +0. We normalize f; to be (e, fi) = 1. We
take e, according to the following two cases. Let us write g, as g = M @ Ce;. If
f1 is orthogonal to every element of M, we take an arbitrary element from M as
e2. Thus (fi,e;) = 0. If there exists the element of M, é,, such as ( f1,é, ) +0. Put
ey =& — (f1,é2)e1. Then (ey, f1) = 0. From nondegeneracy of (,), we can take
the element of g_,f, such as (f5,es) # 0. Put f> = f, — (f5,e1) f1. Then it follows
that {(e1, f2) =0 and (e;, f2) = (ez,f2> # 0. We normalize f, to be (e, f2) = 1.
To choose e; and f3, we again consider according to the following two cases.
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Let us write g. =N @ Ce, & Ce;. If f, is orthogonal to N, we take an arbi-
trary element from N as &. Put e; = & — (f1,€3)e;. Then (e;, f1) = 0. More-
over e3 € N @ Cey, then (e;, f) = 0. If there exists an element of N,és;, such
as (&3, f2) #0, put e3 =& — (&3, f2)ex — (€3, f1)er. Then it holds that (es, f2) =
(e3, f1) = 0. By the non-degeneracy of (,), we can take f3 such that (es, f3) +0.
We normalize f3 to be (e3, f3) = 1. We can choose ey, es,... and fa, f5,... in the
same manner. Let &1, /... be the basis of go. If (};1,};1) +0, put h1 = ﬁl/(ﬁl,ﬁl)l
In the case of (ﬁ,,ﬁl) =0, we can choose /; such that (hl, >=i:0 by virtue
of non-degeneracy of (,). We exchange &, and such &; whose index is small-
est. If (52,52)4:0, we exchange hy and h,. We consider the case of (ﬁz,ﬁz) =0.
Put
~ 1 -
hy = hy + 2(1;1,52);12’

then we have (h,h;) = 1. We project hi,i = 2 to the orthogonal complement of
hy such as h; — (ﬁ,-,h1>h1. Then (hl,l;,-) =0, i =2 If (52,};2>=|:0, we put A, =
hy/(hy, hy). We consider the case of (hy, hy) = 0. By the non- degeneracy of (,),
there exists #;,i > 2 such that (hz, )#O We exchange h3 and such #; whose index
is smallest, that is, (h;;_,h3) +0. If <h3,h3) #+0, we change hy and k3. We consider the
case of (h3,h3) =0.Put hy = Iy + 3 h y >h3 We see that (h,hy) = 0 and (ha,hp) =

1. We can define A3, Aq4,..., in the same way. Q.E.D.
Put [e;ej] =) 45, c,-';-ek and [fi, f51 = D451 Gt
Proposition 5. It holds that
lei /i) = 2 Ejeex = ¢l fi  mod go.

Proof. Put [e;, fi]1= D5, diex + (ifjfk + a, where a € gy. One sees that

([eiel, fi) = 121 clilen fi) = ck.

On the other hand, from the invariance of (,), one sees that
<[ei9ej]9 fk) = <ei’ [ej7fk]> = <ei5 IZI d;‘kel + J;kﬁ> = ~j’k
=

Thus we see that ci’; djk We can show c d}{ in the same way. Q.E.D.

Put L =Lie; +Lye; +--- € gy. We consider the commutative algebra 4 =
C[[L1,L,,...]]. For the element F € A, we define VF(L) € A ®c g—, such as 4|,_,
F(L + tZ)=(Z, VF(L)), where Z = Ze| + Ze; +---. Notice that VF(L) =
Z, o £ f;. We introduce the Poisson structure as follows. For F,G € 4, the Poisson
bracket is defined by {F,G} = Q(L, [RVF,VG]+[VF,RVG]) = —(L,[VF,VG)).
From the calculation, {F,G} =3_, ; g—f‘ g—LGJ{Li,L j}, we can regard the Poisson bracket
as a contravariant skew symmetric 2-tensor. We identify the Poisson bracket defined

above with o' =Y, jw'{ a‘z A =+ aL The Hamiltonian vector fields associated with
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H € A defined by X2 (F) = {H,F} satisfy
X2'(L) = —R.(IL, VH]) mod go.

We consider the complex of contravariant alternating forms with the coefficient 4.
Let a; be a space of vector fields on 4. We consider the de Rham complex over a;.
Let Q9 be the space of covariant alternating g-forms over 4. The exterior derivative
d: Q1 — Qi1 is defined as follows:

q+1 ) R
dco(Xl, ...,Xq+1) = Z (—)I+IX}CO(X1, ...,Xi,...,Xq+1)
i=1
+Z (_)i+ja)([*Xvia)(j]sXIs . -sX\,is . 'a)ejv'"Xq-l-l )’
i<j
where Xj, ..., X,41 are elements of a;. Note that d?> =0. For X € a;, the inner
derivative iy : Q9 — Q97! is defined as follows:

ixo(Xy, ..., Xg—1) = 0(X, Xy, ..., Xg—1).

Put Q = ®,>0Q9. We call (£,d) the de Rham complex. We denote A%a; as a space
of skew symmetric g-tensors of a;. Moreover we denote Aa; = @0 A? a;. In order
to introduce the bracket product in Aa;, we use some new notations. The operator
defined below is a generalization of the inner product. For w € A%a;, the operator
iy QP — QP9 is defined as follows:

int(X1, ...,)(p_q) = Hw, X1, ...,/Yp_q),

where Xi,...,X,_,€a; and ¢ € QP For w € APa; and 5 € Na;, the Schouten
bracket [, 7] € AP~ is defined as follows [12, 13]. For any ¢ € QP+9~!

itont = ()P iydiyt + (=)Piydiyt.
This definition is well defined because of the following lemma.

Lemma 6. The operator i,, w € Na; is non-degenerate, that is, i,t =0 for any
t € Q4 implies w = 0.

Proof. Putt, ;

q

=dL; N---NdL;,. Then it is easy to see that

0 0
(i) = %0 00

where 0 7 is Kronecker’s delta with respect to the finite set / and J. Thus iyt;,, ;, =
+w™ 4. Then iyt = 0 for any ¢t € Q7 implies w = 0. Q.E.D.

It is easy to see that the Schouten bracket satisfies the following relation:
[w,n] = (=)"[n, w],
(_)Pr[[w, ’1]7 é] + (_)[)(J[[n, é]s CU] + (_)qr[[éa (J)], ”I] = O,

where w € APay, n € Na; and & € N'a;. We call the second formula a Jacobi
identity of the Schouten bracket. Suppose that w € A%a; satisfies [w,w] = 0, then
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® defines the Poisson bracket. For v € a; and @ € A%a;, the Schouten bracket
[v,w] is called the Lie derivative of w with respect to v. By easy calculation, we

see that oo/
y . OV

v,0]Y = v a)kf —Y o*—.

(o, SV - Tet

In line with [3], we calculate the Lie derivative [v,w'], where the vector field v is
defined such as v(L) = [R_(B),L], where [B,L] € g+, B€E AQcg.

Lemma 7. It holds that
X2 = [0,X2] ~

Proof. Putv=3, vk a; and o = Z,jw i N aL We see that
oK —Xigo :;,

L OH 6H6k0 ..8<6H>8
oL P
l

_ k ij
EZ 6Lk aLaL “’aLaL L. oL \' oL,

_Zukﬁi"fﬁﬁ_{ﬂ_ ;0vF 0H 0 w@vkaHﬁ
~ Sk 0L OL; OL; aL OL; 0Ly OL; 0Ly 0L,

9 00\ 0H 9 ,OH 0
= k ik 2V .
B (U o Y 5Lk> oL, oL, IX}[ "L L QED.

Recall that v(L) = [R_(B),L] and [B,L] € g.
Proposition 8. It holds that

X'y =R, ([R_ (‘;—ﬁ - (ZIZ) )(R+[L VH]), LD mod o,

where ( BT is the adjoint operator o —f with respect to (,).

Proof. We first show that v(L) = [R_(B),L] defines a vector field on 4.

Lemma 9. It holds that
[R-(B),L] € g+.

Proof. We may show R_[R_(B),L] = 0. We see that
1
R_[R-(B),L] = ZR_([R(B),L] - [B,L)),

since [B,L] = [B,RL] € g+,

1
= JRIRB),L] = 3R (R(B), L1+ [BRL])

since R satisfies MCYBE,
=[R_(B),R_L1 =[R_(B),0] =0. Q.ED.
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By Lemma 7,
XPOUL) = oXg' (L) - X' o(L) - Xh (L)
= —vR.[L,VH] —X,‘}’l[R_(B),L]+R+[L, VvH] mody,
= —Ry[oL, VH] — R.[L.vVH] — [R_(X B),L] — [R_(B), X (L)]
+R,[L,VvH] mod gy,
since XL’ “I(L) is vector field,
= —R.[[R-(B),L], VH] — Ry[L,oVH] — [R_(X;' B), L]
+R[R_B,R{[L,VH]]+ R([L,VvH] mod go. (1.2)
Notice that
Ry[R—(B),R+[L, VHI| = Ry [R_(B),[L, VH]| — R [R_(B),R_[L, VH]]
For any two p,q € g, we can decompose such as p = p, + po+ p— and g =

g+ +4qo+q—, where p,,q; € gy, po,qo € go and p_,q_ € g_. We see that

1 1
R_p,R_ql=|—=po— p—,—=qo — q—
[R-p,R_q] [ SP0 = P— =500 — 4

1 1
= 5[po,q-1+ 5lg—, pol +[lg—, p-1 € 9.
Then we have R [R_(B), R, [L,VH]] =R,[R_(B),[L, VH]]. We proceed with
the calculation
(1.2) = =R ([[R-(B),L], VH] + [[L, VH],R_(B)])

—R4[L,wWH—VvH]—[R_(X;'B),L] modgo

= R.([[VH,R_B]+vVH—VvH,L]) — [R_(Xg'B),L] modg,. (1.3)
We calculate vWVH — VvH independently of [3]. Notice that

L0 OH . 0 0H . vl oH

i,j ij

By definition,
(L) =[R_(B),L] = Y [R_(B),L)e; = Zviei.

i
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Thus we have

o' 0 0 0
= 5L—j[R—(B),L]i = (E[R_(B)’L])i =( [5L—R (B), L]

L,
e spi] ) =(a] R + we @),
J i
Then we see that

OR_(B O0H
vWH — VoH = IZ]: — < [ 6L(j ) ]> —Jfi— <fi’[R_(B)’ej]>6_L,~fj'

By calculation, we see that

0
>~ (ol (Bes]) o f —Z<ﬁa—g,[R—(B),e,~]>ﬁ
i,j i
fi=—2(
J

ij

= _Z (VH, [R—(B)’ej]> j= , [VH,R—(B)]aej>f)
J

— _SVHR_(B)Yf; = ~[VH,R_(B)]
J

Moreover we have

OR_(B) 0H [OR_(B)
5 TP o3 v [ s
B OR_(B) _ /0R_B _
__21:<VH’[ OL; ’Lij_ X]:< oL; *77 >fj

— Y R,(L VH]) (aR 5 ) 5

ij

Furthermore we see that

dR (B) dR_(B)

@)= (B2 @f) = SVR-B) )00,
J

B OR_(B); _ OR_(B), aR B)
~E (T e 0= 2 55 =

Then we have

S RALL ) (aR (B)) SR TS &)

(ej)zfj

d
——Z< R=B) (o)), R, (L, VH]>>f,

d B T
-5 <ej,( R )) Ry ([L, VH]))> 5
J
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Notice that
dR_ (B)(Z)‘l_,oR (B)(L+SZ£)—R—(B)(L)
_ . B(L+¢Z)—B(L)\ _ dB
o (s Ay ()

This fact yields

dR_(B)Y dB\
_; <e,-,( dL( )) (R, [L, VH])>fj =-3 <ej,R_ (ﬁ> (R4[L, VH])> S

Since T and R_ commute, we have

T
—Z <e,, (‘;—lz) (R, [L, VH])> f
dB\
— —E <e,, ((dL) )(R+[L VH])>f
dB
=-R_ ((dL) )(R+[L VH]).

vWH — VoH = —[VH,R_(B)] — R_ ((jﬁ) ) (R, [L, VHY).

Then we have

Finally we get

(12) = Ry <[[VH,R—(B)] —[VH,R_(B)] - R ((ff;) ) (R+[L, VH]), D

—[R-(Xg'(B)),L] modgo,

- R, ({R ((f,f)) (RLIL, VHY), LD — RyR- (X (B)).L]

—R_[R_(XZ'(B)),L] mod go. ()
Note that ] . ]
R(X4'(BY) = S X4 (BN fi = X (X5 (L), VB, f;

Although equality X,f,”l(L) = —R,[L,VH] has ambiguity of modulo g, go is
orthogonal to VB;. Then we have R_(X,f,"l(B)): —R_(%(R+[L, VHY)). Thus
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) = R, ({R_ <Z—f - (Zf) )(R+[L VH]), D

+R_[R_(X? (B)),L] modgo.

W€ see

Since XI[,”’“"] is a vector field on g, we have

xXPONL) = R, ([R_ (g% - (;’f) )(R+[L VH)), D modgy.  QED.

We consider the vector fields which preserve the Poisson structure. Let {B, },>_1
be elements of g such that

[Bn, L] = Ku(L) € g+ n = —1.

We imagine K,(L) like L"*!. Since the algebra g is not associative but a Lie algebra,
we cannot define L"*!. Instead of explicit realization of K,(L), we assume the
following two conditions: (i) If v =v(L) is a vector field on L, then v is also a
vector field on K,(L) and dK,(v) = v, n = —1. Before stating the second assumption
for K,(L), n = —1, we show the fact [B,,K,(L)] € g+. We define the vector fields
vp(L), n = —1 such as

un(L) = [R—(By),L].

From Lemma 9, v,, n = —1 are vector fields on L. We decompose [B,, K,,(L)] into
2 parts as follows:

(Bn, Km(L)] = [R4(Bn), Km(L)] — [R—(Bn), Km(L)]-
It is clear that [R.(B,),Knu(L)] € g+. Furthermore we see that
[R—(Bn), Kn(L)] = dK(0n) = vn(Kn(L)) € g+
On the other hand we see that

[Bn, Km(L)] = Z m(L)[Bn, €] = dKp([By, L]) = dKp(Ky(L)).
The second assumption is

m+n .
(ii) dKn (K, (L)) = 3. b Ki(L), b, €C i=—1,...m+n.
i=—1

Put B, =) .5, Bei + Z;>1B ' ;. Under the condition [B,,L] = K,(L) € g4, we
determine the coefficients B. and B/} in the localization of 4 = C[[L;,L,,...]] at
(0,0,...). We see that

0=R_[By,L] = R_[RBp,R{L] = R_[R_Bn,L] = R_R(([By,L]r) — R—[R_By,L].
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From this one can see R_[R_B,,L] =0 modg,. Expanding B, and L with respect
to the basis of g such as

—R_[R_B,,L] = R_ {Zénffj, } > BiL;R_[f e
izl i

ij=1

||v'

= Z zjkfk modgo.
k=1

||V M
U:Jz

Put Ay =3 5 Ly c;,;- Furthermore we assign B, the role of moduli. Then we have
the system of the equatlon

Ay Axn

5o = Az Az - ~
(B2, B3,..) = —BMNd411,412,...).

By Cramer’s formula, we have

A Az

o . Aic1r Az

Bl = —B, det A Ay [det(d ))uz2v>1 12 2.
A1 Aip2

Moreover we have

Ddz

Ky(L) = [By,L] = Z ( Z B£L10ﬁ> €u— Z ( 'j'L c]#) €u-
j21,i=1 pzl \Jjzlizl

Pzl
Put Agj = 2@1141401{4 and D; = ngl’iglg,{LiEﬁ—i-K,f(L). Then we have

/ /
All A12

LB, | 4 4w - | =(Dy,D,,...).
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By Cramer’s formula we have

Ay A

. ! !

B; = det Ao Ao /det(d, vz J 2 1
D, D,
}+1,1 A}+1,2

From condition (ii) of K,(L), we can calculate the commutation relations for B,’s

as follows:

([Bm,Bn], L]

I

—[Bn, [Bms L1] + [Bms [Bn, L]] = —[Bn, Kn(L)] + [Bm, Kn(L)]

AR (KoL) + dK(Kn(L)) = S (Bl — bl )KAL)
i=—1

m+n .
Z (blnm—b;nn)BhL .

i=—1

Then we have [B,,B,] = >."" a. B;, where a,, = bi, — b’ . We show the fol-

i=—1

lowing rather general theorem.

Theorem 10. Suppose that R € End g satisfies MCYBE (1.1). Then it holds that

[v,v]=— Y diu.
k=21

Proof. We first show the following lemma.

Lemma 11. It holds that

Un(Bm) = [R—(Bn), Bm].

Proof. 1t is easy to see that

dB,, dB,,
Us(Bp) = E(Un(L)) = d—L([R_(B")’L])'

Taking the differentials of [B,,L] = K,,(L), we have

Then we have

[dBy, L] + [Bw,dL] = dK,(dL).

dB, = ad; 'adp, dL — ad; 'dK,(dL).
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From the fact that dB,, dB’" “(dL), it holds that
dB,,
—(R-(B.),L])
= ady '[By, [R—(B,),L]] — ad; ' dKu([R—(B,),L])
= —ad; '[L,[Bn,R—(B:)]] — ad} '[R—(Bn),[L, Bn]] — ad} ' Ku([R—(Bx),L])

= [R_(By), Bn] + ad; '[R—(By), Kn(L)] — ad; 'dKn([R-(B,),L]).  (1.4)

By definition, the vector field dK,,(v,) acts K,,(L) such as

AdKn(0p)Kn(L) = Zv (L)e/ —Z (VK7 (L), vn(L))e;.

" OL;
On the other hand, we have

[R_(By), Kn(L)] = S [R-(B), Kj(L)e;] = ¥ Kp(L)R-(By), €11 = va(Kn(L)).
J J

Since v, = dK,(v,), we have
[R—(Bn), Km(L)] = dKn([R-(By),L])
Thus we have v,(B,) = [R—(B,),Bn]. Q.E.D.

We proceed with the proof of Theorem 10. From Lemma 11, we have

[Um, vn](L)
= Up(Un(L)) — 0a(Um(L)) = vm([R-(By),L]) — v4([R-(Bm),L])

= [R_(0n(Bn)), L] + [R—(Bn), tm(L)] — [R—(vn(Bm)), L] — [R—(Bp), vn(L)]
= [R_([R-(Bm), Bn]), L] + [R—(Bn), [R_(Bw),L]]
—[R_([R—(By), Bn]), L] — [R—(Bn),[R—(Bn),L]]

= [R-([R-(Bm),Bn]) + [R—(Bn), R—(Bm)] + R_([Bm, R—(B,)]),L].
Furthermore we see that

R_([R—(Bm),Bn]) + [R-(Byn),R—(Bm)] + R—[Bm,R_(By)]

= G 2RUBa B+ (RB,, RB,) — RUB,, RB,] — RIRB, By + By, Byl
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by MCYBE

N (C2R(Bp B1) ~ (B Bl + B 5.1} = ~R_[By 5

- ; 1 d, R_(By).

Then we have [vy,,v,] = —Zké_l a,or. QE.D.

In [3], they show that the vector fields on the differential operator which satisfy
the Virasoro relations preserve the Poisson structure. We also introduce the vector
fields to preserve the Poisson bracket whose commutation relations are a generaliza-
tion of Virasoro. In [3], they construct the pseudo-differential operators B,, n = —1,
satisfying

[By,L] = L™ n>-1.

Furthermore they construct the vector fields satisfying the Virasoro relation such as
Un(L) = [-Bn_,L].

However we show that the algebra of vector fields v,(L) = [R_(B,),L], n = —1
generate the compatible Poisson structures.

We exchange a/,, for —al,, in the assumption (ii) of K,(L). Then the commu-
tation relations are

m+n
[B”UBH] = - Z a;nnBi (15)
i=—1
and
m+n
Wm0l = 3. a0 (1.6)

I=—1
In the commutation relations for B,’s, we assume non-degeneracy, that is, aji" +0.
We define the contravariant 2-tensor w*, k =2 and assume some properties like [3]
such as

v

w1 = [, 0'], k=1

and
[v_1,w] =0, o € span{o¥,k = 2, [v,0/], i+j =2}

implies @ = 0 while [v_;,®'] = 0.

Theorem 12. The Lie derivative of o" with respect to v, is equal to the linear
combination of @',...,"™™", that is,

[V, "] = Apin@™ " + - + 410"

Before we prove Theorem 12, we apply this theorem to show that o*, k =1 define
the compatible Poisson brackets.

Proposition 13. It holds that [, w’] =0, i,j = 1.
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Proof. From the definition and Jacobi identity of Schouten bracket, we see that
[0, 0']=[[t-1,0'}0'] = —[[0",0'Lv,1] - [[0", va01] 0] (1.7)
Since w' defines the Poisson structure, [@!,w'] = 0, then we have
[0", 0'] = —[[0,0,1]0'] = —[0",0'].
This implies [@",®'] = 0. Next, we calculate the general case,
[0", "] = [tm-1,0'],0"] = —[[0', "], 0—1] = [[@", 1p—1], 0'].

From the previous calculation, [w!,@"] =0, then the first term vanishes. By
Theorem 12, [@",v,,_1] is equal to a linear combination of w',...,w™"". Then the
second term also vanishes. Q.E.D.

Proof of Theorem 12. We show this theorem by 3 steps.
Step 1. We show at first

1 _ k-1 0 1
[_, 0 =a" o+ + a0,

We see that
k+1] —

[U—law [U_l,[vk,a)l]],

by the Jacobi identity,

= [Uk’ [wlav—l]] + [w17[v—lavk]]
= [wlaak_-l,lkvk—l + - +a lkv()] = Za lkw.'
Step 2. The two assumptions,
[vj, "] :Aj+,,wj+" +-+ A0, —-1Z2 j=m-—1,

W, @] = Bpp™* + - 4+ Biw!, 1<k<n-1

imply
[Um, @"] = m+nwm+n + 4+ C](l)],

where A4;,B; and C; € C.
By the Jacobi identity and Step 1, we have

[[vm, @"],v—1]
= [[@",v_1],vm] + [[V=1, Um], ©"]
= [vm, "_12,, ", lw]-l-[a_lmvm 1+ +a:},mv_1,w"]
i lom oni 1+ aly (o, 1] + @2 o1, 0]

+-- +a:},m[v—1’wn]’
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by assumption of induction,

= Cppn10™" 1+ 4 Cro.
From Step 1, we see that

Cm+n 1 ~ -
—— - 1
mn—2 [v_1, @™+ Crpnr@™™ 2 ... + Ci0".

—1,m+n—1

(1.8) =

Using Step 1 again and again we have

Cm+n 1 é
— - m-+n m+n—2 +n—1
(1'8) - m+n—2 [v—law ]+ m+n—3 [v—l,wm ]
—L,m+n—1 a1, m+n—2
+o 4 G, 0]+ Cro!
Cm+n 1 é
- m+n m+n—2 m+n—1
= g -1 0" "+ S oo, 0™
a—l,m+n—1 —1,m+n—2
2 3 G 2
+-+ G, 0]+ 57— [v-1, 0]
a
1,1
By the assumption for the kernel of [v_j, -], we have
Con— Comin— % c
ny _ m+n—1 m+n—2 m-+n—1 3 1 2
[om, @"] = min—2 _ Omtn + min—3 ¥ + + G0 + a° @
—1,m+n—1 a_ 1, m+n—2 —~1,1

Step 3. By Step 2 and
[UO’wl]Zw], [v—l’wz]‘:ao—l,lwl7

we have
[vo,wz] = A2w2 +A1w1, A1,4, € C.

Moreover [v;,w'] = »? and with Step 2, we have
[v1,w*] = B3’ + By + Biw', B1,By,B; € C.

By the same process, we can show

[v,0’] = Ajp20’ ™ + -+ 410", Ay,...,4;2€C, jZ-L

Furthermore by Step 2 and
[v_1, 0] = f11_1,2602 + ‘10—1,260l

[v9, 0] = A,0” + 40",

we have
[v0, 0’] = A30° + Ay* + 410",

K. Ikeda

(1.8)

mod w'.

(1.9)
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In the same way as the previous case, we can show

[v,0’] = 4j30" + - + 410", Ay,...,4;,3€C, j= -1

Thus we can show

[Um, @"] = Apyn@™™ + - + 4j0'.  Q.E.D.

Acknowledgement The author thanks Prof. A Orlov for fruitful discussions.
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