
Commun Math Phys 180, 109-151 (1996) Communications IΠ

Mathematical
Physics

© Springer-Verlag 1996

Spiders for Rank 2 Lie Algebras

Greg Kuperberg

Department of Mathematics, University of California, Davis, CA95616, USA
E-mail: greg@math ucdavis.edu

Received: 19 December 1995/Accepted: 26 January 1996

Abstract: A spider is an axiomatization of the representation theory of a group,
quantum group, Lie algebra, or other group or group-like object. It is also known as
a spherical category, or a strict, monoidal category with a few extra properties, or
by several other names. A recently useful point of view, developed by other authors,
of the representation theory of sl(2) has been to present it as a spider by generators
and relations. That is, one has an algebraic spider, defined by invariants of linear
representations, and one identifies it as isomorphic to a combinatorial spider, given
by generators and relations. We generalize this approach to the rank 2 simple Lie
algebras, namely A2, B2, and G2. Our combinatorial rank 2 spiders yield bases for
invariant spaces which are probably related to Lusztig's canonical bases, and they
are useful for computing quantities such as generalized 67-symbols and quantum
link invariants. Their definition originates in definitions of the rank 2 quantum link
invariants that were discovered independently by the author and Francois Jaeger.

1. Introduction

One of the problems of classical invariant theory is to characterize, for all ^-tuples
V\,...,Vn of finite-dimensional, irreducible representations over C of a compact
group G or simple Lie algebra g, the vector space of multilinear functions

/ : Vι x V2 x x Vn -> <C

which are invariant under the action of G or cj. In more modern terminology, the
problem is to characterize the dual vector space of invariant tensors

or just Inv(F) if V is a tensor product of irreducibles. (Also, instead of working over
C, one might work over some other field F of characteristic 0.) Of course, for a
simple Lie algebra cj, the dimension of such a vector space is given by Cartan-Weyl
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character theory. But it is also useful to consider operations on invariant spaces such
as tensor products and contractions. Even for finite-dimensional, simple Lie algebras
over <C, these operations are not completely understood.

Interest in multilinear invariant theory was revived after the discovery of quan-
tum groups. A quantum Lie group is a non-commutative, non-cocommutative Hopf
algebra Uq(c$) which is a deformation of the universal enveloping algebra £/(g).
The representation theory of a quantum group is just as important as the quantum
group itself and may also be defined using loop groups or conformal quantum field
theory. Among other uses of quantum groups, a quantum invariant of a tangle takes
a vector in an invariant space Inv(K), where V depends on the boundary of the
tangle and other data.

Because of non-cocommutativity, the switching map

τ : K® W ^ W ® V

given by
X ® y f—• y ® x

is in general not an (equivariant) map between quantum group representations. Thus,
there is no natural symmetric group action on invariant spaces with n tensor factors
with n > 2. (There is often a braid group action.) However, the following operations
exist and are natural:

1. Tensor product:

Inv(F) ® Inv(W) --> Inv(K ® W) ,

2. Cyclic permutation:

Inv(F® Jr )->Inv(Jr® K),

3. Contraction:

F* ® W) -> \n\(W).

Since V and W may themselves be tensor products, cyclic permutation of two
tensor factors yields cyclic permutation of n tensor factors, but not general permuta-
tions. Also, contraction must be interpreted carefully, because in a quantum group,
one must reverse order when taking duals: (V ® W)* = P 0 F*.

A spider is an abstraction of a representation theory with these three operations.
It is a collection of vector spaces, or perhaps modules or sets, to be thought of as
invariant spaces, together with abstract operations called join, rotation, and stitch,
to be thought of as tensor product, cyclic permutation, and contraction. It is both
convenient and conceptually important to depict these operations with certain planar
graphs. These graphs are called webs, hence the term "spider."

Another motivation of the spider operations is that they describe the entire equi-
variant tensor category of representations of a group, Lie algebra, or quantum group.
In general,

the tensor product of two homomorphisms can be defined in terms of tensor prod-
uct and cyclic permutation of invariants, and composition of homomorphisms can
be defined in terms of tensor product and contraction. Contrariwise, the spider
operations can be defined in terms of tensor product and composition of morphisms.
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For this reason, spiders are sometimes defined as a type of (non-symmetric) tensor
category. To construct such a category, one must divide the tensor factors of an
invariant space

Inv(F] <g>...<8> Vn)

into smaller tensor products which serve as the domain and target of a space of mor-
phisms. This involves arbitrary choices that are extraneous to most of the arguments
in this paper, so we will not usually treat spiders as categories.

In this paper, we will define certain spiders in terms of generators and relations,
and we will show that they are isomorphic to the representation theories of rank
two Lie algebras and the quantum deformations of these representation theories.
These results generalize a well-known construction for A\ = sl(2) that first arose in
a paper of Rumer, Teller, and Weyl [18], that was developed later by Temperley and
Lieb [22], and that was greatly developed recently by Jones, Kauffman, Lickorish,
Masbaum, and Vogel [5, 6, 10, 12]. Moreover, Frenkel and Khovanov have recently
established that the bases of invariant spaces that arise when one constructs the A\
spider by generators and relations are dual to the canonical bases of Lusztig [11].
We conjecture that a similar phenomenon holds in the rank 2 cases.

2. The Ax Spider and sl(2, F)

Let V = F 2 be the defining representation of sl(2,F), where F is some field of
characteristic 0. (The complex numbers C are a good choice for F.) Choose a
parameter a e F . Since the vector space V is a self-dual representation, there exists
a non-degenerate, invariant contraction operation σ : V 0 V —> F. For each «, choose
n points on the boundary of a disk in the plane, and let Bn, the set of basis webs,
be the set of crossingless matchings of the n points. For example, if n is odd, Bn

is empty, while B6 has the following 5 elements:

Λ 7* < > Λ 7^ Λ

By convention, Bo has a single element, the empty disk. Let Wn, the web space,
be the vector space of formal linear combinations of elements of Bn with coeffi-
cients in F .

Theorem 2.1. There exist isomorphisms φn : Wn —> \mr{V®n).

Theorem 2.1 has few consequences in isolation; it only says that web spaces
have the same dimension as invariant spaces. By the Weyl character formula,
dimlnvίF®") is the number of non-negative lattice paths of length n in one
dimension, and there is a standard combinatorial bijection between such paths and
crossingless matchings. (Idea: Both combinatorial sets are equivalent to balanced
lists of parentheses of length n, such as "(())()" when n = 6.)
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A rotation operation is the linear extension to a web space of rotation of basis
webs:

A join operation is a bilinear operation on a pair of web spaces. Given two basis
webs, their join is given by connecting their disks by a band:

A join operation extends bilinearly to arbitrary webs. Finally, a stitch operation is
a linear transformation between web spaces. Given a basis web, its stitch at an
adjacent pair of vertices is given by connecting the vertices by an arc:

If the result produces a closed loop, then strictly speaking, it is not a matching of
vertices on the boundary and therefore it is not a basis web. In this case, erase
the closed loop and replace it by a factor of a, the element of F chosen at the
beginning:

The factor of a is a reminder that stitch is a linear operation whose value on a basis
web might be a non-basis web. A stitch also extends linearly from a family of map
Bn -> Wn-2 to a map Wn -+ Wn-2

The combinatorial A\ spider, parameterized by a, is the list of web spaces,
together with all rotation, join, and stitch operations.

Theorem 2.2 (Rumer, Teller, Weyl). If a = —2, then the isomorphisms φn : Wn —»
Inv(Ύ®n) can be uniquely chosen to send the operations of join to tensor product,
stitch to contraction, and rotation to cyclic permutation of tensor factors composed
with negation.
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(The difference in sign between rotation and cyclic permutation of tensor factors
is explained in Sect. 3.)

The conversion of join to tensor product requires some explanation. Tensor prod-
ucts depend on a linear ordering of tensor factors, but the vertices in a web are only
cyclically ordered. To realize an explicit association between webs and invariant ten-
sors, it is necessary to refine the cyclic ordering to a linear ordering. Then join or
tensor product becomes a process of concatenation:

1 J o i n

The general operation of join corresponds to tensor product modified by cyclic
permutations.

We explicitly construct the φn's to demonstrate their uniqueness. Assume some
non-zero value r 6 V (g) V for ή>2 of a line segment:

r - \
i i I = ,

Any other basis web is obtained from a line segment by repeated joins. Therefore
its image under φn is, up to sign, a combination of cyclic permutations and tensor
products of r's. For example, φ/\ of the basis web

H L./7*-£\-J /

while

where p4 is cyclic permutation of four tensor factors. It remains only to determine
r. The stitch of two arcs is one arc:

Applying φ^ and φι to the two sides yields

r) =
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This equation says that r is the inverse of σ in an indirect sense. More explicitly,
given a basis {ei,e 2} for F, one natural choice for r and σ is:

0 e\) = σ(e2 0 e2) = 0 ,

— £2 '

But in a more direct sense, r is not the inverse of σ, because with this choice of r
and σ, as with every other compatible pair of choices, a closed loop, or σ(r\ is —2.

Checking that the φn's take spider operations to tensor operations reduces to
comparing definitions and simple calculations. The least trivial part of Theorem 2.2
is the assertion that each φn is an isomorphism. Since the domain and target of φn

have the same dimension, it suffices to establish surjectivity. To prove surjectivity,
we use the isomorphism

By the Fundamental Theorem of Invariant Theory of Schur and Weyl, the endomor-
phisms of V®n are spanned by permutations of tensor factors. Such a permutation
can be depicted by a diagram of matched dots:

It is a composition of many copies of the switching map τ:x<g>y\-^y(&x in
E n d ( F 0 F ) . A calculation demonstrates that τ lies in the image of φ$\

• = ] ( I
' v V

It follows by multilinear expansion that every permutation is in the image of φin
Since the permutations span, φ2n is surjective.

What if a is not —2? The specialization of the spider should describe the repre-
sentation theory of some object related to sl(2, F ) . The quantum group Uq(sl(2, F ) )
was invented essentially for this purpose. One parameterization of the A\ spider is
a — —qχl2 — q~x/1 over the field <C(q,qι/2,q1/3,...). (Note, however, that the spider
is actually defined over the ring <b[q,q~ι,qι/2,q1/3,...], which allows us to spe-
cialize to any value of q G C*.) Another standard notation is a = —[2], where, by
definition,

W- qiβ_q-\l2 '

2.1. Computations with the A\ spider. A basis web, or crossingless matching, is an
equivalence class, modulo boundary-fixing isotopies, of proper embeddings in the
disk of a 1-manifold with no circles. Although proper embeddings of loop-free
1-manifolds suffice to define the web space Wn, it is convenient to define any
properly embedded 1-manifold in the disk as a web. Specifically, a 1-manifold with
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n closed loops denotes the web which is an times the web obtained by erasing all
closed loops.

Given this meaning for all embedded 1-manifolds, basis webs such as

WΊ » = «

can be embedded in larger disks to form 1-manifolds which are therefore other
webs:

= a (1)

If the Wi's are arbitrary webs, then a diagram such as the one in Eq. (1) denotes a
multilinear expansion and is called a compound web. For example, if

ί'w) = 2[) (j +3{*

then

Another view of a compound web is that it is a sequence of joins and stitches of
the component webs. It can be realized by many different such sequences, but they
all have the same final value.
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An important class of examples of compound webs are those generated by a
web called a crossing:

•:X: =-<
Given this definition, it is easy to check the identities

These are known as the second and third Reίdemeister moves. In particular, a clever
trick due to Kauffman [6], namely replacing one of the crossings in the third move
by its linear expansion, reduces the third move to the second one. If we interpret
a compound web made from copies of a crossing as a tangle or link projection,
the identities are also known as the second and third Reidemeister moves. More
generally, a projection of a tangle or link such as

evaluates to a vector in some web space. The value of a link projection lies in
Wo, a 1-dimensional vector space with basis the empty web. Its single coeffi-
cient is a Laurent polynomial in qχlA. Given invariance under the second and third
Reidemeister moves, this function on link projections is a regular isotopy invariant.
It is also covarίant under full isotopy; it gains a factor of # ± 3 / 4 under the first
Reidemeister move:

3/4*
= fl «

(Since Wι is 1-dimensional, these two webs must be proportional.) This polynomial
is known as the Kauffman bracket, and up to normalization it equals the Jones
polynomial.

Another important type of compound web is a concatenation of two webs. Given
a web in Wa+b, divide its endpoints into a segment of a points and a segment of
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b points. Given another web in Wb+C whose vertices are divided into segments of
length b and c, their concatenation consists of connecting b adjacent pairs:

w2

With concatenation operations, the A\ spider can be understood as a category, iso-
morphic to a subcategory of the (quantum) representation category of sl(2, F ) , whose
objects are segments of points and whose arrows are webs. For fixed n, the endo-
morphisms of the object consisting of n points form an associative algebra, called
the Temperley-Lieb algebra. As a unital algebra, it is generated by e\,...9en-ι,
where β[ is a basis web which is a pair of U-turns at the /th and / + 1st positions:

e. = C

It is easy to show that

is a complete set of relations for the Temperley-Lieb algebra.

2.2. Other representations <?/sl(2, F). So far, we have only described Inv(F®w)
and not

for arbitrary irreducible representations A\,...,Ak of sl(2,F). The Lie algebra
sl(2, F ) has an irreducible representation Vn of dimension n + 1 for every non-
negative n, and any finite-dimensional irreducible is isomorphic to one of these.
The representation Vn can be viewed as the nth symmetric power of V, in which
case the equivariant contraction σ induces an equivariant contraction

On : Vn 0 Vn -> C .

It is determined by the rule that

σn(vn ®wn) = σ(v®wf .

Given positive integers «i,...,«£ with sum n, consider a circle with n distinguished
points, partitioned into consecutive strings of points of length «i,«2,...,«A: Each
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string of points is called an external clasp. The clasped web space W(n\,...,nk)
is a vector subspace of the web space Wn, defined as the span of those basis webs
of with no U-turns between two endpoints in the same clasp. The set of such basis
webs is denoted B(n\,...,nk). For example, the web

is not a basis web of PF(2,3,4,5), which instead has basis

Like a web with closed loops, a clasped web with £/-turns has a meaning as a web,
but not a basis web. If there are any U-turns, the clasped web is defined to be the
zero web. Thus, W(n\,. ..,rik) is also a quotient space of Wn.

Theorem 2.3. Let N = (n\,...,nk) be a multi-index, with

When q—\, there is a family of vector space isomorphisms

φN: W(N)-+Ίnv(VN)

that send join to tensor product, stitch to contraction, and rotation to cyclic per-
mutation of tensor factors up to sign.

Rotation and join of clasped webs are defined in the same way as for unclasped
webs, but stitch is more complicated. Given a clasped web with two adjacent external
clasps of the same size, the stitch of the web is obtained by identifying the two
clasps and introducing an internal clasp, usually depicted as a box:
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An internal clasp of size n is a particular web in Win that satisfies the axioms

H-0—D-- -IT.= 0
-k-2

Equation (2.2) uses the convention that a strand labelled by n denotes n parallel
strands. The equation says that an internal clasp is an idempotent of the w-strand
Temperley-Lieb algebra and it annihilates all basis webs other than the identity on
the right. Therefore a clasp concatenated with any web is proportional to a clasp. In
particular, a clasp is unique, if it exists, and it has the same annihilation property
on the left. The Wenzl recursion formula [24] demonstrates that clasps do exist, at
least for most values of q\

n-\

n n-\

4-4= [n-1]

[n]
n-2

n-\
n-\

Internal clasps are also called magic weaving elements [7], boxes [10], and Jones-
Wenzl ίdempotents [12].

An internal clasp is the concatenation of the unique basis web of W(n, 1,1,
! , . . . , ! ) with itself:

In terms of representations, this concatenation is a composition of the form

y(&n y y > y<8>n

Since the composition is a non-zero idempotent, it is the equivariant projection from
V®n to its highest-weight irreducible summand.

2.3. Isomorphism and equίnumeration. In this section, we prove Theorem 2.3. It is
fairly easy to construct each φN and to prove that is surjective. If n = n\ -\ h «£,
there is a projection

and let ΦN = KN ° Φn ° *V> where i^ is the inclusion W(N) C Wn. Suppose that
the /th clasp of a web w has k tZ-turns, and let m = n — 2k. Then the invariant
KN ° Φn(w) l i e s in the image of some map which has a tensor factor of the form
V®m —> Vnn where m < ni9 and any such map must be zero.

Thus, %N ° φn = ΦN °J'N, where j ^ is the projection Wn —> W{N). From this,
it is routine to show that the maps φN take spider operations to spider operations.
Moreover, each φ^ is surjective, because both π^ and φn are surjective and ίn

complements the kernel of πN o φn.
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We complete the proof that φN is an isomorphism by demonstrating that its
domain and target have the same dimension, thereby generalizing Theorem 2.1 to
the clasped case:

Theorem 2.4. If N is a multi-index, then

dim W(N) = άimlrw(VN).

Proof. The proof is by induction on \N\, the number of indices in N. The relation
is straightforward for \N\ ^ 2 , so we first assume that \N\ = 3.

The Clebsch-Gordan theorem states that

dimInv(F; <g> Vj ® Vk) = 1

if each of n, rn, and / is less than or equal to the sum of the other two and if the
sum of all three is even, and

dimInv(F; <8> Fy <g> Vk) = 0

otherwise. On the other hand, B(i,j,k) has at most one element:

This web exists when there are non-negative integers x, y, and z such that i = x + y,
j = x + z, and k = y + z. These two conditions on /, j , and A: are equivalent.

Now suppose that \N\ > 3 and express the multi-index N as JK, where / and K
each have length at least 2. Since the Vn's constitute all finite-dimensional irreducible
representations, and since they are self-dual, there is a decomposition

lnv(Vj ® Vκ) = 0 I n v ( F j 0 V{) 0 Inv(F/ ® K^) ,
/

where / is a single index rather than a multi-index. It suffices to establish a bijection

f : B(J,K) ^ \J (B(J,l) x B(
I

where the union is disjoint. The bijection / is very easy to define: A basis web of
w G W(JK) has a minimal cut path, where a cut path is a path whose endpoints
separate J from K. A cut path is minimal if it crosses as few strands as possible:

Let w\ and W2 be the two resulting webs. The cut path crosses some / strands, and
since it is minimal, there can be no U-turns among the / strands in either wi or H>2.
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Thus, the relation f(w) — (w\,W2) defines the desired map / . It is routine to check
that / is both injective and surjective. D

Note that minimal cut paths are also useful in practice for generating the basis
of a clasped web space.

Exercise 2.5. List the elements of 5(2,2,2,2,2).

3. Precise Definition of a Spider

In this section, we give a precise definition of a spider. The main way in which
the general notion of a spider is more complicated than the example is that strands
may be oriented and there may be more than one type of strand. Indeed, even in
the A\ case, we may consider n parallel strands as equivalent to one strand labelled
with n, as is already suggested by the notation.

A spider has a strand set S which is a unital semigroup with unit 0. In most
of the examples in the paper, S is a free, non-abelian semigroup. The strand set
has an anti-involution * : S —> S called duality or orientation reversal. For each
s (Ξ S, there is a web space W(s), which may be just a set. For each α, there is
a distinguished web βa G W(aa*), called a bare strand, and 1 = β$ is called the
empty web. Finally, there are three operations that exist for every a and b:

1. Join ^a,b W(ά) x W{b) -> W{ab).
2. Rotation pa b : W(ab) -> W(ba).
3. Stitch σa,b :' W{aa*b) -> W{b).

The subscripts of the operations may be dropped when they are clear from context.
A spider may in addition be defined in a (symmetric tensor) category other than
the category of sets. For example, an additive spider is one in which web spaces
are abelian groups, rotation and stitch are additive, and join is additive, while in
a linear spider, the web spaces are vector spaces and the operations are linear or
bilinear.

The three spider operations must satisfy the following axioms, which are
divided into groups according to which operations they involve. We define σb,a,c =
Pc,bσa,cbPb,aa*c f° r brevity in the last three axioms.

• Rotation only:

l Pα,0 = Pφ,a = id.
2. pa,bcPc,abPb,ca = id.
3. Pa,a<βa) = βa*

• Join only:
4. (u ixi v) tx w) = u cxi (v txi w)
5. u xi 1 = u

• Join and rotation:
6. pa,b(u DXU?0 V) = pa,b(u) ^ba,0 V

7 βab = Pa*,abb*(βa* ^ βb)

8. Pa,bO* >^a,b V) = V DX^β U

• Rotation and stitch:

9. Ga,bdσaa*b,c,d = ^b,c,d^a,bcc*d

10. σ α j = σα*,0Pα,«*
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• Join, rotation, and stitch:

12. Ob^c(u \X*ba,a*c V) = pb,c(Pa*,c(V) ^ca\ab Pb,a(u))

The formal spider axioms are embarrassingly complicated, but they can be
phrased in more natural (if less formal) terms. In particular, the following com-
pound web principle is equivalent to axioms 1-7 and 10-12. To state the principle,
we first define a pre-spider to be an algebraic object satisfying these 10 axioms, but
not necessarily axioms 8 and 9.

Let U be the free semigroup generated by a set X, and let * be any involution
of X extended to an anti-involution of U. Let Lu be an abstract set of labels for
each u G U and let L be the disjoint union. Consider a graph G in a disk such that
the vertices of G on the boundary are univalent, such that each edge is labelled by
an element of x G X and oriented unless x = x*9 and such that one of the vertices at
the boundary is distinguished as first, and such that one edge of each internal vertex
is distinguished as first. The edges incident to an internal vertex v are then linearly
ordered going counterclockwise around v; let xz be the label of the /th edge e of v if
the edge is unoriented or oriented outward, and let Xf be the dual of the label of e
if it is oriented inward. Each v should be labelled by an element of LXι Xn. Then we
define the web space W(x\ xn) as the set of all graphs G with boundary labelled
xι,...,xn (following the same convention of taking the dual when an edge at the
boundary is oriented inward), considered up to isotopy and up to the modification
of reversing an edge and dualizing its label.

We define the free pre-spider Sf(X,L) by defining the spider operations in the
same way as for the combinatorial A\ spider: Join is given by band-connected sum,
rotation is given by changing which boundary point is first, and stitch is given by
connecting two adjacent boundary points by an arc. A tedious but straightforward
computation demonstrates that 6f(X,L) satisfies axioms 1-7 and 10-12. Conversely,
suppose that an algebraic object £f consists of a strand set S and a collection of
web spaces {W(s)} with operations of join, rotation, and stitch. Then the compound
web principle stipulates that any *-preserving map / : X —> S and any set of maps
{Lu —• W(f{u))} extend to a morphism <9%Y,L) —> £f preserving join, rotation, and
stitch. The compound web principle is equivalent to the statement that £f is a pre-
spider. Informally, in a pre-spider y7, if a sequence of joins, rotations, and stitches
are denoted by a planar diagram whose connecting arcs are the stitches, the resulting
web depends only on the diagram and not on the order of the individual operations.
The remaining two axioms for £f can be understood as follows: Axiom 8 says that
if a disconnected component of a compound web is moved from one face of the
remaining part of the web to another, it does not change the value of the web.
Axiom 9 says that the value of a boundaryless compound web depends only on its
embedding in the sphere and not on its embedding in the disk.

Although the above definitions are not completely standard, a spider can also
be defined in category-theoretic terms. A spider is a (small) strict monoidal cate-
gory, which is a category with an associative but not necessarily commutative tensor
product ®. Moreover, a spider must be pivotal (or rigid), which means that there
is a canonical isomorphism F** = V, and spherical, a condition which is equiva-
lent to axiom 9. See Barrett and Westbury [1] for a careful exposition of spherical
categories. Given any spherical category, the strand set of the corresponding spider
is precisely the set of objects of the category, and its web space W(V) is defined
as Inv(F) = Hom(77, V), where T is the trivial object, which serves as the identity
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of the tensor product operation. The spider operations are then defined in terms of
monoidal category operations in the same way as for the algebraic A\ spider.

We review the spiders defined so far in terms of these definitions. The strand set
of the combinatorial and algebraic A\ spiders is a free semigroup with one genera-
tor; for « G Z^o, a strand with strand type n is synonymous with n parallel strands.
The clasped combinatorial A\ spider is a different object and its strand set is a free
semigroup with countably many generators, namely the different clasps.

It is useful to treat an additive or linear spider or pre-spider as a ring, and to
consider the usual constructions with rings such as morphisms, ideals, and quotients.
An ideal / i n a linear pre-spider £f is a collection of linear subspaces I(s) c W(s)
which are closed under rotation and stitch and closed under join with an arbitrary
web in £f. Clearly, if J> is an ideal, the quotient spaces W(s)/I(s) form a pre-spider
£f/<f. Given X and L as above, we can form the free linear pre-spider Sf(X,L)
as the linear extension of Sf(X,L). Many spiders (albeit only those whose strand
set is a free semigroup) can be defined jn terms of generators and relations, mean-
ing that such a spider is a quotient of Sf(X,L) by the ideal generated by an arbi-
trary set of relators. Indeed, the combinatorial A\ spider is defined in exactly this
fashion.

Note that in an additive pre-spider, the web space W(Φ) is a commutative ring,
and the other web spaces become JF(0)-modules under join. Axiom 8 guarantees
that rotation and stitch are module endomorphisms, so that an additive spider is
automatically a fΓ(0)-module spider, and in particular it is a linear spider if Wφ)
is a field. See also Barrett and Westbury [1].

The category of finite-dimensional representations of any quantum Lie group
Uq(q) with g a complex simple Lie algebra is spherical, and therefore yields a
spider. Technically, this is not a small category, meaning that the collection of all
objects is too large to be a set, but we can obtain an equivalent small category
by taking a single representative of each isomorphism class of finite-dimensional
representations.

In particular, self-dual representations correspond to self-dual or unoriented
strands, but therein lies a technicality and a potential sign error. An unoriented
strand in a spider can only correspond to a symmetrically self-dual representation,
while many representations (for example the representation Vn of sl(2) for n odd)
are antisymmetrically self-dual. If there is only one strand for each isomorphism
class, each self-dual representation must be defined as a Z/2-graded vector space in
which the antisymmetric part has an odd grading. Then any self-dual representation
of any g has a graded-symmetric invariant bilinear form, and the representation can
correspond to an unoriented strand. This is why rotation in the combinatorial A\ spi-
der differs by a sign from ordinary cyclic permutation of tensor factors in Inv(V®n);
it exactly equals graded cyclic permutation. Among representations of rank two Lie
algebras, the representation V(aλ\ + bλ2) of B2 also has an odd grading when a is
odd.

Given a Lie algebra g, the subcategory of irreducible representations and their
tensor products also yields a spider, which we will call the clasped algebraic g
spider. The unclasped algebraic g spider is the subcategory whose objects are the
fundamental irreducible representations (those whose highest weight is a simple
weight) and their tensor products. In the rest of the paper, we will define combina-
torial g spiders when g has rank 2, and we will show that they are isomorphic to
their algebraic counterparts.
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4. The Combinatorial Rank 2 Spiders

For convenience, let C with # e (C or (C(q,qι/2,qι/3,...) be the ground field. The un-
clasped combinatorial rank 2 spiders describe the invariants of tensor products of the
two fundamental representations V(λ\) and V(λ2) of each of the Lie algebras A2, B2,
and G2. These two representations are duals of each other for A2 and are self-dual
in the other two cases. The strand set for the combinatorial A2 spider is defined as the
free semigroup of strings of symbols
" + " and "—," which correspond to V(λ\) and V(λ2), respectively. The dual
of a sign string is given by reversing the string and flipping the signs; for
example,

In the B2 and G2 spiders, the strand set is the free semigroup of strings of self-dual
symbols " 1 " and "2," so that duality is just string reversal.

Given a sign string s — s\ sn, define the A2 basis web set B(s) to be the
set of non-elliptic, bipartite, trivalent graphs properly embedded in a disk with
boundary points labelled s\,...,sn in counter-clockwise order. By a trivalent graph
properly embedded in a disk, we mean a 1-dimensional subset of the disk lo-
cally modelled by the following five allowed neighborhoods of a point in the
disk:

The allowed neighborhoods might be called empty disk, strand, trivalent vertex,
empty boundary, and endpoint. Such a graph is bipartite if its endpoints are signed
and its edges are oriented in such a way that the in-degree at each vertex is either
0 or 3, and such that edges point towards positive vertices and away from negative
ones. Finally, such a graph is non-elliptic if all internal faces have at least six sides,
where an internal face is a component of the complement of the graph that does
not touch the boundary of the disk. These graphs, henceforth called basis webs, are
considered up to isotopy relative to the boundary. For example, the 6 elements of
B(+ + + ) are

+ + + + + + + +
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is an element of B(-\ 1 ).

The vector space of formal linear combinations of elements of B(s\ - sn) is the
Λ2 web space W(s\ sn). Partly elliptic, bipartite, trivalent graphs in a disk, will
denote webs also, although not basis webs. Specifically, each type of elliptic face
is defined as a linear combination of basis webs according to the rules

= [3]

+ =-[2]--*-+ ,

) ( • :>< (2)

The value of a larger graph which contains an elliptic face is inductively defined
by the same rules. For example,

^ L —

+

CO
(Here and below, we may omit orientations of edges when they are clear from
context.) Rotation, join, and stitch operations are defined in the usual graphical
way: For basis webs, rotation is rotation of the disk, join is band-connected sum,
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and stitch is the operation of connecting two adjacent boundary points by an
arc. Stitch is only defined when the two adjacent boundary points have opposite
sign, to preserve the orientation structure of A2 webs, and it may produce elliptic
faces, which must be reduced to obtain a linear combination of basis webs. Com-
pound webs, and in particular concatenation, are also defined either by extension
of the three basic operations, or directly by the principle of reduction of elliptic
faces.

Another way to phrase the definition of the A2 spider is that it is generated by
the two webs

/y

with Eqs. (2) as relations. Similarly, the A\ spider is trivially generated with the
sole relation that a closed loop yields a factor of a.

The B2 and G2 spiders are also most conveniently defined by generators and
relations. The B2 spider is generated by the single web

-r
with the relations

=0-0,

= 0,

-X-X-M.
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where a strand is denoted by a double edge if its strand type is "2" and by a plain
single edge if its strand type is " 1 . " The G2 spider is generated by the webs

x
with the relations

= q9+q6+ q5+q4+q3+ q + 2 +q~ι+q~3+q~4 + q~5+q~6

= - (g 3+ q2+ q ι+ q~2+ q~3)

X =
"fl2-l+9-

2 / ' % + 1 + ί-1 / \

(4)

To form a basis, we first note in the G2 case that the last relation allows the
elimination of all internal double edges, leaving only those with at least one vertex
at the boundary. In the B2 spider, we define a tetravalent vertex to achieve the same
end:

X-X-M
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The tetravalent vertex then satisfies the relations

r
In both spiders, we can say that non-elliptic webs with no internal double edges are
a basis, provided that we define formal angles of

for the vertices in the B2 spider and angles of

in the Gι spider, and we declare that a face is elliptic if its total exterior angle is
less than 360 degrees. For example, in the G2 spider, the pentagon

is elliptic, but the pentagon

is flat rather than elliptic.

If we understand the rank two spiders in terms of generators and relations, then
it is clear that non-elliptic webs linearly span all webs, but it is not obvious that
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they are linearly independent. Alternatively, if we understand the rank two spiders
in terms of the non-elliptic bases, then it is not clear that the elliptic reduction
equations are consistent. Put a third way, do two different reductions of a partly
elliptic web always give the same linear combination of non-elliptic webs? The
author [9], and independently Jaeger [4], established that the given coefficients
are, up to trivial normalization, the only choices for which the equations are
consistent.

Rank 2 spiders also admit crossings that lead to link invariants, but the link
invariants will not be discussed in this paper. There are two types of crossings in
the A2 spider:

= q

* • /

four types in the B2 spider:

\ . .1/2
' \

X - —

1/6

= q
-1/6

,-1/2

qυ2+q-m

= q

-1/3 )(

,,-1/2

^ X

and four types in the G2 spider

\
-1/2

\ qu2+q-m

~-3/2

X
qm+q-m

,1/2

X
m ) I
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y = q- Ύ 3/2

qu2+q-m / \
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\

,3/2 ,,-3/2 \

7 - 1

Note that crossings are the first webs whose coefficients are not symmetric in q
and q~x.

4.1. Clasps and clasped web spaces. The rank 2 spiders also admit clasps and
clasped web spaces. As before, the type of a clasp is the same as an unclasped
strand type, but in the rank 2 cases there are many more combinations. Our notation
will be that if s is an unclasped strand type, c = [s] is the corresponding clasp. We
will also consider sequences of clasps C = c\C2 cn = [s\][s2] [sn].

Clasps and clasped web spaces in the A2 spider are the easiest to describe: Define
the weight wt(s) of a sign string s nλ\ -\-kλ2 if there are n plusses and k minuses. Re-
call the usual partial ordering of the weight lattice of lattice of A2: it is generated by

aλi + bλ2 y (a + l)λi + (b - 2)λ2 ,

aλ\ + bλ2 y (a - 2)λx + (b + \)λ2 .

There is a clasped web space W{C) for each possible clasp sequence C. For example,
W([-\ h][—I—][—h]) denotes a clasped web space. The basis 5([^i
of JF([si][s2] [sk]) is a subset of the set of unclasped basis webs
consisting of those non-elliptic webs with non-convex clasps. Here an (external)
clasp is non-convex if it has the property that the weight of any path between end-
points of the clasp that is transverse to the web (a cut path) is greater than or equal
to the weight of the clasp; the weight of such a path is defined as the number of
strands that cross it in the direction of the clasp and the number that cross away
from the clasp. For example, the following web has a partly convex clasp, because
its weight is 2λ\ + λ2, but there is an arc with weight 2λ2 that cuts off the clasp:
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It is therefore not a basis web of W([-\ \-][-\ h][H h]). Clasped web spaces
can again be interpreted as both quotients and subspaces of unclasped web spaces.
Any web with at least one partly convex clasp is understood as the zero vector. By
this convention and Eqs. (2), any trivalent graph in a disk with suitable boundary
can be interpreted as some vector in the clasped web space.

The non-convexity condition for clasps may seem unnecessarily strong. One
might alternatively stipulate that every cut path cross at least as many strands as
the number of strands in the clasp, or that the weight of no cut path be strictly less
than the weight of the clasp. However, by Lemma 6.5, the two conditions are both
equivalent to the one given. Say that a cut path of a web is minimal if its weight is
minimal with respect to the partial ordering. Then in particular, Lemma 6.5 implies
that all minimal cut paths with a fixed pair of endpoints have the same weight, the
minimal cut weight.

As usual, join and rotation in the clasped A2 spider are straightforward, but stitch
involves internal clasps. An internal clasp of type s is defined as an idempotent in
the unclasped web space W(s*s) that annihilates any web in W(s*t) with wt(t) -<
wt(s) For example,

= 0 .

It is not clear that internal clasps exist; without them, we must understand the
clasped spider not as a spider but as a collection of web spaces with the operations of
rotation and join only. We will use this incomplete structure in an indirect argument
that internal clasps must exist for all three rank 2 cases (as before, they are highest-
weight projections), but in the A2 case we will also give a more explicit construction.

The construction of the clasped B2 spider is entirely analogous to that of the
clasped A2 spider, except that the definition of a cut path and its weight are slightly
different. A cut path may cut diagonally through a tetravalent vertex, and its weight
is defined as nλ\ + (k 4- k')λ2, where n is the number of type " 1 " strands that it
cuts, k is the number of type "2" strands that it cuts, and k' is the number of
tetravalent vertices that it bisects. For example, the following cut path has weight
λ{+2λ2:

Recall that there is a natural partial ordering of the B2 weight lattice given by

aλx + bλ2 y (a ~ 2)λλ + (b + l)λ2 , (5)

aλx -f bλ2 >- (a + 2)λλ 4- (ft - 2)λ2 . (6)
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The clasped G2 spider has a more significant difference. A cut path may contain
a type " 1 " strand in its interior, and its weight is nλ] + (k + kf)λ2, where n is the
number of type " 1 " strands that it cuts, k is the number of type "2" strands that
it cuts, and k' is the number of type " 1 " strands that it contains. For example, the
following cut path has weight λ\ + 2λ2:

As before, the webs with non-convex clasps, where non-convexity is defined using
the partial ordering

aλx + bλ2 y (a- 2)λx + (b + l)λ2 ,

aλλ+bλ2 y (a + 3)λχ + (b - 2)λ2

in the G2 weight lattice, form a basis of each clasped web space. The more sig-
nificant difference is that a basis element of the unclasped web space with a con-
vex clasp is not necessarily zero. Rather, if a web, whether non-elliptic or not,
has a cut path which cuts off a clasp, which does not contain any type " 1 "
strands and whose weight is less than that of the clasp, then the web is zero. For
example,

It may not be immediate that the kernel of this quotienting operation comple-
ments the subspace defined as the clasped web space. This will be shown in
Sect. 6.2.

This concludes the definition of the combinatorial rank 2 spiders and the defi-
nition of clasped web spaces. Only the operation of stitch, which depends on the
existence of internal clasps, remains to be fully defined.

5. The Morphism from Combinatorial to Algebraic

Let V+ and F_ be the two fundamental representations of A2 = sl(3), with F_ =
(F+)*. Let V\ and V2 be the two fundamental representations of B2 = sp(4) =
so(5), and give the two fundamental representations of G2 the same names with
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dim V\ < dim V2 in both cases. Then the vector spaces

\nvBl(Vx ®Vλ 0 F 2 ) ,

InγG2(V{ 0 Ki Θ F 2 )

are all 1-dimensional. When q = 1, and for each of ^2? #2> and G2, there exists
a morphism Φ from the unclasped combinatorial spider to the unclasped algebraic
spider with the following property. If s is a generator of the strand set, then Φ(s) —
Vs, and if T is a trivalent vertex of some type, then Φ(T) is a non-zero element
in one of the above invariant spaces. We sketch the argument for the existence
of Φ in the A2 case (see Ref. [9] for details): Pick any two non-zero elements
x G InvAl(Vf3) and x* G Inv^2(T®3). By counting dimensions of invariant spaces,
each of the left sides of Eqs. (2), (3), and (4) must be some linear combinations
of the right sides in the algebraic A2 spider, if x and x* are denoted by the usual
trivalent vertices. But at the same time, a computation shows that the right sides
are linearly independent in the algebraic A2 spider, and that, up to normalization of
x and x*, the given coefficients are the only ones that respect this normalization.
Thus, after rescaling, the invariant tensors x and x* of Uq(A2) must satisfy the
relations of the combinatorial A2 spider, although perhaps with a different choice
of q. Another simple computation shows that the choice of q is the same. Thus
we can set Φ(T) =x and Φ(T*) =x*, if T and Γ* are the trivalent vertices that
generate A2.

Theorem 5.1. The morphism Φ from the combinatorial to the algebraic A2, B2,
or G2 spider is surjective when q = 1, and therefore for generic q.

This theorem is proved in Ref. [9], but we give a more conceptual argument
here:

Proof Let q = 1, let g be A2, B2, or G2, and let G be the compact, simply-
connected Lie group whose complexified Lie algebra is 9. If s = s\ sn is a string,
define

y _ y <rx . . . <rx y
sn

In each case, the image ΘC of Φ is some subspider of the algebraic spider of 9.
We interpret f as a category of linear transformations between tensor products
of fundamental representations. The category ΘC contains switching maps x <S> y \-^
y 0 x, since they are the images of crossings under the map Φ. Moreover, each
End^r(F^) is a semisimple algebra, by the following construction: We define the
Hermitian adjoint w* of w G W(ss*) by reflecting w about a vertical axis, taking the
complex conjugate of all coefficients, and, in the A2 spider, reversing all orientations
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and signs:
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The morphism Φ intertwines the combinatorial Hermitian adjoint with the usual
Hermitian adjoint in the algebraic spider. Since End^CK?) is closed under Hermitian
adjoint, it must be semisimple.

The category 3C does not contain the kernels and co-kernels of its morphisms,
but it may be completed to a bigger category S£\ in which 9C is a full subcategory,
by adding these vector spaces as new objects. The category ΘC' then satisfies the
hypotheses of the Tannaka-Krein duality theorem [8, p. 177], and must be the cat-
egory of finite-dimensional representations of some compact group H. On the one
hand, H C G, since everything in 9C1 is invariant under G. On the other hand, H
cannot be any bigger than G, because for each choice of g, G is a maximal compact
subgroup of the symmetry group of Φ(t) for a vertex t. (For example, the symmetry
group of a non-zero element of Inv#2(Fi ® V\ ® V2) is sp(4, (C), with maximal com-
pact subgroup Spin(5).) Therefore ΘC' is equivalent to the representation category
of £/(g), and 9C coincides with the algebraic g spider. D

It is more difficult to show that Φ is injective. We will prove this in Sect. 6
by demonstrating that the clasped web spaces and the web spaces of the clasped
algebraic spider have equinumerous bases. If this is so for clasped web spaces,
then it is also true for unclasped web spaces, which demonstrates that Φ is an
isomorphism between unclasped spiders. We can then define an internal clasp as
Φ~1(π), where π is the highest-weight projection from any strand in the algebraic
g spider to itself. This completes the definition of the clasped spiders, provided we
verify the following lemma to show that Φ maps stitch to contraction.

Lemma 5.2. Suppose that s and t are strand types and w G W(st) is zero in the
clasped web space W([s]t). Then w is annihilated by an internal clasp of type [s].

Proof. We assume the injectivity of Φ for unclasped web spaces, and we assume
that w e B(st) is a basis web. Let λ be the weight of s, and let w' be w with an
internal clasp attached. The tensor Φ(w) may be interpreted as a homomorphism, in
particular as a composition Vs —> V(λ) —» Vu —> Vt9 where u is the transverse strand
type of a minimal cut path that separates s from t in w. By hypothesis, the weight
of u is lower than that of s. Therefore any map V(λ)
vanish. D

Vu must vanish, so wr must

The following result is then a corollary of the discussion of this section:

Theorem 5.3. The morphism Φ from the combinatorial to algebraic rank two spi-
ders extends to clasped spiders.
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6. Equinumeration

6.1. The A2 case

Theorem 6.1. Let C be an A2 clasp sequence and let wt C be the corresponding
sequence of weights. Then the vector spaces W(C) and Inv(F(wt C)) have the
same dimension.

One of the main steps of the proof of Theorem 6.1 is the same as that of the
proof of Theorem 2.3: Given two clasp sequences C and D, there is a decomposition
of vector spaces

Inv(F(wt C) 0 V(wtD)) ^ 0 Inv(Ύ(wtS) 0 V(μ)) 0 Inv(Ύ(μ)* 0 V(wtD)) .
μ

We wish to prove the corresponding decomposition of sets of basis webs:

Theorem 6.2. Given two clasp sequences C and D,

B(CD)^{J(B(Ccλ)xB(ctD)),
λ

where for each weight λ, cχ is some clasp with weight λ.

Theorem 6.2 is more complicated than its analogue for the A\ spider, because
there is no longer always a unique minimal cut path separating the clasp sequences
C and D:

Although the two cut paths in this example have the same weight, they have different
transverse strand types and they yield webs in different clasped web spaces. Yet not
every ordering of the strands is always possible. Nevertheless, there is a way to
reconcile these different decompositions and ameliorate the ordering problem.

Indeed, order independence is a large part of the combinatorial content of
Theorem 6.1. For example, it implies the following result, which has an independent
proof that is another warm-up to the proof of Theorem 6.1.

Theorem 6.3. If two sign strings s\ and s2 of the unclasped A2 spider differ only
in order, then B(s\) and B(s2) are equinumerous.

Proof. The web

is the H-web. It suffices to consider the case in which s\ and s2 are the same except
for one pair of transposed signs at adjacent positions p and q. Then there is a
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bijection h : B{s\) —» ̂ f e ) that has the following effect on non-elliptic webs. If a
web w connects p to q by a bare strand, /*(w) is the same web with the orientation
of the strand reversed:

If there is an H-web attached at p and q, h{w) is w with the H-web removed:

If there is no H-web, then h{w) is w with an H-web attached:

+ +

It is easy to check that h(w) is non-elliptic if w is, and that h has an inverse. In
fact, the inverse is also an /z-map. D

In the notation of the above proof, we also say that w and h{w) differ by an
H-move.

Lemma 6.4. If a is a minimal cut path of w G B(ST) separating S from T, it
divides w into two parts w\ G B(Sc) and W2 £B(c*T) with non-convex clasps c
and c*.

Proof If c were convex in w\, w\ would have a cut path α' whose weight is lower
than that of c, the same as the weight of α. But a' is also a cut path in w and has
the same endpoints as α, contradicting the hypothesis that α is minimal:

C -

Lemma 6.5. If α and β are cut paths from p to q of a basis web w and α is
minimal, then the weight of a is less than or equal to {and not incomparable to)
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the weight of β. If β is also minimal, the two parts of w cut by β are the same
as those of w cut by α up to H-moves.

Proof The proof is by induction on the complexity of w; assume that w is a
minimal counterexample. Assume also that, having chosen w9 α and β are transverse
and intersect minimally. First, we can discard any structure of w not bounded by
α U β; the new web has no clasps and is non-elliptic since w is non-elliptic. Second,
we claim that α and β do not intersect except at their endpoints. Otherwise, let α'
be a segment of α between two consecutive intersections x\ and xι, and let β' be
the arc of β from x\ to X2 (which are not necessarily consecutive along β). Then the
region between α' and β' is either empty, in which case α' and β' do not intersect
minimally; or it constitutes a smaller counterexample than w for some choice of α';
or jδ'; or α and β have comparable weight:

xχ=p
A

α α : 1 β β'

β\

Third, w must be connected, for if one of its connected components meets α but
not /?, α is not a minimal cut path; if one of its components meets β but not α, it
may be discarded to produce a smaller counterexample; and if all components meet
both α and β, one of them is a smaller counterexample:

Finally, if e\ and £2 &re adjacent endpoints of w, define the exterior curvature of
the arc e~ϊe~i to be 180° — «60°, where n is the number of vertices of w connecting
e\ to e2:

The total exterior curvature of w is at least 360° since w is non-elliptic. Moreover,
the curvature at the arcs containing p and q is at most 120°, for if it were 180°,
either w would be disconnected or it would be a single strand. Therefore there must
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be a segment y of either α or β with positive curvature. There are three possibilities
for the edges of w that bound a face together with γ:

Ό
1 2 3

1. A "U." In this case, w is either disconnected or a single strand.
2. A "Y." If γ lies on α, then α is not minimal. If y lies on /}, then an isotopy

of β across the "Y" produces a smaller counterexample.
3. An Ή . " In this case, an isotopy of either α or β produces a smaller coun-

terexample by an H-move.

This eliminates all possibilities for the least counterexample. D

Lemma 6.6. Let C be a sequence of clasps, let c be an arbitrary clasp, and let
w e B(Cc) be a basis web. There is a cut path y that separates c such that any
other such cut path lies between y and c.

Proof. If α and β are two transverse, minimal cut paths that separate c and p
and q are two consecutive transverse intersection points along either path, then the
weight of the arc of α from p to q must equal the weight of the arc of β from p
to q, for otherwise one path would provide a short-cut for the other and either α or
β would not be minimal. Thus the path y that follows the perimeter of α U β must
also be minimal:

If we partially order cut paths by their distance from c, there is a unique maximal
element. D

Given w as in Lemma 6.6, define the core of w relative to c to be the web
W G B(Cc') obtained by cutting away c along the cut path y guaranteed by the
lemma. Here c' is another clasp with the same weight as c. Let B(C; λ) be the set
of all cores of webs w e B(Cc) for all clasps c of weight λ. Note that, since c is
non-convex in w, one of the minimal cut paths that separates c is parallel to c.
Therefore, by Lemma 6.5, w differs from its core by H-moves. Note also that the
core wr has the property that no H-webs are attached at c1', and that any web with
this property is its own core.

We describe how an arbitrary basis web extends from one of its cores. Consider
the following stair-step construction of a basis web from a core. Suppose that
w e B(C[s]) is a core relative to a clasp [s] of weight λ = aλ\ + bλi, and suppose
that |V] is an arbitrary clasp of the same weight. Then the strings s and s1 each
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represent paths p and p' from the the upper left comer to the lower right comer of
an a x b rectangle, where each " + " in s or s' is a step to the right and each "—"
is a step down:

s' = - + - + - + + -

+

P'

+

\
1 JΓ -.

+

~ +

P

-

—

+

If an H-web is placed in each square as indicated, the two paths p and p' delineate
a sequence of connected webs, separated by points or segments where p and p'
meet and may or may not cross. We attach each web bounded below by p to w,
and we invert and reverse the arrows of each web bounded above by p and then
attach it to w. The result is a web wf e B(C[s']) with core w:

If s\ and 5*2 are arbitrary strings of the same weight, we can set s' to either in
the stair-step construction, which implies that any core w of a web in B(C[s\]) is
also a core of a web in B(C[s2]). Moreover, it is easy to check that, if w is fixed,
the collection of webs so produced is closed under H-moves. Since every basis web
is related to its core by H-moves, the stair-step construction produces all webs in
B(Cc) for all c with weight λ. In particular, we have demonstrated the following
lemma:

Lemma 6.7. Let C be a sequence of clasps and let c be a clasp of weight λ.
If we B(C[c]\ let f{w) be its core. Then the map f : B(C[c]) -> B(C λ) is a
bijection.

Using the above lemmas, we can prove Theorem 6.2:

Proof Let w\ e B(C; λ) and W2 G B(D; A*), and let c\ and C2 be the clasps of w\
and W2 of weight λ and λ*. Then we can either extend w\ to a basis web in B{Ccl)
or extend W2 to a basis web in B(Dc*) and then sew the two webs together; by the
symmetry of the stair-step construction, the resulting web w G B(CD) is the same
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in both cases. Define

/ : U (B(C; λ) x B(D; Γ )) -+ B(CD)
λ

by the above operation on pairs of cores. By Lemma 6.5 and the fact that H-moves
preserve cores, there is also a map

g : B(CD) - (J (B(C; λ) x B(D; λ*))
λ

given by splitting w along a minimal cut path and taking the cores of the two
halves. By Lemma 6.7, / and g are inverses. Using Lemma 6.7 again, we can see
g as the injection claimed by the theorem. D

To prove Theorem 6.1, we need one additional lemma. Say that a sign string s
is segregated if it is of the form

+ + ...+

a sign string with only +'s or only — 's is automatically segregated. Likewise, say
that a clasp is segregated if it is of the form [s] for a segregated sign string s.

Lemma 6.8. Let c and d be segregated clasps of weight λ and μ. Then the web
basis set B([-\-]cd) has one element if and only if λ* = μ + λ\9 μ* = λ + λ\, or
λ* = μ + Λ-2 — λ\9 and is empty otherwise.

Proof Consider first three segregated clasps c9 d, and e (one of which might be
empty) of arbitrary weight, and let w G B(cde). We claim that w must consist of a
number of bare strands plus a flat component, as in the following example:

The argument is similar to the proof of Lemma 6.5. Assume first that w is not
connected. If p and q are adjacent endpoints of w, we define the curvature of the
segment of the boundary of w from p to q as in Lemma 6.5. Since w is non-elliptic,
it must on the one hand have total exterior curvature at most 360°. On the other
hand, there can be no "U" or "Y" attached along c, d, or e, and in there is only
one place along each clasp where an H is possible. The curvature at this H, if it
is present, is at most 60°, and the curvature elsewhere along the clasps is at most
0°. Moreover, unless w is a bare strand, the curvature at the segments between the
clasps is at most 60° also. The largest possible total is 360° exactly, so that w is
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flat and its boundary is qualitatively a hexagon:

If w is not connected, then the above argument applies to each connected component
of w, with the additional observation that at most one component of w can meet all
three clasps c, d, and e. A component that only meets two clasps is necessarily a
bare strand.

In the case of interest, e = [+]. In this case, w might consist entirely of bare
strands, or it might have a component in the shape of a parallelogram or a trapezoid:

C c

These possibilities exactly match the restrictions on the weights of c and d. D

Finally, we prove Theorem 6.1:

Proof. Let Λ+ be the set of all weights λ = aλ\ -f bλ2 with α,ό € Z^ 0 Con-
sider the abelian group %[Λ+] of formal sums of elements v(λ) for each λ e Λ+.
Then we can define a product in Z[A+] using the dimensions of the clasped web
spaces:

where in the sum each C{ is some clasp of weight λ(. By Theorem 6.2, there exist
bijections

U (B(c,c2d) x B(c3c4d*)) 9έ B(Cιc2c3c4) 9έ (\jB(c2c3d) x B(c4Cιd*)) .
d \ d /

These bijections imply that multiplication is associative, and therefore Z[A+] is
a ring. To establish Theorem 6.1, it suffices to check that the map v(λ) \—> V(λ)
induces an isomorphism from Z|yl+] to the Grothendieck ring of A2. Using induc-
tion, it suffices to check that for all λ e A+,

v(0)v(λ) = v(λ),

v(λι )v(λ) = v(λ + λι) 4- v(λ - λx + λ2) + v(λ - λ2),

v(λ2)v(λ) = υ(λ + λ2) + v(λ -λ2 + λι) + υ(λ-λι),
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where v(λ) is defined as 0 for λ$Λ+, because similar relations hold in the
Grothendieck ring. (Note that we cannot argue from an a priori hypothesis that
Z[Λ+] is the Grothendieck ring of a category, because such a construction assumes
the existence of internal clasps, which in turn depends on Theorem 6.1.) In terms
of webs, the first relation states that if c and d are two segregated clasps, then
B(cd) is empty unless c = d*, in which case it has one element. This follows from
Lemma 6.5 or from arguments similar to those of Lemma 6.8. Similarly, the other
relations are equivalent to Lemma 6.8. D

6.2. The B2 and G2 cases

Theorem 6.9. Let C be a B2 clasp sequence and let wt C be the corresponding
sequence of weights. Then the vector spaces W{C) and Inv(F(wt C)) have the
same dimension.

Theorem 6.10. Let C be an G2 clasp sequence and let wt C be the corresponding
sequence of weights. Then the vector spaces W(C) and Inv(F(wt C)) have the
same dimension.

To establish these two results we mainly need to alter various technical defini-
tions given for the A2 case; most of the lemmas leading up to Theorem 6.2 and
the proof of the theorem then carry over word-for-word. An H-web in the B2 or G2

spider is the web:

x
In both the B2 and G2 spiders, one can define an H-move on a basis web w with
two adjacent endpoints labelled 1 and 2. An H-move at two such endpoints consists
of attaching an H-web to w, provided that this operation does not create an elliptic
face, and then replacing an internal double edge by a tetravalent vertex in the B2

spider or by a perpendicular single edge in the G2 spider:

y=\ * X 0B2case),

(G, case) . (7)X
If attaching an H-web would result in an elliptic face, then there are two alternatives:
Either an H-web can be removed (possibly after introducing an internal type 2 strand
by the above operations), or the two endpoints make a "Y:"

>C
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or, in the G2 case, they make an "H" with only one type 2 strand:
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In each of these exceptional cases, the operation indicated is the H-move.
The operation of cutting along a minimal path is slightly more complicated than

before, because the path might cut diagonally across a vertex in the B2 spider or
contain a type 1 edge in the G2 spider. The operation is defined by first introducing a
type 2 edge, as is sometimes also necessary for an H-move, by reversing the contrac-
tion operation of Fig. (7). A core is defined in the same way for all three rank 2 spi-
ders. The stair-step construction is essentially the same as before. Each square is an
H-web, with the result that sewing together two cores with stair steps in between re-
sults in many internal type 2 strands, which are removed by the operation of Fig. (7).

The biggest difference between the three rank 2 cases is in the statement and
proof of the analogues of Lemma 6.8. We wish to check that, if s e {1,2} and c
and d are arbitrary clasps of weight λ and μ, then

\B([s]cd)\ = dimInv(F5 0 V(λ) 0 V(μ)). (7)

For this purpose, one would like to argue that an element of B([s]cd) has no hyper-
bolic faces. As before, it is convenient to consider segregated clasps, where here a
clasp is segregated if it is of the form 11. . . 122... 2, as well as reverse segregated
clasps of the form 22... 211.. . 1. In the B2 case, it is easy to enumerate the elements
of B([l]cd) if c is segregated and d is reverse segregated, as well as the elements
of B([2]cd) if c is reverse segregated and d is segregated. A web w in such a basis
web set cannot have negative curvature, and after removing bare strands, it is either
empty or the shape of its boundary is one of the following (possibly with c and d
switched):

V
In the (72 case, the computation is again simpler if one of c and d is segregated and
the other is reverse segregated. No webs in B([l]cd) have any negative curvature,
but a web in B([2]cd) might have one negatively curved face, namely one with
three type 2 strands and one type 1 strand incident to it:
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All other G2 webs in B([2]cd) are flat. An exhaustive enumeration of such webs in
both spiders verifies Eq. (7). The details are left to the reader.

Finally, in the G2 spider, unlike in the A2 and B2 spiders, web with a partly con-
vex clasp does not necessarily vanish in the clasped web space ^ ( [ s i ] ^ ] [sn])
Recall that the clasped web space is defined as the subspace of the unclasped web
space W(s\s2 sn) spanned by non-elliptic webs with non-convex clasps and no
internal type 2 edges, and that there is also a kernel /(|>i]|>2] [sn]) spanned by
webs w such that there is a cut path transverse to all edges of w which cuts off a
clasp of lower weight. In order to show that the G2 spider is well-defined, we need
the following lemma:

Lemma 6.11. The spaces I([s\][s2]'
in W(sιs2- sn).

[sn]) and W([s\][s2]" [sn]) are transverse

Proof. Rank the webs in W{s\s2 —sn) first by the number of vertices, and second
by the sum of the weights of minimal cut paths cutting off each string Sf. We
consider a change of basis which is lower-triangular with respect to this ranking:
For each web w e W(s\s2 -sn), choose a minimal cut path pt cutting off each 57 as
close as possible to the boundary. The cut paths are unique by the G2 analogue of
Lemma 6.6, and they cannot cross, although they could in principle share segments.
Recall the equation for a double edge from Eqs. (4), rearranged slightly:

1
- 2

1

q + l + q - 1 K
Applying this equation, we can convert every single edge contained in a path pi to
a transverse double edge; the other terms are all lower with respect to the ranking
of webs. This produces a new basis for W(s\s2 sn) in which / ( [ . S Ί ] ^ ] * [sn])
and ^([si l fe] [sn]) are manifestly complements. D

7. Explicit Formulas for A2 Clasps

Although internal clasps must exist by Sect. 5, the argument given there is too
indirect for practical computations. In this section, we give explicit formulas for A2

clasps. Note first that clasps are sent to each other by composition with H webs:

+ - + -

K
Thus, it suffices to derive a formula for segregated clasps.
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Lemma 7.1. If s is a segregated sign string and t* is another sign string of lower
or incomparable weight, then a basis web w e B(st) has either a "U" or a "Y"
attached to s.

Proof The proof is also similar to that of Lemma 6.5. We assume the minimal
counterexample. First, the web w must be connected, for if a connected component
meets t but not s9 it may be discarded to produce a smaller counterexample; if it
meets s but not t, then it is a smaller counterexample; and if all components meet
both s and ί, then one of them must be a smaller counterexample. Second, there
can be no "Y" or "H" attached at t, for otherwise they may be discarded to pro-
duce a smaller counterexample. (Note that a "U" attached to t has already been
eliminated.)

Since w is non-elliptic, the total exterior curvature is at least 360°. Since there
is no "U," "Y," or "H" attached at t*9 the total curvature along t is at most 0°.
Moreover, unless w is a bare strand (which is not a counterexample), the two arcs
connecting s to t have curvature at most 120°. By the hypothesis that s has no "Y,"
the curvature in each segregated segment of S is at most 0° also. Finally, since s
has no "U," the curvature at the single arc connecting opposite signs of s is at most
60°, for a total of at most 300°, a contradiction:

,< ^ 120

/
\ I »

\ /
V /

\ w
t .

V ^120

By Lemma 7.1, if a web w e W(ss*) annihilates any "U" or "Y," it satisfies
the annihilation axiom of a clasp. Moreover, among terms in w9 only βs (the web
consisting solely of parallel strands) has the weight of s as its cut weight. Therefore
all other terms are annihilated by such w9 and the annihilation property implies that
w is an idempotent under concatenation if the coefficient of the leading term βs is
1. Given these facts, an argument by induction (see Wenzl [24] and Ohtsuki and
Yamada [16]) establishes that

n-\ + +

n+ n-l +
ll n-2ϊ

+ In]
n- n-\-

n-\ -
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recursively defines a clasp of weight nλ\, and a computation shows that

a+ b-

ks=0 [a-k]\[b-k]\[a
a- b +

I I

α -

defines a segregated clasp of weight aλ\ + Z?A2

8. Applications and Problems

8.1. Higher rank. The main open problem related to the combinatorial rank 2 spi-
ders is how to generalize them to higher rank. A proper generalization would con-
sist of a complete set of generators and relations for the higher-rank spiders; the
strand sets would correspond to the fundamental representations and their tensor
products. It is easy to make a HOMFLY spider which corresponds to the HOM-
FLY polynomial, but this spider describes the invariant theory of An only in the
stable limit of large n\ the Λn web spaces for any fixed n are quotients of the
HOMFLY web spaces. (Recently, Murakami, Ohtsuki, and Yamada [15] have de-
fined the HOMFLY spider in terms of trivalent graphs; this is a step toward an
explicit description of the unstable truncation.) The generalization to a higher-rank
Lie algebra g, if it exists, would also likely involve formal angles related to the
Coxeter geometry of g; note that in both the Λ2 and B2 spiders, a trivalent ver-
tex is dual to a Weyl alcove. Note also that in all three rank 2 spiders, a large,
flat basis web (one with neither elliptic nor hyperbolic faces) coincides with the
Voronoi tiling of the plane given by the weight lattice of the corresponding Lie
algebra.

The bases given by the combinatorial rank 1 spider are dual to Lusztig's canoni-
cal bases [2]. Those of the rank 2 spiders are almost certainly also dual to canonical
bases or are closely related, because canonical bases have the same symmetry of
cyclic permutation of tensor factors, and because of the integrality and positivity
properties of the coefficients in Eqs. (2), (3), and (4).

8.2. Generalized βj symbols. Given four webs wi, W2, W3, and w4 and six clasps
en, C13, c\4, c23, c24, and C34 in some spider, their tetrahedron symbol is defined as
the value of the compound web
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provided that the four webs w, are members of the appropriate clasped web spaces.
The tetrahedron symbol is closely related to the 67 symbol, which expresses the
change of basis from

®W(cl2cnCi4)ί

to

via the identification of both with W(c\2c\3C4iC42), where in general c^ — c*;. Up
to normalization, the A\ tetrahedron symbol at q = 1 equals the Racah-Wigner 6/
symbol used in mathematical physics [14]. Using the A\ spider, Masbaum and Vogel
have found a new proof of the Racah formula for the 67 symbol and its quantum
generalization [12]. The combinatorial rank 2 spiders could be equally useful for
understanding the rank 2 generalization of the 67 symbol.

8.3. Practical computation of rank 2 link invariants. If one is interested in
computing link invariants, Eqs. (2), (3), and (4) can be interpreted as inductive
rules for evaluating links and knotted graphs without boundary in the web space
Wφ). Mollard [13] and Sinha [19] have independently written computer implemen-
tations of this algorithm for G2, and there are well-known computer programs to
compute the Jones, HOMFLY, and Kauffman polynomials using the same basic
strategy.

Spiders suggest an alternative method for computing the same invariants which
is more efficient than a direct application of the above rules to closed links and
graphs. The method consists of assembling a link projection, as a web, from
indiviual crossings using spider operations, and reducing intermediate webs to linear
combinations of basis webs. For example, to evaluate the quantum A\ link invariant
(the Jones polynomial) of a figure eight knot, we can decompose the knot as a
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nested sequence of three tangles a, b, and c:

We recall some basic identities in the A\ spider:

O-
X = -q

/ O - <?3/4

The tangle a is a right-handed crossing. Its expansion leads to an expansion of the
tangle b:

XX-«'")c<-r
which leads to an expansion of tangle c:

V

A—X + q~m 6

which leads to the evaluation of the entire knot projection:

\A/

-q-m){qι-q+\-q-λ+ q~2)
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Given a knot K and a clasp c in one of the combinatorial spiders presented here,
consider the clasped cabling of K. I.e., replace the strand of K by several strands
tied together with c, for example:

(9)

The value of a web such as the one in Fig. (9) is also a regular isotopy invari-
ant of K; it is the Reshetikhin-Turaev ribbon graph invariant of K colored by an
irreducible representation whose weight is the highest weight of c [17]. By the iso-
morphism between combinatorial and algebraic spiders, clasps are a complete set
in the sense that these clasped invariants yield all of the information about K that
can be obtained from applying the unclasped link invariants to all cablings of K
and all other satellites of K. Moreover, the value of a clasped cabling of K can be
computed more easily than an unclasped cabling, because clasped web spaces are
much smaller vector spaces than their unclasped counterparts.

8.4. Combinatorial consequences. Although Theorems 6.1, 6.9, and 6.10 are prop-
erly results in representation theory, they are also interesting as results in enumera-
tive combinatorics. John Stembridge and Richard Stanley [20] noted that a B2 basis
web w E 5(11. . . 1) is equivalent to a matching of In cyclically ordered points with
no 6-point star, meaning that among the 2n points, there are no six in cyclic order
no six points p\, p2, pz,q\,qi,qs with each pt matched to qt. On other hand, the
number of such matchings with no 2&-point star is known to be dim Inv( V®ln),
where V is the defining representation of sp(2& — 2) [21]. Thus, this special case
of Theorem 6.9 was known previously.

It is interesting that ordinary trivalent graphs are related to the exceptional Lie
algebra G2. One corollary of this surprising connection is the following enumerative
result:

Theorem 8.1. For n ^ 3, let an be the number of triangulations of a fixed convex
n-gon such that at least six triangles meet at each internal vertex, and let

A(x)= 1 +x2 + Σanx
n

n

be a generating function. For n ^ 0, let

for n ^ 0, and let
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be a generating function. Then

B(x)=A(xB(x)). (8)

Proof. (Sketch) By Theorem 6.10, bn may equally well be defined as the number
of G2 basis webs with n endpoints. Each triangulation is dual to a connected basis
web. Equation (8.1) becomes a standard relation between the number of connected
graphs of a certain type and the number of disjoint unions of such graphs. More
precisely, consider n boundary points on a disk with one marked, and consider a
basis web w G B( 11 1) with this boundary. Then w is given by an ordered tree
whose vertices are its connected components: The root is the component with the
marked vertex, and the children of each component are the adjacent components
other than the parent, if there is one. The children of each component are ordered
going counterclockwise, with the distinguished boundary point separating the first
and last children of the root. Equation (8) is the usual generating function for
ordered trees [3, p. 11-12]. D

The sequence {bn} is easy to compute using character theory. Thus, Theorem 8.1
produces a fast algorithm for computing {an}.

It is easy to show that the radius of convergence of B(x) is 1/7. Then by
Theorem 8.1, the radius of convergence of A(x) is at least B(l/Ί)/Ί. Furthermore,
numerical evidence supports the conjecture that it is exactly i?(l/7)/7, i.e., that

Conjecture 8.2. If an and bn are defined as in Theorem 8.1, then

lim ψa~n= co =6 .811 . . . .

Our equinumeration theorems count all basis webs with a fixed boundary. How-
ever, for each n and k, one can also consider the set of Gι basis webs, for example,
with n endpoints of type 1 and k internal vertices. The role of these sets and their
cardinality in representation theory is not known.

Given an A^ basis-web set B(s) for some sign string s, there are various H-maps
corresponding to different adjacent pairs of signs. But if s' is another sign string of
the same weight as s, then any two sequences of H-maps permuting s into s' yield
the same bijection B(s) —» B(s'), provided that the first and the last sign of s are
not considered adjacent. On the other hand, if a sign is moved all the way around
the boundary by H-maps, monodromy arises:
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It would be interesting to compute the cycle structure or establish properties of this
monodromy, which is related to a linear action of the braid group on

S

where the direct sum on the right is taken over all sign strings of length n.
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