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Abstract: We study an iso-spectral deformation of the general matrix which is a
natural generalization of the nonperiodic Toda lattice equation. This deformation is
equivalent to the Cholesky flow, a continuous version of the Cholesky algorithm,
introduced by Watkins. We prove the integrability of the deformation and give an
explicit formula for the solution to the initial value problem. The formula is obtained
by generalizing the orthogonalization procedure of Szegé. Using the formula, the
solution to the LU matrix factorization can be constructed explicitly. Based on the
root spaces for simple Lie algebras, we consider several reductions of the equa-
tion. This leads to generalized Toda equations related to other classical semi-simple
Lie algebras which include the integrable systems studied by Bogoyavlensky and
Kostant. We show these systems can be solved explicitly in a unified way. The
behaviors of the solutions are also studied. Generically, there are two types of
solutions, having either sorting property or blowing up to infinity in finite time.

1. Introduction

In this paper we consider an iso-spectral deformation of an arbitrary diagonalizable
matrix L € MM(N,R). With the deformation parameter ¢ € IR, this is defined by

d
SL=[PL], 1.1

SL=[PL] (LD
where P is the generating matrix of the deformation and is given by a projection
of L,

P=1I(L):= (L)>0_(L)<O . (1.2)

Here (L) (<o) denotes the strictly upper (lower) triangular part of L. In terms of
the standard basis of IM(N, R), i.e,

Ejj = (0wbji)1<ki=N (1.3)
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the matrices L and P are expressed as

L= Z a,-jEij 5 (14)
1<ij<N

P= > aEj— > ajE;. (1.5)
1Si<j<N 1<j<i<N

Using the commutation relations for Ej;, i.e.,
[Eij,En] = Eidjx — Epdur , (1.6)
the equations for the components a;; = a;;(¢) are written in the form,

day (NN poaes eV an .
= > > ) awa; + (an —ayy)ay; , (1.7)
P

dr T k=l

where [ := max(i,j) and J := min(i, j). Equation (1.1) is also defined as the com-
patibility of the following linear equations with iso-spectral property of L:

LO = oA, (1.8)
d
— @ =PP, 1.9
7 (1.9)
where @ is the eigenmatrix, and A is the diagonal matrix of eigenvalues,
A = diag(4i,...,4n) . (1.10)

The set of equations (1.8) and (1.9) is also referred as the inverse scattering trans-
form for the system (1.1). The main purpose of this paper is to show the complete
integrability of (1.1) with (1.4) and (1.5) by means of explicit integration of the
initial value problem using the inverse scattering transform.

One of the most famous and important examples of (1.1) is of course the non-
periodic Toda lattice equation, where L is given by a symmetric tridiagonal matrix
[15]. The matrices L and P for this equation are commonly written as

N N—1
Lr =Y aE; + 2, bi(Eiiv1 + Ei1) (1.11)

i=1 i=1

N—1

Pr = 21 bi(Eii+1 — Eir1,i) - (1.12)

The integrability of the Toda lattice equation has been shown by the inverse scat-

tering method [8, 14, 15]. In this paper, we call (1.1) with (1.2) the “generalized

Toda equation.”

Several generalizations of the Toda lattice equation have been considered. In

[2], Bogoyavlensky extended the equation based on the simple roots of semi-simple
Lie algebra g, where L and P were given by

Lp = aihi+ ) byes+e—y), (1.13)
i=1 aell
P= 3 byle,—e_,). (1.14)

a€ll
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Here the elements h;,e,,e_, are Cartan—-Weyl bases in g with » = rank(g) and
IT = the set of the simple roots. All of these equations associated with semi-simple
Lie algebras are shown to be completely integrable hamiltonian systems. In [13]
Kostant solved these by using the representation theory of semi-simple Lie algebras.
In [1], Bloch et al. showed that these systems can be also written as gradient
flow equations on an adjoint orbit of compact Lie group. They then showed that
the generic flow assumes the “sorting property” (or convexity). Here the sorting
property means that L(¢) — A = diag(44,...,Anv) as ¢ — oo, with the eigenvalues
being ordered by A; > 4, > - > Ay.

There are also other types of extensions: One of them is to extend Ly in (1.11)
to a full symmetric matrix. The corresponding system, which we call the “full
symmetric Toda equation,” was shown by Deift et al. [5] to be also a complete
integrable hamiltonian system. In [11] Kodama and McLaughlin solved the ini-
tial value problem of the corresponding inverse scattering problem (1.8) and (1.9),
and obtained an explicit formula of the solution in a determinant form. They also
showed the sorting property in the generic solution. The full symmetric Toda equa-
tion gives a QR-flow defined in [16], and the solution is obtained by the QR factor-
ization method [17]. As a slight generalization of the full symmetric Toda equation,
Kodama and Ye [12] considered a system with symmetrizable matrix L, which is
expressed as Lxy = LgS with a full symmetric matrix Ls and a diagonal matrix S.
A key feature of this system is that the eigenmatrix of Lgxy can be taken as an
element of a noncompact group of matrices, such as O(p,q), and defines an indef-
inite metric in the eigenspace. The integrability was also shown in a similar way
as in [11], and the general solution now assumes either sorting property or blow-
ing up to infinity in finite time as a result of the indefinite metric. This system is
equivalent to the HR-flow, a continuous version of the HR algorithm, introduced by
Watkins [19].

In [7], Ercolani et al. proposed Eq. (1.1) with matrices,

N=1
Lu= Y Eun+ )Y DbyEy, (1.15)
i=1 1<jSi=N
Py =-2(Ly)<o=-2 Y, DbyE;, (1.16)
1<j<isN

which was called the “full Kostant-Toda equation.” This is also an extension of the
Toda equation (1.11) which can be written in the form,

~1
S B2Ei . (1.17)

. N—1 N N
Lr =3 Epim + ) aly +
i=1 i=1 i=1
As we will show in this paper, the transformation from (1.11) to (1.17) is given by
a rescaling of the eigenvectors of L. Several group theoretical structures of the ex-
tended system were found. However the question whether the system is completely
integrable still remains open in the sense of explicit integration.

It is immediate but important to observe that all of these extensions are special
reductions of the generalized Toda equation (1.1). In fact, we show that these
reductions are obtained more systematically as certain decompositions of the root
spaces of semi-simple Lie algebras.

In terms of the matrix factorization, the generalized Toda equation (1.1) with
(1.2) is equivalent to the Cholesky flow introduced by Watkins in [19]. The
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Cholesky flow for a general matrix L has the same form as (1.1) with the
generating matrix P defined by —(L)<o — (1/2)diag(L). Writing P in (1.2) as
P =L —2(L)<o — diag(L), we see that Eq. (1.1) is the same as the Cholesky flow
except a scale change of ¢ by 2¢. Deift et al. showed [6] that the Cholesky flow is a
completely integrable system. It can be solved by the following LU-type of matrix
factorization:

O = yyw(), (1.18)

where V(t) and W (¢) are lower and upper matrices respectively with diag(V'(¢)) =
diag(W (¢)). Then the solution L(z) is given by

L(t) = VY OLOYW (1) = W(HLOYW (1) . (1.19)

The above solution is not explicit in the sense of (1.18). The explicit formula of
the matrix factorization is a direct consequence of our results.

In this paper we first show the complete integrability of (1.1) with (1.4) and
(1.5) by means of the method of inverse scattering transform and give an explicit
solution to the initial value problem. Here by complete integrability we mean the
solvability of Eq. (1.1). Then we prove the complete integrability of any reductions
of (1.1). The content of this paper is as follows: We start with a preliminary
in Sect. 2 to give some background information necessary for analysis of the system
(1.1) and the inverse scattering scheme (1.8) and (1.9).

In Sect.3, we solve the initial value problem of (1.9) for the general system
(1.1) by generalizing the method developed in [11] and [12]. A key in the method
is to use the orthonormalization procedure of Szegd, which is equivalent to the
Gram—Schmidt orthogonalization method. This shows the complete integrability of
the generalized Toda equation in the sense of the inverse scattering transformation
method. Based on our explicit solution, we then give an explicit solution to the
Cholesky factorization (1.18).

In Sect. 4, we present reductions of (1.1) according to the classification of semi-
simple Lie algebras. The matrix L here then contains “all” the root vectors, and
it gives a generalization of the system formulated by Bogoyavlensky [2]. A key
ingredient here is to find a matrix representation of the algebra in a decomposition
consisting of diagonal, strictly upper and lower matrices (Lie’s Theorem [10]). Then
the integrability of these systems associated with semi-simple Lie algebras is a direct
consequence of the result in Sect. 3.

Section 5 provides other reductions which include the full Kostant-Toda equation
and the system with a matrix L having band structure in the elements.

In Sect. 6, we discuss the behavior of the solutions. Generically, in addition to
the sorting property, there are solutions blowing up to infinity in finite time, as in
the case discussed in [12].

Finally we illustrate the results obtained in this paper with explicit examples
in Sect. 7.

2. Preliminary
Here we give some background information necessary for the inverse scattering

method (1.8) and (1.9). As we will see in the next section, a key idea for solving
these equations is to use an orthogonality of the eigenfunctions of (1.8). This is
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simply to consider a dual system of (1.8) and (1.9), which are written by

YL =AY, 2.1)
d
—¥Y=-YpP 2.2
= : 22)
where the matrix ¥ is taken to be &~!, and of course
Yo =1, oY =1. (23)
In terms of the eigenvectors, these matrices can be expressed as
D =[p(h),-.., d(AN)] = [di(A)]i<i <N (24)
V= ()T )] = W) isijsn - (25)

Note here that ¢(4;) and Y(4;) are the column and row eigenvectors, respectively.
Then Egs. (2.3) give

N

];1 Y (Ai)Pi(4)) = 0y, (2.6)
N

1;1 (AW (Ae) = by 2.7)

which are called the “first and second” orthogonality conditions. With (2.7), one
can define an inner product (-, -) for two functions f and g of A as

N
Vﬂ%=§3f@0ﬂ&% (2.8)
=1
which we hereafter write as (fg). From L = @AY, the entries of L are then
expressed by
aij = (L); = (Adiy) - (2.9)

This gives a key equation for the inverse problem where we compute L from the
eigenmatrix @ (and ¥) with the eigenvalues 4;. So the eigenmatrix plays the role
of the scattering data in the inverse scattering method. Then the method for solving
the initial value problem of Eq. (1.1) can be formulated as follows: First we solve
the eigenvalue (or scattering) problem (1.8) at = 0, and find the scattering data,
@" := @(0). Then we solve the time evolution of the eigenmatrix from (1.9), and
with the solution @(¢) we obtain L(¢) through Eq. (2.9).

3. Inverse Scattering Method

In this section, we construct an explicit solution formula for the initial value problem
of the generalized Toda equation (1.1) by using the inverse scattering method. A
key of this method is to generalize the orthogonalization procedure of Szegd with
respect to the inner product (2.8). This is essentially an extension of the method
developed in [11].

Following [11] we first “gauge” transform @ and ¥ by

&=G6d, ¥Y=VYG, (3.1)
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where the matrix G is given by

G = diag[(dyy) 2., (i) T

Note that the gauge transform (3.1) includes freedom in the choice of ¢ and i,
that is, (3.1) is invariant under the scaling ¢, — fi(1)d;, fi(t)W, with {fi}Y,
arbitrary functions of ¢z. With (3.1), Eq. (1.8) and (1.9), as well as (2.1) and (2.2),
become

(G7'LG)D = o4, Y(GLG™) =AY, (3.2)
d . s (d -
Zé= PGYP — | = .
5 8=(G"'PG) (dt logG) @, (3.3)
d - . e e (d
- =-%GPG™) - 'I’(ElogG) . (3.4)

Noting G~ (L) <G = (G™'LG) -y, etc., we write
G™'PG = —2(G7'LG) <o + G7'LG — diag(L) ,
GPG™' =2(GLG™")>o— GLG™' + diag(L) ,

from which we obtain the equations for the column vectors (l;(l,t) in & and the
row vectors Y(4,¢) in VP,

‘;‘f ~2AG'LG) <o + A — (dlag(L)—l— d log G) b, (3.5)
% = —20(GLG™ Vg + M) — ¢ (dlag (L) + d log G) (3.6)

We here observe that (3.5) and (3.6) can be split into the following sets of equations
by fixing the gauge freedom in the determination of ¢ and . In the components,
these are

de, it (Ad;) - x

% _ 5 h 4 A, 3.7

dt ]; (b) e

ay =1 L (A ~

Do Ew
d .~

%E log (d¥) = aii . (3.9)

It is easy to check that (3.7) or (3.8) implies (3.9). It is also immediate from (3.7)
and (3.8) that we have:

Proposition 3.1. The solutions of (3.7) and (3.8) can be written in the following
forms of separation of variables:

(A1) = M(1)¢*(A)e* , (3.10)
V(A1) = YP (N (1) (3.11)
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where M(t) and N(t) are, respectively, lower and upper triangular matrices with
diag[M ()] = diag[N(¢)] = I, the identity matrix.

Note here that the initial data for (Z) and lﬁ are chosen as those of ¢ and ¥, i.e.
$(2,0) = ¢(1,0) := ¢°(A) and Y(4,0) = ¥(4,0) := y°(1). As a direct consequence
of this proposition, and the orthogonality of the eigenvectors, (2.7), i.e., ((5,1/;]) =0
for i+, we have:

Corollary 3.1 (Orthogonality). For each i,j € {2,...,N}, we have for all t € R,
(ple™y =0, for 1=1,2,...,i—1, (3.12)

(Pde™y =0, for k=1,2,....j—1. (3.13)

Now we obtain the formulae for the eigenvectors of L in terms of the initial
data {¢{()}1<izv and {YP(D}i<jzn:

Theorem 3.1. The solutions qgi(/l,t) and lpj(ﬂ.,t) of (3.7) and (3.8) are given by

e e ocnimr PNA)
R o
bon=pali o] (3.14)
Gt ... Cii—1 ¢?()b)
C11 Cij
J(ut) = e , 3.15
l//j ) Dj—l(t) Cji—1,1 .-+ Cj—1,j ( .
i) ... wj‘?(/l)

where c;j(t) = (¢pPyPe*"), and Di(t) is the determinant of the k x k matrix with
entries c;j(t), Le.,
Dy (2) = det[(ci())<ij=<k] - (3.16)

(Note here that c;j(0) = 6;; and Dy(0) = 1.)
Proof. From Egs. (3.12) and (3.13) with (3.10) and (3.11), we have

ZM,,(t) Py =0, forl <k <i—1, (3.17)

IIA

J
Z (PWREIN(£) =0, for 1 ST <j—1. (3.18)

Solving (3.17) and (3.18) for M;; and Nj; with M; = N;; = 1, we obtain

_ (— )'H A1,i(2) )
Mi(t) = D [ ]() by LS1sh (3.19)
Ni() = (‘ i H ()= 26D g o (3.20)
B RIOR Dy T T
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where D;[!] is the determinant of D; after removing the /™ row and ™ column.
From (3.10) and (3.11), we then have

B S AL, (321)

eM

Dy (1) =

G4 1) = ™ > My =
=1

Gt = ¥ kil Yo = Z AW . (3.22)

Noticing that A;; is the cofactor of the element c;; of the matrix (cmn)i<mn<i
and 4, is for cjx of (Cmn)izmn<; We confirm (3.21) and (3.22) are just (3.14)
and (3.15). O

We then note:

Corollary 3.2. The gauge factors (d;,l,b can be expressed by

~ - D;
(D) (1) = D__(It()t). (3.23)
Proof. From (3.21) and (3.22), we have
FOND) = == 5 Ay ds WD

_1 Lk=1

Then taking the bracket (,) in (2.8) leads to

(qglz ZAI i,kClk -

Lk=1

Using the relation Zf,:] Ay ici = Doy with 4;; = D;_; complete the proof. [

This yields the formulae for the normalized eigenfunctions

, i1 ... Cli—1 4’(1)(/1)
e !
NN e — SR 3.24
(kD) Di(t)D;—1(t) | - ' ’ ’ 329
¢t .o Ciic1 GY(A)
11 Cij
At
e (3.25)

LA B
Yi(4.0) Di)Dj—1(t) | ¢;_y 1 ... cjon,
W) ..o Y

With the formula (3.24) and (3.25), we now have the solution (2.9) of the inverse
scattering problem (1.8) and (1.9).

The above derivation of the eigenvectors is the same as the orthogonalization
procedure of Szegd [18], which is equivalent to the Gram—Schmidt orthogonalization
as observed in [11].
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To see the connection with the Cholesky factorization method (1.18), we have:

Corollary 3.3. The matrices V(t) and W(t) in the Cholesky factorization (1.18)
can be explicitly represented by

Vi) =MYG(t), and W)= G 'ONTY(1), (3.26)

where G(t) is the gauge matrix in (3.1), M(¢t) is the lower triangular matrix
in (3.10) and N(t) is the upper triangular matrix in (3.11).

Proof. From (3.1), (3.10) and (3.11), we can write the solutions @(¢) and Y(t) as
d(t) = GMP’e = GMeL ' @0 |
P(1) = eM"POING = PO O'NG .
Using the relation @(1)¥(¢t) = I, we have
GM™™'NG =1 ,

which leads to /9" = (GM)~'(NG)~!. Since diag(M(t)) = diag(N(¢)) = I, thus
diag((GM)~!) = diag((NG)~"). This completes the proof. [

Remark 1. The generalized Toda equation (1.1) with (1.2) possesses a hierarchy

defined by
0
—L=[P,L], n=12,..., (3.27)
Oty

where P, is given by

Py =1(L") = (L")>0 — (L") <0 - (3.28)

The commutativity of these flows can be shown by the “zero” curvature conditions
of P, ie.,

0P, 0P,
—— +[Puw, P]=0, 3.29
which is a direct consequence of the choice of (3.28) [12]. The solution for the
hierarchy is then obtained by extending the argument A¢ in the solution formula to

E(At) := D02, Aty [12].
Remark 2. The well known QR flow for a general matrix L € MM(N,R) is in the
same form as (1.1) with the following (skew-symmetric) generating matrix P:

P=(L)>o— (Lo =L)>0— [L)>0]" . (3.30)

It has been studied extensively in [4,6,16,17] and [19]. They showed that this
equation is a completely integrable hamiltonian system and can be solved in the
sense of a matrix factorization of QR type, and the solution converges to a matrix
in the triangular form. Our method developed in this section can be also applied
to this problem as follows: First we note that the product ®*@ of the eigenmatrix

) . . -7 . . . .
@ and its adjoint @* := @ is invariant under this flow (1.1). Then we define a
hermitian matrix S = (s;j)1<i <y as the inverse of ¢* 9, i.e.,

PSP* =1 . (331)

The matrix S is determined from the initial eigenmatrix ®°, and S®* gives the
inverse of @, that is, we have S@* for ¥ in our method. Note that if L is symmetric,
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S is an identity matrix / and @ € O(N). In general, we see from the Binet-Cauchy
theorem that S is positive definite. Equation (3.31) now gives the orthogonality
relation,

> N¢i(/1k Yk (A1) = 0y (3.32)

Skis

from which we define the following inner product as in (2.8):

(fog) = X fOsug(a) = (g, 1)) (3.33)

<kI<N

—

This leads to a positive definite metric. Then following the procedure in this section
with some modifications based on ¥ = S®*, we obtain the same result for the
eigenvectors (3.24) except the quantities c;; which are now given by

cy = (90", pje™)) =i (3.34)
The solution L(t) is then given by L(¢) = ®ASP*, i.e.,
a;(t) = ((Ai, 9;))(?) . (3.35)

Thus, we can show explicitly the integrability of Eq.(1.1) with the generator P
given by (3.30) for arbitrary diagonal matrix L, and as a result of the positivity in
the metric, the solution converges to an upper triangular matrix. The solution @ can
be also given in the same form as in Proposition 3.1, i.e.,

D(t) = G(OM(t)P e .

Then writing & = W(¢)®°, one can show from (1.9) with (3.30) that W (¢) is an
orthogonal matrix, and we have an explicit formula of the QR factorization,

O = [GOMOT W) .

The detail will be discussed elsewhere.

Remark 3. In [19], Watkins introduced the LU flow as a continuous version of the
LU algorithm. Deift et al. [6] showed that it is a completely integrable hamiltonian
system. The flow on a general matrix L € (N, R) is in the same form as (1.1)
with the following generating matrix P:

P=-2(L)<. (3.36)
It can be shown that the LU flow is related to (1.1) through a similarity transform
(same as the transform in Proposition 5.2) which immediately implies its integra-
bility through our scheme.

4. Isospectral Flows on Simple Lie Algebras

In this section, we consider the generalized Toda equations (1.1) associated with
simple Lie algebras g, and show their integrability. The matrices L and P here
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are given by a generalization of (1.13) and (1.14), i.e.,

Lg = Zaihi + Z bye, + Z cpep 4.1)
i=1 a€AT pea—

Pg = Z baea - Z cpep . (4.2)
agdt peda—

Here h; are the bases for the Cartan subalgebra with » = rank(g), 4™ and A~ are
the sets of positive and negative roots with the corresponding root vectors e, and
ep(=e_,). These vectors {4, e,} form the Cartan-Weyl bases of the simple Lie
algebra g which satisfy for i,j € {1,...,r} and o, f € 4 := AT U A,

[, hj] =0, [hi,ex] = a(hi)e, ,
[ex,eg] = Nupeuyp, ifa+ped, (43)
[ex,e_o] =hy, foraec At

Using representations of the Cartan—Weyl bases, we now express (4.1) and (4.2) in
matrix form for each simple Lie algebra. Then we prove that Eq. (1.1) with those
Ly and P, associated with the Lie algebra g is completely integrable by the inverse
scattering method developed in Sect. 3. The key ingredient in the proof is to show
that for each simple Lie algebra g there exists a “permutation” matrix Oy such that
the matrices Ly and Py are similar to L and P in (1.1) with P defined by (1.2), i.e.,

L = 0,L;0} , (4.4)
P =0,P0! =II(L). (4.5)

In other words, we look for a similarity transform such that the matrix represen-
tations of e, for « € A" and e for f € A~ are transformed to strictly upper and
lower triangular matrices, respectively. The existence of such representations is due
to Lie’s theorem [10]. Then the result in Sect. 3 implies the integrability of the sys-
tem (1.1) with Ly and P;. Note here that the generalized Toda equation is invariant
under the similarity transform. Here we consider all the classical simple Lie alge-
bras A4,,B8,,C, and D,. The system associated with the exceptional algebra can be
treated in the same way. For convenient matrix representations of the Cartan—-Weyl
bases, we follow the notations in [3] and [10]:

Ay: Let Ej; be the (n+ 1) x (n+ 1) matrix defined in (1.3). We then take an
element of the Cartan subalgebra as i = Zl'.':ll 2iEy; with S 2, = 0. Using (1.6)
for E;;, we have

[, Ey] = (4 — A))E;; . (4.6)

Thus E;; gives a root vector corresponding to the root a(k) = A; — A;. The simple
roots are defined as
ou(h) =2 — A4y, fork=1,....n. “4.7)

Then the positive (negative) roots are given by A, — 4; with i < j (i > j). This
implies that the choice of the P4, is the same as that in (1.2). Note also that adding
some constant to the Cartan subalgebra, one can choose 4; of the basis to be Ej;.
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Namely, the generalized Toda equation (1.1) with (1.4) and (1.5) can be considered
as an iso-spectral flow on the simple Lie algebra A,,.

C,n: The element of this algebra is given by a 2m x 2m matrix X satisfying X7J +
JX =0, where J is defined by

0 I
J = (—Im Om> . (4.8)

Here 0,, is the m x m 0-matrix, and I, is the m x m identity matrix. We then choose
the following bases with the 2m x 2m matrix E;; defined in (1.3),

ejj = Eyj — Epmism, 1S ij<m,
¢ = Eijim+Ejim, 1S1ZjSm, (4.9)
€ =Eiimj+Ejmi» 1Si<j<m.
Writing & = Y, A:e}; as a general element of the Cartan subalgebra, we have
(hoej] = (k= A)el, %),
(he]=(Zi+A)el, i<, (4.10)
[he)] = —(hi+A)e, i=j.
The simple roots are taken by

ak(h):}'k—/lk-kla forlékém_la
(4.11)
() = 22 ,

from which the sets of positive and negative root vectors ng and 2 are given by

ot o={ejep | 1Si<js<m 1Sk <m}, (4.12)
5o o={eey | 1Sj<i<m 1Sk<1<m}. (4.13)

Then the matrix L¢, can be represented by

Lo = (41 A (4.14)
Cn = A A)° .
where A4i,...,A44 are the m X m matrices satisfying the relations
AT = —dy, Ay=4l, A3=4F. (4.15)

The matrix Pc, is now given by

(4 4
Pe, = ( o _H(A4)> . (4.16)
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We then obtain:

Proposition 4.1. With the permutation matrix Oc,,, we have the generalized Toda
equation (1.1) on C, with L-P pair given by

L = 0c,Lc, O, . (4.17)
P = Oc,Pc,0f, =1(L), (4.18)
where Oc,, is given by
Ly Om )
Oc = , 4.19
with the m X m matrix Qp,
0 0 1
0 1 0 r
Qm —_ = Qm . (4.20)
0 0
1 0 0

Proof. From (4.14) and (4.16), it suffices to show

—Onl1(44)0), = I1(0nAs0},) - (421)

Recall that the multiplication of O, from the left (right) implies an exchange of
rows (columns). Then we see

On(A4)>0<0)Qp = (OnAsQp) <0(>0) » (422)
which implies the assertion. O

Note that Eq. (1.1) with L¢,, and Pc,, is just a reduction of the generalized Toda
equation on Azy_;.

Example 1. We take the simplest case C,. The matrices Lc, and Pc, are repre-

sented as
aj b] b2 b4
C1 aj b4 b3
Lc, = .
o 6 o —a —c | (4.23)
Cq4 C3 —b1 —a
and
0 b by bs
Po=| 0 O b by (4.24)
—C) —C4 0 C1
—C4 —C3 ——bl 0

Under the similarity transformation with O, defined in (4.19), L, and P, becomes

a) b] b4 bz

c ay b by
L =0c,Lc,0¢, = , (4.25)

cy ¢3 —ay —b;
Cy C4 —C —a
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and
0 by by by
—C 0 b3 b4

4.26
—C4 —C3 0 —b1 ( )

P = O¢,Pc,0(, =

—C) —C4 C 0

Note here that under the similarity transformation the root space is decomposed into
the diagonal, upper and lower triangular parts of the matrix (Lie’s theorem).

D,,: The matrix representation of this algebra is given by a 2m x 2m matrix X
satisfying XK + KX = 0, where K is defined by

O I
K= ( ) . (427)

Then the bases can be chosen as
1 ..
eij = Elj _'Ej+m,i+m> 1 = l)] = m,
2 . .
€jj = Eijim —Ejivm, 12i<j=m, (4.28)

€ =Eismj—Ejmi» 1Si<j<m.
With a general element & = " | A} of the Cartan subalgebra, we have

[hej] = (b — Apel,  j+k,
[he;]l = (hi+A)el, i<, (4.29)
(e}l ==+ A)ey, <],
from which the simple roots may be taken as
w(h)= A — Agy1, for 1Zk<m—1,

(4.30)
am(h) = Am—1 + /lm .

The sets of positive and negative root vectors 2, and X, are then given by
Ih, =Hlepe | 1Si<j<m}, (431)
Shn=1eley [ 1S j<i<m}. (4.32)

The matrix Lp,, is then expressed as

A, A,
Lp, = , 433
Din <A3 A4> (4.33)

where the m X m matrices 4,...,A4, satisfy

A =ty M=l Ay —al (434)
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([ 1(41) Ay
Fon = ( A —H(A4)> ' (433)

It is then immediate to see from Proposition 4.1 that the permutation matrix Op,
is the same as in the case of C,,. Namely we have:

The matrix Pp,, is

Proposition 4.2. With the permutation matrix Op,, = Oc,, given in (4.19), we have
L= Op,Lp, 0}, (4.36)

P = Op, Pp, 0}, =1I(L) . (4.37)

B,,: The element of this algebra satisfies the same relation as in D,,, XTK 4+ KX =
0, except now K is the (2m + 1) x (2m + 1) matrix defined by

1 07 o
K=[0 0, I, ], (4.38)
0 I, 0,

where 0 is the m-column vector with O entries. This algebra is referred to as the
orthogonal algebra so(2m + 1), while the algebra D, is as so(2m), and has the same
bases as (4.28) with additional elements,

4 .
e = Ey; — Ei+m,0, 1=

lIA

m,
(4.39)
i

IIA
IIA

S _
ei - EiO - EO,i-I—m, 1 m,

where we have labeled the indices of the matrix Ej; as 0 < i,/ < 2m. With the
expression h =Y . Jel as in the case of D,,, we have

[hell=—Aiel,  [he]l= e . (4.40)
The simple roots are then chosen as

(Xk(h):j,k_lk_'.l, forlékém_la

(441)
(h) = A -

The sets of positive and negative root vectors are now
o =Hel e, | 1Si<j<m 1<k<m}, (4.42)
e ={ee.el |[1Sj<i<m 1<k<m}. (443)

The matrix Lp, is then expressed as
0 bl bl

LBm = —b, A] Ay B (4-44)
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where by,b, are the m-column vectors, and the m X m matrices Ay,...,As satisfy
the same relations as (4.34). The matrix P, is now given by

0 —b] b
Py, = | =by M(41) A . (4.45)
b, —As  —II(44)
We then have:
Proposition 4.3. With the 2m + 1) x (2m + 1) permutation matrix Og,, we have

L = Og,Lp,0f , (4.46)
P = 0p,P3,05 =1I(L), (4.47)
where Op,, is given by
0 7, O,
Os, =11 0" o |. (4.48)
0 0, On

Proof. Under the similarity transformation with Op,,, L and P in (4.46) and (4.47)
are given by

Ay —b, A20m
L=\ bl 0 b o, |. (4.49)
QmA3 _mel QmA4Qr£
and
I(4,) —b A2Om
p=| —bl 0 bl 0, . (4.50)

—OnAs  Owbi  —0,I1(44)0F

Then Eq. (4.21) immediately leads to the result. O

Example 2. We take the simplest case B,, where L, and P, are represented by

0 c3 Cq —b3 —-b4
b3 ai b1 0 bz
L32 = by ¢ a —b; 0 s 4.51)
—C3 0 —C —a —C1
—C4 C 0 —b1 )

and
0 —C3 —C4 —b3 —b4

by 0 b 0 by

P,=|bs o 0 —b 0 |. (4.52)
C3 0 C 0 C1
Cq4 —C 0 —-b1 0
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Under the similarity transformation with Op, defined in (4.48), L and P in (4.49)
and (4.50) become
a b] b3 0 —b2
C1 ar b4 b2 0
L= C3 Cy4 0 —b4 —b3 5 (453)
0 C; —C —Q —bl
—C2 0 —C3 —C] —a)
and
0 by b3 0 —b
—C1 0 b4 bz 0

P = —C3 —C4 0 —b4 —b3 . (4.54)
0 —c a 0 -bh
(&) 0 c3 (] 0

5. Reductions on Root Spaces

As we have explained in the introduction, several generalizations of the Toda equa-
tion may be obtained by taking reductions of the generalized Toda equation (1.1)
with the general matrix L. We then showed in the previous section that the equa-
tions on simple Lie algebras studied in [2] are generalized by taking all the root
vectors in the algebras. In this section, we consider reductions of these equations
by restricting the set of roots in the sums in (4.1).

Let ST and S~ be subsets of positive and negative roots of a simple Lie algebra
g defined by, for Voo € ST and Yy € S,

ti={aedt |a=<a}, (5.1)
T={ped” | B pBo}. (52)

Here “<” and “>” are the standard partial ordermgs between roots. We then con-
sider Eq. (1.1) with the matrices L and P given by

L= Za,h + 3 bees + > cpep, (5.3)
=1 aest pes—
P= Y bes— Y cpegs, (5.4)
aEeST pesS—

where n = rank(g). We here claim:

Proposition 5.1. Equation (1.1) with L and P is a reduction of the generalized
Toda equation on g.

Proof. All we need to show is that the commutator [P, L] is in the _span of the
root vectors whose roots are in S* and S~. From (5.3) and (5.4), [L, P] can be
written as

A " n A
[P, L] Z i(hi, PT+2 % > bycples ep] . (5.5)
i=1 aeST peS—

Using (4.3) we first note that the terms [/;, P] do not produce any new root vectors.
The second term, which then gives [e,, eg] = N,peqp, has a root o+ f € ST US™
(if a+ B € 4), since « € 4T and f € 47. This completes the proof. [
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Example 3. The generalized Toda equation with band matrix L. This example can
be obtained as the following reduction on Ay_;: Consider the subsets of the roots
St and S~ given by
ST={@)Heat |0<j-i=M* S N-1}, (5.6)
ST ={Gj)ed |0<i—j <M SN-1}, (5.7)

where M* and M~ are some positive integers. Then the corresponding matrix L
which we denote L+ 5, becomes

ap e Aiemt 0 ces 0
a -1 0
Logru—y=| . (58)
0 . . cer AN_MF N
0 e 0 aMN__M— anNN

As a special case of this example, we now construct the full Kostant-Toda
equation having a Ly-Py pair given in (1.15) and (1.16). Here we choose St and
S~ to be the sets of the simple roots (i.e. M = 1) and of all the negative roots
(i.e. M~ = N — 1), respectively. Thus the corresponding matrix is expressed as

an b 0 .. 0
an an b :
L(I,N—I) = 0 . (59)
: ay—1,n—1 by_1
ayi an,N—1 aynN

Then we claim:
Proposition 5.2. The full Kostant—Toda equation is obtained from the generalized
Toda equation (1.1) with Lan—1) and Pa,n—1y :=II(La,n-1)) through a similarity
transform Ly = HL(I,N_I)H_l, where H is given by
N—1
H =diag 1, b], blbz,..., H bi . (5.10)
i=1

Proof. From Eq. (1.7) for L, y—1), we have

idbt—i = (aiy1,i01 —ai)b;, fori=1,....N -1, (5.11)
from which H satisfies
d
—d—tH = (dxag(LH) - auIN)H . (512)

Note here that diag(Ly) = diag(L(,y—1)) = diag[aiy,...,ayy]. Then the derivative
of Ly is calculated as

%LH — [diag(Lyr ), Lir) + [(Lir) L] (5.13)
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where we have used dL(l’N_l)/dl‘: [P(I,N—l),L(l,N—l)], and HP(LN_UH—I = II(Ly).
Noting the relation
II(Ly) + diag(Ly ) = Ly — 2(Li) <o (5.14)

we complete the proof. O

Thus the full Kostant-Toda equation can be solved through the generalized Toda
equation with the L y_1)-P(1,y—1) pair as the reduction on Ay_;, that is, with the
solution L(j y—1), Ly :HL(l,N_l)H_I. The similarity transform H in (5.10) was
introduced by Kostant [13] to write the original nonperiodic Toda equation in the
Hessenberg matrix form.

6. Behaviors of the Solutions

Here we study the behavior of the solution of the generalized Toda equation obtained
in Sect. 3 by following the approach in [12]. Many results obtained in [12] are valid
for this more general situation. First we note:

Lemma 6.1. The determinants D; for i = 1,2,...,N in (3.16) are real functions.

Proof. In the construction of the solutions @(¢) and ¥(¢), the “gauge” G is fixed
by (3.9). In terms of D;, (3.9) is

a; = =—log — . (6.1)
Note that Dy =1, D;(0) =1 and q;; are real functions. Then we see by induction
that all D; are real functions. [J

In (6.1), suppose D;(ty) = 0 for some finite # and some i. Then if L(¢) is a
finite matrix, D;_;(#y) must be also 0. By induction, D;(#y) = 0, but Dy(¢) = 1, this
forces ay; to be infinite, which is a contradiction. So we have:

Lemma 6.2. Suppose D;(ty) = 0 for some ty < oo and some i. Then L(t) blows up
to infinity at t.

We note that D; for i = 1,2,...,N are the i" leading principal minors of the
product of matrices @,¥,, where @, and ¥, are defined by

MPNA) ... N PWw)
¢e = . . s
MP(A) .. NP (An)
and ) )
YAy L @MY (A)
Y, .= : :
e;‘N’WP(/”LN) e;'N‘lﬁ]?,(/lN)

Then from the Binet-Cauchy theorem, we have:
Lemma 6.3. The determinants D; with i = 1,2,...,N can be expressed as
&) QA (W) - W)

Di(t) = Y. & Hi=1 !
J;

S S N (%))
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where Jiy = (j1,-...,Ji) represents all possible combinations for 1< ji<---<j; £
N. In particular Dy(t) = 1, and Dy(t) = exp(2 vazl Ait).
This lemma is very useful to study the asymptotic behavior of D; for large ¢.
We now obtain:
Theorem 6.1. Let the eigenvalues of L be all real and ordered as i >72y>--->Ay.
Suppose that det(®9)+0 and det(¥?)=+0 for k = 1,...,N, where ®) and ¥ are
the k™ leading principal submatrices of ®° and W°, respectively. Then as t — oo,
the eigenfunctions ¢;(4;,t) and Y;(4;,t) satisfy

det(®?)det(P? )

, (6.3)
\/det(@0 P )det(al ¥ )

@i(4j,t) — 0; ¥

det(d0_, )det(P0)

: (6.4)
\/det@? PO)det(d)_, 0 ,)

Yi(Ait) — 0y X

which implies the sorting property as t — oo, that is, L(t) = &(t)AV(t) — A.

Proof. Here we give a proof for (6.3). The case for ;(4;,?) is obtained in the same
way. Using Lemma 6.3, and from the ordering in the eigenvalues we see that the
leading order term for D; is given by

Di(t) — 2 Xh=14det(@0P0), ast — oo (6.5)
From (3.24) and (6.5), the eigenfunctions behave as ¢t — oo,
e(/"t—ZZ;;}ik—-lt)t en(®) o enia) 99
di(A;t) — : : (6.6)
0 yr0 0 o : ‘ :
VA @ D [y ey )
The dominant term in the determinant gives
- 4)(1)(;”1 ) - qs?(/l[i—l ) ¢(1)(/1)
SR Y)W )| :
! ¢10(111 ) .. ¢?(;Lli—l ) ¢?(’1)
» NG o P IR
= & Xk A det(P0 ) : : S (6.7)
A1) . PUAi1) DA
where P, is the permutation < 111 122 Z) Noting that the determinant

in (6.7) is zero for A = A;, with j =1,...,i — 1, we complete the proof. O

This theorem implies that if all the eigenvalues of L are real, then generic
solutions have the “sorting property” in the asymptotic sense. It should be however
noted that D;(¢) might be zero for some “finite” times, where the solution blows
up (Lemma 6.2). The next theorem provides sufficient conditions for the solutions
to blow up to infinity in finite time.
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Theorem 6.2. Suppose some eigenvalues of L are not real, det @° +0 and det Y0 #0,
for n=1,...,N. Then L(t) blows up to infinity in finite time.

Proof. We order the eigenvalues of L by their real parts. We still assume all the
eigenvalues to be distinct. Since L is a real matrix, the complex eigenvalues appear
as pairs. For convenience, we also assume that there is at most one pair having
the same real part. Suppose A; + ifiy and Ay — iff; are the first pair of complex
eigenvalues. Then from (6.2), the leading order term in Dy is

PUA) o e+ iB) || Y(A) o YOk +iBr)

e2 Zlle Qpt+2ifyt . i . . ] .
QA1) oo QY B LT o Wk +iBr)
U)o QN — B () o Yk — iBr)

+ 6221;:1 Apt=2ift : . : : . : .
PUA) o QU — B IR o WAk — iBr)

Since Dy is real by Lemma 1, one can write the above as

AT 4 cos(2But) + BsinBit)]

where A and B are two real constants. The above is an oscillating function about
zero. Thus by Lemma 6.2, we conclude that L(z) blows up to infinity in finite time.
O

Remark 4. All the results in this section remain valid for the full Kostant-Toda
equation defined by (1.15) and (1.16). To see this, from Proposition 5.2, we solve
L(l,N—l) with L(I,N—l)(o) = Ly(0). Then Ly(t) is related to L(],N_l)(t) thIOngh
Ly = HLg,y—1yH ™!, where H is defined in (5.10) with b;(0)=1,i=1,...,N — 1.
In the case L, y—1)(¢) has the sorting property, since b;s in (5.11) all go to zero,
one verifies Ly also has the sorting property. Thus Theorem 6.1 holds. In the
blowing up case, since the transform by H (5.10) doesn’t change the diagonal
element, Lemma 6.2 holds, thus Theorem 6.2 is valid. In [9], the solution behavior
of the tridiagonal Kostant-Toda equation is considered. A neccessary and sufficient
condition for the blowing up is obtained.

7. Example

In this section, we demonstrate the results obtained in this paper by taking an
explicit form of the matrix L. The main purpose here is to solve the generalized
Toda equation (1.1) for this explicit matrix, and discuss the behavior of the solution.

Let us consider a 2 x 2 matrix L(¢) = (a;;)1<ij<2. The generalized Toda equa-

tion then gives
d (a“ alz) _ ( 2azas aix(ax — 011)) 1)
dt \ a1 an 021(a22 — all) —2ax1a12 ’ ’

The initial data of L(¢) is assumed to be

L(0) = (2 l‘)) , (72)
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where a and b are arbitrary constants. The eigenvalues of L(0), 4; and 4,, are
1
M= E(b + v/b? + 4a) . (7.3)

Then the initial eigenmatrices ®° and ¥° are expressed by

11
P’ = <l1 b), (7.4)
1 Jy -1
0 __ 2
/4 _r—/h(—fh 1 ) (7.5)

In order to compute the solutions &(¢) and P(¢) from (3.24) and (3.25), we need
the quantities ¢;; = (¢°y%e**). From (7.4) and (7.5), they are

en( = —7 (oMt — Jyeh'y
enll) = (= + &),
7.6
en(t) = V) (211 — ¥t 70)
21 12 — }.1 >
1 )
(1) = - (MM + Jpe*2ty
2 — A
from which the determinants D;(¢) in (3.16) become
t t )
D =cu, Dany= | PO paar g9
c(t)  exnlt)

We now have the solutions (Theorem 3.1),
1 ellt e/lzt
@(t) - \/D—lm <Zle/12t lzel]t) s (78)
1 lze/{]t _eﬂ.zt >
Yit)= ————— ] .
() (Az—ll)\/Dl—(t)<'—;l'leA2t ellt
The solution L(¢) of the generalized Toda equation is then obtained from (2.9),
a;(t) = (i) (1),
1 /11),2(82;‘1’ _ ezizt) ()uz _ ll)e(iﬁﬁz)t
Azen]t _ }”62/121 _11/12(12 _ /11 )e(ll+/12)t i%eult _ A%ezxzt

(7.9)

L(t) = ) . (7.10)
Now let us discuss the solution behavior for # > 0. First we assume both eigen-
values 4; and 4, to be real. With the choice of the eigenvalues in (7.3), we have
A1 = 4. Then if 414, £0, then the function D;(¢) does not vanish for all ¢. This
implies the sorting property (Theorem 6.1). For the case of A; > A, >0, the D
vanishes and we have the blowing up in the solution at the time ¢ = £z > 0,

1 A
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This formula also implies that for 0 > 4; > 1, we have the sorting result for 7 > 0.
Note here that the blowing up occurs at one time ¢ = g (7.11), and then the solution
L(t) will be sorted as ¢t — oo, with the asymptotic forms of the eigenmatrices,
i.e., (6.3) and (6.4),

=4 (1 0
d(t) — A <0 /12> R (7.12)
1 Ja 0)
YY) » —— . 7.13
“ zzuril)(‘) ! 713

For the case of the complex eigenvalue A; = 1, := o + if, Di(t) is expressed
as

Di(t) = ** sec 0 cos(2ft + 0) (7.14)

with tan 6 = «/f. This indicates the blowing up (Theorem 6.2).
In the case of degenerate eigenvalues A; = A, (i.e., b* + 4a = 0), we take the
limit Ay — 4; := ¢ in (7.10), and obtain

L(t) = _ <‘2%t : ) (7.15)
1 =20t \ =2 200(1 —ot)) ’

which shows the “sorting property” as ¢ — oo, i.e., L(¢) — Aglp. It should be noted
however that L(0) with the degenerate eigenvalues is not similar to the “diagonal”
matrix Agly.

We summarize the above results in the figure, where we classify the behavior
of the solution in terms of the parameters a and b in (7.2).

In the figure, the shaded region corresponds to the blowing up solutions for ¢ > 0
where the eigenvalues are either complex or real with A; > A, > 0. The other region
including the positive b-axis and the lower boundary of the curve »* 4 4a = 0 gives
the sorting property.

\ 4

b%+4a=0

Fig. 1. The bifurcation diagram for the solution (7.10)
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