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Abstract: We define a quantum ^-algebra associated to sl# as an associative
algebra depending on two parameters. For special values of the parameters, this
algebra becomes the ordinary f/^-algebra of sl#, or the g-deformed classical W-
algebra of sl#. We construct free field realizations of the quantum 1^-algebras and
the screening currents. We also point out some interesting elliptic structures arising
in these algebras. In particular, we show that the screening currents satisfy elliptic
analogues of the Drinfeld relations in Uq(n).

1. Introduction

1.1. In [1] N. Reshetikhin and the second author introduced new Poisson algebras
#^(9), which are ^-deformations of the classical ^-algebras. The Poisson algebra
#^(g) is by definition the center of the quantized universal enveloping algebra
Uq(qL) at the critical level, where gL is the Langlands dual Lie algebra to g.
It was shown in [1] that the Wakimoto realization of Uq{ύ^) constructed in [2]

provides a homomorphism from the center of Uq(*lN) to a Heisenberg-Poisson
algebra J^(sl^). This homomorphism can be viewed as a free field realization of
Ψ^q(ύN). When q — 1, it becomes the well-known Miura transformation [3]. In [1]
explicit formulas for this free field realization were given. The structure of these
formulas is the same as that of the formulas for the spectra of transfer-matrices in
integrable quantum spin chains obtained by the Bethe ansatz method [4]. This is
not surprising given that these spectra can actually be computed using the center
at the critical level and the Wakimoto realization. For the Gaudin models, which
correspond to the q = 1 case, this was explained in detail in [5],

1.2. The Poisson algebra #^(512) is a ^-deformation of the classical Virasoro alge-
bra. It has generators tn, n G TL. The relations in 1Vq(U2) were computed in [I] using
the ^-deformed Miura transformation, which is a homomorphism from #g(sl 2 ) to
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a Heisenberg-Poisson algebra Jtifqish) with generators λn, n e Z, and relations

{λnAm} = -h\^-nδn,-m (1.1)

Let us form the generating series

Λ(z) = q-χ'2 exp (- £ λnz~n) , t(z) = £ tnz~n .

The ^-deformation of the Miura transformation is given by [1]

t{z) - Λ(zqχl2) + Λ(zq-]l2)-λ . (1.2)

Using formulas (1.1) and (1.2) we find the relations in ^ ( s ^ ) [1]:

{tn,tm} = -A Σ | ^ ^ - / W / - W - g"π)^,-m , (13)

where h = logg. As shown in [1], in the limit q —> 1, the algebra #^(sl2) becomes
isomoφhic to the classical Virasoro algebra while formula (1.2) becomes the Miura
transformation.

In [6] J. Shiraishi, H. Kubo, H. Awata, and S. Odake quantized formulas (1.1),
(1.2) and (1.3). This led them to the construction of a non-commutative algebra
depending on two parameters q and p, such that when q = p it becomes commu-
tative, and is isomoφhic to the Poisson algebra iVq(%\i). Let us denote this algebra
by ^ ( s l 2 ) .

In [6] the algebra #^,^(sl2) was defined via its free field realization, i.e. a
homomorphism from Wq^ipli) to a Heisenberg algebra ^p(ύ2). The formula
defining this homomoφhism (see (3.2) below) is a normally ordered version of
the ^-deformed Miura transformation (1.2), just as the free field realization of the
Virasoro algebra is a normally ordered version of the ordinary Miura transformation.
Shiraishi, e.a., also constructed the screening currents, i.e. operators acting on the
Fock representations of J^,^(sl2), which commute with the action of ^ ^ ( s ^ ) up
to a total difference.1 It is shown in [6] that if one fixes β G C and sets p = qι~^,
then in the limit q —> 1 the algebra ΨqiP(z\2) becomes isomoφhic to the Virasoro
algebra with central charge 1 — 6(1 — β)2/β.

The work of Shiraishi, e.a. [6] was motivated by their bosonization formula
for the Macdonald symmetric functions [7]. The paper [6] reveals a remarkable
connection between the algebra iVq^ύ-i) and Macdonald's functions corresponding
to rectangular Young diagrams: those turn out to coincide with singular vectors of
^q,p(^2) m its bosonic Fock representations.

1.3. The goal of the present work is to construct quantum ^-algebras generalizing
the results of [1] and [6], and to point out some intriguing elliptic structures arising
in these algebras. Namely, we construct an algebra i^q,p{ύN) depending on q and
p, such that when q — p it becomes isomoφhic to the ^-deformed classical iV-
algebra #^(sljv) from [1]. We construct, along the lines of [1] and [6], a free field

In fact, these screening currents were proposed earlier by S. Lukyanov and Ya. Pugay [19].
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realization of # ^ ( S I Λ O by normally ordering the ^-deformed Miura transformation
from [1], and the screening currents. One can observe many similarities between
the algebra ^ ^ ( s l w ) and the ordinary ^-algebra of sl# constructed by V. Fateev
and S. Lukyanov [8] (see also [9]), which can be recovered from #^ }^(sl^) in the
limit q —» 1.

The algebra Ψq,p(ύN) is topologically generated by Fourier coefficients of cur-
rents Γi(z),..., 7V_i(z). The free field realization of i^qfp(slN) is defined by the
formula

)Dp-λ + (- i f

p p p

N - 1 ) ) : , (1.4)

where Λ/(z), i=l,...,N, are generating series of a Heisenberg algebra, and
[D -\'f](x) = f(xp~ι). In the limit q —» 1 this formula becomes the normally
ordered Miura transformation from [8].

The screening currents Sf(z) are solutions of the difference equations:

Dp/qSr(z) = p-χ : Λ-+ i(V / 2)Λ ( z / 2 ) - ^ r ( z ) : .

Using formula (1.4) one can check that they commute with the currents Γz (z) up
to a total difference. This implies that their residues acting between bosonic Fock
representations commute with the action of ^ ^ ( S I Λ O

Using these operators one can construct singular vectors in the Fock represen-
tations of ifq,p{^2) These singular vectors should give the Macdonald symmetric
functions corresponding to Young diagrams with N — 1 rectangles as was pointed
out in [6].

1.4. An interesting aspect of the algebras #^p(sl#) is the appearance of elliptic
functions in their definition and free field realization.

In particular, we show that the series At(z), i = 1,...,N, satisfy, in the analytic
continuation sense, the following relations:

Λi(z)Λj(w) = φN ί —J Λj(w)Λi(z) , (1.5)

where
(xq-ι)OpN(xp~lq)

and θa(x) stands for the #-function with the multiplicative period a. These relations
entail similar relations for the currents T/(z).

The function ΨN(X) can be characterized by the properties that it is an elliptic
function, which has three zeroes uι,u2,U3, three poles —u\,—u2,—U3, and one of
the poles is equal to \/N of the period. These properties imply that the function
ΨN(X) satisfies the functional equation

φN(x)φN(xp) φN(xpN~ι) = 1 .
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We also show that the screening currents S^(z)9 i = 19...,N — 1 satisfy, in the
analytic continuation sense, the following relations:

where (^y) is the Cartan matrix. The screening currents S~(z), i = 1,.. .,N — 1,
satisfy the same relations with # replaced by p/q and β replaced by l/β. Moreover,
we show that the screening currents involved in the Wakimoto realization of Uq(BlN)
[2] also obey similar relations.

These elliptic relations define algebras, which are closely related to the elliptic
algebras introduced by A. Odesskii and the first author in [10]. Such an algebra
Uq,p(n) can be viewed as an elliptic deformation of the quantized universal en-
veloping algebra Uq(n) (where it is the loop algebra of the nilpotent subalgebra n
of g), introduced by V. Drinfeld [11]. According to [10], the elliptic relations of
the type (1.6) imply that the screening currents satisfy certain elliptic analogues of
the quantum Serre relations from Uq(n). We hope to study these relations in more
detail in the next paper. We recall that the ordinary screening charges satisfy the
ordinary quantum Serre relations [12], see also [18].

In this work we concentrate on the ^-algebras associated to sl^. In [1] it was
shown how to construct the Poisson algebra i^(g) and its free field realization for
the general simple Lie algebra g. We expect that our results on the quantization
of ^ ( s l v) can be similarly generalized. At the end of the paper we define the
Heisenberg algebra J^q,p(Q) and the screening currents corresponding to the general
simply-laced simple Lie algebra g. We then define the algebra ^ ^ ( g ) as the corn-
mutant of the screening charges in J^? ; 7(g). We hope that the homological methods
that we used in the study of the ordinary ^-algebras [18] can be applied to these
quantum ^-algebras.

The ordinary #^-algebras can be obtained by the quantum Drinfeld-Sokolov
reduction from the affine algebras. We expect that the quantum ^-algebras can be
obtained by an analogous reduction from the quantum affine algebras.

7.5. The paper is organized as follows. In Sect. 2 we recall the results of [1] on
the Poisson algebras #^(SIΛO In Sect. 3 we recall the results of [6] on the algebra
^q,p(*h) We define the algebras i^p(ύ^) in Sect. 4, and their screening currents
in Sect. 5. In Sect. 6 we derive relations in the algebra ^^(sl jv). I n Sect. 7 we
present these relations in elliptic form. Finally, in Sect. 8 we derive the elliptic
relations obeyed by the screening currents of ^ ,^(g) and Uq(§).

2. Poisson Algebras

In this section we recall results of [1]. Let us first introduce the Heisenberg-Poisson
algebra J ^ ( s l v). It has generators α;[«], / = 1,...,7V — 1; « G 2 , and relations

{a,[ή\, aj[m]} = h(cfA^2 - q'"^1 )δn,-m , (2.1)

where (Ay) is the Cartan matrix of sl#.

Remark 1. The parameter q that we use in this paper corresponds to q2 in [1]. The
algebra #^(g) corresponds to 1Vhβ(&) in the notation of [I]. D
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Define now new generators λ, [«], i = l,...,N; n £ TL, according to the formula

λi[n] - λf+ι[ή\ = qni/2ai[n], i = 1,...,N - 1;n e Z ,

Σ? ( I-' ) Bλ /[«] = 0. (2.2)
z = l

From these formulas we derive the Poisson brackets (see [1])

Π - an)(l - an(N~l))
{λlnlλlm]} = h±q * 2 X_ 2 (2.3)

(2.4)

where /?φθ.
Introduce the generating functions

Λι(z) = q'-^+ι>" exp f - Σ h[m\z-m ) . (2.5)

From (2.3) and (2.4) we find:

{Λί{z),Λι{w)] = - hi Σ (ηm «-™-fN~ ' \ ΛWΛW , (2.6)

{Λ(z),^(w)} = A { Σ (^) (\^~Pi Λi(z)Λj(w), (2.7)

if / < j .
N o w let us define generating functions U(z\ ί — 0, . . . ,N 9 whose coefficients lie

in 3fq(zlN) : to(z) = 1, and

ti(z) = Σ Ah{z)Ah{zqy .ΛJi_ι(zqί-2)Λji(zqi-1), (2.8)
1 ^ 7 l < < 7 / ^ ^

/ = 1,...,7V. Formula (2.2) implies that

fo(z) = Λλ{z)A2(zq) • • • ΛN{zqN-λ) = 1 .

Formula (2.8) can be rewritten succinctly as follows:

N

g-ι

2 -•••+ {-\f-χtN^{z)Dq-X + ( - I f

q q^ - Λ2(zq))- • -{Dq^ - Λxizq"-1)) , (2.9)

where Da stands for the ^-difference operator:

(Da f)(x) = f(xa).

In the limit q —> 1 we have: Λt(z) = 1 — hχi(z) + o(h) and Dq-\ = 1 — hdz +
o(Λ), where A = logςr. Hence the right-hand side of (2.9) becomes in this limit

(-ιfhN(dz - Xι(z))(dz -
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and we obtain the standard Miura transformation corresponding to the classical W-
algebra ^(sljy), see e.g. [3]. This shows that the generators of Ψ"($\N) can be
recovered as certain linear combinations of to(z),...,%_\(z) and their derivatives
in the limit q —> 1.

The coefficients of the series ί/(z), i = l,...,N — 1, generate a Poisson subalge-
bra ifq^N) of J^(s l#). The relations between them are as follows (see [1]):

i fwa

- * Σ < M —

j~i+r

r=\ \ z

if / g j and i + j ^ Â ; and

Σ (*
V z

J ( w
Σ ̂

\Z(i

ίwaj~ι+r

Σδί Λ

if / ^ j and / H-y > N.

Remark 2. It is natural to define the Poisson algebra #^(sloo) with generators
ti(z\ ί ^ 1, and relations

r=0

waJ

+ r ( w ) , Ϊ ^ 7 . D

3. The Algebra

In this section we recall the results of Shiraishi-Kubo-Awata-Odake [6] on the
quantum deformation of #^(δί 2 ). However, some of our notation will be different
from theirs.

Let h,β be two complex numbers, such that neither h nor hβ belongs to 2π/Q.
Set q — eh and p = eh^λ~^\ We will use this notation throughout the paper.
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Let J^q

f

p(5l2) be the Heisenberg algebra with generators λ[n], n e Έ, and rela-
tions:

In the limit β —» 0, in which /> —> # we can recover the Poisson bracket (1.1) as
the ^-linear term of the bracket (3.1).

For μ e C, let π μ be the Fock representation of the algebra ^p{ύ2), which is
generated by a vector vμ, such that λ[n]vμ = 0, π > 0, and /ifO]^ = μvμ. Let

= lim < t / ,(sI 2 )// Λ , /i > 0 ,

where /„ is the left ideal of ^[pi&h) generated by all polynomials in λ\m\m > 0,
of degrees greater than or equal to n (degi[w] = m). By definition, the action of

on the modules πμ is well-defined.
Introduce the generating function

Λ(z) = p-χl2q'm : exp (- £ λ[m]Z-
m)

V m*0 /

where columns stand for the standard normal ordering. Now define the power series
T(z) = Σ f f l G Z T[m]z-m by the formula

T(z) =: Λ(zpλ'2): + : Λ(zp-ι/2Γι : . (3.2)

The coefficients T[n] of the power series T(z) belong to ^ ^ ( s U ) . They satisfy the
following relations [6]:

g fι(T[n - l]T[m + I] - T[m - l]T[n + /]) = ° g X 1 P/q\p~" - pn)δn,.m ,
ι=o i - P

(3.3)
where / 's are given by the generating function

In the limit q —> 1, formulas (3.2) and (3.3) become formulas (1.2) and (1.3),
respectively.

Introduce an additional operator g, such that [λ[ή\, Q] = βδn$. The operator
£α£,α G C, acts from πμ to π μ + α ^ by sending vμ to vμ+aβ. In [6] two screening
currents were constructed:

where

S+(z) = eQzs+[0] : exp ( Σ s+[m\z-m\ : , (3.5)

S~(z) = e-Q/βz~s~[0] : exp f- ^ ^ ~ [ ^ " m ) : , (3.6)

s+[m] = 1 + ^ λ[m],
q m — 1
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The Fourier coefficients of S+(z) act from πμ to πμ+β9 and the Fourier coefficients
of S~(z) act from πμ to πμ-\.

They satisfy [6]:

where C^(w) are certain operator-valued power series, and

f(x)-f(xa)
\βa f](x) = x(l-a)

This implies that T[n], n e Z, commute with the screening charges / S±(z)dz,
whenever they are well-defined [6].2 In the limit q —> 1, those become the two
screening charges of the Virasoro algebra.

4. The Algebra iTqyP(ύN)

4.1. Heisenberg Algebra. Let ^P{ΆN) be the Heisenberg algebra with generators
ai[n]9 ί = 1,...,N — 1; n e Έ, and relations

where «=j=0. This formula was derived from the commutation relations (3.1) in the
case of sl2, which follow from [6], and from the condition that in the limit β —> 0
the jβ-linear term should give us the Poisson bracket (2.1).

For each weight μ of the Cartan subalgebra of sl#, let πμ be the Fock repre-

sentation of Jtifq P($IN) generated by a vector vμ, such that aj[n]vμ = 0, n > 0, and

ai[0]vμ = μ(ocy)vμ, where α^ is the zth coroot of slN.
Let «^,p(sl^) be the completion of Jti?'($IN) defined in the same way as in the

case of sl2, see Sect. 3. The algebra ^P{^\N) acts on the modules πμ.
Introduce new generators λi[n] of ^ ^ ( s l w ) by the formulas

λi[n\ - λι+ι[n] = pnil2

ai[nl i = h • • • ,N - 1; n € TL , (4.2)

Σp(l-i)nλi[n] = 0. (4.3)
/ = 1

From these formulas and (4.1) we derive the commutation relations between them:

where « φ θ .

( 4 5 )

2 The same screening charges were constructed earlier in [19], (see also [20]). Moreover, it was
proposed in [19] that the deformed Virasoro algebra should be the subalgebra of the Heisenberg
algebra, which commutes with these screening charges.
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Let us introduce the power series

Λ,{z) = pf : exp (-
mφO

661

(4.6)

We can compute the operator product expansions (OPEs) of these power series
using the following lemma. Introduce the notation

k oo

(;φi,...,α*;Ooo = Π Π O -*ixtn).
i=\ «=0

Lemma 1. Let b[n], n e TL, and c[ή], n £ Z, satisfy commutation relations:

1 ( )[b[n],c[m]] = -
—t )

where «φθ and \t\ < 1. Then for \z\ > max/j{|αz |, \βj\} \w\ the composition

: exp ( Σ b[n]z-») :: exp ( Σ c[n]z

acting on each module πμ exists and is equal to

( 7

Proof Direct computation based on formula

D

Let us assume that \p\ < 1 and \z\ > |w|; more precisely, it suffices that \z\ >
\w\pq~x, and \z\ > \w\q. Then we find from formula (4.4) and Lemma 1:

Λj(z)Λi(w) = ——^_χ π / v_

In the same way we obtain:

Λi(z)Λj(w) =
Wp-K^pq-hp"),

Λ-l/, ^V/,-1 nW+l

Λt(z)Λj(w) = )'J

:Λ (zM*(w): (4.7)

: Λi(z)Λj(w) : , / < 7 , (4.8)

- : Λ,(z)Λj(w):, 1 > 7 , (4.9)

where \z \w\.

Remark 3. When \p\ < 1, the functions appearing in the right-hand side of for-
mulas (4.7)-(4.9) are power series in w/z, whose coefficients are rational functions
in p. D
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4.2. Definition of the Quantum iff-Algebra. Now we define generating functions
Ti(z\ i = 0,...9N, whose coefficients lie in ^q{ύN) : TQ(Z) = 1, and

Uz) = £ : Λh(z)ΛJ2{zp) A^zp^A^zp1'^ : , (4.10)
\ύJi< <Ji^N

i = 1,...,7V. Formula (4.3) implies that

TN(z) =: A,{z)A2(zp)• • • AN{zpN~λ) := 1 .

Formula (4.10) can be rewritten as follows:

Γfp.λ - Tx{z)DN

pZl + T2(z)DN

pI? -•••+ (-if-'TN-^zyDp-i + ( - i f

^.(Dp-i-ΛiizMDp-i-ΛiizpV iDp-i-ΛNizpP-1)): . (4.11)

Formulas (4.10) and (4.11) are quantum deformations of formulas (2.8) and (2.9)
-(2.9).

We define the algebra ifq,p{zlN) as the subalgebra of J^(sί^) generated by the
Fourier coefficients of the power series 7}(z), i — 1,...,7V — 1, given by formula
(4.10). It is clear from the definition that in the limit yβ —> 0, i.e. p —• q, the algebra
^q,p{^N) becomes the Poisson algebra i^q{ύN) defined in [1], see Sect. 2.

Remark 4. The currents A(z) and Γ(z) that were used in the definition of ̂ ^

in Sect. 3 correspond to A\(z) and T\{zpxl1), respectively. D

Let us fix β and consider the limit q —>• 1 with p = qλ~K Then we have: At(z) =
1 - hχi(z) + o(h) and D^-i = 1 — A( 1 — β)dz + o(A), where A = logg. Hence the
right-hand side of (4.11) becomes in this limit

( - I f hN((l - β)δz - χi(z))((l - β)d2 - χ2(z)) ((1 - β)dz - χN(z)) + o ( ^ ) ,

and we obtain the normally ordered Miura transformation corresponding to the 1V-
algebra of ύN, introduced by Fateev and Lukyanov [8]. In the notation of [18],
this algebra is i^rβ(^N) with central charge (N - 1) - N(N + 1)(1 - β)2/β. Thus,

in the limit q —• 1, the algebra i^q^p(ύN) becomes isomorphic to if β{ύN). The

generating currents of if β{^N) can be recovered as certain linear combinations of

Γ0(z),..., JV_i(z) and their derivatives in the limit q —> 1.

5. Screening Currents for #

Introduce operators β , i — l,...,N — 1, which satisfy commutation relations
[aj[n],Qj] = Aijβδn^. The operators e®1 did from πμ to πμ+βar

Now we can define the screening currents as the generating functions

S+(z) = e&z'ΐW : exp f E 4(™)z~m) •, (5.1)
VmφO /

SΓ(z) = e-MI>z-'TW : exp (- Σ sΓim)?"") : , (5.2)
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where

(compare with (3.5) and (3.6)).
Let

At(z) = q-a[0] : exp (- Σ φ H : (5.5)
V mφO /

Then we have
Ai(z) =: S+{z)St(zqyx : , (5.6)

and
A,(z) =: S7(z)Sr{zplq)-λ : . (5.7)

Formulas (5.6) and (5.7) show that the screening currents are solutions of the
following difference equations:

DqS+(z)=:Ai(zΓιS+(z):,

In the limit q —» 1 they become the differential equations defining the ordinary
screening currents.

We also have from (4.2):

At{z) = p : Λfcp^λi+ύzpV2)-1 : . (5.8)

Theorem 1. The screening currents commute with the algebra ^^(s l jy) up to a
total difference. More precisely, for any A e ^^(QIN) we have:

where C^{w) are certain operator-valued power series, and

\β / ] ( x ) = /(^) - /(*<*)
x(l-a)

Proof. Let us consider the case of the screening currents Sf(z)\ the case of Sj~(z)
can be treated in the same way.

Consider the difference operator (4.11). We want to prove that each term of this
operator has the property that all of its Fourier coefficients commute with S*(z) up
to a total ^-difference.

From formulas (5.3), (4.2), (4.4), (4.5) we obtain the following commutation
relations:

[Un]9st[m]] = - 1 ^ / 2 - 0 ( 1 _ (p/q)n)δnt-m ,

[λi+ι[n],sϊ[m]] = — pnι/2(l - (p/q)n)δn,-m ,
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From these commutation relations we derive the following OPEs (cf. Lemma 1):

Λi+ι(z)S+(w) =

S+(w)Λi+ι(z) =

qiz-wp^q-1) "

q(z-wpιl2+ιq-λ)

M

p(z —

q(z-wpi/2+ιq-1)

p(z — wp'/2)

: Λi+ι(z)S+(w):, \z\ » \w\ ,

: Λi+ι(z)S?(w): , z\ ,

and

Λj(z)S+(w) =: / iχ Z )5+(w) : , Vz, w ,

if 7 + /, i + l .
The last formula means that Sf(w) commutes with all Fourier coefficients of

Λj(z) if j φi, i+l. Therefore it is sufficient to consider the OPE between the factor

: (Dp-ι - Λtizj

Λi+]{zpi-χ))Dp-i+ : A ^

in formula (4.11) and Sf(w). We have to show that all Fourier coefficients of each
of the terms commute with 5ί

+(w) up to a total difference.
For the term : Ai{zpl~x)Ai+\(zpl) : we have according to the OPEs above:

which means that all Fourier coefficients of : Λi(zpι~ι)Λί+\(zpι) : commute with
S+(w).

Now consider the linear term Λχ(zpι x) + Λi+\(zpι λ ) . We have according to
the OPEs above:

j

(5.9)

for \z\ ̂ > \w\, and the same formula for the product in the opposite order for
|w| > \z\. Therefore we can compute the commutator

[/ (AW-1) + /L +iCz//-1 ))zndzX(w)}
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by evaluating the residues in the right-hand side of (5.9). We find that this com-
mutator is equal to

(p/q - 1)[:

- p~ιq :

= %[pil2'\\ - q){p - q) : Λtwp'Vq-^S+iw) : {wp^1^q~]ι)n+2] ,

because by formulas (5.6) and (5.8)

: A,(wpi/2)Sf(wq) : = λ V / 2 ^

This completes the proof. D

Corollary 1. Any element of the algebra ^ ^ ( s W ) commutes with the operators

j S^(z)dz acting on the Fock representations, whenever they are well-defined.

In the limit q —> 1, the operators J S^(z)dz become the ordinary screening

charges / ea±^(z)dz, where α± = ±β±ι/2.
Corollary 1 implies that one can construct intertwining operators between the

Fock representations πμ of ^ ^ ( S I N ) , and hence singular vectors, by integrating
products of the screening currents over suitable cycles. For the ordinary 1^-algebra
of slw, the screening charges satisfy quantum Serre relations, and the integration
cycles correspond to the singular vectors in the Verma modules over the quantum
group Uq(*\N), see [12-14,18]. We expect an analogous structure for the #
screening charges.

6. Relations in #

6.1. Relations between T\(z) and Tm(w). Let us again assume that \p\ < 1. Intro-
duce the formal power series fm,N(x) by the formula

fmMx) (x\p>-\p»,pN-*q,pNq-1;.

The function fm,N(x) is a very-well-poised basic hypergeometric series

Γx, x^2pN, -χV2pN, pN~m, pq~\ q

L x1 / 2, -x 1 / 2 , xpm, xpN~ιq, xpNq~λ

see formula (2.7.1) of [15].
In what follows we use the notation
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Theorem 2. The formal power series T\{z) and Tm(w) satisfy the following
relations:

N ( J ) Ά(z)Tm(w) - fm,N ( ^ )

£\ Tm+1(z) - δ ί^λ Tm+ι(w) ) . (6.2)
\-p

Proof Using the OPEs (4.7)-(4.9), we obtain that when \z\ >

is equal to

if / = jk for some k e {1,..., m}; and

fm,N y — J j — k__l)( _ -j-Γ

if jk < i < jk+\ Here and below the case i < j \ corresponds to k = 0 and the
case ί > j m corresponds to k = m.

On the other hand, when |w| > |z|,

: Λh(w)ΛJ2(wp) - ΛJm(wpm-{) : At{z)

is equal to

AN (^yX :Λλ(w)Λj2(wp)---ΛJm(wpm-])Λi(z):,

if / = j k for some k G {1,..., m}; and

fm,N ( —

if j k < ί < jk+\.
Since the normally ordered product does not depend on the order of the factors,

we conclude that the analytic continuations of

AN ( J ) A(Z) : Λh(w)• • Λjm{wpm~X):

and

AN ( ^ ) : Λ i ( w ) 4fc( V " 1 ) : Λ(z)

coincide.
Therefore

/ Λ,̂  (-) AAz) : ̂ ^ M . M ^ ί ^ " 1 ) : ̂ ^
CR

 X Z J

-Ifm,N (-) : Λh(w)Λh(wp)...Λjm{wpm-λ) : ΛWrfz ,
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where CR and Cr are circles on the z plane of radii R > |w| and r <C |w|, re-
spectively, is equal to 0 if i = jk for some k G {l,...,m}; and the sum of the
residues of

ff|;: Λ.(zHi(w)...
(z — wpli~i)(z — wpk) ι

if j k < ί < jk+i.
But the latter is equal to (1 — q)(l — p/q)/(l — p) times

n+x

- : Ah(w) ^ ( V - ' M / ί V M ^ C V ) ΛjΛwpP-1) : w
After summation over j \ <J2< <jm, all of these terms will cancel out except
for

with i <j\\ and

with z >y m . This gives us formula (6.2). D

In the limit p -^ q formula (6.2) gives the Poisson bracket between t\{z) and
tm(w) from [1], see Sect. 2.

Formula (6.2) shows that the Fourier coefficients T\[ή\ of the power series
T\(z) generate the algebra ^^(sl jv). In particular, Γz(z) can be written as a degree
/ expression in T\[ή], n G TL.

One can also derive similar relations between 2}(z) and Tj(w) with ij>\.
These relations are quadratic, and involve products of 7/_r(z) and 7)+r(w), where
r = l , . . . , z — 1 , i f i+j^N a n d i ^ j ; a n d r=l,...,N—j, i f i+j>N

and / ^ y. In the limit p ^ q these relations give the Poisson brackets between
ti(z) and ί/(w) from [1], which are described in Sect. 2.

Let us define analogues of the Verma modules over the algebra ^^(slyv); i n

the case of si2 this has been done in [6].
Although the 0th Fourier coefficients Γ;[0] of the series 7}(z) do not commute

with each other, they commute modulo the left ideal generated by 7}[«], / =
l,...,Λf— 1; n>0. We can therefore define a Verma module Myχ^yN_χ as a
^^(sljvί-module generated by a vector ^ l v..,7 i V_1, such that 7}[«]ι;yi>...)^_1 = 0 ,
if n > 0, and Γ/[0]ι;yiv..?y^_1 = 7^Tl,...,y7V_1. The relations in # ^ ( $ 1 ^ ) imply
that the module Myx^yN_x has a PBW basis which consists of lexicographi-
cally ordered monomials in 7}[«],«<0, applied to the highest weight vector

6.2. Relations in if^.Ό^i)- m this c a s e the relations are:

' - ) Γ,(w)Γ,(z)

\
(6.3)
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These relations are equivalent to the relations of Shiraishi, e.a. [6] given by formula
(3.3), because their f(x) coincides with f\t2(x) given by (6.1). Formula (6.1) can
be simplified in this case:

r , Λ 1 (x\q,pq~l;p2)oo
J\ 2\X ) ~~ o i o

6.3. Relations in iVq^p{ύ^). In this case we have:

(x\q,pq-\p2,p3;p3)t

/l,3 W =
'oo

(x\l,p,p2q,p3q-χ;p3)oo '

(x\pq,p2q-\p3;p3)oo

J ^ J (x\p,p2q,p3q-\p3)oo

The relations are the following:

'-) Γi(z)7Ί(w) - /,,3 (-) Γ,(w)Γ,(z)

/2,3 ( ^ ) Γ,(Z)72(W) - /2,3 ( ^

\-p

In the limit p —> ̂  they become the relations in #^(sl3) described in [1].

7. Relations in Elliptic Form

We recall that q and p are assumed to be generic with \p\ < 1.

7.7. The case of z\2. Consider the OPE given by formula (4.7):

Λ(z)Λ(w) = /,,2 {-J : yl(z)/l(W) : , (7.1)

where
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Formula (7.1) is valid for \z\ > \w\ (see Lemma 1) and it shows that the com-
position Λ(z)Λ(w) can be analytically continued to a meromoφhic operator-valued
function on C x C, given by the right-hand side of the formula.

Likewise, the composition Λ(w)Λ(z) converges when \w\ ̂ > |z|, and we have:

Λ(w)Λ(z) = /,,2 ( J ) ~ ' : Λ(w)Λ(z) : . (7.2)

Since : Λ(z)Λ(w) : = : Λ(w)Λ(z) :, by definition of the normal ordering, we
obtain from formulas (7.1) and (7.2) the following relation on the analytic con-
tinuations:

Λ(z)Λ(w) = φ (^) Λ(w)Λ(z) , (7.3)

where

cΛxλ f U X ~ λ ) θp2(x)θp2(xpq)θp2(xp^)

/i,2(x) θp2(xq)θP2(xpq-i)θp2(xp2) K - }

and
OO OO CO

0fl(*) = ΓKi-^ΊΓKi-^^ΊΠCi-α")
«=0 «=1 «=1

We can also write:

θp2(xp)θp2(xq-l)θp2(xp-1q)

Formula (7.3) can be rewritten in a more symmetric form as

γ ( j ) Λ ( z ) φ ) = y ( ^ ) Λ(w)Λ(z), (7.5)

where y(x) satisfies: φ{x) = y(x λ )/y(x). Apart from y(x) = / I ^ O O J there exist other
choices for the function y(x), in particular,

y(χ) = — j

and

(χ) =
θp2(xq)θp2(xpq-i)

θp2(x)θp2(xp)

Any two such choices differ by a multiple, which is invariant under the change

Remark 5. Formula (7.5) should be compared with the property of locality in vertex
operator algebras [16,17] (see also [18]). Recall that two power series A(z) and
B(w) are called local if A(z)B(w) converges for \z\ > \w\,B(w)A(z) converges for

> \z\, and their analytic continuations satisfy: A(z)B(w) = B(w)A(z). D

The function φ(x) is an elliptic function, i.e.

φ(xp2) = φ(x) , (7.6)
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and it satisfies the functional equation

φ(x)φ(xp) = 1 . (7.7)

Equations (7.6),(7.7) provide a new understanding for the algebra i^q,p(^l2).
Let us explain that.

According to (7.1) the series Λ(z) satisfies the relations:

/ u ( j ) Λ(z)Λ(w) = fh2 (^) Λ(w)Λ{z). (7.8)

There is a difference between relations (7.3) and (7.8). The first is a relation
on analytic continuations of the compositions of two operators, while the second is
a relation on formal power series. A relation of the second type implies a relation
of the first type-it can be obtained by multiplying it by a suitable meromorphic
function. But different relations of the second type may give rise to the same relation
of the first type as we will see below.

Remark 6. Similar phenomenon occurs in vertex operator algebras. Consider for
example the Heisenberg algebra with generators βn9yn9n £ ^? a n d relations

[βn,ym] = Kδn,-m ,

where K e (C. These relations imply the following formal power series relations:

β(z)y(w) - y(w)β(z) = κό ( ^

But we can also write

(z - w)β(z)γ(w) = (z- w)y(w)β(z),

regardless of the value of K. D

In order to get a relation of the second type from the relation (7.3) of
the first type, we have to "factorize" the function φ(x), i.e. to represent it as
φ(x) = g\(x~ι)g2(x), where g\(x) and g2(x) are formal Taylor power series in
x. Then we obtain a relation of the second type such as (7.8).

Factorization of φ(x) is not unique in general. In our case, we can write
ψ(x) = Aa(x~l)fh2(x)~\ but we can also write φ(x) = f^2(x~lp)'1 f\,2(xP~l)>
by virtue of the functional relation (7.7). This non-uniqueness leads to inter-
esting consequences, and in a sense it "explains" the structure of the quantum
^"-algebra.

Let us discuss this structure in more detail Let Λ\(z) and Λ2(z) satisfy the
relation

( ) : Λi(z)Λi{w):, (7.9)

j λ • Aλ(z)Λ2{w):, (7.10)

Λ2{z)Λλ(w) = / 1 > 2 C^λ : Λ2(z)Λι(w): . (7.11)
V Z /
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Then we obtain the power series relations:

fh2 (^) At(z)Ai(w) = /i,2 (^) Ai(w)Ai(z), (7.12)

Aι(z)A2(w) = fh2 (Z-lYlΛ2(w)Λι(z). (7.13)

By analytically continuing these relations and dividing by the appropriate func-
tions, we obtain:

Λ,(z)Λj{w) = φ (-J Λj(w)Λ,(z) (7.14)

for all i,j,E {1,2}. The elliptic relations (7.14) do not depend on i and j while
the formal power series relations (7.12)—(7.13) do. However, formulas (7.14) have
different meanings for / = j and iφj.3

Consider first this formula in the case when i = j . In this case we write:

φ(x) = fh2(χ-1)fU2(xΓi . (7.15)

Let us assume that \p\ < \q\ < 1. Then the function / I ^ C * " 1 ) is analytic in the
region \x\ > 1, while the function / I ^ O O " 1 is analytic in the region |JC| < 1.
Thus, formula (7.15) gives us a solution of the Riemann problem on the circle
|x| = 1. In other words, we represent the function φ(x) on the circle \x = 1 as
a product of two functions, one of which has analytic continuation to the exte-
rior of the circle, and the other has analytic continuation to the interior of the
circle.

Consider now the case / = 1,7 = 2. In that case we write:

φ(x) = fi,2(χ-ιp)-ιfi,2(xP~l) ( 7 1 6 )

The function / i ^ C * " 1 ) " 1 is analytic in the region |x| > \p\, while the function
f\,i(xp~ι) is analytic in the region |x| < \p\. Hence formula (7.16) gives a solution
of the Riemann problem on the circle \x\ = \p\. The fact that formulas (7.14) are
defined on different circles for / = j and / =#7 leads to the appearance of ^-functions
in elliptic relations.

Indeed, let us set T\{z) = A\{z) + A2{z). Naive application of formula (7.14)
tells us that T\(z) satisfies the same elliptic relations as /L/(z)'s:

These relations are correct if z and w are generic. However, there are additional
^-function terms if \z\ = \w\p±ι.

3 We thank N. Reshetikhin for a discussion of this issue, which led us to a better understanding
of elliptic relations and helped to correct some of the formulas below.
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To see that, let us write the relations between T\(z) and T\{w) as formal power
series. Using formulas (7.9)—(7.11), we obtain, in the same way as in the proof of
formula (6.2):

£) : Ali2)A2izp): -δ ( f ) : i,
(7.17)

The appearance of the ^-function terms in the right-hand side is due to the following
functional relations:

/yw = / , y — -*"-xplq)

If we divide both sides of formula (7.17) by /i,2(w/z), we obtain:

(pq;p2)oo(p2q~ι;p2)c

x i d I —

(7.18)

The right-hand side contains extra <5-function terms as expected.
We see from formulas (7.9)—(7.11) that:Λ\(z)Λ2(zp) : is a central element

in the algebra generated by Λ\(z) and Λb(z); note that this fact is equivalent to
the functional relation (7.7). Hence we may set it equal to any number. If we
set it equal to 1, then we obtain relations (6.3), but actually we can put an ar-
bitrary overall factor in the right-hand side of formula (6.3). In particular, if this
factor is 0, we obtain the original defining relations (7.8) of the Heisenberg alge-
bra. Hence the algebra Ψq^pizh) is a central extension of the Heisenberg algebra

We can also set : Λ\(z)Λ2(zp) :— 1 in formula (7.18). Then we obtain the
following relation:4

(q;p2)co(pq λ;p2)oo {, fw\ „ fwp\
+ (pq; p^ooipiq-i p2)^ { \zpj+ \z )

The function given by (7.4) is just one of solutions of Eq. (7.7). It is interesting
whether other solutions give rise to algebras similar to #^($12 )•

Analogous relation was also obtained by S. Lukyanov [21].
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7.2. The case of sl#. From formulas (4.7)-(4.9) we find in the same way as in
the case of si2:

Λ,(z)Λj(w) = φN [-) Λj(w)Λ,(z) , (7.19)

for all i,j, where

JpN{x)θpN{xp)θpN<tpN-χq)θpN(xpNq-χ) = θpN{xp)θpN{Xq-χ)θpN(xp-χq)

θpN (xq)θpN(xpq~ι )θpN(xpN~ι)θpN(xpN) θpN(xp~ι )ΘpN(xq)θpN(xpq~ι)

It is the last equality that ensures that the elliptic relations between Λi(z) and Λj(w)
are the same for i = j and / +j, although the "factorized" relations between them
are different, see formulas (4.7)-(4.9).

Relations (7.19) can be rewritten in a more symmetric form:

γN(τ) Λt(z)Λj(w) = ?*(-) Λj(w)Λ,(z), (7.20)

where

7N(X) =
θpN(xp-ι)θpM(xq)θpN(xpq-1)

or
θ N{xq)θ N{xpq~λ)θ

= —θpN (x)θpN

Although relations (7.19) do not depend on i andy, they have different meanings
for / = j and i+j, as in the case of sl2 (see above). In particular, this leads to
the appearance of non-trivial ^-function terms in elliptic relations between 7/(z),
i = 1,... ,N - 1. For generic z and w we have:

Ti{z)Tj(w) =

But when \z\ = \w\pk there may appear additional ^-function terms. For example,
we obtain from formula (6.2):

Tx(z)Tm(w) = mf[φN (^-] Tm(w)Tx(z)
k=o \ z J

(pm; pN)oo(pm+λ\ pN)oo(q:> pN)oo(pq~1', pN)oo

\zp

ifm=l,...,N-2, and

k=o
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The function <PN(X) is elliptic, i.e. φ^(xpN) = ΨN(X\ and it satisfies the func-
tional equation

φN(x)φN(xp) φN(χpN~ι) = 1 . (7.21)

Equation (7.21) implies that : Λ\(z)Λ2(zp) Λχ(zpN~ι) : is a central element of
^,/?(sIτv) Formula (4.3) shows that we have set it equal to 1, but we could set
it equal to any number. If we do not set it equal to a number, we obtain another
algebra, which is natural to call the quantum ^-algebra associated to §lN.

We see that in a certain sense the structure of the algebra #^^(slτv) is "encoded"
in Eq. (7.21), as it is in the case of 5I2.

8. Elliptic Relations for the Screening Currents

8.1. The Screening Currents of i^q^p{ύN). Let us we assume that p and q are
generic and \q\ < 1. Then we have the following relations for the screening currents
when \z\ > |w|:

Si{z)SΛw)=z W^^ΰ:Si{2)sHw):'

SZ(z)SJ(w) = z p z . 1 / 2 : S?(z)S+(w) : , Atj = - 1 ,

S+(z)S;(w) =: S+(z)S+(w):, AtJ = 0 .

Remark 7. If we set p = qι~P, then in the limit q —> 1 these relations give us the
well-known relations between the ordinary screening currents:

^(z)5f/(w) = (z - w)A^ : S?(Z)S+(w) :

when |z| > |w|. D

From the formulas above we obtain, in the analytic continuation sense,

uq\w

, A, = -

S+(z)S+(w) = Sf(w)Sf(z), A,j = 0 .

We can rewrite these formulas as follows:

q\w P )

The function

(8.1)
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appearing in the right-hand side of formula (8.1) can be written as

where

The functions φij(x) and φij(x) are quasi-periodic:

ψ,j(xq) = MX), φiMe2ni) = e-2niA-J%(x),

= φ,j(x), φiJ(xe2m) = e-^'jPφtjOc).

Note also that φυ(x) = φij(x) = 1, if p = q

To obtain relations on the screening currents 5z~(z), / = 1,...,7V — 1, let us
assume that p and q are generic and \p/q\ < 1. Then we obtain in the same way
as above:

We also have:

(z— wq)(z— wp~ιq)
: S+(z)S~(w)

= 0 .

5.2. 77ze Screening Currents of Uq(ύN). The screening currents involved in the

Wakimoto realization of Uq{u^) [2] also satisfy elliptic relations.
These screening currents *S/(z), i = 1,... ,N — 1, are given in [2] by the formula

=: exp (sΛ^""^' *1

The following relations hold [2]:

Si(z)Sj(w) = q- —
z — wq ΛιJ

in the sense of analytic continuation, and aι

n commute with Sj(z). Here v is k + g
in the notation of [2].
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Let us assume that q is generic and \qlv\ < 1. Then the relations above give us
the following relations on 5/(z)'s:

Sι(z)Sj(w) = - (-) υ n z At Sj(w)Si(z), (8.6)

where t — q2v'. These relations should be understood in the analytic continuation
sense.

The relations (8.1) can be viewed as elliptic deformations of the quantum Serre
relations of Drinfeld [11]:

Ei(z)Ej(w) = "" "
z — •

which can be easily obtained from (8.6) in the limit t -» 0 with fixed q.
The function

in the right-hand side of formula (8.6) can be rewritten as

where

The functions Ψij(x) and Φij(x) are quasi-periodic, and Ψij(x) = Φij(x) = 1 in the
limit when q —• 1 and ί is fixed.

5.3. General Case. Let g be a simply-laced simple Lie algebra. Let J^q[p(^) be the
Heisenberg algebra with generators αz [«], / = 1, ...,/ = rankg; n G Z, and relations
(4.1), where ( ^ ) is the Cartan matrix of g. We define the Fock representations πμ

and the completion ^,/?(g) of J^q[p(^) in the same way as in Sect. 4.1.

We define the screening currents Sf{z), i= 1,...,/, by formulas (5.1)—(5.4).
We then define the algebra ^ ^ ( g ) as the subalgebra of J^,p(g) of elements which
commute with the screening currents S+(w) up to a total ^-difference. It follows
from the definition that #^,^(g) commutes with S[~(w) up to a total ^^-difference.

The relations between Sf(z), ί = 1,...,/, in the analytic continuation sense, are
given by formula (8.1). The relations between Sz~(z), / = 1,...,/, in the analytic
continuation sense, are given by formula (8.5). Note that formulas (8.1)—(8.5) make
sense for an arbitrary integral symmetric matrix (Ay).

If we set p = qι~~β, then in the limit q —» 1 the algebra ^ ,^(g) becomes the
ordinary 1^-algebra, ^On(g) in the notation of [18]. On the other hand, we expect

that in the limit β —• 0, i.e. p —» q, the algebra ^ ^ ( g ) becomes isomorphic to the
Poisson algebra #^(g) considered in [1].

Acknowledgements. We would like to thank T. Miwa for the invitation to visit R.I.M.S., and
H. Awata and A. Odesskii for useful discussions.
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Note added in proof. Shortly after this paper appeared on the q-alg electronic archive, the pa-
per by H. Awata, H. Kubo, S. Odake and J. Shiraishi, "Quantum iV^ algebras and Macdonald
polynomials" was submitted to the same archive; it partially overlaps with our paper.
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