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Abstract: The quotient realization of the central extensions of the current groups
over Riemann surfaces is achieved by means of the Leray residue theory. This
approach replaces de Rham cohomology in the classical WZNW construction for
affine Lie groups.

Introduction

In the past decade the theory of affine Lie algebras and of the corresponding groups
has become an established field in mathematics and theoretical physics with diverse
connections to other areas in both disciplines. The geometric aspect of the theory
was significantly advanced with an explicit realization of the affine Lie groups as
quotients of central extensions of the current groups over a two-dimensional disk
[Wl, PS, M]. This construction is achieved by a striking combination of the basic
facts from the theory of simple Lie groups and of de Rham cohomology. The
realization of affine Lie groups is also directly related to the geometric approach to
representation theory and a class of two-dimensional conformal field theories known
as the WZNW model.

There were numerous attempts to generalize affine Lie algebras and groups to
higher dimensions. However, corresponding generalizations of representation theory
as well as of conformal field theory always encountered substantial difficulties. In
[EF] there was introduced a class of central extensions of two dimensional current
algebras and groups on a Riemann surface Σ (endowed with a complex structure)
with values in a complex simple Lie group G that can be viewed as a natural
generalization of the one dimensional counterpart. In particular, it was shown in
[EF, EK] that the orbits in the coadjoint representation for these groups have a
structure similar to those for loop groups. This fact strongly indicates that there exists
a rich representation theory that generalizes the classical case of affine Lie groups. It

was also shown that the central extension G of the current group GΣ = C°°(Σ, G)
topologically is a nontrivial fibre bundle with a fibre isomorphic to the Jacobian
variety of Σ [EF].
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The analogy between loop groups (or affine Lie groups) and double loop groups
(or central extensions of current groups on Riemann surfaces) extends a long series
of parallel constructions based respectively on real and complex numbers. In fact,

the central extension G is intrinsically complex, and it does not admit a natural

real form. On the other hand, the original definition of G in [EF] is based on a real
construction of [PS]. The main motivation for this work was an attempt to find a

direct complex realization of this central extension G that could serve as a starting
point for geometric construction of representations. It turns out that there exists a

quotient construction of G analogous in every step to that for affine Lie groups.
In particular, one has to increase by one the complex dimension of the quotient
construction rather than the real dimension as in the case of affine Lie groups.

The key element of the realization is embedding of the complex curve I" to a
complex surface N (i.e. to a manifold of real dimension 4). To obtain a counterpart
of the topological 3-dimensional term of the classical construction we further embed
N into a complex three-dimensional manifold M (of real dimension 6) and represent
Σ as a transverse intersection of two complex surfaces N and N'. The corresponding
central extension is constructed with the help of the space of meromoφhic forms on
M with poles along N and N'. The Leray residue theory in complex analysis now
replaces the de Rham cohomology. Our main result is an explicit "formula" for the

central extension of G developing in a rather unexpected way the construction of
affine Lie groups in [M].

The case of punctured Riemann surfaces fits naturally the meromoφhic setting of
the paper: the corresponding meromoφhic forms have poles along additional curves
in N and surfaces in M which meet Σ at the set of punctures.

Some ingredients of our construction have certain similarity to the four-dimensio-
nal analogues of conformal field theories [NS, LMNS], which were important stim-
ulus for our work. However, there are fundamental differences between the two
theories (see Sects. 4.1 and 5.3 for discussion). We believe that our realization
brings us one step closer towards representation theory of two dimensionl current
groups and their relation to four-dimensional analogues of conformal field theories.

We tried to make this paper essentially self-contained adding some basic defi-
nitions and results. In Sect. 1 we recall the construction of affine Lie algebras and
the corresponding groups, including the direct quotient construction. In Sect. 2, we
review the results from [EF] on central extension of current algebras and current
groups in two dimensions and generalize them to currents over Riemann surfaces
with punctures. After Sect. 3 outlining the preliminaries on the Leray theory, we
present four dimensional realization of two dimensional current groups in Sect. 4.
We consider the case of punctured Riemann surfaces in Sect. 5.

1. Affine Lie Algebras and Groups

1.1. Affine Lie algebras. Let G be a simply connected simple compact Lie group,
and let ^ be its Lie algebra. Denote by 7>( ) the trace in ^ for the adjoint rep-
resentation of G. In particular, Tr(XY), X, Y e & is the Killing form on 0. We
normalize our form by the following condition: if ha is a coroot corresponding to a
longest root α, then tr(XY) := 2 Tr(XY)/Tr(h2

a) so that tr{h\) = 2, see [PS].
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Definition 1.1. The loop algebra <8*λ is the set C°°(S1,^) of all ^-valued smooth
functions on the circle, endowed with the pointwise commutator. The {untwisted)

~sι

affine Lie algebra $ is the one-dimensional nontrivial central extension of the

Lie algebra <3sl\

0 -> R -> $S -> <&sX -* 0 .

Explicitly, <SsX is a linear space of all pairs {(X,a) \X G C°°(Sι,&)9a G R }
with the commutator given by the relation

[(X(t)9a),(Y(t),b)] = ((XY - YX)(t\c(X,Y)) ,

where c(X, Y) is the Maurer-Cartan IR-valued 2-cocycle

,Y)=^Jc(X,Y)=^Jtr(X(t)dY(t)). (1.1)

sι

1.2. Affine Lie groups. Let Gs = C°°(Sι,G) be the loop group with the pointwise

product corresponding to the Lie algebra <&s .

~Sι i

Theorem 1.2 ([PS]). There exists a central extension G of the group Gs by
means of the circle Sι

1 - > S 1 - > GSl - > G ^ 1 - > 1 ,

Λe L/^ algebra & . Moreover, the universal extension G in the category
of Lie groups is simply connected, and it is singled out by this property among
all extensions of Gs by means of Sι.

However, the explicit construction of the corresponding affine Lie groups is not
as straightforward as that of the Lie algebras, since the group central extension is
topologically nontrivial.

1.3. Affine Lie groups as quotients. The following explicit realization of G as
a quotient group was obtained in [M] and is implicitly contained in the WZNW
model [Wl], and in the more general topological approach of [PS]. We are split-
ting the construction into several steps for comparison with the higher-dimensional
counterpart.

The group Gs' can be regarded as the quotient GD/G$, where GD := C°°(D,G)
is the group of currents on the 2-disk D and Gf is the subgroup of GD which
consists of the currents equal to the identity id G G on the boundary dD = Sι:

G$ : = {g G GD\ g\s<=dD = id} .

Let G be the central extension of the group GD by a circle Sι = R/2πZ defined
by the 2-cocycle

7 ( 0 1 , 0 2 ) = — tr(g~ldgi Λdg2 g2

l) m o d 2 π , (1.2)— t

D

where g\,g2 G GD are two group currents.
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Note, that the infinitesimal version of this cocycle for the Lie algebra Φ 3X9 Y
is

c(X,Y)= — tridX ΛdY)= — tr(XdY) , (1.3)
J 2πJ 2πJ J

D Sι

where the latter expression (being the standard form of the cocycle of affine Lie
algebras on Sι) is obtained by application of the Stokes formula to dD = Sι.

Theorem 1.3 ([M]). There is an embedding of the gauge group Gf into G as a

normal subgroup such that the quotient G /Gj? is isomorphic to the extended loop

group G .

1.4. Construction of the embedding. The embedding mentioned is constructed as
follows. Consider a three-dimensional ball B with the boundary S2 presented as a
union of two disks D and D' which intersect along a common circle dD = dD' = Sι.

Given a G-valued map g G Gf we extend it by identity to the sphere S2 and
consider an arbitrary extension g G C°°(B,G) of it to a map of the 3-dimensional
ball B "filling in" S2 to the group G.

Proposition 1.4. The number

1 r ,

(1.4)

is well-defined modulo 2π in spite of the ambiguity of the extension g for the
map g.

Indeed, any two such extensions g and g are related by a factor h G C°°(B, G)
such that h\dB^S2 = id. Thus it represents a homotopy class in n-$(G) — TL and is
determined by the integral ^ i J s 3 T r ( h ~ ι d h γ .

Now the desired embedding is Gf 3 g —• (g,λ(g) mod2π) G G thanks to the
relation

λ(g\g2) - λ(gχ)- λ(g2) =

One can check that the image of Gf is a normal subgroup in G , and we will do
it in a more general setting in Sect. 4.

One can define the cocycle y(g\9g2) modulo 2πk for any real k. However, the

embedding Gf —> G exists only when k G Έ. Thus the topology of G imposes
restrictions on possible central extensions of GD corresponding to the Lie algebra

^ . We call k G Έ the level of the central extension, and the basic extension is the
one associated to the level 1. This notion corresponds to representations of level k

*s[

of the affine Lie algebra ^ .
We conclude this section with a note that all the above constructions remain

unchanged if we choose G to be a complex simply connected simple Lie group, ^
the corresponding complex Lie algebra and consider central extensions with values
in (C. It turns out that the constructions of the next sections are intrinsically complex
and do not admit a straightforward real form.
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2. The Lie Algebra and Group of Currents over a Riemann Surface

2.1. The current Lie algebra over a Riemann surface. Let G be a simply connected
simple complex Lie group, and Σ a nonsingular oriented two-dimensional closed
surface of genus g. Define GΣ = C°°(Σ, G) to be the group of all smooth mappings
from Σ to G. Its Lie algebra consists of all smooth ^-valued functions on Σ, and
it is denoted by $Σ.

Fix a complex structure on the surface Σ. Denote by J4?ι(Σ) the space of holo-
morphic differentials on Σ. It has the complex dimension g.

y

Definition 2.1. The central extension Φ of the current algebra ΉΣ with the center
jeι(Σγ is defined by means of the Jf1 (Γ)*-valued 2-cocycle C(X9 Y\ XJ e$Σ

such that

(C(X,Y),Θ)= ίtr(XdY)Aθ. (2.1)

Σ

for any holomorphic differential θ G Jtι

2.2. The case of punctured surfaces. The construction above can be generalized
to the case of a punctured Riemann surface. The form θ admits poles on a finite
set Π = {pu..., pr) of Σ. We will only consider the case of simple poles. Denote
by yfj a subalgebra of &Σ which consists of ^-valued functions on Σ assuming
zero values at each point of 77. Let J4?ι(Σ\Π) denote the space of meromorphic
differentials on Σ with possible simple poles at the points of Π (dime J^λ(Σ\Π) —
g + r - 1).

Proposition 2.2. The formula (2A) for θ G J^ι(Σ\Π) gives rise to a 2-cocycle on
%Σ

Π with values in 3 \

Proof. Let Uε(pi) be a circle of radius ε around a point p{ G Π in a local coordinate
Zi and let Σε := Γ\(U^= 1t/ε(A)) Then for any function / G C°°(Σ,(C) we have

ίdf Aθ:= lim fdf Λ θ = - lim £ / /(z) θ(z) = -2πί£/(/>,•)res θ(Pj)
J ε^° J ε^°ί=\ J j=\
Σ Σε \Zl\=ε

by the Green theorem. This implies skew-symmetry of the form C{X, Y) for currents
X, Y vanishing on Π:

(C(X9 Y) + C(Y,X),X), θ) = ίd(tr(XY)) Aθ = -2π/f>(.¥7(Λ))res θ(pj) = 0 .

ίί
Similarly one verifies the cocycle identity E t t y , z } Q K Y]>Z) = 0. •

The Green theorem above has a far reaching generalization based on the Leray
theory of higher dimensional residues. This simple yet fundamental fact underlies
our consideration.

Note, that Proposition 2.2 holds for a more general (than ^fj) subalgebra of &Σ

consisting of ^-valued functions on Σ which at each point pj G Π assume values
at a certain nilpotent subalgebra (depending on j).
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2.3. Central extensions of the current group.

Theorem 2.3 ([EF]). There exists a central extension G of the current group GΣ

by means of the Jacobian variety / of the Riemann surface Σ, such that the Lie

algebra of the extensions is Φ .

This theorem is a counteφart of Theorem 1.2 (due to [PS]), and the group can
be constructed by the procedure described in [PS, Chapter 4], see [EF]. Namely,
one defines the left invariant holomoφhic 2-form C on GΣ equal to C( , ) on
the tangent space at the identity id £ GΣ. The integrals of this form over integer
2-cycles in GΣ fill the lattice L = Hλ(Σ,Έ) in 3fι(Σy. Therefore, there exists a
holomoφhic principal bundle over GΣ with fiber / = J^ι(Σy/L being the Jacobian
of the surface Σ, and with a holomoφhic connection whose curvature form is 2πC.

The group G is the group of all transformations of the constructed bundle that
preserve the connection and project to left translations on the group GΣ. It is the
desired central extension of GΣ by (/.

A straightforward modification of this argument leads to the following

Theorem 2.3'. The current group Gfj on the Riemann surface Σ punctured at Π
can be extended by means of the Jacobian /' = J^ι(Σ\Γiy/L\ where the lattice
I! is I! = H\(Σ\ U,Έ) (and for Σ of genus g it is spanned by 2g independent
1-cycles on Σ and by contours around each but one removed point pt).

3. Preliminaries on the Leray Theory

3.1. The Leray residue. Let M be an ^-dimensional compact complex manifold,
and N c M a nonsingular complex hypersurface (such that for every point po £ N
the submanifold N is defined in a neighborhood U(po) as a zero level of some
holomoφhic function φpo with nonzero gradient).

Let ω be a closed C°° -smooth A -form on M \N which has a pole of the first
order on N. The latter means that the product φPo ω can be extended to a C°°-
form in U(p0). Throughout the paper we assume that all poles are of the first order
unless the opposite is explicitly stated.

Theorem-Definition 3.1. In a neighborhood U(po) of an arbitrary point po £ N
the closed k-form ω can be decomposed into the sum

„=%*» + . (3.1)

outside of N, where the forms Θ and α are smooth in U(po). The restriction θ\N

is a well-defined (i.e. independent of the choice of φ) closed (k — \)-form. The
form-residue res ω of the form ω is the closed (k — 1 )-form on N such that in any
neighborhood U(po) of an arbitrary point po £ N it coincides with the form θ |#
of the decomposition (3.1): resω = θ \N. If ω is holomorphίc on M\N, then resω
is holomorphic on N.

Note that a cohomology class of res ω depends only on a class of ω. Thus we
get a map

Res : Hk(M\N) -> Hk~λ(N).
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3.2. The coboundary operator. Define now the coboundary Leray operator

δ : Hk-χ(N)-* Hk(M \N)

between the homology groups (of chains with compact support). This operator as-
sociates to every point po G N a topological circumference δpo C M \ N such that
the following three conditions hold.

Assume that in local coordinates (zj,... ,zn) in a neighborhood U(p0) the surface
N Π U(po) is defined by the constraint zn = 0. Then 1) the circle δpo C U(po) is
determined by the equation \zn\ = 1; 2) the set [jp£Nδp is continuous; and 3) δpf Π
δp" = 0, whereas p' + p".

Now any (k — 1 )-cycle σ on N gives rise to a A -cycle in M \ N. Moreover, the
(5-operator commutes with the de Rham boundary operator d, therefore, we have an
operator between the corresponding homology groups

Theorem 3.2 ([L]). Let σ C N be a (k - \)-dimensional cycle in N and let ω e
C°°(M \N) be a closed k-form with a polar set N of order 1. Then

ω = 2πi / res ω .

δσ σ

The theory above admits a natural generalization. Let N\,...,Nr be complex
submanifolds of M of codimension 1 in a general position. Let ω be a smooth
closed &-form on M\N (where N := N\ U UN r) which has a pole of the first
order on all the submanifolds (and respectively, the pole is of order higher than 1
on their mutual intersections).

Then one can define the residue form res ω as above in generic points of N\,
i.e. on N\ \ (N\ Π (Afc U - - U Nr)). The residue resω will have poles on the sub-
manifolds N\ ΠN2,...,N\ ΠNr, etc. The corresponding operations Res and δ on
cohomology and homology of the above spaces are well defined and are related by
Theorem 3.2.

One can go further and compose the Leray operations. Say, for two submanifolds
N\,N2 in M one has the mappings

Res2 : Hk(M \ (Nx U i V 2 ) ) ^ Hk~2{Nx Π N2)

δ2 : Hk-2(Nχ ΠN2)-+ Hk(M \ (M U N2)).

Theorem 3.2 now reads that for any (k — 2)-cycle σ representing an element
of Hk-2(N\ ΠN2) and for any closed C°° A -form ω whose cohomology class is in
Hk(M \(NXUN2)) we have

res2ω .

δ2σ

3.3. The Leray-Stokes Theorem. The following statement relating de Rham and
Leray theories is a cornerstone of the further constructions.

Let M be a complex compact manifold of complex dimension n, and N a com-
plex hypersurface.
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Theorem 3.4 (cf e.g. [GS]). Assume that a 2n-form μ = doc A p on M\N is a
wedge product of an exact smooth n-form da with oc e Ωn~x(M) and a mero-
morphίc n-form p on M with a polar set N of order 1. Then the form μ is an
ίntegrable form on M, and

da Λ p = —2πi oc A res p .

M N

Proof To show that μ £ Lι(M) recall that in a neighborhood of any point p0 e N
(where in a coordinate system (z\,...,zn) the polar submanifold N is defined by the
condition zn = 0) the form μ grows at a rate π as zn —> 0. On the other hand, the
(real) codimension of N equals 2, that makes all the improper integrals converge.

Split M into two parts by a submanifold δεN (where δ is the Leray operator,
sending a point po e N into the circumference \zn\ = ε): M = Uε(N) U Uε(N) so
that Uε(N) is an ε-neighborhood of N. Then by definition of an improper integral
for an Z^-form we obtain

/
u := lim / doc A p = — lim / α Λ p = — lim / φ α Λ p ,

ε^O y ε->0 y ε-̂ 0 J /
M JJ^ δεN N\Zn\=ε

where the form μ is smooth in Uε(N) and the Stokes formula reduces the integral
to that over δεN = dUε(N) = -bΊJJjT).

In a neighborhood of every p0 £ N the form p decomposes as p — y2- Λ θ + β

with holomorphic θ and β. Hence

As ε —> 0, the contribution of oc A β vanishes, while Leray Theorem 3.2 (or the
classical Cauchy theorem) reduces the integral of the first term to the corresponding
residue: fMμ = —2πifNoc A res p. D

It is clear from the proof that Theorem 3.4 remains true if p is allowed to have
poles of the first order along a union N\ U U Nr of manifolds of codimension 1.

3.4. Meromorphic setting of the Leray theory. It turns out that the construction of
central extensions of the current groups uses naturally the language of meromorphic
differential forms. We are grateful to A. Todorov for detailed explanations of the
results on Leray cycles. We formulate the theorems of this section in the minimal
generality required below. For more general setting we direct the reader to references
[T, GS, Ch].

Let J^k(M) be the space of holomorphic £-forms on a manifold M. For a
hypersurface N C M we denote by J^k(M \N) the space of meromorphic &-forms
with poles of the first order on N. Note that for k = n = dimcM the holomorphic
forms are automatically closed. Moreover, if M is Kahler, they are harmonic and
therefore the space Jt?n(M) is isomorphic to the Hodge space /fπ'°(A/,C).

Theorem 3.5 (e.g. [Ch, Chapter 15]). For a hypersurface N c M in a complex
n-dίmensional manifold M with vanishing Hodge dimension hn^x(M) — 0 one has
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the following exact sequence:

0 -> Jfn(M) -> J>?n(M\N) -> πn~\Ή) -> 0 , (3.2)

where the maps are inclusion and taking the residue respectively.

Proof sketch. Present an arbitrary holomoφhic (n — l)-form θ e J^n~x(N) as the
distribution form θ A ξN on M, where ξN is the 2-form with support on N (and
Poincare dual to N itself). Then d(θ A £#) = 0, because θ is holomoφhic and TV is a
complex surface. Since hn>ι(M) = 0, the 3-closed form θ A ξN is <3-exact: θ A ξN =
dω for some ω G J^n(M\N). The latter means that resω = θ. D

Remark. This proof as well as most of what follows admits an alternative algebro-
geometric description. For instance, start with a short exact sequence of sheaves of
holomoφhic functions:

0 -> (9M{-N) -> ΘM -> ΘN -> 0 ,

where @M(—N) is the sheaf of functions vanishing on TV. Then tensor multiplication
by ΘM(N\ the (inverse) sheaf of functions on M associated to a divisor N gives

0 - tfM -> ^M(7V) -+ ^ M ( ^ ) U -> 0 .

Now the tensor product of this sequence with sheaf of holomoφhic rc-forms Qn

M on
M yields

0 -> Ωn

M ^ Ωn

M(N) -+ Ωn

M(N)\N - 0 .

Notice that Ωn

M(N)\N ~ Ω^"1 due to Theorem-Definition 3.1. It allows one to write
the corresponding long exact sequence

0 -+ H\Ωn

M) -* H\Ωn

M{N)) - H\Ωnfx) -^ ^ ( ί J J , ) ,

the last term of which vanishes by virtue of the assumption. This is the desired
sequence (3.2) modulo notations.

The main application of the Leray theory below is the case of a 3-dimensional
complex manifold M and a pair of 2-dimensional complex submanifolds N\,N2 CM
whose intersection N\ ΠiNfc is a complex curve Σ. Now let us fix a holomoφhic
1-form θ on Σ = N\ ΠN2.

Corollary 3.6. The {complex) dimension of the space of all meromorphic 3-forms
η e J^3(M \ (Nι U N2)) is equal to dim tf \Σ) + dim JT2{Nλ) + dim 3^2

3 , provided that h2>ι(N{) = h2>](N2) = h3>ι(M) = 0.

Proof This is a repeated application of Theorem 3.5. Indeed, by virtue of that
theorem meromoφhic 2-forms on N\ with prescribed residue θ G J^ι(Σ) along Σ
differ by holomoφhic 2-forms on N\9 i.e. by elements of J^f2(N\). Every such 2-
form is the residue of a meromoφhic 3-form on M with poles along N\ UN2. The
3-forms with equal residue along JVi differ by meromoφhic 3-forms on M with
poles along N2, i.e. by the elements of Jf3(M \N2). The latter space is isomoφhic
to 3P2(N2) θ Jf 3 (M) by Theorem 3.5. D

To describe the corresponding splittings in the "dual" spaces we need the
following
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Definition 3.7. Let N be a complex hypersurface in a complex n-dimensional
manifold M. Denote by {Hn(M,Z)/Z[N]} the quotient of the homology group
Hn(M,Z) over the space Z[N] generated by all n-cycles in M coming from the
hypersurface N.

This quotient space is spanned by the homology classes of all ^-cycles in M
which are orthogonal to Z[N] with respect to the intersection bilinear form in
Hn(M,Z). Such cycles in M can be "moved away" from N. The quotient may
have torsion.

Theorem 3.8 (c.f [T, Cl]). The homology groups of Ni\Σ, i = 1,2 and M\
(N\ U N2) have the following decomposition in terms of the homology groups of
M, N\, N2, Σ and of the cycles being images under the Leray operator δ :

H2(Nί \Σ9Z) = {H2(NhZ)/Z[Σ]} Θ δ(Hλ(Σ9Z)) , (3.3a)

H3(M \ (M UN2%Z) = H3(M9Z) Θ Σ{δ(H2(NhΈ)/Z[Σ]})
1=1

Θδ2(Hλ(Σ9Z)) 9 (3.3b)

provided that H?,(Nι) = //3C/V2) = 0. In particular, the maps δ and δ2 in this case
are monomorphisms.

Proof of (3.3a). The long exact sequence of relative homology groups for a pair
Σ C N gives

Using Definition 3.7 for the embedding H2(Σ,Z) —>• H2(N,Z) one can rewrite it as

0 -> {H2(N9Z)/Z[Σ]} -> H2(N9Σ;Z) -+ HX(Σ9Z) -> 0 .

Note that the space /^(iV,Σ; Z) is dual to H2(N \ Σ,Z). Hence using representation
of the quotient {H2(M,Z)/Z[N]} by the 2-cycles in Λ̂  which do not meet Σ and
by passing to the dual spaces one obtains the exact sequence

0 - {H2(N,Z)/Z[Σ]} - H2(N \Σ,Z)<- Hλ{Σ,Έ) <- 0 ,

where the embedding H\(Σ,Z) —> H2(N \ Σ,Z) is nothing else but the Leray map
δ. It completes the proof of (3.3a).

Notice, that there is a natural map {H2(Ni9 Z)/Z[Σ]} -> H2(Nι;\ Σ,Z): every
2-cycle in N which does not intersect Σ can be regarded as an element of the ho-
mology group H2(Ni\Σ). The embedding in the opposite direction H2(Ni \ Σ,Z) —>
H2(Ni,Z) is tautological. The formula (3.3b) is proved similarly, see details in
[T]. α

In the decomposition (3.3b) we will call H3(M,Z)®Σ*=ι{δ(H2(Nl9Z)/Z[Σ]})
the subspace of non-Leray cycles in H^{M \ (N\ \JN2\Z). The following theorem
provides us with a source of manifolds satisfying a certain quantization condition
described in the next section.
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Theorem 3.9. For Kάhler manifolds Σ, Nu N2i M with H3(Nλ) = H3(N2) =
Hχι(M) = 0 the subspace of 3-forms η e Jf3(M \ (N\ UN2)) with vanishing in-
tegrals over non-Leray 3-cycles in H3{M\(N\ UN2),Z) has dimension at least

ι

Proof The number of constraints on the meromorphic forms is maj orated by the
dimension of the space //3(M,Z) 0 γ^=ιδ(H2(Ni,Z)). Notice, that each summand
in this sum imposes as many nontrivial conditions on η's as the dimension of the
corresponding space of holomorphic forms Jt?2(Ni) or J-f3(M).

For instance, decompose the space of complex cycles H3(M, (C) on the Kahler
manifold M into the Hodge subspaces #3 =#3,0 Φ #2,1 Φ #1,2 θ #0,3 Poincare
dual to the corresponding spaces of differential forms. Then the integrals over all
(3,0)-cycles with complex coefficients spanning the space H^o{M) prescribe ex-
actly dim//3?o(M) = dim J>f3(M) conditions. On the other hand, the integrals of
meromorphic forms over an arbitrary 3-cycle representing a homology class from
other summands are automatically zero: by the Poincare duality Jση = JMη Λ ασ = 0,
where ασ e Hhl θ H2Λ θ H3>° is dual to the cycle σ e #2,1 θ % θ % , while
the meromorphic form η has the type (3,0).

Notice that the integral of a differential form over any cycle of finite order, i.e.
generating torsion in J f 3 (M \ (N\ U N2)) is automatically zero.

Thus the dimension of the meromorphic 3-forms on M furnishing the re-
quired constraints is not less than the dimension of holomorphic 1-forms on Σ by
Corollary 3.6. •

4. Four-Dimensional Realization of Central Extensions

4.1. The two-dimensional current algebra as a quotient. Consider an embedding
of the complex curve Σ into a complex compact surface N with h2'l(N) = 0 (i.e.,
into a simply connected surface HX(N) = H3(N) - 0). Let <&N = C°°(N^) be the
Lie algebra of all smooth maps from N to a simple complex Lie algebra ^ with
the pointwise commutator. Define

9% := {XeΦN\ X\Σ = 0}

to be a subalgebra of maps "based" at Σ c N.
Now the two dimensional current Lie algebra &Σ can be viewed as a quotient

algebra $Σ ~ ^N/^. Denote by GN the current group of all smooth contractίble
maps of N into G, and by G% the corresponding subgroup

GN

Σ:={gtGN\ g\Σ = id}.

They are related by the same identity GΣ ~ GN/G^, since all maps of Σ into G
(i.e. all elements of GΣ) are contractible for a simple simply connected group
G : π2(G) = H2(G) = 0.

The next step is to define the central extensions of the Lie algebra 9N and the
Lie group GN.

For this purpose, given any holomorphic 1-form θ G 34?ι(Σ) on Σ we pick out a
meromorphic 2-form ω e Jf 2(7V \ Σ) on N which has a polar set of the first order
on Σ and such that θ — res ω.
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As we mentioned above, for any meromorphic 2-form on TV with poles on Σ
the residue is a holomorphic 1-form on Σ. Conversely, if Hi(N) = 0 then every
holomorphic 1-form on Σ is the residue of some meromorphic 2-form on N by
virtue of the exact sequence (3.2). The kernel of the residue map consists of all
holomorphic 2-forms on N (and it is trivial, for instance, for N = CP 2 ) .

Definition 4.1. Let us fix a lifting

of the holomorphic \-forms on Σ to the meromorphic 2-forms on N with poles on

Σ, such that Res o i\ = Id. We define the central extension <& with the center

J^ι(Σγ = (J4?2(N \ Σ)/3F2(N))* by means of the cocycle

(C(X,Y),θ) = Cιm(X9Y), (4.1)

where the complex-valued two-cocycle Cω(X, Y) associated to a meromorphic 2-
form ωe^f2(N\ΣX) is

Cω(X, Y) = -ί- [tr(dX ΛdY)Λω. (4.2)
2πiJ

N

The proof of the cocycle identity for C literally repeats the 1-dimensional case.
It is clear that the central extension is independent of the choice of the embed-
ding i\. Evidently, the 2-cocycle depends only on the cohomology class of ω in
3V\N \ Σ9 C).

Proposition 4.2. Let Σ be embedded into a complex surface N with h2'ι(N) = 0.

Then the Lie algebra ^ f is an ideal in # . The quotient algebra # /^f is natu-

rally isomorphic to the central extension Φ of the current algebra on Σ, defined
by the cocycle (2.1).

Proof It is an immediate corollary of Theorem 3.4 applied to the manifold N and
the 4-form μ = tr(dX Λ dY) Λ ω whose primitive 3-form oc = d~ιω is taken to be
α = tr(XdY) Λ ω:

Cω(X, Y)=—. ίtr(dX A dY) A ω = - ί res (tr(XdY) A ω) = Itr(XdY) A θ .

N Σ Σ

Λ. /V Λ Σ

This shows that ^ f is an ideal in # . The quotient algebra is isomorphic to ^ ,
see Definition 2.1. D

Note that though the realization described goes through for any C°° form ω on
N\Σ and without the assumption h2'ι(N) = 0, the condition on ω to be meromor-
phic makes the construction canonical.

Remark 4.3. A stimulus for our consideration was a similar cocycle expression
Jtr(dX A dY) A ω with a Kahler form ω appeared in the work [LMNS, NS]. How-
ever, the orbit structure of the algebra with a Kahler form is rather obscure. Already
for an abelian group G the coadjoint orbits of the corresponding current group are
at least as complicated as for the group of volume-preserving diffeomorphism of
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a three-dimensional manifold. In our construction, the de Rham theory of smooth
forms is replaced by the Leray residue theory, which is more appropriate for the

complex-valued setting. The corresponding group G comprises a nice orbit structure
([EF, EK]), that indicates the existence of interesting representation theory.

4.2. The extension of the current groups. Similarly to the classical WZNW-con-

struction of affine groups, we proceed by defining the group extension G corre-

sponding to the Lie algebra & of currents on a complex surface N containing the

curve Σ.

Definition 4.4. The central extension G of the Lie group GN with the center
34?ι(Σ) /L, where L is a certain lattice, is given by the following 2-cocycle

(Γ(gug2),θ) =Γlι{θ)(gug2)

defined for any two group currents g\,g2 £ GN = C°°(N,G) modulo the lattice L.
Here for any meromorphic 2-form ω on N with polar set Σ of the first order

Γω(gug2) := — tr(g~ldgx Λdg2 g~ι)Λω .

N

One can check directly the cocycle property as in the WZNW classical case.

Verification of the fact that the Lie algebra corresponding to the Lie group G

coincides with Φ is immediate. Note that the definition makes sense for a trivial
lattice L = 0, defining a central extension of GN by the whole space J^ι(Σ)*.

However, we will see that in order to define a quotient of G over G% the lattice
L necessarily contains the lattice of periods H\(Σ,Έ).

Recall that the subgroup G% of "based" maps is defined as

G% = {geC°°{N,G)\g\Σ = id}.

Theorem 4.5. Let Σ and N be as in Proposition 4.2. Then there is an embedding

of the group G^ into the group G as a normal subgroup such that the cor-

responding quotient is isomorphic to the group G of currents on the complex

curve Σ centrally extended by means of the Jacobian of the curve.

The proof of this theorem occupies the rest of this section. The conditions
h2'ι(N) = h2'l(Σ) = 0 are satisfied for simply connected manifolds N and Σ. This is
a counterpart of simply connectedness of the disks D and D' in the classical case,
see Sect. 1. Note that by passing from the holomoφhic category to the C°°-category
one can drop this requirement in Proposition 4.2 and Theorem 4.5.

We will be looking for the homomorphism Gf —> G of the type g i-» (g,Λ(g)),

where g G Gf, and Λ(g) e 34?ι(Σ)* "resolves" the 2-cocycle Γ, namely

Λ(gxg2) - Λ(gι)- Λ(g2) = Γ(gug2) .

To achieve this we need to move one dimension up as in the classical case, though
now we are counting the complex dimensions.
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4.3. Resolution of the cocycle. First we embed the complex surface N into a 3-
dimensional complex manifold M and define the curve Σ as a transversal intersection
of N and of some nonsingular complex surface Σ in M. We demand that the man-
ifolds Σ, N and M obey the assumptions of Theorem 3.5: the Hodge dimensions
h2>ι(Σ) = h2'ι(N) = h3'ι(M) = 0 are trivial. These conditions are technical and re-
lated to the consideration of holomorphic and meromorphic forms. They are not
required in the C°° category.

Pursuing the same strategy as before, fix an embedding

ι2 : Jt?2(N \ Σ, C) -> je\M \(NU Σ), C)

such that Res o ι2 — Id. In other words, given meromorphic 2-form ω on TV we
pick up a meromorphic 3-form η in M \ (N U Σ) with a pole of the first order on
(the nonsingular part of) N U Σ, such that on the manifold N the 2-form res η
coincides with the 2-form ω. We do not require anything for the restriction res η\g.

Two different meromorphic "extensions" of the 2-form ω on N differ by a mero-
morphic 3-form on M with the polar set Σ. Say, for M = CP 3 one has as many
extensions as holomorphic 2-forms on Σ, according to the exact sequence (3.2).

Given current g we define the quantity Λ(g) assuming values in Jί?ι(Σ)* by the
relation (A(g),θ) = At2^(g), where the embedding ι2 := ι2 o i\ is the composition
of i2 and i\.

Definition 4.6. Consider any extension g of a current g £ C°°(N, G) from the com-
plex surface N to the ambient space M, such that g\^ = id. We define the quantity
Λ(g) with values in ^ι(Σ) by the relation

(Λ(g),θ)=Λm(g)9

where

° Aη

M

and η e Jt?3(M \(NU Σ)).

Such an extension g exists due to our assumption on triviality of the homotopy
type of the maps g : N —> G.

As in the classical case, this definition may depend on the choice of an extension
g, and strictly speaking is not well-defined for a given current g. We will show that
the ambiguity of the definition of A(g) in the choice of an extension g results in
shifts by elements from a certain lattice L.

Let us assume for a moment that this is so. Then we have the following

Proposition 4.7 (cf 4.5). Let Σ and N be as in Proposition 4.2. Assume also that

A(g) is well-defined modulo a lattice L in Jti?ι(Σ) . Let G be the central extension

of GN by means of the quotient J4?ι(Σ) jL defined by the 2-cocycle Γ(g\,g2). Then

the group G1^ is embedded into G as a normal subgroup, and the Lie algebra of

the quotient group G = G /G^ is isomorphic to Φ .
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Proof. Let us verify here that the embedding G% 3 g \-> (g,Λ(g)) G G is a group
homomorphism. Indeed,

Λη(gιg2)= -

M

( X \ d ) ldY /\η= - i ^ J tr(g2Xg

M

= Λη(gι) + Λη(g2)

- ^ Jtr ((g^dgx)
2dg2g2

l + g~ιdgx(dg2 g2

ιf) Aη

M

= Λη(gι) + Λη(g2)+—Jd(tr(g-χdgιΛdg2 g2

ι))Aη.

M

Applying Leray Theorem 3.4 we transform the last term to the form

— / tr{g~λdgxAdg2 g 2

ι ) A r ε s η = — / tr(g~λdgx A dg2 g 2

ι ) A ω

NUΣ N

= Γω(gug2).

Here the integral over N U Σ descends to the integral over N due to the following.
The currents gx and g2 are equal to id G G on the surface Σ. Hence the two form
β ;= tr(gλ~

λdgλ Λdg2 g2

ι) vanishes on Σ, and so does the 3-form dβ. Therefore,
the singularity of the 6-form dβ Aη is removable on Σ, and the residue theorem
reduces the integral over M to that over N. Proposition 4.7 is proved. D

4.4. The lattice of cocycle values. To complete the proof of Theorem 4.5 we need
to analyse the ambiguity in the definition of Λ(g).

Let g and g be two different extensions of a current g, such that g, g \$= id. Then
g = hg for some current h G C°°(M, G) such that h \ΣUN= Z^ ^ e denote the set of
all currents obeying these conditions by G^uN. The same argument as in the proof of

Proposition 4.7 shows that Λ(g) = Λ(hg) = Λ(h) + A{g) + Γ(h,g). However, now
Γ(h9g) = 0, since the restriction of the 1-form h~ιdh to ΣUN vanishes due to the
requirement on the current h that h \ΣUN= Z^

Hence, it remains to determine the set L of possible values of Λ(h) for all
h G G^uN. It is clear from the above ambiguity of Λ(h) that L is an abelian subgroup

of J^fι(Σ) . Given current h we rewrite Λη(h) for an arbitrary 3-form η as the
integral over the 3-cycle A^, Poincare dual in M to the smooth differential 3-form

Λn{h) = -Λ-jtr{h-ιdhγ Λη = Jη.
M Δh
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Proposition 4.8. The 3-cycle Ah Poincare dual to the 3-forrn — - ^ ) γ

defines an element of the homology group H3{M\(Σ\JN\Έ) with integer

coefficients. Moreover, every her ay 3-cycle in M \(Σ U N) can be represented

by a cycle Ah for some h G G^

Proof Indeed, recall that h is a map M —> G, and the group G has one-dimensional
group // 3(G,Z). The 3-form - ^tr(h~λ dh)3 is the pull-back to M of the generator
of H3(G, Έ) like in the classical case, see Proposition 1.4. Furthermore, the form
- i^tr(h~x dh)3 vanishes on Σ U N C M. Hence it is Poincare dual to some 3-cycle
Ah whose support is disjoint from ΣUN. Thus the cycle Ah can be considered as
an element in H3(M\(ΣUN),Z).

Moreover, consider an arbitrary embedded curve σ on the Riemann surface Σ
which represents an element of H\(Σ,Έ). Then its Leray image δ2σ is an embedded
three-torus T3 eM\(ΣUN). Let U(T3) ~ T3 x B3 be a tubular neighborhood of
the torus. Impose the condition on h to send the boundary of the three-dimensional
ball B3 (and the whole complement M\U(T3) of the neighborhood) to id G G. One
may think of h as a map T3 x S3 —> G. Then the desired h is invariant along T3 and
it sends S3 with degree 1 to a spheroid in G generating π3(G). Indeed, the support
of the corresponding three-form — ^^tr(hrxdKγ is contained in U{T3). Moreover,
one can see that the integral of this form over any 3-cycle in M \(Σ U N) is equal
to the intersection number of such a cycle with T3. By definition, this means that
T3 = δ2σ is Poincare dual to the 3-form. D

Proposition 4.8 shows that the range of Λ(h) in Jί?x(Σ)* contains the lattice
H\(Σ,Έ). Indeed, the Leray operator δ2 embeds the set H\(Σ,Έ) as a sublattice
of Hi(M\(Σ U N),Z), since it is injective (see Sect. 3.4), while the integrals of?/
taken over the Leray cycles δ2σ descend to the integrals of res η over σ.

Impose the following quantization condition on the embedding ι2 : J^ι(Σ,(C) —>
je3(M\(ΣUN)X). We fix an arbitrary sublattice in H3(M\(Σ UN),Έ) comple-
mentary to δ2(H\(Σ,Έ)), and we require the image of ι2 o ιλ to belong to the sub-
space of the meromorphic 3-forms η G Jή?3(M\(Σ U N), (C) which vanish on the
chosen sublattice. The complex dimension of the vector space spanned by such f/'s
is at least dime J^ι(Σ) = g as Theorem 3.7 shows.

It immediately implies that value of Λ(h) on arbitrary three-cycles from
H3(M\(Σ UN),Έ) will be necessarily of the form

ίη = (2πi)2 ί res2?? - (2πi)2 ίθ ,

δ2σ

where σ G H\(Σ,Έ). Thus the values of Λ{h) form the lattice L = HX(Σ,Έ).
In other words, for the described embeddings ι2 : jHTι(Σy€) -> J^3(M\(S U

N),<E) the projection of the dual spaces send the lattice H3(M\(Σ UN\Z) to the

lattice H\(Σ,Έ), that gives the desired realization of G . This completes the proof
of Theorem 4.5. D

4.5. Examples and generalizations. The simplest nontrivial example of our theorem
corresponds to an elliptic curve Σ. In this case we can embed it into N = (CP2 for
which H\(N) = 0. Moreover, we can realize Σ as a transverse intersection of a cubic
surface Σ and <LP2 inside <£P3 (note that λ ^ C P 2 ) = h2>\ί) = A3 ' !(CP3) = 0).
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Corollary 4.9. Let Σ be an elliptic curve realized as a transverse intersection Σ Π

<£P2 inside <LP3. Then G ~G /GΣ .

For a complex curve of an arbitrary genus it is known that it admits an em-
bedding in <EP3, but, generally speaking, only immersions in CP 2 , see [ACGH].
To obtain a complex surface N with H\(N) = H^(N) = 0 one can resolve double
points in (DP2. Notice, that not all complex curves are complete intersections of
algebraic surfaces in CP3 (see e.g. [ACGH]).

Remark 4.10. One can avoid the use of meromorphic Leray theory outlined in
Sect. 3.4 by imposing the same quantization condition on more general liftings

ι2 : Z2(N \ΣX)^ Z3(M \ (N U Σ), C),

where Z2 and Z 3 denote the spaces of smooth closed two- and three- forms with
poles of the first order. It is remarkable that these embeddings can be realized within
the spaces of meromorphic forms, provided that certain conditions on the manifolds
are obeyed.

Remark 4.11. It follows from our construction that the central extension of GΣ by
means of the Jacobian variety β is "maximal possible" in the category of Lie groups

with the Lie algebra 3? . In fact, one can show that it is universal in this class of
Lie groups. Other extensions correspond to a choice of lattices L C J^ι(Σ) which
contain H\(Σ,Έ) and are obtained via the natural projection J —» Jtf"ι(Σ)*/L.

In particular, we can weaken the conditions on the manifolds M and N in
Theorem 4.6 or on the embedding i\ o ι2 only to ensure that the set of values of
Λ(h) is a lattice L C Jti?ι(Σ) . Then our construction still yields a central extension

of the group GL with the Lie algebra ^ .
The quotient group L/H\(Σ,Έ) (or the corresponding index [L : H\(Σ,Έ)]) can

be viewed as an analogue of the level in the classical case. Recalling the fundamental
importance of level 1 representations of affine Lie groups of ADE types, one wonders
whether level 1 representations of central extensions of two-dimensional current
groups will play a similar role in representation theory of these groups.

5. Generalizations to Current Algebras on Punctured Complex Curves
and Further Perspectives

5.1. Current algebras on punctured curves. One can almost literally generalize the
above constructions to the case of punctured Riemann surfaces. Holomorphic 1-forms
on Σ are replaced by meromorphic ones with prescribed poles. Their extensions to
the spaces N and M also demand the consideration of meromorphic forms with
given orders of poles at arrangements of hyperplanes. In this section we just mention
several necessary changes in the described realization to include punctures on Σ into
the general scheme.

Let θ be a meromorphic form on a complex curve Σ with poles at the set
Π = {pι,...,pr}. Recall that the algebra <&\ consists of ^-valued functions on Σ
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assuming zero values at each point of Π. The central extension of this algebra is
given by the cocycle (2.1).

In order to obtain a four dimensional realization of this algebra we consider
an embedding of Σ into a complex surface N. Moreover, on the surface N we
consider a set of complex curves Ξ := Σ U Pi U U Pr in a general position such
that the intersection of the curve Σ with all the rest P := [fi=λPi is exactly the
set of removed points Σ ΠP = {p\,...,pr}. (Say, a Riemann sphere with three
punctures, crucial for many constructions in CFT, can be seen here as a quadruple
of complex lines in N = (LP2.) Then for the corresponding current algebras one
obtains a natural isomorphism &fj ~ ^p/^ with the evident notations @χ : = { I e
C°°(M, 0 ) | * ! „ = <>}.

Furthermore, choose an arbitrary closed 2-form ω which is C°° -smooth in N \ Ξ,
it has a first order pole along Ξ, and res ω\Σ = θ. Notice, that poles of ω at the
points pi are of the second order. The 2-cocycle on $p is defined by the formulas
(4.1-2).

Proposition 5.1 (cf. 4.2). The current algebra Φπ is isomorphic to the following
quotient:

The proof of the proposition is immediate. Notice, that if instead of φjj we deal
with a more general algebra of currents on Σ with values in nilpotent subalgebras at
punctured points pj e 17, then the algebras &p and 0 f are replaced by the algebras
of currents on N assuming values in the same nilpotent subalgebras on the entire
curves Pj C P. Intersections of these curves are related to the intersections of the
corresponding nilpotent subalgebras.

In the same way one defines the groups G%, Gp and the central extension GP

(see Definition 4.4).

Theorem 5.2 {cf 4.5). There is an embedding of the group Gζ into the group GP

as a normal subgroup such that the corresponding quotient is isomorphic to the

central extension Gπ of the group G^ of currents on the complex curve Σ which
vanish at the punctures Π on the curve.

To define the embedding GU —• GP one has to pass to three complex dimensions.
Fix some embedding of the surface N into a complex three-dimensional manifold M
and consider a collection of complex two-dimensional submanifolds Ξ := Σ U Pi U
• U Pr in a general position in M such that they cut N along the corresponding
curves Ξ = Σ U Pi U U Pr.

Again, specify some closed 3-form η which is C°°-smooth in M \ Ξ, it has a
first order pole along ΞUN, and res η\N = ω. Construction of the resolution Λ(g)
of the 2-cocycle transfers literally to this case.

5.2. Example of punctured sphere: Hyperplane arrangements. Look at the punc-
tured Riemann sphere: Σ = CP 1 , TV = <EP2 and M = (CP3. In the case of two re-
moved points (r = 2) one can consider three complex lines Ξ = Σ U Pi U Pi in a
general position in N = (CP2, and extend them to three planes Ξ = lfι=ι<EPf in
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C P 3 . Then the complement in (CP3 to ΞUN has the following third homology
group:

H3(<£P3\

The Leray map establishes the isomorphism of it with the corresponding homology
group

HX{Σ \ (Pι U p2)) = Hx(<£Pι \ (Pι U p2)) = Z ,

cf. Theorem 3.8. For the sphere with three punctures (the key picture in CFT con-
structions) the homology group H\ is Έ Θ Z, while the corresponding group H3 is
larger.

The case of punctured Riemann surfaces also covers the current groups
constructed on smooth complex curves embedded to a complex surface N with
self-intersections. Moreover, our construction is self-consistent with respect to de-
generations on the boundary of the moduli space of complex curves: the two parts
Σ\ Us Σ2 of a nonsingular complex curve Σ squeezed along some cycle S provide
both the punctured surface Σ\ and the auxiliary set P = Σ2.

5.3. Remarks on representation theory and quantum field theory. The generaliza-
tion of two dimensional current groups to the case of punctured Riemann surface
strongly allude to the parallel with conformal field theory. But in our setting we
expect to attach to a punctured Riemann surface a category of representations of
the corresponding current groups rather than a vector space of conformal blocks.
These categories are in turn supposed to form a two category similar to the mod-
ular tensor category in the classical case and it is natural to expect that the latter
category is just a Grothendieck ring of the former two category. This allows us
to conjecture that construction of representation theory of two dimensional current
algebras and groups will provide a categorical analogue of conformal field theory
(cf. [CF]).

An equally interesting direction is a development of a four dimensional quantum
field theory associated to our four dimensional realization of current groups. One
should note from our construction that unless we consider the example of a sphere
with punctures it is impossible to write a Lagrangian in pure exponential form,
because the topological term is defined only up to a lattice in a complex space.
Thus the relation of our construction with the proposed in [LMNS] four dimensional
models is not yet clear.

Another interesting problem is a generalization of the Chern-Simons-Witten
theory [W2] to the complex setting. Following the analogy inspired by our con-
struction Witten's Lagrangean over a compact (real) three-dimensional manifold
should be replaced by the following Lagrangean defined on a Calabi-Yau (com-
plex) three-dimensional manifold M:

S = - / tr(AΛdA + -AΛAΛA J Aη ,

M

where A is a ^-valued one-form of type (0,1) and η is the holomorphic three-form
on M. This Lagrangean appears as a low energy limit of open string theory in
[W3], where it is argued that this analogue of CSW theory is still finite. Thus it
is natural to expect that the complex generalization of Witten's three-dimensional
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topological invariant yields an invariant of Calabi-Yau manifolds. The meromorphic

forms appeared in the present paper should play the role of links in real three-

dimensional manifolds. The above Lagrangean was also discussed in [BCOV] in re-

lation to the Kodaira-Spencer theory, and it is undoubtly encodes deep mathematical

structures.

There are evident connections of our realization of the central extension G with

algebraic geometry and complex analysis. Moreover, the analogy of our construction

with the WZNW model indicates relations with other areas of mathematics that are

not so transparent at the present moment. For example, when Σ is an elliptic curve a

representation category of the group G should involve essentially the arithmetic of

the elliptic curve in a similar way as the representation category of G is associated

to the arithmetic of the roots of unity.
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Communicated by G. Felder

Note added in proof. Since we submitted this paper there appeared two preprints related to our
work:

[1] Losev, A., Moore, G., Nekrasov, N., Shatashvili, S.: Four-dimensional avatars of two-
dimensional RCFT, hep-th/9509151

[2] Losev, A., Moore, G., Nekrasov, N., Shatashvili, S.: Central extensions of gauge groups re-
visited, hep-th/9511185

The first paper extends the ideas of [LMNS]. In particular, the authors study the algebro-geometric
sector of their theory and shed some light on the connection between our construction of the

central extension G and their four-dimensional generalization of WZNW Lagrangean theory. In
the second note the authors present the quotient realization for the gauge groups on an arbitrary
manifold M by elaborating the ideas of [PS, M]. Their construction has a purely real flavor, and it
is based on ingenious introducing the currents on the cylinder over M. We note that the realization
described in our paper also admits a generalization to current groups on a complex manifold of
arbitrary dimension by using the C°° -version of Leray theory. However, the meromorphic setting
exists only in the case of a Riemann surface Σ, and it makes the construction genuinely complex
and rather rigid.






