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Abstract: We quantize the spin Calogero-Moser model in the /^-matrix formal-
ism. The quantum ^-matrix of the model is dynamical. This ^-matrix has already
appeared in Gervais-Neveu's quantization of Toda field theory and in Felder's quan-
tization of the Knizhnik-Zamolodchikov-Bernard equation.

1. Introduction

Integrable systems of N particles on a line with pairwise interaction have recently
attracted much attention. After the famous works of Calogero and Moser [1], many
generalizations have been proposed. These include the relativistic generalization of
Ruijsenaars [2], the spin generalization of the non-relativistic models [3,4] and
finally the spin generalization of the relativistic models [5]. They have many rela-
tions to harmonic analysis [6], algebraic geometry [7], topological field theory [8],
conformal field theory [9,10], string field theory [11].

In this paper we consider yet another aspect of these models, i.e. their embed-
ding into the /^-matrix formalism, both at the classical and quantum levels. In this
respect the essentially new feature which emerges is that the R-matrix turns out
to be a dynamical one. At the classical level, the r-matrix was computed for the
usual Calogero-Moser models in [12]. It was computed in [13] for their spin gen-
eralization, while it was calculated first in the Sine-Gordon soliton case [14], then
in the general case [15] for the Ruijsenaars systems. We address here the issue of
the quantum formulation of these models within an 7?-matrix framework. We are
going to show that the quantum Yang-Baxter equation has to be generalized. At
present this new equation stands at the crossroads of three seemingly distinct topics:
quantization of Toda field theory, quantization of KZB equations, and quantization
of Calogero-Moser-Ruijsenaars models.

In Sect. 2 we explain the above connections at the classical level. The clas-
sical r-matrix of the Calogero-Moser model, the KZB connection for the WZW
model on the torus and the r-matrix of the exchange algebra in Toda field theory
all satisfy the same generalized Yang-Baxter equation. In Sect. 3 we take advantage
of these identifications to define the commutation relations obeyed by the quantum
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Lax operator of the Calogero-Moser model. In Sect. 4 we use this quantum algebra
to construct a set of commuting operators which are the quantum analogs of tr L",
where L is the Lax matrix of the system. Finally in Sect. 5 we give examples of
such operators built for specific representations of the quantum algebra.

One should stress again that our concern here was to embed the Calogero-Moser
systems into the /^-matrix formalism. Many other different approaches exist for these
models. In particular the works [4,10] are probably closely related to our results,
but the precise connexions are yet to be clarified.

2. The Generalized Classical Yang-Baxter Equation

2.1. The Calogero-Moser Model and its Classical r-Matrix. The Calogero-Moser
system is a system of TV particles on a line with positions #/ and momenta pi. The
Hamiltonian is:

where the two-body potential V(x) is the Weierstrass function p(x) or its trigono-

metric limit l/sinh2(;t), or its rational limit 1/x2. The Poisson bracket is the cano-
nical one:

{ p i 9 X j } = δij .

Rather than considering the Calogero-Moser model in this standard version, it will
be important to consider instead its spin generalization

(2)

where the Poisson bracket on the new dynamical variables hy is given by

{hijτhki} = δnhkj - δjkhu .

The above Poisson bracket is degenerated. We have to choose particular symplectic
leaves which we parametrize as

with

Remark that {//,A#} = 0 for all i. The standard Calogero-Moser model is then ob-
tained by a Hamiltonian reduction of the spin model f or / = 1 under this symmetry.
Indeed in this case we have A// = a>ibj\ the reduced manifold is characterized by the
value of the momentum A// = atbi = g for all i. Then A// Ay; = g2 and we recover
Eq. (1). For general /, the spin model is integrable only on the reduced manifold.

The standard Calogero-Moser model is well known to be integrable. It has a
Lax matrix depending on a spectral parameter λ [16],

Lij(λ,x, p) = δij p, + (1 - δlJ)Φ(xij9 λ) ,
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with

where σ is the Weierstrass σ function.
This yields conserved quantities In = trZΛ However Liouville integrability re-

quires that these quantities be in involution. This is equivalent [17] to the existence
of an r-matrix (we use the standard notation L\ = L ® Id . . .)

{L1,L2} = [r12,L1]-[r21,L2]. (3)

This r-matrix was computed in [12] and is given by

rf2

alα μ,x) = -Σ φ(χiJ> λ~ri eϋ ® eJί + ί(Λ - μ) Σ en <8> ett
i,j=l i=l
**J

N

+ Σ Φ(xij9μ)eii^eij. (4)
/.7=1

ί=K/

The important new feature of this model is that the r-matrix depends on the
dynamical variables Xj.

Occurrence of the last term in Eq. (4) jeopardizes the eventual quantization of
Eq. (3). It is in this context that the consideration of the "spin" model is advanta-
geous. Defining

Lij(λ,x, p) = δijpi + (1 - δijWijΦfajtλ) , (5)

we find
{Ll9L2} = [r12,L!] - [r2ι,Z2] + [^,^2] (6)

with
N N

ru(λ, μ,x) = - Σ Φ(*ij, λ-ti eij ® ejΊ + ζ(λ - μ) Σ ^ ® eu (7)
/,7=1 /=!
ί>y

and
N d

®=Σ*«ό- (8)
/=! ί̂

The last term [@9r\2\ reflects the non-integrability of the non-reduced system. Since
the matrix r only depends on the differences *// = xt — Xj, the last term takes the
explicit form

I N d

Its contributions eventually vanish on the reduced phase space ha — constant. One
can recover the r-matrix (4) from (7) using the reduction procedure [13].

Proposition. The r-matrix Eq. (7) is antisymmetric: r\2(λ>μ,x} = — r2ι(μ, λ,x) and
satisfies the equation

[Π3,r23] = 0. (9)

In particular, this implies the Jacobi identity.
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Proof. Denoting Z\ι = \β,r\{\, the Jacobi identity reads

0 = {Ll9{L2,L3}} + {Z2,{Z3,Zι}} + {L3,{Ll9L2}}

= [Lι,[ri2,r23] + [^2,^13] + [^32,^13] + {^2,^13} - {£3,^12}] + cycl. perm.

+ 1/23, Zι2] + |>3ι,Z23] + |>i2,Z3ι] - |>32,Zι3] - [n3,Z2ι] - |/2ι,Z32]

+ {Lι,Z23} + {£2,^31} + {L3,Z12} . (10)

Using the antisymmetry of r, we find

l/23,Zι2] + 1/31,^23] + l>i2,Z3ι] - [r32,Zi3] - [r13,Z21] - [r2ι,Z32]

= -[ ,̂[^12^13] + [^12,^23] + [̂ 13

Moreover, we have

{L1?Z23} = {Iι,[®,

so that Eq. (10) becomes

0 = [Iι,[rι2,rι3] + [rι2,r23] + [rι3,r23]-{Lι,r23} + {L2,rι3}-{L3,r12}]+cycl. perm.

Hence the Jacobi identity is satisfied if Eq. (9) holds, which is easily checked by a
direct calculation. D

From the facts that {Zι,r23} = X)/==1 e|z 03^r23 and r depends only on the
differences c/ - Λy, we can rewrite Eq. (9) as

r23
(JJCy

( i i )

where {hv} is an orthonormal basis of the Cartan subalgebra of diagonal matrices
of sl^v and c = ̂ v xvhv.

Let us comment on the trigonometric limit of the classical r-matrix rι2(Λ,,μ,;c)
defined in Eq. (7). We remark that if r\2(λ,μ,x) is a solution of Eq. (11) such that
Vv, [hv 0 1 + 1 ® Av,n2(Λμ,^)] = 0, then

is also a solution of Eq. (11) for any function α(/ί). Using this freedom we see that
the trigonometric limit of Eq. (7) may be recast into the form

N N

,x) = coth(/ί - μ) Σ eίj ® ejΊ - Σ coth( ;̂ )̂ 7 0 ejΊ . (12)
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Equation (11) will be the cornerstone of our quantization procedure of the Calogero-
Moser model. It also appeared in two other contexts which we now briefly recall.

2.2. Relation to the Knizhnίk-Zamolodchίkov-Bernard Equation. It is well known
that there is a relation between conformal field theories and the classical Yang-
Baxter equation through the Knizhnik-Zamolodchikov equation [18]. Let r//(z) =
—rji(-z) be a skew-symmetric solution of the classical Yang-Baxter equation taking
values in the tensor product Φ?) ® ̂ J\ where ^ is a simple Lie algebra. Let ffl
be a Cartan subalgebra of .̂ Then the KZ connexion

has zero curvature. Hence the system of equations

TV
dzlu = Σrij(zi-Zj)u (13)

7=1

7*'

for a function u(z\9. . . ,z#) on C N - Ui<j{z5z/ = zy} w*m values in V ® - - ® F,
where F is a representation space for ,̂ has a solution. Equation (13) charac-
terizes conformal blocks of the Wess-Zumino-Witten model on the sphere. On
a higher genus Riemann surface the corresponding equations are the Knizhnik-
Zamolodchikov-Bernard equations (in our case of interest 0=1); they are equa-
tions for functions M(ZI,.. .,Z#,JC) taking values in the weight zero subspace of
a tensor product of irreducible finite dimensional representations of a simple Lie
algebra ^ i.e.

N

(Here and in the following the superscript in h(

v

l) denotes the space on which hv

acts and the subscript v denotes an element in a basis of Jtif .) In the case of a torus,
they take the form

Xvu + Σnj(zi-Zj9x)u (14)

with additional equations involving derivatives w.r.t. the modular parameters. The
compatibility condition of Eq. (14) is exactly Eq. (11) [9].

2.3. Relation to Toda Field Theory. The Toda field equations associated to a simple
Lie algebra $ read

Ώφv= Σ « v e 2 *W,
α simple

where φ = Σv Φvhv is a field taking values in a Cartan subalgebra Jf of a Lie
algebra .̂ As above, {hv} is an orthonormal basis of this Cartan subalgebra. In the
case ^ = sli, this becomes the Liouville equation.

Leznov and Saveliev [19] found a generalization of Liouville 's solution to the
Liouville equation. It takes the form
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where \A) is a highest weight vector, Ψ(z) and Ψ(z) are chiral fields (z = σ + τ
and z = σ — τ are the light-cone coordinates)

Ψ=(Λ\Q+9 Ψ = Q-\Λ)

with β± solutions of the linear systems

dz-Q- = β-OP 4- f-) .

P and P are chiral fields with values in a Cartan subalgebra of ^ and <?± =
Σα simple ^±α w^n ^α me ro°^ vect°rs in the corresponding Cartan decomposition
of 9.

To reconstruct periodic solutions of the_Toda field equation, it is natural to
consider the quasi-periodic basis for Ψ and Ψ,

Ψ(σ + 2π) = Ψ(σ)exp(x), Ψ(σ + 2π) = exp(-^:)Ψ(σ) ,

where c — ̂ v xvhv is the quasi-momentum (zero mode), belonging to the Cartan
subalgebra.

The Poisson bracket (at equal time τ — 0)

[P(σ\P(σ')} = δ'(σ - σ'

induces a Poisson bracket on Ψ [21]

)r?2(x), ± = sign(σ-σ'), (15)

where [20] (in the sl^ case)

N N

rf2(x) = ± Σ eίj ® ejΐ ~ Σ coth(^y )^y 0 β j i . (16)

Taking into account that

the Jacobi identity {Ψ\,{¥2, ^3}} -f cycl. perm. = 0 implies exactly Eq. (11)
on r^jt).

The solutions (16) of Eq. (11) are related to the solution (12) by the formula:

Γ12(/U) =

3. The Gervaίs-Neveu-Felder Equation

In this section, we give the quantum version of Eq. (11). This results into a deformed
version of the Quantum Yang-Baxter equation, which first appeared in [21] and later
in [9].

We need to introduce some notations. If ^ is a simple Lie algebra and 2tf a
Cartan subalgebra of ,̂ let x = Σv xvhv be an element of 2tf. For any function
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/(*) = f({χv}) with values in C, we denote

where

Suppose F(1),...,F^ are finite dimensional diagonalizable Jf-modules; the
Gervais-Neveu-Felder equation is an equation for a function Rtj(λ,x) meromorphic
in the spectral parameter λ, depending on x9 and taking values in End(F(/) ® F(y)).
It reads

γh™)

(17)

We have used the notation λij = λt — λj.
The classical limit of the Gervais-Neveu-Felder equation is obtained as usual

by expanding R in powers of U — — 2y,

Rι2(λ,x) = Id - 2

The first non-trivial term of Eq. (17) is of order y2 and stems from:

y(ru(x - y// (3)) - rl2(x + yA ( 3 )) + rl3(x + yM2)) - r13(jc - 7/*(2)) + ^23^

- r23(x + 7/z(1))) + 72([ri2,r13] + [r12,r23] + [r13,r23]) + O(y3) = 0 .

The term of order y2 yields exactly Eq. (11).
Gervais and Neveu first obtained Eq. (17) in [21] as a result of the quantization

of Liouville field theory (this result was later extended to sl^ Toda field theory in
[22]). In this quantization procedure, the quantum version of Eq. (15) was shown
to take the form of an exchange algebra:

Ψl(σ)Ψ2(σ/) = Ψ2(σf)Ψι(σ)R^N(x9ql ± = sign(σ - σ'), q = e~2y, (18)

where for slN [22,23]

N N π

~Λ Vέ? <8)έ? 4- Y" -/ -j ll ^^ II ' / J

i=\ ι,j=l

N t&Xij

Taking into account the shift property of the fields Ψ, that is, for any scalar
function f(x):

f(x) Ψ^σ) = Ψ,(σ) f(x - 2yA<1>), q = e^ , (20)

the associativity of the Ψ fields algebra yields

Rl2(x)Rl3(x -
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This is equivalent to Eq. (17) if RΪJ(X) satisfies the relation

[&n + &J'\Rij(x)] = Q9 (21)

which is true for the 7?-matrix given by Eq. (19).
Felder [9] interpreted Eq. (17) as a compatibility condition for the algebra of

L-operators (following the well known Leningrad school approach [24]):

+ γh™)

= L2q(λ2,x - γhM)Llq(λl9x + yh(2})Ru(λn,x - yh(q}) . (22)

Here we assume that the matrix elements of L\q act on a quantum space V^ which
is a Jf -module so that the action of M^ is defined. In the following we will be
interested in ^-matrices and representations Liq satisfying the properties

[hM + hU\R,j(λ,j,x)] = 0, (23)

[A(/> + A(ί),Zί?] = 0. (24)

From Eq. (20) we see that Ψ(z) in the exchange algebra (18) naturally contains the
shift operator e2γ®. By analogy we define a Lax operator:

Liq(λ,X)=^(i}Liq(λ,x)^(>) . (25)

In the limit when y -> 0, and assuming that L(λ,x) = Id + 2γl(λ,x) + O(y2), the
behaviour of L is

L(λ,x) = Id + 2y ( Σ^v^- +l(λ,x) } + 0(y2) ,

which is the typical form (see Eq. (5)) of the Lax matrix of the Calogero-Moser
system. The shift operator ey^ thus contributes to reintroducing the momentum
pv = 5Xv on the diagonal.

This operator (25) now obeys the following equation:

,x - , (26)

provided one has
)] = 0. (27)

Equation (24) translates into the following shift properties for a scalar function

/(*)
f(x - jh^)Lίq = Liq f(x - yhM - 2yAW) , (28)

f(x + yA(ί) + 2yh(i))Lίq = Liq f(χ + γhM) . (29)

As in the classical case, if ^12(^12,^) is a solution of Eq. (17) having the property
M2\Rl2(λί2,x)] = 0, then

(30)
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defines another solution of Eq. (17) with α(/l) an arbitrary function of λ and β an
arbitrary parameter. A solution of Eq. (17), the classical limit of which -up to a
redefinition of type (30) - is the r-matrix (7), was given in [9]. It reads

σ(2γ)σ(Xij - λ)

Just as in the classical case, the relation between (31) and (19) is obtained by using
transformation (30) and by taking the trigonometric limit. One gets

R (λ rϊ - eV^M-e'V'^^g) 2yκF(λ,x) — - -, - : - -. - , q = e . (όZ)
qeλ — q~[ Q~λ

Let us recall at this point some known facts about the matrices R^N(x,q). These

matrices are related to Drinfeld's matrices Rp by:

where Λ^12 = (Λ+2 1Γ
1,

N N N
RD = Σ eu ® eij + q Σ en ® en + (q - <Γl ) Σ % ® ejΊ (33)

/,7=1 /=! /,7=1
ι>7 i<7

and

TV ^ 1 ^ 1
= Σ efi 0 ̂  + Σ ^ _ Q-Xij

e» ® eJJ + Σ oc-XίJ_a-ιQXij

e« ® ̂
ί=i *>./— i ί>y— i τι TZ

ί<7 ϊ>7

In the sb case, a universal formula for F\2(x) is available [25].
In the framework of Toda field theory, it is known that one can eliminate the x

dependence from the exchange algebra (18) by a suitable change of basis [26,27]:
defining

ξ(σ) = Ψ(σ)M(x)

with

M(x) = Σ Q2J^-N^k)e..
Ay=l

we get

ξl(σ)ξ2(σ') = ξ2(σ')ξl(σ)R±G(q), ± = sign(σ - σ')
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with an ^-matrix R^G(q) independent of x [27]:

N N N

/ ^ e^iYyen \~q / q ea Qy <

TV 7-/-1

ί,7=l r=l

TV i-j-l
r l)Σ Σ q~2r/Nej+r,i^e^rJ

/,7=1 Γ=0

and of course ^,12(2) =
We may wonder whether the x dependence in (26) may not be eliminated by

a similar change of variables. Starting from Eq. (26) with the ^-matrix given by
(32), we set

,jc) = M~\x

Then Eq. (26) becomes

R*G(λ - μ,q)£el(λ,X)£e2(μ,X) - Se2(μ,x)&l(λ,x)Rcβ(λ ~ μ,q)

with

3 - _; _λ

^ e — ^ e

This equation is reminiscent of the equation studied in [28].

4. Construction of Commuting Operators

We now present a set of commuting operators quantizing the classical quantities
trZΛ We consider in this section an abstract algebraic setting. Examples will be
provided in the next section when there is no spectral parameter (λ = oo). In that
case one can restrict oneself to finite dimensional quantum groups. In the case with
spectral parameter, one should consider full affine quantum groups, and this will be
left for further investigations.

In the context of the non-shifted Yang-Baxter equation R\jL\L2 — LiL\R\i, the
quantum analogs of the conserved quantities trZ/1 are to be defined [29] as

/„ — TΓι...n [Li LnRuR23 ' ' 'Rn-l,n] •>

where

and PΪJ are the permutation operators of the spaces i and j.
In the Gervais-Neveu-Felder case, we have the following

Theorem 4.1. Let R(x) and L be as in Eqs. (17,26) with the shift properties as in
Eqs. (28,29), and condition (21) be satisfied.
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We define the operators

In = Tn...n [!,(*) - Ln(x)R]2(x - 2yΛ(3>">) - .

x Rk,k+l(x - 2γh(k+2'n)) Rn-ι,n(x)], (34)

where

Then:

1) The operators In leave the subspace of zero weight vectors invariant (vectors
\V) such that h(^\V} = 0).

2) The restrictions of the operators In to the zero weight subspaces form a set
of commuting quantities.

Proof. To prove (1) we have to prove that [In,h^] = 0. This follows immediately
from the relations

We will decompose the proof of (2) into several lemmas. We will need the impor-
tant shift properties of L given by Eq. (28,29).

Lemma 4.1. On the zero weight subspace, one can write

Inlm = τr[Ll(X) Ln(X)L

where

«/«'%) = Ru+l(x -

Proof. Since Im leaves the zero weight subspace invariant, it is possible to rewrite

/„/„ = Tr[Li(x) • Ln(X)J(l<"\X)} Tr[Ln+l(X) Ln+m(X)^«+l'"+m\x)]

as

/„/„ = Tr[L,(x) Ln(X)^l>"\x - γhM)] Tr[IB+ι(x) Ln+m(X)^"+l<"+m\X)] .

We now push «/(1>")(jc - yA (?)) through Ln+\ Ln+m using Eq. (28). Applying the
expression found to the zero weight subspace gives the result. D

Lemma 4.2. We can rewrite

Un = TrfrOc) Ln+m(κ)Q-\X) . Qϊl(X)^n+1'n+m\X - 2yA<1 ">)

where
m

Qi(x) = YΪRi n+j(χ -
7—1

Proof. According to Lemma 4.1,

/„,/„ = Tτ[Ln+l(X) Ln+m(X)L,(X)

x (je - Λ(ί)
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and using

we have

Imln =

x L2(;c) -

Using once more Eq. (28,29), Eq. (27) and the cyclicity property of the trace,
we get

Imln = Tr [Ln+\(x) - - Ln+m_ι(x)Lι(x)Ln+m(x)L2(x) - - Ln(x)

x x^n+mx

Then pushing L! through Iπ+w_1,LII+w_2,...,IΛ+ι gives

Imln = TrtLiijc^+iijc) - "Ln+m(x)L2(x} - -

x t/(«+1'«+^)(Λ:

The result is obtained by repeating the procedure with L2,^3,...,^rt. D

Comparing Lemmas 4. 1 and 4.2, commutation of Im and /„ will be proved if

V(1'Λ)C*)βι 00 Qn(x)

Since J^(1'w) and e/("+1'w+^) act on different spaces and since
^(Λ+I.Λ+W)^)] = o, this last relation is equivalent to

Qι(x) ' ' Qn(x)S(n+l'n+m\x)S(l'n\x

= ydi+u+m)^ _ 2yA(1»Λ>)^1 l|)(jc)ρ1(jc) - - - Qn(x) .

We shall prove this relation in two steps:

(*) Q\(x) ' ' Qn(x)^(n+l'n+m\x) = S(»+l>n+m\χ - 2yλ(1'Λ))βι(jc) - - Qn(x)9

(**) Qήl(χ) ' ' ' Qϊl(x)S(l'n\x) = ̂ n\x - 2yh(n+l>n+m">)Q-\x) - - - Q^(x)

Relation (*) is a straightforward consequence of the following lemma.

Lemma 4.3. Defining Tt(x) = j^+M+m)^ _ 2yM'»), we have

Proof. Lemma 4.3 will be proved if we show that

An+k,n+k+ι(x ~ 2yh(i>n) - 2

- Qi(x)Rn+k,n+k+ι(x ~
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Let us write Qi(x) = Aitk(x)Bitk(x)Citk(x) with

- 2yA</+1 "> -

x /*/,„+*(* - 2yΛ(/+1'n)

/t-i

- 2yA(/+1 B) - 2yh(n+j+l*n+m)) .

Since R^+k+2 Rι,n+m(x) and Rn+k,n+k+\(x) act on different spaces and since
[A(ί) + A (Λ,Λy] = 0, we have

Using then the Yang-Baxter equation

R23(x - 2yh^)Rl3(x)

we see that

Rn+k,n+M(x -

For the same reasons as for A^

which ends the proof. D

Relation (**) is proved in a similar way: writing Q~l - - Q^~l — S~^ - - S~+
where

n

S7\X) = ΠΛ-J(X - 2yA(*+1 B) - 2yA( /+1 "+m))
Λ=l

and introducing
- 2γh(j+l>n+m))

we have, similarly to Lemma 4.3,

5rV)r;w = r;_1ws5-V).
This ends the proof of Theorem (4.1). D

5. Examples of Commuting Hamiltonians

We give two applications of the above theorem. In the first one we construct a
Ruijsenaars type Hamiltonian with scalar coefficients. The limit q — > 1 yields the
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usual trigonometric Calogero-Moser Hamiltonian. In the second example, we con-
struct a set of commuting finite difference operators with matrix coefficients. Their
limit q — •> 1 is related to the spin generalization of the Calogero-Moser model.

To avoid problems of handling infinite dimensional representations of aίfine Lie
algebras, we restrict ourselves to the trigonometric case where we need to con-
sider only a finite dimensional matrix algebra. We shall construct here the quantum
analogs of the classical quantities trLn(λ = +00). We thus apply Theorem 4.1 with
the R-matήx R^N(x,q} which is the limit of Eq. (32) when λ — > +00. In the spin
Calogero-Moser case, we recall that these commuting Hamiltonians are precisely
those which are Yangian-invariant [4, 13].

5.7. The Scalar Case. As required by Theorem 4.1, we need representations of
the algebra (22) admitting a non-trivial subspace of zero weights. We shall first
consider the representation of algebra (22) analogous to the representation by a
completely symmetrized tensor product N®N of the Lie algebra sl/y.

By comparison of Eq. (22) and Eq. (17) we see that L^ = R\q is a solution of

Eq. (22). L^ is a matrix in an auxiliary space (1)

J(N) _ ^ .0)7(AO
^\q ~ ^ Kϋ ij '

z'J=l

the elements of which are quantum operators represented as the following

matrices Z :̂

-0-g" 2 )^-^' ****J (36)

Choosing on the auxiliary space

the solution (35, 36) satisfies Eq. (24) with

^> = / f > = e , . - l l d , ί=\,...,N. (37)

This is the analog of the vector representation N of sl#. Next, following [9] one
can construct the tensor product of N such representations

yE W + γ Σ h(J)

As in the Lie algebra case it turns out that there is a unique symmetric zero
weight vector

I v) = e\ <S> β2 0 0 e^ + permutations .

Hence
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We find after some calculation

ί=\ jή=i \ qe

One can perform a similarity transformation

' v"'~" /OX ' ""' *</ (Ά&* -q~le~χki]

to get
AT . / (n^ij - q~! β-*i7 )(^~! ̂ 7 -

z=l 7=1

In this form the limit # = e~2y —> 1 becomes simple. We find

^v / ι 1 \

1=1 \ ΐ ί

Thus we recover the usual trigonometric Calogero-Moser Hamiltonian.

5.2. The Spin Case. We shall now construct the representation of algebra (22)
analogous to the representations N of the Lie algebra AN and take its tensor product
with the representation N. As in the Lie algebra case, the tensor product will have
a structure similar to the standard decomposition, N 0 TV" = 1 + ad, and admit a
subspace of zero weight vectors of dimension N. The Hamiltonians we will construct
act in this zero weight subspace.

One can find another solution of Eq. (22), given by (see also [23])

Γ(A^) / -K e 7 -P _L / O Π N^/ι =(q-q )—Γ _ι -r..g|/ f o r z φ y . (39)

Remark that £( ^ is essentially the transposed of Lw. In this case we have

A<«)= λf> = - L, - ildV I' =!,...,#. (40)

Notice the sign difference between Eq. (37) and Eq. (40). Following [9] one now
constructs the tensor product of the two representations:

(41)
k=l

and

A(*) = A^) = Λ _ _LId^j ^ id _ id ̂  L. _ lid") for / - 1, ... ,7V . (42)

From this last formula, we see that the subspace of zero weight vectors admits
{Ei = el : <8>e/}z=i...# as a basis. We introduce the canonical basis {^z/}z,y=i.-jv of
matrices acting on this subspace by E^Ej = Et.
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Applying Theorem 4.1 to the L operator

= Σ *0)

.4-. y

given by formulas (35,36,38,39,41), we find

J 1+<Γ 2 '

where the operators Jf 1,2,3 are

TV
= Σ Id + q\\ - <Γ2)2Σ Vji(x)(EjΊ -

id + (i - <r2)2 (̂
* k=l

6 W + 2 <

and

/-^
1=1

- En)

%/v)-

Generalizing the preceding formulas, we introduce quantities {^n}n=ι,...,N defined
as

z_/ (43)
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with

(gV'i'- - e-JΊ' XgV-Ό - e-'-Ό)
^-/iW-^-r-iiW χ - ' - * '

We have checked directly, up to 5 particles, that the {J^n}n=\,...,N form a set of
commuting operators.

The occurrence of the matrices EjΊ — EJJ immediately shows that the vector

is left invariant by all the Hamiltonians 3tfn. Their restriction to this one dimensional
subspace is the abelian algebra of the symmetric polynomials in Q2γpί.

To recover the usual Calogero-Moser Hamiltonian we have to consider the
expansion around y = 0 of me above Hamiltonians. To order y2 we find

JPn = Cn

N Id + 2yCn

N-_\ ̂ M + 2y2[Cn

N-_2

2(^M)2 + C 2 ̂
M] + O(y3) , (46)

where C^ are the usual binomial coefficients and

- Σ

j + Eβ - EH - EJJ) . (48)

The matrices J?,y + £}ι - ^ή ~ EJJ admit a simple interpretation in terms of the "spin
operator" hy in the tensor product representation N 0 N9

hij = βij 0 Id — Id 0 βji .

Indeed we have

M;4ero weight = EU + Ejj " EU " EJΊ '

hence in this representation we do recover the spin Calogero-Moser Hamiltonian

1 N ff N 1
^ (49}

( ^

as the first non- trivial order of Jjfn.
We would like to stress that the above examples are built out of the simplest

representations of (22) admitting a non-trivial zero-weight subspace. More general
representations will affect, among other things, the value of the coupling constant.
As indicated by the s!2 case [25], the representation theory of Eq. (22) is intimately
tied to the representation theory of quantum groups, but the link remains to be fully
elucidated.
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