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Abstract: We consider the energy levels of a Stark family, in the parameter j, of
quartic double wells with perturbation parameter g:

H(g,j) = p* +x*(1 —gx)* —j (g - %) :

For non-even j (and for the symmetric case j = 0) we prove analyticity in the
full Nevanlinna disk g~ > R~! of the g*-plane, as predicted by Crutchfield. By
means of an approximation we give a heuristic estimate of the asymptotic small g
behaviour, showing the relation between the avoided crossings and the failure of
the usual perturbation series.

1. Introduction

The eigenvalues of the quartic anharmonic oscillator
A = P+ 2+ g (L1)

are interesting examples of Borel summability of the Rayleigh Schrodinger pertur-
bation series [Gr-Gr-Si]. The unstable anharmonic oscillator (or “volcano™)

Ag*) = p* +x* — g*x* (1.2)

has “resonances” defined as the eigenvalues of the analytic continuations A[(=ig)?]
of A(g?). Such “resonances,” as well as the Hydrogen Stark effect resonances, are
given by a pair of distributional Borel sums called upper and lower Borel sums
(US,LS) [Ca-Gr-Mal, 2, 4].

The energy levels of the double well Stark family

H(g,j)=p2+x2(l—QX)Z—j<gx—%) (13)
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are much more difficult to treat. First of all, for j even, infinitely many eigenvalues
are unstable at g = 0, since a pair of eigenvalues shrinks to one [Re-Si]. Moreover
in the case j = —2, as discussed by Herbst-Simon [He-Si], the first eigenvalue
is stable and positive for g positive, while the perturbation series is identically
zero with obviously zero sum. Furthermore it was known that at the top energy
E = (164%)" ! the eigenvalues have very bad analyticity properties due to the cross-
ings [Be-Wu, Re-Si]. Lacking direct information, the same situation was expected
for the first eigenvalues. Crutchfield [Cr] showed that actually the first eigenvalues
extend analytically to a certain domain of the complex plane of the coupling con-
stant g°>. We give here the full proof of the analyticity on a Nevanlinna disk.

For what concerns Borel summability of the perturbation series, the situation
is not so simple. Since the Herbst-Simon example [He-Si] shows that at least in
one case the perturbation series does not give enough information, we should first
extend the perturbation series. More precisely, starting from the usual decomposition
Jn(9,)) = N(g,/)/(D(g,))), we work separately on the expansion of N(g, ) and
D(g, j). Considering, for instance, N(g, /) (D(yg,j)) for j real, we extend the standard
perturbation series X a;g** by the new one Xy ax(9)g* + iy br(g)g**, which gives
the exact result if summed in the appropriate way, to be described in Sect. 5 of this
paper.

This program was initiated in previous papers [Ca-Gr-Mal, Ca-Gr-Ma3]. Here
it is completed by our new general proof of the existence of a Nevanlinna disk of
analyticity. We also use our previous results [Ca-Gr-Ma4] on the “resonances” of
the “volcano,” thanks to their connection with the “resonances” E, (g,/) of (1.3)
as given by Buslaev—Grecchi [Bu-Gr].

Since the exact expression for the eigenvalues (given by the perturbation series
(1.4) and by the appropriate summation method) is not very simple, we give an
asymptotic approximation, obtained by taking the limit of our function %(g,z) as
g — 0 and z on a fixed path I' surrounding 4,(0,;). Let F(g,j) = N(g,j) (or
D(g,/)), then we have:

1S9 28 ;
F(g./) ~ (1 L T SEN9))

Trax 2/‘+£cot /2)A 2y arg®  as g — 0
2sin2(nj/2)) kag” + 2 (jm/2)4 Xy arg g

(14)

for j not even, where 2 means the distributional Borel sum (DBS) of the series
and AX means the Borel discontinuity of the series (DOS). Let us notice that the
coefficient of the DBS in (1.4) is the same for D(yg, j) and for N(g,/), so that it can
be factored out and set equal to 1 at the same approximation level. The coefficient
of the “Borel discontinuity” in (1.4), i.e. cot(,j}), is singular and odd near j = 0,
so that it is a typical avoided crossing term.

Actually the perturbation series of any eigenvalue is analytic in j in a neigh-
bourhood of the real axis for g small, but not the eigenvalue itself. On the other
hand it is possible that the direct distributional Borel summability of the perturba-
tion series to the partition function gives the exact result as was originally suggested
by 't Hooft [’t] and it is proved for a simple approximation [Ca-Gr-Mal]. Some
of the results of the present paper are announced at the 1993 Conference of the
International Euler Institute [Ca-Gr-Ma5].

The paper is organized in the following way. In Sects. 2, 3,4 we prove analyticity
in the Nevanlinna disk, respectively, in the symmetric case, in the stable case, and
in the unstable asymmetric case. In Sect. 5 we prove Borel summability and we
give the extended perturbation expression of the matrix elements. In the Appendix
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we state and comment on stability theorems in a form which is convenient in this
context.

2. Analyticity of Double Well Eigenvalues in the Nevanlinna Disk

Consider the double well oscillator with coupling constant g = pe’:
A= p+x2(1 - gt = PP+ (x). (2.1)

In order to prove analyticity of the eigenvalues in some Nevanlinna disk Rg=2 >
R™', R>0 assume g small and in the boundary, that is g = pe "("4+¢2)  with
sine = R~'p?. By the usual scaling x — xe™®, H is transformed into

A(0) = &¥p* + e 20x2(1 — px)?*, (2.2)

with real part
RA0) = sine{ p* + x*(1 — px)*} . (23)

Definition 1. Let n > 0 be small and fixed. For each p > 0, € L*(R), let
(UY)(x) = Y(&,p(x)), where the complex-valued distorsion &, € C*(R) is defined
by REp(x) =x, Vx € R and:

X 1
%(fp(x) = —N atanm, X é “z—p - 27] . (243)
1
$p(x) =0, 5;-’7§X§Z+n’ (2.4b)
— P —
SEp(x) = 11atan[1 T x= % +27, (2.4¢)

P
and elsewhere according to the prescriptions

(1) &, monotone in each of the two remaining intervals ,

(i) RE(x) =x, Y&, odd wr.t. % .
Lemma 2. Serting f,(x) = (&,(x))~!, H, = UA(O)U™" the transformed operator

Hy = pfip+47 ()"} + e 280 (1 = pép(x)) (2.5)
has the same spectrum as A(0).

Proof. The distortion preserves the same exponential decay of the solutions of
A(0)u = Eu, since £y(x) ~x as x — £oo. Notice that the notation H, is allowed
since 0 = —m/4 + ¢/2, where sine = R~ p?.

In order to apply Theorem A2, let us define the parity projections,

[PE(pul(x) = 27 u(x) £u(p™" —x)].

Lemma 3. If H, = UA(O)U™", the parity projections P satisfy hypotheses (a),
(b), (¢c), (d) of Theorem A2.
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Proof. 1t is sufficient to verify property (c), since the other ones are obvious. Since
V is even w.rt. (2p)7!, and &p(x) =x +iy(x), where y(x) is odd w.rt. (2p)7",
we have that V'[£,(x)] is even with respect to (2p)~". Moreover, since g’”; is even,

fp=(&)"" is even, as well as the second derivative: (f;)". Thus the operator
(2.5), i.e. H,, is “even” in the sense of property (c).

Lemma 4.
§Hl/(t(x))>_cl+c vx¢(—nn)U —1—11 —1+n
Sp = R 25 ’ /) L]

for some ¢; >0, ¢; €R, Vn = n,, O<p<p0

Proof. In our context we can suppose <5 (see hypothesis (2) in Theorem Al).

By the definition of {,(x) and by its parity propemes it suffices to verify the stated

inequality in the points x = zl—p —2p and x = 21_,) -, x = 51; By definition of ¢,

. 1 1 T
€p<2—p“2f1>'“'2—/;”2'7~”75 as p— 0, (2.6)
so in the first case, as p — 0,
RV | ! 21 (sineg) ! 4 cosen’m = ° + as 0 (2.7)
— - ~ — =z —+4c — .
Sp 2p 1 ]6p2 Ul =R 2 P 5

where the equality sine = R™!p? is used. In the second and third case we have
Ep(x) =x, so

1 11 ' e
14 — )| =(Gine)= (= —p*?) =22 2.8
oy -emab (o) ey
and the lemma is proved.
Lemma 5. In the notation of Theorem A2 (i.e. H = H,P)),
L2y
% 1 4 x2 )1/
RH uu)zcs [ ( ) \pul?dx — cqljull® . (2.9)

X2+ (1+x)2

Proof. Since H, = P, H,P,, it is sufficient to consider expectation values of H,
on even vectors (le. u= P*u)

R(Hpu,u) = %k[{ocfﬂpu{z + %(fpz)”lulz + oc_lii(l — pip)2|u]2} dx

where o = &2 and f,(x) = (&,(x))"". Now in the region x < (2p) ' —
some calculations show

1 9 (1 +x2)12
2 _ 72
R =16 {1 4’7 (x2+(1L+x)22 (2.10)

and similarly

f‘Z

(42
II\/

2n (1 4 x4
(16> 2tz (2.11)
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In the interval (2p)”' —n=x < (2p)"' +n we have simply &, =1, so that
R(x fpz) = sine. Therefore, since fp2 and (pu)(pu) are both even with respect to
(2p)~", by (2.10) and (2.11) we obtain
1
+00 +0o0 2p
R [ a(pfypwyiidx =R [ af)(pu)pu)dx =2R [ of]|pul*dx

o

1
b7} —2n

(l + x2)l/4

> _ 2 2.12
=C3 _L xz T (1 _{_xz)]//z ipul dx ( )
for some c¢3 > 0. Besides, for some ¢4 € R,
o 1 v
%I{{Z(fj)”w a3 - pgp)zluiz} dx = —eallull? (2.13)

since |(f 5 )’| is bounded and RV (£,(x)) is bounded below.

On the basis of the above estimate, the hypotheses (1) through (4') of
Theorem A2 are verified in the following lemmas.

Lemma 6. Let

) X . _
Colx) =x —in atan[l—m Vx € R, folx) = (&,(x))~"! (2.14)
and let
/ 1 .,
Hy=e""? {pfozp + 5 )”} +em™E (2.15)
be the dilated harmonic oscillator with eigenvalues 1,3,.... Then hypotheses

(1"a), (1'b) of Theorem A2 are fulfilled.

Proof. The property (1’a) follows from the fact that &(x) — &,(x), as p — 0, uni-
formly on compacts. As for (1’b), it follows from Lemma 35 that the numerical range
of H;L is contained in some p-independent right half-plane S. Since the spectrum of

. . ~1 : ~1
H consists only of eigenvalues, Vz ¢S we have [|(z — H,) || < {dist(z,5)} ',
and thus z € A7,

Definition 7. Ler y € C° with y(x)=1 for x| <1, y(x)=0 for |x| =2 and
0 < y(x) <1, Vx €R. For n€ N, let y,(x):= (). If 2n < (2p)~", define

1

Zﬁ(x) = (X)) + 2a(p™ —x)

and
MP(x):=1—y0(x).

Remark. (R1) The definition of y;, when 27 = (2p)~! can be given as in [Ca-
Gr-Ma3], but the only important case is the above one. The function yy € C5° is
even w.r.t. (2p)~!. M/ is in the range of P, too, and it is supported away from
the wells.

Lemma 8. Assumption (3') of Theorem A2 is fulfilled by the multiplication
operators yh.
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Proof. Since (3') is trivial for odd u, let u € Range P; and let 7,5, be the charac-
teristic function of [—2n,2n]:
0 12
+ .0 ) (2p} -2 2
NS odull = [Hp g dull =2 [ vallpf, poaalul?dx ) . (2.16)
— o0

Now

- - > k
(Lo Pyl = N S 072 fd = 205yl < = (lul + lpul) . (2.17)

since 7, 70, f2,(f?) are all bounded functions. Hence, if ||ul| = 1, the preceding
expression is estimated by:

1/2
1 2n 1+X2 1/4 2+ 1+ 25\1/2 !
§C5; (f |pul? ( ) R Chta)) de | +1

% x2+(1+x2)1,"2 (1+x2)lx'4

< cf,n"l/q{?R(Hpu,u) +c+ 1},
where the last inequality follows from (2.9). So the lemma is proved.

Lemma 9. Assumption (2') of Theorem A2 is fulfilled by the multiplication
operators yh.

29

Proof. Given the vectors u, such that P;m Uy = uy, the superscript “+” can be
neglected since (H, — H;m Y = (Hy — Hp,, it

Now, let H) = 2~ 'H, and . € C — o(H}) be fixed. Then

(2/)'”)71
llza um”2 =2 f IZH(X)“m(x)lzdx = ZHZnUmHZ

—0C

< c{|[zaRY(H) — H) Yu||* + [ 1aRO(H), = Dun|*} . (2.18)

m

Now, if the characteristic function of [—2n,2n], is denoted by 7,,, the same
arguments of the proof of Lemma 5 in [Ca-Gr-Ma4] allow to conclude that (2.17)
tends to 0 as n — oo. Thus Lemma 9 is proved.

Lemma 10. Any fixed eigenvalue of the harmonic oscillator satisfies hypothesis
(4') of Theorem A2, i.e. it has positive distance from the asymptotic numerical
range relative to H and to the multiplication operators My

Proof. By Lemma 4,

RV (EC))IMPu, MPu) = % Yo >d>0
for any u with ||M}u|| = 1, if R is chosen sufficiently small. The kinetic part of H,
is bounded from below by the proof of Lemma 5, therefore the lemma is proved.

Theorem 11. Any eigenvalue Ay of the harmonic oscillator H, is stable in the
sense of Kato with respect to the family K; as p — 0 (and, similarly, eigenvalue

stability holds with respect to the odd version of the double well operator K").
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Proof. A direct application of Theorem A2, whose hypotheses are verified by the
above lemmas.

Theorem 12. Let E, =2n+ 1 be an eigenvalue of the harmonic oscillator, for
fixed n € N. There is R, >0 such that two distinct simple eigenvalues E*(g) of
the symmetric double well operator (2.1) exist and are analytic in the region

Dg,={gcC: Rg*>R"}
(a Nevanlinna disk in the g*-plane).

Proof. In Sect. 2 of [Ca-Gr-Ma3] such analyticity was proved in regions
{g € C: larg(g)l <m/4 — 2. |g| <k(e)},

where the dependence k(¢) was unknown. Theorem 11 ensures stability and hence
the absence of level crossings for g? near the origin in the boundary of some
Nevanlinna disk, and this completes the proof of analyticity in the whole region.

3. Asymmetric Double Well Eigenvalues: The Case p? + x*(1 — gx)?
—j(gx — 1), Where j is not Even

In this section we consider an operator family in which both stable eigenvalues and
“dying” eigenvalues are expected. To prove stability in these cases, Theorem Al
is not sufficient, because its original proof [Vo-Hu] uses the absence (i) of dying
eigenvalues as a step towards the stability property (ii).

Theorem 13. Let Q be an open subset of C and let {H,},>0,{K,},>0 be two
Sfamilies of Schrodinger type operators with a common core C;°(R) and

Oess(Hp) N Q = 0e(K,)NQ =10,
o(H,)Na(K)NQ =0. (3.1)
Moreover, let the following conditions be satisfied.
K, = UpHpU;I, for some unitary operator U,, p >0, (3.2)

and let there exist, in Q, L, € 6(H,) — 0(K,), 2, € 0(Ky) — a(H,) .
Moreover:

1) Hyu — Hou, K,u — Kou as p — 0, Yu € C;° and similarly for the adjoints
HY K]
2) there are bounded multiplication operators yh such that

(pm — 07, upy € C°, Nlttml| — 1, w0y — 0 weakly ,

Uy, ttm — 0 weakly, ||H,, un| < C)
= (3m =m(n): lim ||y uy,| =0); (3.3)

3)
Jon = 0 |[H, gy 1ull = en(| Hpull + llul]), Vi€ €5, 0= p = p, (34)

and the analogous commutator estimate holds for H;
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4) denoting M} =1 — yi, for all ). € Q we have
dist(%, (HyMJu,Mu)) 2d >0, Vn=ny, 0<p=p,, (3.5)

Yu € C° such that |Mjul| = 1;
5) U, — 0 weakly as p — 0, M} — 0 strongly as n — .

Then, V7. € Q,
i) 2 da(H,)Ua(K,) = %€ A, where A appears in (3.6),
ii) 2 € o(H,) = 7 is a stable eigenvalue w.r.t. H,, as p — 0",

iii) 4 € 6(K,) = 4 is a stable eigenvalue w.r.t. K,, as p — 0" .

In particular if 2, € o(H,) and 7, € o(K,), then H, admits two distinct families
of eigenvalues 2, — /., and 7;, — 4, as p — 0.

Proof. Let
A={.eC: (J~-H,) " exists and is uniformly bounded as p — 0"} . (3.6)
The proof consists of the following steps.

(a) Let 4 € Q — (a(H,)U a(K,)); then 4 € A unless there exist two sequences
Om» Uy such that
Pm — 07, wy € D(H,,), |uml| — 1, wn — 0 weakly, v, = U, t, — 0

'

weakly, [[(4— H,, Jum| — 0, |[(A =K, Jom|| — 0. 3.7)

To prove this fact one can proceed as in Lemma 5.1 of [Vo-Hu]: we only have
to verify that |[(2 — K, )vm|| — 0 (a consequence of [|(Z — H,, )u,|| — 0), and that
Uy — 0 weakly.

By passing, if necessary, to a subsequence, assume that v, — v weakly, so that,
Yy e CF,

0= li;lnw, (2 =K, om) = (A — K,) ", 0) . (3.8)

This implies v = 0 and the assertion (a) is proved.

(b) Q- (a(H,)Ua(K,)) C A. Indeed, if 1 ¢ o(H,)Ua(K,) and 4 & A, there
exist two sequences p,, u, satisfying the properties asserted in step (a). Now we
prove that the same properties are satisfied by the sequences p,,, M}"u,, by a
suitable choice of m(n), as n — +oo.

By hypothesis (2), for any n, lim,||M;"u,|| = 1. Thus (a) holds for the two
modified sequences if we can verify the weak convergence to zero of both ML u,,
and U, M}{"u, (with m = m(n)) as n — oco. Such weak convergence takes place
because, by hypothesis (5), both M/ and M! = UM} tend strongly to 0, as n — oo,
uniformly in p.

Therefore hypothesis (4) is contradicted and necessarily 4 € 4.

(c) If 2 € g4(H,) then it is a stable eigenvalue with respect to the family H,
as p — 07. To prove this stability, one can proceed in analogy with Theorem 5.4
of [Vo-Hu], except for the following modifications. For p=0 let P(p)=
fkhzor:r(z — H,)"'dz, where r is small enough so that the integration cycle is

contained in A4 (this is possible by step (b)), and so that the only point of the
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spectrum contained in it is /9. Assuming ab absurdo that there exist two sequences
Pm — 0", u, € LZ(R) such that

HumH - 1, P(pm)um = Um, P(O)um =0 5 (39)

the contradiction is obtained in analogy with the cited proof in [Vo-Hu 1982], on
condition that v, = U,,u, — 0 weakly. Setting Q(p) = f]z~/'.al=r (z —K,) 'dz, it
follows from (3.9) that Q(p,, )v, = v,. By passing to a subsequence if necessary,
one has v, — v weakly, and hence Q(0)v = v, because Q(p) — Q(0) strongly. On
the other hand Q(0) is the null operator on condition that » is chosen so that the
integration cycle does not encircle any eigenvalue of Kj: this is possible because
/o € a4(H,) — a(K,). Therefore v = 0 and the assertion (c¢) is proved.

(d) If 2/ € g4(K,) then it is a stable eigenvalue with respect to the family
K, as p — 0. The proof of (d) proceeds in full analogy with steps (a)—(c) by
interchanging H, with K, and U, with U, ;‘, on condition that properties analogous
to (2),(3) are proved for what concerns K):

2') the functions 7 = U, ), considered as multiplication operators are such that

(pm - O+, Uy € C((;o, ”U’mH — 1, v, =0 Weakly,

U, tm — 0 weakly, 1Ky, tml] < C)
= (Im =m(n): lim ||7"v,] = 0);
n—oc

3%)
Jey — 02 [[Kp 7 Jull < en([Kpull + [JulD),  Yue G, 0<p=p,,
and the analogous commutator estimate holds for K.

Now (2) and (3') can be drawn from (2) and (3) by using the unitary transform
U,. Hence the assertion (d) follows and the theorem is proved.

Remark. (R2) From now on, let 27 be the set of even integers. By this theorem
the spectrum of

1
[—]g:p2+x2(l—gx)2‘j<gx—§), g>0, je R-2Z, (3.10)

which is equivalent through the unitary translation operator Uyu(x) = U(x + ¢~ ') to

|
K/:p2+x2(1+g>c)2—j(gx+§> , (3.11)

is the union of two families of eigenvalues: 4,(g) and 2/ (g) such that /,(g) — 2n +
1 +J/2, A(g)— 2n+ 1 —j/2. In other words the two distinct limiting operators
p*+x*+j/2 and p* +x> — j/2 are used to display such families. In particular
there exist simple isolated “dying eigenvalues” 2/(g) as g — 0.

When 2n+ 1 =2m+ 1 —j for some n,m (case j € 2Z), an asymptotic degen-
eration is expected analogous to the case of the symmetric double well j = 0.

Now, by Theorem 13, we can treat the operator (1.3) for non-even parameter ;:
in particular we shall extend the results quoted in Remark (R2) from real g — 07
to complex-valued g — 0 in some Nevanlinna domain Dg = {g: Rg > >R"'}.
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If g = pe'’, by the usual scaling x — xe™*, the operator (1.3) is transformed
into e/p? + e~ 20x2(1 — px)* — j(px + 1).

To study such an operator on the boundary of the above Nevanlinna disk, it is
sufficient to set § = —m/4 + ¢/2 with sing = R~'p?, for fixed R > 0. Then

) . 1
H, = A0p? 4702 (1 — px)? — (px — 5) (3.12)
has real part
1
§RH,,zSiﬂ£{p2+x2(1—px)z}—j<px—§> . (3.13)

In the preceding section the distorsions x — &,(x), for p = 0, were introduced, set-
ting f,(x) = (é;(x))‘l. Now we introduce the analogous distorsion {, so that the
role of x =0, x = % be played by x = ~l%, x = 0 respectively:

Definition 14. Define

1
L) :=¢, <x + ;> - % and  g,(x) == ({)(x) " (3.14)
for p>0. Similarly, let
Lolx) i= plirg+ Cp(x) = x — inatan [_1T);_2]‘174 go(x) := (L)™' (3.15)

As a consequence, R{,(x) = x and I{,(x) is odd with respect to —ﬁ.

Lemma 15. Let j € R —2Z. If p > 0, the two operators defined on D( p*) N D(x*),

1
Hy = pfyp o+ 30" + &G = p& () =) [p@(x) - %] SERNEAT)

2 1 11 1 ]
Ky = payp+ 203)" + GG+ pl ) — [pép(xH 5} RN

are unitarily equivalent via the translation Tiu(x) = u(x + %). Their two distinct
n

(strong resolvent) limits, as p — 0, are

1 ) 1 .
Hy=pfip+ U +8+02 K= pfip+ () + &) -2
with eigenvalues {2n+ 1+ j/2},en and {2n + 1 — j/2},en respectively.

Proof. Dropping for simplicity the subscript p, we have &(x + %) ={(x)+ II—). Thus
S+ =[x+ p O] =[] = g(x) and

x4+ p V= pix+p P = [pc“(x +p - %]

= () [1+ L)) = [pC(X) + %} : (3.18)
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Therefore T:H,,T L= = K,. As for the limits as p — 0, notice that {,(x) = ,(x),
and f,(x) = qo(x) \/x Thus the lemma is proved.

Lemma 16. Let

V) =x' (1= px)t (px - 1) C Pk =21 ) - (px—i— %) .

2
(3.19)
For some ¢1 >0, ¢, ¢ €R, Yu,v with |lul| = ||v|] =1,
RV[E(x)] 2 —¢, RVi[((x)] =2 —c, (3.20)
RVEOm 2 3+ RFL@kY) 2 T +e. (21
if suppun [(—n,n)U(% — n,% +n)] =0 and suppvn [(—— —n,—1 + n)yu

(~mm)] =0,

Proof. The first inequality in (3.21) is an easy variant of Lemma 4. The second

estimate can be reduced to the first one by using the identity Vi[{,(x)] = V[&(x +

p~1)] and by unitarity of 7). Moreover the potential is globally bounded from
P

below, thus the lemma is proved.

Lemma 17. For the expectation values of the kinetic part we have

R((H, = VE)Du,u)

L~2n L +1n
2p I 2 2)
209 f ~¢I‘1r9141261’3c%-8 [ | puldx
—oo x2 4 (1 +x Loy
2p
1
to [
- - lpulPdx b —callull* .  (3.22)

1
Ly (= L2 [+ (o= Ly

Proof. One can proceed like in the proof of Lemma 5 for what concerns the intervals
(—o0, Zp —2n) and (2/) n, zip + 7). The difference from Lemma 6 is that H;','L (the

even version of H, with respect to ﬁ) is now replaced by H,, itself. Therefore the
interval (2% + 21, 400) does not simply double the previous contribution, but gives

rise to a similar integral, with x — % in place of x. So the lemma is proved.

Lemma 18.

v—'—+27] 1\274%
5 [+ + D2
R(K u,u) = —cgllull® + cs / 1 . 1
R N

| pu(y)*dy

Nol—

~21—p+11

+ o
+e [ |pu(y)fPdy+ [
-y — 2 v 41+ %

1 2_
M"ﬂp (IPdy S . (3.23)
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Proof. The left-hand side of the inequality can be written
%(T%Hp(T%)_lw = %(H,,(T%)_‘u,(T%)_lw . (3.24)
So the proof is reduced to Lemmas 16, 17 if we set (T%) Y lu(x) = u(x — %) =u(y)
in place of u(x).
Lemma 19. Let y be the multiplication operators of Definition 8. Then
NH, . 78 ull < en™ F LY Hypull + lull} . (3.25)

Proof. Calling 5 the characteristic function of [—2n, 2n]U[% — 2n,% + 2n], we

proceed in analogy with Lemma 8. Since supp y, C [—2n,2n]U [% ~ 2n,% + 2n],
by (2.17) we have

tol—

L))
¢ b p+_n
I 7 Jull = = |4 [ IpulPdx+ [ [pufPdxp 41

—2n %—Zn

, 2n 1 24\1/4

écn'—l/d' _.Ej;x..)___T|plt]2dx
“m x2 + (1 4+ x2)2
%+2n [1 _l_(,c_ 1)2]1/4 12
- | pul*dx +1

+
10, (0= T (e PP

<en " R(Huu) 4 ¢ +1]. (3.26)

Indeed, to obtain the last inequality, we have used (3.22) and Lemma 16.

Lemma 20. If y,, are the multiplication operators of Definition 8,

(um — 0 weakly, |[un|| — 1, puw — 0, Uyt — 0 weakly, ||H,,un|| < c)

m

= (Im = m(n):

12mull — 0, asn — 00) . (3.27)

Proof. Without loss of generality, let us consider p small enough so that y;(x) =
1)+ (= p71). Let 0,(x) = un(x + p~"). Since supp(y,) = [~2n,2n],

b ll* < Wsnttnl* + 1o - (3.28)

As for the first summand, setting R, = (H, — 7)7~!, for p=0 as in Lemma O,
we have

[ 7atenll <24

AnRo(Hy — Hpm)um||2 + ”ZnRo(Hpm - )~)“m”2} . (3.29)
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From here on one can proceed as above in the proof of Lemma 9. Indeed, the
required inequality on commutators (Lemma 19) is still valid if y} is replaced simply
by u. Therefore ||y,u,|| — 0 for some suitable sequence m = m(n), as n — oc. To
show that ||,0n| — O the procedure is analogous and the theorem is proved.

Theorem 21. Let {H,},>0 and {K,},>0 be the operator families of Lemma 15
(i.e. j not even). Then the eigenvalues 7,(0) =2n + 1 + j/2 of H, are stable with
respect to H, as p — 0. Moreover, for small p, H, admits further eigenvalues
J1(p) which tend to the eigenvalues of K, as p — 0.

Proof. The assertion follows from Theorem 13 because all its hypotheses are full-
filled, choosing (U,)(x) = ¢(x + p~"). Indeed conditions (1),(2),(3) are verified
by Lemmas 15,20 and 19, respectively, while hypotheses (4),(4’) follow from
Lemma 16. Thus the theorem is proved.

Theorem 22. Let
1
H(g,])= p2 +x2(l — gx)2 —J (gx — 5) , for jeR—-27Z. (3.30)

For any n € N, there is R, >0 such that two distinct families of eigenvalues
ia(9), 40(g) of (3.30) exist and are analytic in the region Dg, = {g € C:
Rg~2 >R, 'Y They are convergent to 2n+ 1+ j/2 and to 2n+ 1 — j/2 respec-
tively as g — 0 in such a domain.

Proof. By Theorem 21 stability (and hence the absence of crossing) is estab-
lished as g — 0 along the boundary of Dg. Now, the estimates of all the pre-
ceding propositions are uniform with respect to R, for R sufficiently small. Since
Dr =y, -x 0D,, analyticity of eigenvalues is verified in the whole stated domain.

4. Asymmetric Double Well Eigenvalues: The Case p* + x*(1 — gx)?
—j(gx — 1/2) with Even j+0

In the case of asymmetric double well with j € 2Z — {0}, the first levels, which are

isolated uniformly as ¢ — 0, can be proved to be analytic in Dy as in Theorem 22.
As for the remaining eigenvalues, we can prove the following proposition.

Theorem 23. For small |g|, for any pair of n,m € N such that 2n + 1 =2m+ 1 —j
the asymmetric double well oscillator

H(g.j)=p* +x* (1 —gx)' —j <gx —~ %) . Jor j €22 {0}, (4.1)

admits a family of projections P(g,j) = f‘ZHI»Z‘z][z — H,(j))"'dz of dimension 2,
with analytic continuation to some Nevanlinna domain Dp={g € C: Rg~> > R™'}.

Proof. Setting, for p >0, U,p(x) = ¢p(x + p~ '),

2 1 7/ P . A . 1
H(p.j)= pfip+ Z(ff,) P 1= pE ) ) {pc,,)(—r) - 5} . (42
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K(p,j)=U,H, U‘, , we can consider the two formal limits H(0,/):= pf2p+
SHY + &+ j/2, K(0,)) = H(0, /) — j, as in the above definitions of Lemma 15.

(a) First one can reproduce the steps (a),(b) of the proof of Theorem 13,
to conclude that C — [a(K(0,/)) U O'(H(O,j))] C 4, where 4 is the set of uniform
boundedness of the resolvents [z — H(p, /)]~ ", as p — 0. Notice that such uniform
bounds occur for all j, whether or not j € R — 2Z.

(b) Let us consider j € 2Z as a limiting case of non-integer j + () as 0 — 0 .
Now, the multiplication operator px, as well as p,(x), is relatively bounded with
respect to H(p,j) uniformly for 0 < p < p,.

This can be proved by standard quadratic estimates.

(c) Setting P(p,j + 0) = f1z~(2n+1+.//2)|:1[H(p"j +68) — z]7dz, we have

dimP(p,j) =2, j€2Z for small p>0. (4.3)

Indeed P(p,j + &) — P(p,j) in norm as o — 0, uniformly with respect to p. This
is a consequence of (a) and (b). Hence the projections have the same dimension,
which is 2 by Theorem 22.

(d) If i, Y are the eigenfunctions such that H(0, /), = 2n -+ 1 -+ j/2 W, and
H(O,j W = Q2m + 1+ j/2 W, we set

D1(p,J +0) =P(p,j+ 00, da(p,j +0) = P(p,j + )NUpYul . (44)
where Uu(x) = Y(x + p~'). Then ¢y, ¢, are a base of Range P(p,j + ) and

as 0 — 0, uniformly for small p. This convergence is a consequence of the preceding
steps. An analogous convergence takes place for the couples (¢, @), etc.

(e) Finally, the projection P(g) = f}2n+!—z]:1[z — Hy(j)]"'dz has an analytic
2-dimensional continuation to the Nevanlinna domain Dy for some R > 0.

Indeed, by step (c¢) dim P(g) = 2 if ¢ lies in the boundary of some Dg: this is
due to the above choice of the function 0(p) which is the phase of g = pe’ (see
the beginning of Sect. 3). Now, since Dg = |J, ., 0D, and since all estimates are
uniform for R small, dim[P(g)] = 2 for g € Dx.

Analyticity follows from (d) and from analyticity of projections for j¢ 2Z
(Theorem 22). Indeed the matrix elements of P(g) turn out to be the limits, as
6 — 0, of analytic functions, with uniformity in Dg. The theorem is thus proved.

5. Distributional Borel Sum

In this section we are going to apply the Distributional Borel Sum (DBS from now
on) to the double well problem.

Following G.’t Hooft [’t] in [Ca-Gr-Mal,2] a definition and a criterion were
given for a DBS of a series which extends the original Borel one to critical cases.
Actually the summability criterion we gave defines directly a pair of complex con-
jugate sums, called upper and lower Borel sums (US,LS): &(z) = 2*, ®(2) =
whose difference is called the discontinuity of the Borel sum (DOS): d(z) =
2t — X7, and whose mean is the DBS itself.
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Before the introduction of the DBS, the limit of the usual Borel sum to the
critical direction was used in various problems. For example, for the Stark effect
resonances we have proved [Ca-Gr-Ma4] that the limit from above (below) coin-
cides with the US (LS) given by the criterion of summability proposed. It is clear
that the proof of the DB summability is a stronger result than the proof of the
simple existence of upper and lower limits of Borel sums. In particular it allows us
to connect directly the asymptotics of the perturbation series with the asymptotics
of the imaginary part and the nature of the first singularities of the Borel transform
on R* [Ca-Gr-Ma 4].

The problem of a DBS for the double well eigenvalues needs to be handled by
considering, in the usual expression which defines the ecigenvalue, a g-dependent
test vector with a definite parity with respect to 2%} The procedure is described
in [Ca-Gr-Ma 3], and it receives its full meaning from the analyticity results of
Sects. 3, 4 and 5.

1) DBS for the symmetric double well. The Green function of H(g) = p* +x*(1 —
gx)* can be written as a combination:

Gio(x,y) =d G3 (x, ) +d_G3 _1(x, )
1 1
= 5(1 +ih)Gs(x, y) + 5(1 —ih)G3 _1(x,y) . (5.1)

Here G31,Gs— denote the Green functions of the “resonance” operators defined in
[Gr-Gr] and [Ca-Gr-Ma 3],

Qi(g) — e—t(:i:n—Z()),B{pZ + x2(ez(:k:7r~2())/3 _ ‘g[e:tm/?.x)}, g= {g|ei(1 ) (52)

We refer to [Ca-Gr-Ma 3] for the expressions of i(g,z) and k(g,z) in terms of
Wronskians, with the relation 2 = —i(1 + k)/(1 — k). We have

Lemma 24. For any eigenvalue /(0) of the harmonic oscillator there is R > 0 such
that the corrvesponding eigenvalues E*(g) of the resonance operators Q*(g),0(g)
exist and are analytic for g € Dgp = {g: Rg~*> >R~ '}.

Proof. As recently proved by Buslaev and Grecchi ([Bu-Gr], Corollary 4) the “res-

onances,” i.e. the eigenvalues of non-modal operators Q*(g), coincide with the
eigenvalues of the operator

2
A(g) = = m/2+26/3) {pz + G 4;2 1)} 42232 p2e1(~n/2+2g/3)],4 (5.3)

(where g = pe’’, 0= —3m/4+¢) which represents the radial part of the d-
dimensional quartic oscillator (with j = j(d), see [Ca-Gr-Ma 4]). These eigenvalues,
in turn, are analytic in the stated region by Theorem 1 of [Ca-Gr-Ma 4]. Thus the
lemma is proved.

Theorem 25. Let 0 < g <RY? and let J(g) = /*(g) be a double well eigenvalue
(for a fixed choice of parity) admitting analytic extension to Dg for some R >0
as in Theorem 12. Let

P*(g)u(x) ZJZ*I[U(x) tug™ 0], (54)
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and let
W(g) = PE(g . b(g)lx] = Y(g)[xe™] , (5.5)

with the same choice of parity, + or —, with respect to (2g)~". Let R*¥(g) =
[0F(g) — 217", denote the resolvents of the above two “resonance” operators and
let H(g),R(g) be the symmetric double well operator and its resolvent. Then

. N
(1) Mg) = % with N(g) = Fi(g,9). D(g9) = F,(g,9) , (5.6)

where (for 1 =0,1)

Fi(g,7) = [@1(g.7) + Di(g.7)]/2,

Di(g,7) = Qi)' [ (1 +ih(g, 2L (Ys(9). RT (7,2 )4(0))
r

+ (Ul @), R (7. 2)(0)) }dlz . (5.7)

In these expressions v € Dg, I is a circle surrounding E(0) at distance 1, and
2 = 1/6 — arg(y)/3.

) i
(ii) Fig.7) = F}g.7) + Edi(g» 7,

where FR(g.y) is the DB sum of >~ au(g)y" and dl(g.y) is the Borel dis-
continuity of >_r<, bu(g))*, for 0 <y <RY? (in particular for y = g). Here the
coefficients ay(g),by(y) are:

anl(g) = Qi)™ [2'[4x(9,2) + 4i(g,2))/2dz , (5.8)
r

bi(g) = 2mi) " [h(g,2)z'[Ak(g.2) + A(g.D)]/2 dz (59)
r

where A (g,z) is given by

k k ) .
<w<g),R(o,z> > ( k_m>[2x3R<o,z)]2'"*‘[vx‘*R(o,z)]“"'w<0)> .

m=[k/2]

Remark. ®/(g,7), for fixed ¢, is a Distributional Borel Upper Sum of its expansion.

Proof. Part (1) is the extension to the whole disk Dy of the representation formulas
already obtained in [Ca-Gr-Ma 3]. As for (ii), it is enough to note that @,(g,7)
(where g is fixed, / = 0 or 1) has the same analyticity properties of the eigenvalues
of OF(y). Indeed, R*¥(7,z) is analytic for 7y € Dz by Lemma 24. Morcover A(g,z)
(9 >0, ze&I') is uniformly bounded on I' for small ¢, since it is convergent
as g — 0" by Theorem 3.6 of [Ca-Gr-Ma 3]. In particular we have k(g,z) —
exp(i(z + 1)n), so that h(g,z) — cotan((z + 1)7/2) uniformly on the compact set
I' which does not contain the singular points z =2n+ 1,n=0,1,.... Moreover
notice that Y(g) — ¥(0) weakly as g — 0.

Finally formulas (5.8) and (5.9), which are the same as in Theorem 4.4 of [Ca-
Gr-Ma 3], are now valid Vy € Dg. Notice that the coefficients a;(g) are directly
computable, while in the expression of by (gy) the factor i(g,z) can be replaced
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by 4(0,z), or by any better semiclassical approximation, without destroying the
summability properties discussed above.

2) DBS for the asymmetric double well: j¢ 2Z. By Theorem 22 we can apply the
perturbation theory for an isolated stable eigenvalue as g — 0% : /,(g) = N(g9)/D(g),
where

N(g) = 2mi)~" [ z(Yn,R(g, 2 W) dz , (5.11)
I

D(g) = 2mi) " [ (Y1, R(g. 2 Wp2) dz %0, (5.12)
r

and I' = {z: [2,(0) —z| = ¢}, 0 <e< 1. As for the vectors, unlike the symmetric
case, we can simply choose

U= = (x) = Hy(x)e ™72, (5.13)

where H,(x) are the Hermite polynomials, without any dependence of g and 7.
Then, in analogy with the above notations, writing

®i(g,7) = 2mi)~! [ 21+ ih(g,2)) (Y a (7). R (7,2 W (7)) dz

(Il=0,1, o =m/6 — arg(y)/3), the following holds:
Theorem 26. Let jd 27 and let i,(y), (n=0,1,...) be those eigenvalues of
H(g,j) = p* +x*(1 — gx)* — j(gx — 1/2), as in Theorem 22, which are convergent
to 2n+1+j/2 as g — 0. Then

(i) For each n there is R>0 such that +,(g) = N(g)/D(g) with N(g)=
Fi(9.9). D(g) = Fo(g.9), and

Fi(g.y) = ((g,7) + Pi(g.7))/2 1 =0,1, (5.14)

where ®(g.7), for fixed g, 0 <g <R'2, is the Distributional Borel Upper Sum
of its asymptotic expansion Y~ la; ¢ + ib ((9)]y** in the domain Dg.
(i1) Fi(g,7) can be decomposed in two terms

1
Fi(g,y) = F*(») + 5idi9.7). (5.15)

where FR(7) = (@R(y) + ®R(g,7))/2 and d\(g,7) = ®W(g,7) — P(g,7) are the DBS
and the DOS of the series Y .~ ary™, > reo b9y, respectively. A similar
result holds for 2/(g) — 2n+ 1 — j/2, using the operator K(g,J), or equivalently

Proof. As in Theorem 4.2 of [Ca-Gr-Ma 3].

Remark. (R3) As for the b,(g)’s, we should recall that they depend on A(g,z),
which can be computed by the complex WKB method and DB sums, or may be
approximated uniformly on the integration path by /4 ~ cot((z — 2,(0))n/2) for ¢
small. Fixing z as the value of the unperturbed pole, we obtain the simple approx-
1mation:

Filg.q) = (1 + §®E+(g)/ sinz(nj/Z)) Sap g™ + %cot(jn/Z)(AZaLkgy‘) . (5.16)
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where the second term is proportional to the imaginary part of the “resonance,”
which is of the order of the probability of tunneling through the whole barrier, i.e.
of order O(exp(—2S5)), and where S is the absolute value of the classical action on
the barrier.

Remark. (R4) The complex WKB method (see [Vo]) suggests better approxima-
tions. Actually it is possible to increase the barrier by a positive C§° function with
support near the left well, with u as a coefficient. In the limit as y — 0 we get
a Dirichlet problem on a half-line [M, +o00], M > 0. In particular if we define
hp(g,z) for such a Dirichlet operator in the same way as A(g,z), we have

}hD(gaz) - h(g,Z)l = O(e~2S)

for small ¢ and uniformly in z on a fixed path surrounding 4,(0), sufficiently close
to £,(0) and contained in a domain of regularity of £(0,z).
So we can improve the approximation (5.16):

Fi(g,9) = (1 = hp[REN (9ISE™(9))Zarig™ + %hn[ﬁﬁ(g)] - AZapg™ . (517)

3) DBS for the asymmetric double well: j € 2Z — {0}. By Theorem 23, for each
pair n,m such that 2n + 1 =2m + 1 — j there are two eigenfunctions, say ¥, ¥,
corresponding to one eigenvalue 2n + 1 + j/2. Therefore the two perturbed eigen-
values cannot be recovered simply from a ratio of Borel sums, but from two 2 by 2
matrices depending on both s, and ,:

Fl,n,n Fl,n,m
, [=0,1. (5.18)
Fl,m,n Fl,m,m
Here, for example
Finm(9:7) = (Pulg,7) + ®i(9,7))/2, (5.19)

where
Dl umlg,y) = (2ﬂi)*’[21(1 + ih(g, 2D )= R (7, 2) (Y )) dz

(o0 = m/6 — arg(7)/3).
Thus, on the basis of Theorem 23 we can state the result:

Theorem 27. Under the hypothesis of Theorem 23, any perturbed eigenvalue 1(g),
for fixed and small g >0, of the asymmetric double well operator is a solution of

det(£1.. - (9,9) — AFo,+ - (9,9)) =0, (5.20)
where each matrix element satisfies a decomposition of the type:
I,
Frum(g:7) = Ff\ () + Eldﬁ,n,m(g,v) ; (5.21)

ie. it is a DBS of a series and a DOS of an imaginary series, for y € Dg, in
analogy with Theorems 25 and 26.
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Appendix: Stability Theorems

In the context of Schrddinger eigenvalue problems, we recall the following stability
criteria in a form which is useful for both the models in this paper, and for more
general applications.

Theorem A.1. Let Q be an open subset of C and let {H,},>0 = pf; p+ },(f,f)// +
Vo(Ep(x)) (with fo(x) = (ﬁ:)(x))~1 Jor some C* function £,(x)) be an operator
family in L*(R) for which C>° is a core and

Oess(H,) N Q=0
Moreover:

1)
Hyu — Hoyu, H;u—>H:u as p— 0, Vue C;°;

2) there exist multiplication operators y such that
(tm — 0 weakly, py, — 0, ||H,, un| < c)
= (Tm =m(n): |} un|| — 0, as n — 00) ;

3) there is {e,} — O such that

(L g, i lull < en(l|Hpul| + [[ul])

and the analogous commutator estimate holds for H, uniformly in p;
4) setting M =1 — yh, any /. € Q satisfies
dist(4, (H,MPu, Mfu))=d >0, VYnzn, 0<p=p,

Yu € C° such that ||Mjul| = 1.

Then
(i) L doa(H)NQ = (H, — )~V is uniformly bounded as p — 0,
(ii) 4 € 0q(Ho)NQ = A is a stable eigenvalue with respect to H, .

Proof. 1t is not difficult to verify the hypotheses of Theorem 5.5 in [Vo-Hu], where
they are formulated in a slightly more abstract way.

Remarks.

(R5) The above formulation of the theorem by Vock and Hunziker explicitly in-
dicates how to work to prove stability in wide classes of actual problems ([Ca-
Ma], [Ca-Gr-Ma3], [Ma-Sa], [Gr-Ma-Sa], [Ca-Gr-Ma 4]).

(R6) Conditions (1),(2),(3),(4) have a simple intuitive interpretation as follows:
Condition (1) implies that

dim P, Z dimP,, for small p >0,

where P, and P, are, respectively, the perturbed and the unperturbed eigenprojection
corresponding to an eigenvalue 4,. Conditions (2),(3),(4) are needed to prove the
opposite inequality dim £, < dim P,, for small p > 0, e.g. the absence of any further
eigenfunction with eigenvalue in a small neighbourhood of /,.
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In particular, as regards (2), the multiplication operators y, are usually C5°
functions supported in intervals (—kn, kn), where any perturbed eigenfunction is ex-
pected to be concentrated (the “well””). Condition (2) roughly says that any possible
further eigenfunction must be supported far away from the well. To prove this fact
hypothesis (3) is also needed, due to the commutator of the y, with H,.

Condition (4) says that the 4’s have positive distance from the asymptotic nu-
merical range {(H,M,u,M,u): n=n,, 0 <p <p,, ||M,ul|=1}: by the meaning
of condition (2), this means that there are no dying eigenvalues of H, as p — 0.

(R7) The selfadjoint double well operator H, = p* 4+ x?(1 — px)*, which provides
the typical example of instability of eigenvalues as p — 0, ([Re-Si]) fails to satisfy
condition (4). Indeed, setting for example y,(x) = y(x/n), where 0 <y < 1 and
7 € C2°, no eigenvalue 7, of the harmonic oscillator p? + x> has positive distance
from the asymptotic numerical range uniformly for p small: there is no d > 0 such
that

dist(Zo, {{(H,Muu,Mu)})=d, nzn, 0<p=<p,.

Theorem A.2. Let Q be an open subset of C and let {H,},>0 be an operator
Samily in L*(R) for which C° is ua core and

Gess(Hp) nNQ=0.
Let orthogonal projections P*(p) exist with the following properties:

a) PX(p)+ P~ (p)=1 P (p)P~(p) =P (p)P*(p) = 0;

b) [Pl = 1

) PE(p)H,u = H,PE(p)u, Yu € D(H,);

d) (P; — P, u,v) — 0, as p — 0, Yu,v € L2,
Moreover, defining the operators

Hf =H,PY.  D(H;)=D(H,),
assume:

V'a) Hyu — Hyu, as p — 0, Yu € CJ°;
1'b) A" &0, where

AT ={zeC:[H — 217" exists and is uniformly bounded as p — 0}
2') there exist multiplication operators yh with P*(p)y! = yf such that
(U — O weakly, pn — 0, P, thy = th, [|H, un| <c)
= (3m =mn): |xf"un| — 0, as n — o0) ;
3') there is {e,} — O such that
1L lull < ea(([H ) ul] + [lul)

and the analogous commutator estimate holds for the adjoint operator, uniformly
for small p;
4"y setting MY =1 — zh, any /. € Q — {0} satisfies

dist(Z, (Hy MYu,M}u)) =2d >0, Ynzn, 0<p=p,

Yu € C such that |Mjul| = 1.
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Then
(i) 2 doy(Hy) = (H, — )" Yis uniformly bounded as p — 0 ,

(ii) 4 € 64(H,) = A is a stable eigenvalue with respect to H;’ .

The eigenvalue 7 is stable with respect to H, too, if hypotheses analogous to
(1), (2", (3"), (4") are satisfied by some other multiplication operators suited
Jor H,".

Remarks.

(R8) The stated theorem is essentially proved in Sect.2 of [Ca-Gr-Ma 3]. By the
procedure there performed, any eigenvalue of the harmonic oscillator H, = p? + x?
turns out to be stable separately with respect to the odd and the even versions of
the double well operator H, = p? + x*(1 — px)*:

HY = HP*(p),  [PE(pul(x) = 27 ' [ux) £ u(p™! = x)],

where the parity is with respect to the point of “barrier” x = (2p)~1.
Actually in Sect. 2 of [Ca-Gr-Ma3] such stability is proved with respect to the
odd and even versions of

H(g) = p* +2°(1 — gx), for |arg(g)] <n/4 — ¢
for any fixed ¢ > 0. This implies analyticity of double well eigenvalues in regions
{g € C: |arg(g)] <m/4 —&, [g] <k(e)},

where the dependence k(&) is unknown. In this paper Theorem A2 will be used to
prove stability and hence analyticity in a Nevanlinna disk g2 > R~!, which is
tangent in g> = 0 to the imaginary axis in the g*>-plane, for some radius R > 0.

(R9) Conditions (a),(b),(c),(d) are hypotheses about the symmetry of the problem:
they are useful to prove stability separately with respect to H,, H ", just when the
symmetry itself prevents stability with respect to H,.

Hypotheses (a), (¢) imply that Hpiu =0, Vu € Range(PT(p)), i.e. 0 is an eigen-
value with infinite multiplicity. However the requirement 240 in (4’) does not re-
strict the final information on the eigenvalues of H,: by redefining the encrgy, the
statement holds for the redefined auxiliary operators H jﬂ.

(R10) The situation of degeneracy of this theorem is rather special due to symmetry.
The generic analogous situation (i.e. without symmetry) is solved by Theorem 23.
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