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Abstract: We consider the energy levels of a Stark family, in the parameter j , of
quartic double wells with perturbation parameter g:

H{gJ) = p2 +χ 2 (l - gxf -j (gx - \

For non-even j (and for the symmetric case j = 0) we prove analyticity in the
full Nevanlinna disk ^Rg~2 > R~ι of the g2-plane, as predicted by Crutchίield. By
means of an approximation we give a heuristic estimate of the asymptotic small g
behaviour, showing the relation between the avoided crossings and the failure of
the usual perturbation series.

1. Introduction

The eigenvalues of the quartic anharmonic oscillator

A(g2) = p2+x2 + g2x4 (1.1)

are interesting examples of Borel summability of the Rayleigh Schrodinger pertur-
bation series [Gr-Gr-Si]. The unstable anharmonic oscillator (or "volcano")

A(g2) = p2+x2-g2x4 (1.2)

has "resonances" defined as the eigenvalues of the analytic continuations A[(±ig)2]
of A(g2). Such "resonances," as well as the Hydrogen Stark effect resonances, are
given by a pair of distributional Borel sums called upper and lower Borel sums
(US,LS) [Ca-Gr-Mal,2,4].

The energy levels of the double well Stark family

H{gJ) = p2+x\l - gx)2 -j (gx - ^j (1.3)
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are much more difficult to treat. First of all, for j even, infinitely many eigenvalues
are unstable at g = 0, since a pair of eigenvalues shrinks to one [Re-Si]. Moreover
in the case j = —2, as discussed by Herbst-Simon [He-Si], the first eigenvalue
is stable and positive for g positive, while the perturbation series is identically
zero with obviously zero sum. Furthermore it was known that at the top energy
E = (\6g2y ι the eigenvalues have very bad analyticity properties due to the cross-
ings [Be-Wu, Re-Si]. Lacking direct information, the same situation was expected
for the first eigenvalues. Crutchfield [Cr] showed that actually the first eigenvalues
extend analytically to a certain domain of the complex plane of the coupling con-
stant g2. We give here the full proof of the analyticity on a Nevanlinna disk.

For what concerns Borel summability of the perturbation series, the situation
is not so simple. Since the Herbst-Simon example [He-Si] shows that at least in
one case the perturbation series does not give enough information, we should first
extend the perturbation series. More precisely, starting from the usual decomposition
λn(g,j) — N(g,j)/(D(g,j))9 we work separately on the expansion of N{gJ) and
D(g,j). Considering, for instance, N(gj') (D(gJ)) for j real, we extend the standard
perturbation series Ekakg2k by the new one Σkak{g)g2k + ίΣ/ibk(g)g2k, which gives
the exact result if summed in the appropriate way, to be described in Sect. 5 of this
paper.

This program was initiated in previous papers [Ca-Gr-Mal,Ca-Gr-Ma3]. Here
it is completed by our new general proof of the existence of a Nevanlinna disk of
analyticity. We also use our previous results [Ca-Gr-Ma4] on the "resonances" of
the "volcano," thanks to their connection with the "resonances" E^(gj') of (1.3)
as given by Buslaev-Grecchi [Bu-Gr].

Since the exact expression for the eigenvalues (given by the perturbation series
(1.4) and by the appropriate summation method) is not very simple, we give an
asymptotic approximation, obtained by taking the limit of our function h(g,z) as
g —> 0 and z on a fixed path Γ surrounding λn(0J). Let F(gJ) = N(gJ) (or
D(gJ)), then we have:

π Q>E^[(g,j)\ 2t i ?k
H ~ Σk cikQ H — cot( fπ 2)Δ Σk cikQ as q —+ 0

2 sm\πj/2)J 2
(1.4)

for j not even, where Σ means the distributional Borel sum (DBS) of the series
and ΔΣ means the Borel discontinuity of the series (DOS). Let us notice that the
coefficient of the DBS in (1.4) is the same for D(gj') and for N(g,j), so that it can
be factored out and set equal to 1 at the same approximation level. The coefficient
of the "Borel discontinuity" in (1.4), i.e. cot(yf), is singular and odd near j = 0,
so that it is a typical avoided crossing term.

Actually the perturbation series of any eigenvalue is analytic in j in a neigh-
bourhood of the real axis for g small, but not the eigenvalue itself. On the other
hand it is possible that the direct distributional Borel summability of the perturba-
tion series to the partition function gives the exact result as was originally suggested
by 't Hooft ['t] and it is proved for a simple approximation [Ca-Gr-Mal]. Some
of the results of the present paper are announced at the 1993 Conference of the
International Euler Institute [Ca-Gr-Ma5].

The paper is organized in the following way. In Sects. 2,3,4 we prove analyticity
in the Nevanlinna disk, respectively, in the symmetric case, in the stable case, and
in the unstable asymmetric case. In Sect. 5 we prove Borel summability and we
give the extended perturbation expression of the matrix elements. In the Appendix
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we state and comment on stability theorems in a form which is convenient in this
context.

2. Analyticity of Double Well Eigenvalues in the Nevanlinna Disk

Consider the double well oscillator with coupling constant g = peιθ:

A = P

2+x2(l - gxf = p2 + V(x) . (2.1)

In order to prove analyticity of the eigenvalues in some Nevanlinna disk $ϊg~2 >
R~\ R>0 assume g small and in the boundary, that is g = pe~~ι^Λ+ε'2\ with
sins = R~x p2. By the usual scaling x —» xe~ώ', H is transformed into

A(θ) = e2ί0p2 + e~2Wx2(l - pxf , (2.2)

with real part
$IA(Θ) = sin ε{ p2 +x2 (I - p x ) 2 } . (2.3)

Definition 1. Let η > 0 be small and fixed. For each p > 0, φ G L2{R), let
(Uφ)(x) = φ(ξp(x)), where the complex-valued distorsion ξp G C°°(R) is defined
by sRξpix) =x, Vx e R and:

+ ^ ] 1 / 4 > x £ ^ - 2η , (2.4a)

(2.4b)

l
x ^ - + 2 , , (2.4c)

elsewhere according to the prescriptions

(i) ^sξp monotone in each of the two remaining intervals ,

(ii) %tξp(x) = x, %ξp odd w.r.t. — .

Lemma 2. Setting fp(x) = (ξ'p(x))~\ Hp = UA(θ)U~ι the transformed operator

Hp := e2ι0{pf2p + 4~\f2f} + β-2l0ξp(^)2(l - pξp(x))2 (2.5)

has the same spectrum as A(θ).

Proof The distortion preserves the same exponential decay of the solutions of
A{θ)u = Eu, since ζp(x) ~ x as x —•» ±oo. Notice that the notation Hp is allowed
since θ = — π/4 + ε/2, where sins = R~]p2.

In order to apply Theorem A2, let us define the parity projections,

[P±(p)u](X) = 2-{[u{x)±u{p~{ -x)].

Lemma 3. If Hp = UA(Θ)U~\ the parity projections P^ satisfy hypotheses (a),
(b), (c), (d) of Theorem A2.



4 E. Caliceti, V. Grecchi, M. Maioli

Proof It is sufficient to verify property (c), since the other ones are obvious. Since
V is even w.r.t. {2p)~\ and ζp{x) = x + iy{x), where y{x) is odd w.r.t. {2p)~ι,
we have that V[ξp{x)] is even with respect to {2p)~ι. Moreover, since ς'p is even,
fp = (ζp)~l is even, as well as the second derivative: {f2)". Thus the operator
(2.5), i.e. Hp, is "even" in the sense of property (c).

Lemma 4.

> Cχ ά. fl l

Px =R c2, x n,n ^ n, p

for some c\ > 0, c2 G R, in^n0, 0 < p < p0.

Proof In our context we can suppose n <C - (see hypothesis (2) in Theorem Al).

By the definition of ξp{x) and by its parity properties it suffices to verify the stated

inequality in the points x = ^ — 2η and x = j — ̂ , x==^-. By definition of ξp,

1 π

-., , ^ 2η — in— as p —-> 0 , (2.6)

so in the first case, as p —> 0,

(sin ε) + cos εη2π ^ ^ c2 as p —>• 0 , (2.7)

where the equality sinε = R~ιp2 is used. In the second and third case we have
ξp(x) = x, so

and the lemma is proved.

Lemma 5. In the notation of Theorem A2 {i.e.

(2.9)

Proof Since //̂ " = P^HpP^, it is sufficient to consider expectation values of Hp

on even vectors (i.e. u = P^u):

U{Hpu,u) =

where α = ^ - π / 2 + c ) , and /p(x) = {ξ'p{x))~\ Now in the region x ^ (2p)~ ! - 2η
some calculations show

Jp = 16

and similarly
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In the interval ( 2 p ) - 1 — η :§ x ^ (2p)~ι + η we have simply <̂  = 1, so that

5ϊ(α/p) = sinε. Therefore, since /^ and (pu)(pΰ) are both even with respect to

(2p)~ ], by (2.10) and (2.11) we obtain

-t-oo +oo 2μ

ϋft J ot(pfp pu)ΰdx = 9̂  J (xfp(pu)Cpΰ)dx = 2R f ccfp \pu\ dx
— oc — o o — o o

= C3 f ~2—7 2TΓ72 \Pu\2dx (2.12)
— ex) ^ ~τ \ί ~r X ) '

for some c3 > 0. Besides, for some c4 G Λ,

since \{fj)"\ is bounded and 5RK(ξp(x)) is bounded below.

On the basis of the above estimate, the hypotheses (1 ;) through (4') of
Theorem A2 are verified in the following lemmas.

Lemma 6. Let

Vxetf, fo(x) = (C(x)Γ 1 (2.14)

-eιπ/2ξ2

0 (2.15)

be the dilated harmonic oscillator with eigenvalues 1,3, Then hypotheses
(1'aMl'b) of Theorem A2 are fulfilled

Proof. The property (l7a) follows from the fact that ξ(x) —> ζo(x), as p —> 0, uni-
formly on compacts. As for (l ;b), it follows from Lemma 5 that the numerical range
of H+ is contained in some p-independent right half-plane S. Since the spectrum of
H+ consists only of eigenvalues, Vz $S we have \\{z - H^)~ι\\ ^{dist(z,S)}~\
and thus z G A + .

Definition 7. Let χ G Co°° wzίA χ(x) = 1 for \x\ ̂  1, χ(*) = 0 /or |x] ^ 2 <zw</
0 ^ /(x) ^ I, Vx e R. For n G TV, fe/ χn(jc) := χ(^).

and
Mζ{x) := 1 - γfn{x).

Remark. (Rl) The definition of χ^ when 2n ̂ :(2p)~ι can be given as in [Ca-
Gr-Ma3], but the only important case is the above one. The function χ£ G C °̂ is
even w.r.t. (2p)~K M£ is in the range of P+, too, and it is supported away from
the wells.

Lemma 8. Assumption (3r) of Theorem A2 is fulfilled by the multiplication
operators γ%.
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Proof Since (3') is trivial for odd w, let u e RangeP+ and let γ2n be the charac-
teristic function of [—2n,2n]:

; Ϊ,χM2dχ\ • (2.16)

Now

2

p7:i - 2if2χ'np)u\ £ £(|κ| + H ) , (2.17)

since / Λ , ^ , / 2 , ( / 2 y are all bounded functions. Hence, if ||u|| = 1, the preceding
expression is estimated by:

where the last inequality follows from (2.9). So the lemma is proved.

Lemma 9. Assumption {!') of Theorem A2 /s1 fulfilled by the multiplication
operators yf}.

Proof Given the vectors um such that P+m um = um, the superscript " + " can be

neglected since (Ho - H^m)um = (Ho ~ HPm)um.

Now, let H'p = u.-χHpmάλeC- σ(H'o) be fixed. Then

\\fn

m "mil2 - 2 7 I χ ^ K O O l 2 ^ - 2| |χπ W w | | 2

— oc

^c{ | |χχ(/^ - i / ; j W w | | 2 + ιizX(//;w - . K I I 2 } . (2.18)

Now, if the characteristic function of [—2«,2w], is denoted by y2n, the same
arguments of the proof of Lemma 5 in [Ca-Gr-Ma4] allow to conclude that (2.17)
tends to 0 as n —» oc. Thus Lemma 9 is proved.

Lemma 10. Any fixed eigenvalue of the harmonic oscillator satisfies hypothesis
(4 ;) of Theorem A2, i.e. it has positive distance from the asymptotic numerical
range relative to H^ and to the multiplication operators M%.

Proof By Lemma 4,

^ ( F ( φ c ) ) M > , M > ) ^ ~ + c 2 > d > 0
R

for any u with | |M^M|| = 1, if R is chosen sufficiently small. The kinetic part of Hp

is bounded from below by the proof of Lemma 5, therefore the lemma is proved.

Theorem 11. Any eigenvalue λ0 of the harmonic oscillator Ho is stable in the
sense of Kato with respect to the family K^ as p —* 0 (and, similarly, eigenvalue
stability holds with respect to the odd version of the double well operator K~).
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Proof A direct application of Theorem A2, whose hypotheses are verified by the
above lemmas.

Theorem 12. Let En = 2n + 1 be an eigenvalue of the harmonic oscillator, for
fixed / I G N . There is Rn > 0 such that two distinct simple eigenvalues E±(g) of
the symmetric double well operator (2.1) exist and are analytic in the region

DRn ={geC: $ϊg-2>R;1}

(a Nevanlinna disk in the g2-plane).

Proof In Sect. 2 of [Ca-Gr-Ma3] such analyticity was proved in regions

{geC: |arg(gf)| < π/4 - ε, \g\<k(ε)}9

where the dependence k(ε) was unknown. Theorem 11 ensures stability and hence
the absence of level crossings for g2 near the origin in the boundary of some
Nevanlinna disk, and this completes the proof of analyticity in the whole region.

3. Asymmetric Double Well Eigenvalues: The Case p2 + x2(l — gx)2

—j(gx — | ) , Where j is not Even

In this section we consider an operator family in which both stable eigenvalues and
"dying" eigenvalues are expected. To prove stability in these cases, Theorem Al
is not sufficient, because its original proof [Vo-Hu] uses the absence (i) of dying
eigenvalues as a step towards the stability property (ii).

Theorem 13. Let Ω be an open subset of C and let {Hp}p^o,{Kp}p^o be two
families of Schrόdinger type operators with a common core C£°(R) and

σ(H0) Π σ(K0) D Ω = 9 . (3.1)

Moreover, let the following conditions be satisfied:

Kp = UpHpU~\ for some unitary operator Up, p > 0 , (3.2)

and let there exist, in Ω, λ0 e σ(H0) - σ(K0), λ'o e σ(K0) - σ(H0) .
Moreover:

1) HpU —> Hou, Kpu —> Kou as p —> 0, Vw G C^° and similarly for the adjoints

2) there are bounded multiplication operators jjΛ such that

(pm -> 0+, um £ Co°°, IKH -> 1, um -> 0 weakly ,

UPmum -> 0 weakly, \\HPmum\\ g C)

=ϊ (3m = m(n) : lim \\χp

n

mum\\ = 0) (3.3)

n—+00

3)

3zn^0:\\[Hp,χζ}u\\^zn(\\Hpu\\ + \\u\\l V« e Co°°, 0 ^ p S Po (3.4)

and the analogous commutator estimate holds for H*;
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4 ) d e n o t i n g Mj} ~ 1 — χ%, f o r a l l / G Ω w e h a v e

dist(Λ, ψpM
p

nuMp

nu)) ^ d > 0, \/n ^ w0, 0 < p ^ p 0 , (3.5)

\\M£u\\ = 1;

5) C/p —> 0 weakly as p —> 0, M f —•» 0 strongly as n —> oc.

, VΛ G Ω,

i) 2 φ σ(//0) U σ ( ^ o ) =̂> Λ G Zl, w/zere zl appears in (3.6) ,

ii) / G σ(//0) => / is a stable eigenvalue w.r.t. //p, as p —> 0 + ,

iii) Λ G σ(AΓo) =Φ- Λ LV β stable eigenvalue w.r.t. Kp, as p —•> 0 + .

In particular if λ0 G σ{H0) and λ'o G σ(K0), then Hp admits two distinct families

of eigenvalues λβ -> >l0 αwd / p -^ 2J, as p -^ 0 + .

Let

Zl = {/ G C: (A — Hp)~ι exists and is uniformly bounded as p —> 0 + } . (3.6)

The proof consists of the following steps.

(a) Let λ G Ω — (σ(H0) U σ(A^0)); then /, G zl unless there exist two sequences
pm, um such that

pm -* 0 4 , MW G D(HPm), \\um\\ -> 1, MW -» 0 weakly, ϋ w = C/Pw wm -> 0

weakly, | | (Λ - / / P I H ) M W | | -> 0, \\(λ - ^ P m K | | -> 0 . (3.7)

To prove this fact one can proceed as in Lemma 5.1 of [Vo-Hu]: we only have

to verify that | | ( / - KPm)vm\\ —> 0 (a consequence of | | ( / - HPm)um\\ —> 0), and that

vm —» 0 weakly.

By passing, if necessary, to a subsequence, assume that vm —> v weakly, so that,

V^ G C ~ ,

0 = lim(^,(Λ - A-p)B)j;)(1) = ((Λ - J ^ r ^ . t ) ) . (3.8)
m

This implies t; = 0 and the assertion (a) is proved.

(b) Ω - (σ(Ho) U σ(K0)) C Δ. Indeed, if λ $ σ(H0) U σ(K0) and Λ φ Δ, there

exist two sequences pm, um satisfying the properties asserted in step (a). Now we

prove that the same properties are satisfied by the sequences pm, Mnmum, by a

suitable choice of m{n\ as n —̂  +oo.

By hypothesis (2), for any n, \\mm\\Mnmum\\ = 1. Thus (a) holds for the two

modified sequences if we can verify the weak convergence to zero of both Mpm um

and UPmMnmum (with m — m(n)) as n —> oo. Such weak convergence takes place

because, by hypothesis (5), both M% and Mn = UpMn tend strongly to 0, as n —> oo,

uniformly in p.

Therefore hypothesis (4) is contradicted and necessarily λ G Δ.

(c) If λ G σd(H0) then it is a stable eigenvalue with respect to the family Hp

as p —-» 0 + . To prove this stability, one can proceed in analogy with Theorem 5.4

of [Vo-Hu], except for the following modifications. For p ^ 0 let P(p) =

L _ ; ι(z — Hp)~ιdz, where r is small enough so that the integration cycle is

contained in A (this is possible by step (b)), and so that the only point of the
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spectrum contained in it is XQ. Assuming ab absurdo that there exist two sequences
ρm —• 0+, um e L2(R) such that

| |κ M | | = 1, P(pm)um = um, P(0)um = 0 , (3.9)

the contradiction is obtained in analogy with the cited proof in [Vo-Hu 1982], on
condition that vm = UPmum -* 0 weakly. Setting Q(p) = J, _ ; , (z —Kp)~ιdz, it
follows from (3.9) that Q(ρm)vm — vm. By passing to a subsequence if necessary,
one has vm —> υ weakly, and hence Q(0)υ = υ, because Q(p) —» β(0) strongly. On
the other hand Q(0) is the null operator on condition that r is chosen so that the
integration cycle does not encircle any eigenvalue of KQ: this is possible because
λo G σd(Ho) — <J(KO). Therefore v — 0 and the assertion (c) is proved.

(d) If )/ G σd(K0) then it is a stable eigenvalue with respect to the family
Kp as p —>• 0+. The proof of (d) proceeds in full analogy with steps (a)-(c) by
interchanging Hp with Kp and Up with U~\ on condition that properties analogous
to (2),(3) are proved for what concerns Kp\

2') the functions χp

n = Upγfu considered as multiplication operators are such that

(pm -> 0+, υm G Co°°, ||ι;w|| -> 1, vm -+ 0 weakly,

U-Jvm -+ 0 weakly, \\KPmvm\\^C)

=> (3m = m(n): lim \\χζmvm\\ = 0)

3')

3 ε Λ - > 0 : | | [ ^ i > l l ^ ε » ( l l ^ " l l + ll«HX Vw e Co°°, 0 < p g p 0 ,

and the analogous commutator estimate holds for K*.

Now (2f) and (3 ;) can be drawn from (2) and (3) by using the unitary transform
Up. Hence the assertion (d) follows and the theorem is proved.

Remark. (R2) From now on, let 2Z be the set of even integers. By this theorem
the spectrum of

2+1
Hg = p2+x1(l- gxf - j ( y χ - \ \ 0 > 0, j G R - 2Z , (3.10)

which is equivalent through the unitary translation operator Ugu(x) = U(x + g~λ) to

(3.11)

is the union of two families of eigenvalues: λn(g) and λ'n(g) such that λn(g) —* In +
1 +7/2, Λ^(^) —> 2̂ ? + 1 — j/2. In other words the two distinct limiting operators
p2jrx2jrjl2 and p2 +x2 - j/2 are used to display such families. In particular
there exist simple isolated "dying eigenvalues" λ'n(g) as g —> 0+.

When 2ft + 1 = 2m + 1 — y for some «,m (case 7 G 2Z), an asymptotic degen-
eration is expected analogous to the case of the symmetric double well j = 0.

Now, by Theorem 13, we can treat the operator (1.3) for non-even parameter j :
in particular we shall extend the results quoted in Remark (R2) from real g —* 0+

to complex-valued g —> 0 in some Nevanlinna domain DR = {g: $ίg~2 >R~1}.
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If g — peιΘ, by the usual scaling x —»xe~ιΘ, the operator (1.3) is transformed
into e2ιθp2 + e~2iθx2(\ - px) 2 - j(px + \ ) .

To study such an operator on the boundary of the above Nevanlinna disk, it is
sufficient to set θ = - π / 4 + ε/2 with sinε = R~ιρ2, for fixed R > 0. Then

Hp = e2Wp2 + e~iθx2 (1 - px) 2 - j (px - ^ (3.12)

has real part

5R77n = sinε{/?2 + x 2 (1 — px) } — j ( px — - ) . (3.13)

In the preceding section the distorsions x —» ζp(x), for p ̂  0, were introduced, set-

ting / p (x) = ( ^ ( x ) ) " 1 . Now we introduce the analogous distorsion ζp so that the

role of x = 0, x = - be played by x = — -, x = 0 respectively:

Definition 14. Define

for p > 0. Similarly, let

ζo(x) := lim ζp(x) = x - iη atan αo(x) : = (C( ̂ ) ) " 1 (3.15)
p->0+ [1 +X 2 ] 1 / 4

As a consequence, 3ftζp(x) Ξ X and ^sζp(x) is odd with respect to — •£-.

Lemma 15. Let j e R - 2Z. If p > 0, the two operators defined on D(p2) Π £>(x4),

(3-16)

:= P92

PP + J(fifp)/; + CP(x)2[l + pζP(x)f ~j ^pζpix) + ^] , (3.17)

«r^ unitarily equivalent via the translation Tιu{x) — u(x + - ) . Their two distinct
p P

{strong resolvent) limits, as p —> 0, are

^ 0 = PfoP + \Uoΐ + ξl +jβ, Ko := p/0

2/7 + l (/ 0

2 )" + ^0(x)2 -y/2

wfί/z eigenvalues \ln + 1 +y/2}, ι e]\ α/tίi {2w + 1 — j/2}ne^ respectively.

Proof. Dropping for simplicity the subscript p, we have £(x + -) = ζ(x) + ^. Thus

f(x + p~l) = [?(x + p-1)]-1 - [ (^x)]- 1 =g(x) and

ξ(x + p~1)2[l -pξ(x + p~ι)]2-j pς(x + p " ! ) - -

= ζ(xf[\+pζ{x)f~j pζ(x)+-\ . (3.18)
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Therefore TιHpT_\ = Kp. As for the limits as p —> 0, notice that ζo(x) = ξo(x),
P P

and foipc) = Qo(x) Vx. Thus the lemma is proved.

Lemma 16. Let

V(x)=x2(\~px)2-j(px-l-Y Vκ(x)=x2(l+px)2-j(px+^) .

(3.19)
For some c\ > 0, C2, c G R, Mu,v with \\u\\ = \\v\\ = 1,

ZlV[ξ(x)] Z -c, StVκ[ζ{x)] Z -c, (3.20)

if supp u Π [(—n,n) U ( n, - + « ) ] = 0 and supprΠ[( n, \-n)U

Proof The first inequality in (3.21) is an easy variant of Lemma 4. The second
estimate can be reduced to the first one by using the identity Vκ[ζp(x)] — V[ξ(x -f
p~])] and by unitarity of TV Moreover the potential is globally bounded from

P

below, thus the lemma is proved.

Lemma 17. For the expectation values of the kinetic part we have

ίp - V[ξ(x)])u,u)

\pu\
2dx + εJ \pu\2dxj

-oo X2 + ( l + X 2 ) 2

o [ 1 + ( X _ I ) 2 ] 3

: P~ -ττ\Pu\2dx}-c4\\u\\2. (3.22)
( ± ) 2 [ l ( £ ) 2 ]

3

\2dx}c4\\u\\2

Proof One can proceed like in the proof of Lemma 5 for what concerns the intervals
(—oo, j — 2η) and ( ^ — η, ^- + η). The difference from Lemma 6 is that H+ (the

even version of Hp with respect to j-) is now replaced by Hp itself. Therefore the

interval ( j - + 2^/5+oo) does not simply double the previous contribution, but gives

rise to a similar integral, with x — - in place of x. So the lemma is proved.

Lemma 18.

!'+(;+!««

π + v2i?
r—y-±-τ\pu{y)\2dy) . (3.23)
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Proof The left-hand side of the inequality can be written

P P P P

So the proof is reduced to Lemmas 16,17 if we set (T\ )~ιu(x) = u{x — -) = u(y)
p P

in place of u(x).

Lemma 19. Let γfΊ be the multiplication operators of Definition 8. Then

|| + | | w | | } . (3.25)
Proof Calling yp

2n the characteristic function of [—2n,2n] U [- - 2n, - -f 2n], we

proceed in analogy with Lemma 8. Since suppχί? C [—2/7,2/?] U [- — 2«, - + 2/?],

by (2.17) we have

\\[Hp,χ
p

a]u\\Z- J \pιι\2dx+ J \pu\2c

I

1/2

pw, M) + c + 1] . (3.26)

Indeed, to obtain the last inequality, we have used (3.22) and Lemma 16.

Lemma 20. If χ%, are the multiplication operators of Definition 8,

(um -> 0 weakly, \\um\\ -> 1, pm -> 0, C/P/nMw -> 0 weakly, \\HPmum\\ ^ c)

=> (3m - m(/i): | | χ ^ ^ | | -> 0, αsw -> oo) . (3.27)

Proof Without loss of generality, let us consider p small enough so that χ%(x) =
Xn(x) + Xn(x ~ P~l) L et vm(x) = um{x + ρ~x). Since supp(χΛ) = [-2n,2ή\,

As for the first summand, setting Rp = (Hp — λ)~\ for p ^ 0 as in Lemma 9,
we have

\\χnum\\2^2{\\ χnR0(H0 - HPm)um\\2 + \\χnRo{HPm - λ)um\\2} . (3.29)
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From here on one can proceed as above in the proof of Lemma 9. Indeed, the
required inequality on commutators (Lemma 19) is still valid if *βx is replaced simply
by χn. Therefore ||χ«Mw|| —-> 0 for some suitable sequence m = m(n), as n -+ oo. To
show that ||χwyw | | —>• 0 the procedure is analogous and the theorem is proved.

Theorem 21. Let {Hp}p^o and {Kp}p^o be the operator families of Lemma 15
{i.e. j not even). Then the eigenvalues λn(0) — 2n + 1 + j/2 of Ho are stable with
respect to Hp as p —* 0. Moreover, for small p, Hp admits further eigenvalues
λ'n(p) which tend to the eigenvalues of Ko as p —» 0.

Proof. The assertion follows from Theorem 13 because all its hypotheses are full-
filled, choosing (Upψ)(x) = ψ(x + p~ι) Indeed conditions (1),(2),(3) are verified
by Lemmas 15,20 and 19, respectively, while hypotheses (4), (4') follow from
Lemma 16. Thus the theorem is proved.

Theorem 22. Let

H{gJ) = P1 +χ 2(l - gxf -j (gx - \), for j e R - 2Z . (3.30)

For any « G N , there is R}1 > 0 such that two distinct families of eigenvalues
λn(g),λ'n{g) of (3.30) exist and are analytic in the region DRΠ = {g £ C:
^g~2 > R~1}. They are convergent to 2n + 1 +7/2 and to In + 1 — j/2 respec-
tively as g —> 0 in such a domain.

Proof. By Theorem 21 stability (and hence the absence of crossing) is estab-
lished as g —> 0 along the boundary of DR. Now, the estimates of all the pre-
ceding propositions are uniform with respect to R, for R sufficiently small. Since
DR = {JQ<f<R dDn analyticity of eigenvalues is verified in the whole stated domain.

4. Asymmetric Double Well Eigenvalues: The Case p2 + x2(l — gx)2

-j(gx - 1/2) with Eveny'φO

In the case of asymmetric double well with j G 2Z - {0}, the first levels, which are
isolated uniformly as g -^ 0, can be proved to be analytic in DR as in Theorem 22.
As for the remaining eigenvalues, we can prove the following proposition.

Theorem 23. For small \g\,for any pair ofn,m G N such that 2n -\- 1 = 2m + 1 — j
the asymmetric double well oscillator

gj ) - p2+x\l - gxf -j (gx - M , for j G 2Z - {0} , (4.1)

admits a family of projections P(gJ) — f\2n+ι-z\-=\^z ~ HgU)]~]dz of dimension 2,

with analytic continuation to some Nevanlinna domain Df> = {g G C: $tg~2 > R~1}.

Proof Setting, for p > 0, Upφ(x) = φ(x + p""1),

H{pJ) = pfpp + -(f2

p)" + ξP{xf [1 - pξP(x)}2 -j \pξp(x) - \ , (4.2)
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K(ρJ) = UpHpU~ι, we can consider the two formal limits H(0J) := pf£p+

\{fo)" + £l + jβ> KΦJ) : = H(Qj')-j\ a s i n t h e a b o v e definitions of Lemma 15.

(a) First one can reproduce the steps (a), (b) of the proof of Theorem 13,
to conclude that C - [σ(K(0,j)) U σ(H(0,j))] C A, where A is the set of uniform
boundedness of the resolvents [z - H(p,j)]~ι, as p —» 0. Notice that such uniform
bounds occur for all y, whether or not j Έ R - 2Z.

(b) Let us consider j G 2Z as a limiting case of non-integer j + δ as (5 —» 0 .
Now, the multiplication operator px, as well as pξp(x\ is relatively bounded with
respect to H(pJ) uniformly for 0 ^ p ^ po.

This can be proved by standard quadratic estimates.
(c) Setting P(pJ + δ) = / , z _ ( 2 / 7 + 1 + / / 2 ) | = ι [ # ( p J + δ) - z]~ιdz, we have

dimP(p,y) = 2, j G 2Z for small p > 0 . (4.3)

Indeed P(pJ + δ) —> P(pJ) in norm as δ —> 0, uniformly with respect to p. This
is a consequence of (a) and (b). Hence the projections have the same dimension,
which is 2 by Theorem 22.

(d) If ψn,ψm are the eigenfunctions such that H(0J)φn = (In + 1 +j/2)ψn, and
H(0J)ψm = (2/w + 1 +j/2)ψm, we set

φx{pj + δ) = P(pJ + δ ) ^ , φ2(pj + δ) = P(pJ + <5)[C/Pω , (4.4)

where Upφm(x) = φm(x + p " 1 ) . Then φi ? φ 2 are a base of Range P(p,j + δ) and

p,y + δ)φ2(pj + (5)> -^ (φχ(pJ\H(pJ)Φi(pJ))

as <5 —> 0, uniformly for small p. This convergence is a consequence of the preceding
steps. An analogous convergence takes place for the couples (φ\,φ\), etc.

(e) Finally, the projection P(g) = / I 2 Λ + 1 _ Z J = 1 [ Z — Hg(j)]~ιdz has an analytic

2-dimensional continuation to the Nevanlinna domain DR for some R>0.

Indeed, by step (c) dim P(g) = 2 if g lies in the boundary of some DR. this is
due to the above choice of the function θ(p) which is the phase of g = ρew (see
the beginning of Sect. 3). Now, since DR = [j0<r<R dDr and since all estimates are
uniform for R small, dim[P(g)] = 2 for g G DR.

Analyticity follows from (d) and from analyticity of projections for j ^ 2Z
(Theorem 22). Indeed the matrix elements of P(g) turn out to be the limits, as
δ —* 0, of analytic functions, with uniformity in DR. The theorem is thus proved.

5. Distributional Borel Sum

In this section we are going to apply the Distributional Borel Sum (DBS from now
on) to the double well problem.

Following G.'t Hooft [*t] in [Ca-Gr-Mal,2] a definition and a criterion were
given for a DBS of a series which extends the original Borel one to critical cases.
Actually the summabίlity criterion we gave defines directly a pair of complex con-
jugate sums, called upper and lower Borel sums (US,LS): Φ(z) = Σ+, Φ(z) = Σ~,
whose difference is called the discontinuity of the Borel sum (DOS): d(z) =
Σ^ — Σ~, and whose mean is the DBS itself.
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Before the introduction of the DBS, the limit of the usual Borel sum to the
critical direction was used in various problems. For example, for the Stark effect
resonances we have proved [Ca-Gr-Ma 4] that the limit from above (below) coin-
cides with the US (LS) given by the criterion of summability proposed. It is clear
that the proof of the DB summability is a stronger result than the proof of the
simple existence of upper and lower limits of Borel sums. In particular it allows us
to connect directly the asymptotics of the perturbation series with the asymptotics
of the imaginary part and the nature of the first singularities of the Borel transform
on R+ [Ca-Gr-Ma 4].

The problem of a DBS for the double well eigenvalues needs to be handled by
considering, in the usual expression which defines the eigenvalue, a ^-dependent
test vector with a definite parity with respect to γr The procedure is described
in [Ca-Gr-Ma 3], and it receives its full meaning from the analyticity results of
Sects. 3, 4 and 5.

1) DBS for the symmetric double well. The Green function of H(g) = p2 + i 2 ( l —
gx)2 can be written as a combination:

, y) + d-G3-\(x, y)

^ i ( x , y ) . ( 5 . 1 )

Here G3i,G3?_i denote the Green functions of the "resonance" operators defined in
[Gr-Gr] and [Ca-Gr-Ma 3],

2 2(i(±*-20)/3 \g\e±^χ)}^ g = \g\j<> . ( 5 > 2 )

We refer to [Ca-Gr-Ma 3] for the expressions of h(g,z) and k(g,z) in terms of
Wronskians, with the relation h = —/(I + k)/{\ — k). We have

Lemma 24. For any eigenvalue /(0) of the harmonic oscillator there is R> 0 such
that the corresponding eigenvalues E±(g) of the resonance operators Q+(g),Q~(g)
exist and are analytic for g G DR = {g: ^ftg~2 > R~1}.

Proof As recently proved by Buslaev and Grecchi ([Bu-Gr], Corollary 4) the "res-
onances," i.e. the eigenvalues of non-modal operators Q±(g), coincide with the
eigenvalues of the operator

A(g) = j(

(where g = pelΘ, θ — —3π/4 + ε) which represents the radial part of the d-
dimensional quartic oscillator (withy = j(d), see [Ca-Gr-Ma 4]). These eigenvalues,
in turn, are analytic in the stated region by Theorem 1 of [Ca-Gr-Ma 4]. Thus the
lemma is proved.

Theorem 25. Let 0 <g <Rλl2 and let λ(g) = λ±(g) be a double well eigenvalue
(for a fixed choice of parity) admitting analytic extension to DR for some R > 0
as in Theorem 12. Let

± x * ) ] , (5.4)
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and let
1*] , (5.5)

with the same choice of parity, + or —, with respect to (2g)~ι. Let R±(g) —
[Q±(g) — z]~~ι, denote the resolvents of the above two "resonance" operators and
let H(g),R(g) be the symmetric double well operator and its resolvent. Then

(i) Kg) = ~ y with N(g) = Fλ(g,g\ D(g) = F0(g,g) , (5.6)

where (for I = 0,1)

y) = (2πiΓιfzι(l+ih(g,z)){(ψ^(glR+(y,z)ψy(Q))
r

(5.7)

In these expressions γ G DRj Γ is a circle surrounding E(0) at distance 1, and
oc = π/6- arg(y)/3.

where Ff(g,y) is the DB sum of Y^=^ciik{g)yk and d\(g,y) is the Borel dis-
continuity of Y^_o bjk(g)yk, for 0 < y < R1'2 (in particular for y = g). Here the
coefficients aιk(g),bιk(g) are:

alh(g) = (2πiΓι fzI[Ak(g,z)+MΪJ)]/2dz , (5.8)
r

blk(g) = (2πiΓι Jh(g,z)zι[Άk(g,z) +AkJg~T)]/2dz , (5.9)
r

where Λk(g,z) is given by

(ιKg),R(09z) Σ ( k V
\ m=[k/2] \k-rn I

Remark. Φj(g,y), for fixed g, is a Distributional Borel Upper Sum of its expansion.

Proof Part (i) is the extension to the whole disk DR of the representation formulas
already obtained in [Ca-Gr-Ma 3]. As for (ii), it is enough to note that Φ[(g,y)
(where g is fixed, / = 0 or 1) has the same analyticity properties of the eigenvalues
of Q±(y). Indeed, R±(y,z) is analytic for y G DR by Lemma 24. Moreover h(g,z)
(g > 0, z G Γ) is uniformly bounded on Γ for small g, since it is convergent
as g —> 0^ by Theorem 3.6 of [Ca-Gr-Ma 3]. In particular we have k(g,z) —>
exp(/(z + l)π), so that h(g,z) —> cotan((z + l)π/2) uniformly on the compact set
Γ which does not contain the singular points z = 2n + l,n = 0,1, Moreover
notice that ψ(g) —> ψ(0) weakly as g -^ 0.

Finally formulas (5.8) and (5.9), which are the same as in Theorem 4.4 of [Ca-
Gr-Ma 3], are now valid Vy G DR. Notice that the coefficients aϊk(g) are directly
computable, while in the expression of bιk(g) the factor h(g,z) can be replaced
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by /z(O,z), or by any better semiclassical approximation, without destroying the
summability properties discussed above.

2) DBS for the asymmetric double well. j$ 2Z. By Theorem 22 we can apply the
perturbation theory for an isolated stable eigenvalue as g —» 0+ : λn(g) — N(g)/D(g),
where

N(g) = (2πi)-ιJz(ψl9R(g9z)ιl/2) dz , (5.11)
r

D(g) = (2πi)~ιJ(\l/uR(g9z)φ2) dz^O , (5.12)
r

and Γ = {z: |/π(0) - z| = ε}, 0 < 8 < 1. As for the vectors, unlike the symmetric
case, we can simply choose

ψι=ψ2 = ψ: ψ(χ) = Hn(x)e-χ2/2 , (5.13)

where Hn(x) are the Hermite polynomials, without any dependence of g and y.
Then, in analogy with the above notations, writing

Φ,(g,y) = (2πiΓιjzι(\ + ih(g,z))(φ^(ylR+(7,^Uy)) dz ,
Γ

(I = 0,1; α = π/6 - arg(y)/3), the following holds:

Theorem 26. Let j^2Z and let λn(g), (n = 0,1,...) ft^ ίΛose eigenvalues of
H(gJ) = p2 + x 2 ( l — gfχ)2 — j{gx - 1/2), α^ m Theorem 22, which are convergent
to In + 1 + 7 / 2 as ιy -H. 0 + . Γ/ze/7

(i) For each n there is R > 0 swc/z that λn(g) = N(g)/D(g) with N(g) =
Fλ(g,g\ D{g) = Fo(g,g\ and

/ = 0,1 , (5.14)

where Φj(g,y), for fixed g, 0 < g < R1^2, is the Distributional Borel Upper Sum
of its asymptotic expansion Y^L^ciik + ibι,k(9)'\ylk *n ̂ e domain DR.

(ii) Fι(g,y) can be decomposed in two terms

Fι{g9y) = FR(y) + ̂ idι{g9y), (5.15)

where Ff{y) = (Φf(y) + Φf(g9y))/2 and dt(g9y) = Φ^g.y) - ΦfrgJ) are the DBS

and the DOS of the series J2^toaι,ky2k^ Y2^=obι,k(Q)y2k, respectively. A similar
result holds for λf

n(g) —> 2n + 1 — 7'/2, using the operator K(g,j), or equivalently

Proof As in Theorem 4.2 of [Ca-Gr-Ma 3].

Remark. (R3) As for the bn(g)fs, we should recall that they depend on h(g,z),
which can be computed by the complex WKB method and DB sums, or may be
approximated uniformly on the integration path by h ~ cot((z - ?Jn(0))π/2) for g
small. Fixing z as the value of the unperturbed pole, we obtain the simple approx-
imation:

Fι(g9g) ~ (l + ̂ E+{g)/sin2{nj/2)) ΣalΛg
2k + ~ cot(jπ/2)(AΣaug

2k) , (5.16)
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where the second term is proportional to the imaginary part of the "resonance,"
which is of the order of the probability of tunneling through the whole barrier, i.e.
of order O(exp(—2S)), and where S is the absolute value of the classical action on
the barrier.

Remark. (R4) The complex WKB method (see [Vo]) suggests better approxima-
tions. Actually it is possible to increase the barrier by a positive CJ° function with
support near the left well, with μ as a coefficient. In the limit as μ —> 0 we get
a Dirichlet problem on a half-line [M, +00], M > 0. In particular if we define
ho(g,z) for such a Dirichlet operator in the same way as h(g,z), we have

\hD(g,z)-h(g,z)\=O(e-2S)

for small g and uniformly in z on a fixed path surrounding λn(0), sufficiently close
to λn(0) and contained in a domain of regularity of /z(0,z).

So we can improve the approximation (5.16):

Fj(g,g) ~ (1 — h'D\]REΛ (g)]^sE+ (g))Σaι kg2k ~\—h^l^E^ (g)~\ ΔΣa\ιglk . (5.17)
2

3) DBS for the asymmetric double well, j G 2Z — {0}. By Theorem 23, for each
pair n,m such that 2n + 1 = 2m -\- 1 — j there are two eigenfunctions, say φn,φm

corresponding to one eigenvalue 2n + 1 +j/2. Therefore the two perturbed eigen-
values cannot be recovered simply from a ratio of Borel sums, but from two 2 by 2
matrices depending on both φn and φm:

Γ /,«,« * l,n,m \
, / = 0, l . (5.18)

Fi Fi

Here, for example

Fι,n,m(g,y) = (Φι(g,y) + Φι(g,y))/2, (5.19)

where

Φι,n,m(g,y) — (2π/)~1/z /(l + ih(g,z))((φn)-a,R
+(y,z)(φm)y)dz

r

(α = π/6-arg(y)/3).
Thus, on the basis of Theorem 23 we can state the result:

Theorem 27. Under the hypothesis of Theorem 23, any perturbed eigenvalue λ(g),
for fixed and small g > 0, of the asymmetric double well operator is a solution of

det(FL . ,. (g9g) - λF0,. ,. (g, g)) - 0 , (5.20)

where each matrix element satisfies a decomposition of the type:

i.e. it is a DBS of a series and a DOS of an imaginary series, for γ e DR, in
analogy with Theorems 25 and 26.
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Appendix: Stability Theorems

In the context of Schrodinger eigenvalue problems, we recall the following stability
criteria in a form which is useful for both the models in this paper, and for more
general applications.

Theorem A.I. Let Ω be an open subset of Q and let {Hp}p^o = pfpP 4- \(fp) +

Vp(ξp(x)) (with fp(x) = (ξp(x))~ι for some C°° function ξp(x)) be an operator

family in L2(R) for which C£° is a core and

σQSS(Hp)ΠΩ = ®.

Moreover:

1)

Hpu -> Hou, H*u -> H*u as p -> 0, Vu e C~

2) there exist multiplication operators χ% such that

{um -> 0 weakly, ρm -+ 0, \\HPmum\\ ̂  c)

=> (3m = m{n)\ \\χp

n

mum\\ —> 0, as n -^ oo)

3) there is {εn} —> 0

e analogous commutator estimate holds for H* uniformly in p;

4) setting M^ = 1 — χ%, any λ e Ω satisfies

dist(/, {HpMn

pu, Mf

Pu) )^d>0, \/n ̂  n09 0 < p g p o

(i) / ^ σd(Ho) Π Ω ^ (//p — Λ) ! is uniformly bounded as p —> 0 ,

(ii) / G σd(Ho) Π Ω => λ is a stable eigenvalue with respect to Hp .

Vue i
Then

Proof It is not difficult to verify the hypotheses of Theorem 5.5 in [Vo-Hu], where
they are formulated in a slightly more abstract way.

Remarks.

(R5) The above formulation of the theorem by Vock and Hunziker explicitly in-
dicates how to work to prove stability in wide classes of actual problems ([Ca-
Ma], [Ca-Gr-Ma3], [Ma-Sa], [Gr-Ma-Sa], [Ca-Gr-Ma 4]).

(R6) Conditions (1),(2),(3),(4) have a simple intuitive interpretation as follows:
Condition (1) implies that

dim Pp ^ dimPo, for small p > 0 ,

where Pp and Po are, respectively, the perturbed and the unperturbed eigenprojection
corresponding to an eigenvalue λ0. Conditions (2), (3), (4) are needed to prove the
opposite inequality dim.Pp rg dimP^, for small p > 0, e.g. the absence of any further
eigenfunction with eigenvalue in a small neighbourhood of λ0.



20 E. Caliceti, V. Grecchi, M. Maioli

In particular, as regards (2), the multiplication operators χn are usually C °̂
functions supported in intervals (—kn,kn), where any perturbed eigenfunction is ex-
pected to be concentrated (the "well"). Condition (2) roughly says that any possible
further eigenfunction must be supported far away from the well. To prove this fact
hypothesis (3) is also needed, due to the commutator of the χn with Hp.

Condition (4) says that the Λ.'s have positive distance from the asymptotic nu-
merical range {(HpMnu,Mnu): n^n0, 0 < p < p0, \\Mnu\\ = 1}: by the meaning
of condition (2), this means that there are no dying eigenvalues of Hp as p —> 0.

(R7) The selfadjoint double well operator Hp = p2 + x 2 ( l — px)2, which provides
the typical example of instability of eigenvalues as p —>• 0, ([Re-Si]) fails to satisfy
condition (4). Indeed, setting for example χn(x) = χ(x/n), where 0 !§ χ g 1 and
χ G C^°, no eigenvalue λ0 of the harmonic oscillator p2 + x2 has positive distance
from the asymptotic numerical range uniformly for p small: there is no d > 0 such
that

dist(/0, {(HpMnu,Mnu)}) ^d, n ^ no, 0 < p ^ ρ0 .

Theorem A.2. Let Ω be an open subset of C and let {HP}P^Q be an operator
family in L2(R) for which C£° is a core and

Let orthogonal projections P±(p) exist with the following properties:

a) P+(p) + P~{p) = /, P+(p)P-(p) = p-(p)P+(p) - 0;

b) \\PHP)\\ = i;

c) P±(p)Hpu = HpP^p)^ Vw G D(HP);

d) ((P+ - P- )w, υ) -* 0, as p -> 0, VM, V G L2.

Moreover, defining the operators

assume:

l x a) Hpu ~> Hou, as p -> 0, Mu G Co°°;

Γb) z l + φ 0 , w/zβrβ

Zl+ = {z G C: [//̂  - z]~ι exists and is uniformly bounded as p —> 0} ,

2') there exist multiplication operators χ£ wzίΛ P+(p)χn = χ« .s'

(wm -> 0 weakly, ρm -> 0, Ppwww = MW5 l l^Wml

=> (3m - m(«): \\γfn

mum\\ -^ 0, flίn->oo);

3 ;) ί/zβre zs {επ} -^ 0 .swc/z

and the analogous commutator estimate holds for the adjoint operator, uniformly
for small p\

4f) setting M^ — 1 - χ£, any λ G Ω - {0} satisfies

dist(A, ( / / + M > , M » ) ^ </ > 0, VΛ ^ w0, 0 < p ^ p 0

Vw G C?°
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Then

(i) λ φ θd(H0) => (//+ - λ)~ιis uniformly bounded as p —> 0 ,

(ii) Λ G σd(H0) => λ is a stable eigenvalue with respect to H^ .

The eigenvalue λ is stable with respect to H~, too, if hypotheses analogous to
(1'), (27), (3'), (4f) are satisfied by some other multiplication operators suited
for H-.

Remarks.

(R8) The stated theorem is essentially proved in Sect. 2 of [Ca-Gr-Ma 3]. By the
procedure there performed, any eigenvalue of the harmonic oscillator Ho = p2 + x2

turns out to be stable separately with respect to the odd and the even versions of
the double well operator Hp — p2 -f x2(l — px)2:

Hf=HpPHp\ [P±(β)u](x) = 2"1[u(x)±u(p'1 - x)] ,

where the parity is with respect to the point of "barrier" x = (2p)~ ].
Actually in Sect. 2 of [Ca-Gr-Ma3] such stability is proved with respect to the

odd and even versions of

H(g) = p2 + x 2 ( l - gx)2, for | arg(#)| < π/4 - ε

for any fixed ε > 0. This implies analyticity of double well eigenvalues in regions

{geC: | a r g ( 0 ) | < π / 4 - £ , | 0 | < * ( ε ) } ,

where the dependence k(ε) is unknown. In this paper Theorem A2 will be used to
prove stability and hence analyticity in a Nevanlinna disk Kg~2 >R~ι, which is
tangent in g1 = 0 to the imaginary axis in the g2-plane, for some radius R > 0.

(R9) Conditions (a),(b),(c), (d) are hypotheses about the symmetry of the problem:
they are useful to prove stability separately with respect to //+, H~, just when the
symmetry itself prevents stability with respect to Hp.

Hypotheses (a),(c) imply that H^u = 0, Vw G Range(P^(p)), i.e. 0 is an eigen-
value with infinite multiplicity. However the requirement ΛφO in (A1) does not re-
strict the final information on the eigenvalues of Hp: by redefining the energy, the
statement holds for the redefined auxiliary operators H^.

(RIO) The situation of degeneracy of this theorem is rather special due to symmetry.
The generic analogous situation (i.e. without symmetry) is solved by Theorem 23.
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