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Abstract: We prove existence and regularity properties of solutions of the variational
problems introduced in the previous paper [1] for classical lattice N-vector models.
These results form a basis of our renormalization group approach to low temperature
expansions for the considered models.

1. Introduction

In this paper we study the basic variational problems for the classical spin models
introduced in [1], like the problems (2.1), (2.2), (2.6), (2.7) there. We do not
want to study these entirely small field cases because it is almost equally simple
to consider a general case. Thus we study here the variational problems in a form
appearing in a general case involving large field domains also. To formulate them we
need some additional definitions. At first we have to determine a geometric setting
of the problems. We consider a sequence of domains {Ωj}, Ωj C Tη, connected
components of Ωj belong to @j, j — 1,2,..., k such that

ΩI D Ω2 D D Ωk, (LJη)'1 dist (Ωj, Ωj+l) > RM , (1.1)

where R is a positive integer which will be fixed later. Let us recall that the lattice
Tη and the classes Q)j of localization domains have been introduced in Sect. 1 and
2 of [1]. The size of big blocks M here may not be equal to the one there. In this
paper we obtain conditions on M connected with the variational problems, but there
will be other conditions in the following papers, so we treat it as one of adjustable
parameters. We define

Λj = Ωy

0)\Ω/°+

)

1? j = 1, 2,.. .,k - 1, Λk = Ωf\ A, = Ωc, Π Ω~ ,

where ΩJ/} = Ωj Π T$ is the set of centers of /-blocks

k

in Ωj, hence Ωj = Bl(Ωj\ and Ωj = Q Bn(Λn). (1.2)
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Let us recall that the "tilde" operation "~" means here that we add to Ω\ one
layer of large cubes in the L"1 -scale "touching" the domain Ω\9 i.e. having one of
the lower dimensional edges common with some cubes of the domain. We would
like to admit a case when some domains Ωj are equal to Tη9 for example Ωj = Tη

for j = I , . . . , / , / ^ k9 and then we assume that the second condition in (1.1) is
satisfied for j ^ /. A sequence of domains {Ωj} is uniquely determined by the
sequence {Λj}9 or by its union, and we define

B* = U ΛJ . (1.3)
7=1

This set is called a generating set for the sequence {Ω/}, and in the future we
will identify it with this sequence, or the sequence {Λj}. The idea behind these
definitions is that Ωj is a small field domain for the yth step, so we consider
a composition of j renormalization transformations on it. We perform a further
transformation on Ωj+\9 so we compose exactly j transformations on Ωj\Ωj+\9

and the composition has the same general form as in (1.11) in [1], but the
averages are taken as the averages Qj over y-blocks with centers at points of
Λj9 and the constant a is replaced by cij(Ljη)~2,aj given by (2.11) in [1].
We do not discuss changes of the constant β in this paper because it does not
appear in the problems here. These ideas should justify the following defini-
tions:

A(JΆk;\l/9φ'9h9 ak9 λk> vk) = -(ψ -

where φ is defined on Tη and has values in JR.N

9 ψ is defined on B# and ψ = ψj on
ΛJ, ψj is defined on Λj and has values in TR.N

9 Q(T&k}φ is defined on B^ and

= Σ L-# φ(x) fa y e ΛJ 9

is defined on B^ and α(B&) = cij(Ljη) 2 on Λj ,

dj — Z2~fl/b finally h G R^, \h\ — 1 . (1-4)

The norms in (1.4) are taken for appropriate scale, which means the ^-scale
for the last three terms on the right-hand side and the LJη^scale for the part
of the first term restricted to Λj. For clarity let us write explicitly the first
term

Σ (Lj

7=1 yζΛj

The coefficients ak, λk, v^ in this paper are arbitrary constants satisfying the
assumptions of Theorem 2.2 in [1], and we denote them simply by a, λ, v, i.e.
\ < a < |, η2λ ^ 1, 0 < v g 1. In the future we will frequently simplify the
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notations dropping the set IB^ if this set is fixed. Our basic variational problem is
to find

inf A(ΊRkι ψ, φ;h,a,λ9 v) , (1.6)
Φ\Ω}

or rather more generally to find critical points of the function (1.4) in a properly
defined ("small field") space of configurations φ. In this problem we vary φ over
the domain Ω\, and we keep it fixed on Ω^. It is convenient to reformulate the
problem introducing an auxiliary variable α, which is defined on Tη and has values
in R, and the function

J(Wk'9\l/9 φ, α;//, α, λ, v) = l-(ψ - β(B*)Ψ, a(ΊBk)(ψ - Q(Ώk)φ))

+ \\\SηΦ\\2 + \(*> \Φ\2 - 1) - ~W2 + \\\Φ- h\\2 . (1.7)

We have
A(JBk;\//, φ ,h,a, /, v) = supJ(B^;^, φ, α A, α, A, v) , (1.8)

α

so we replace the problem (1.6) by the problem

inf sup J(lBkl Ψ,Φ> v>\h, a, λ, v) , (1.9)
Φ\Ωl α

and we look for critical points of the function (1.7). The corresponding variational
equations for the critical points are

β(B*)XBt)β(Bt) + α + v)φ = β(Bt)*α(B*W + vh

-1)-I« = 0. (1.10)
Z

We have used the following notations here: for Ω C Tη we define dΩ = {x E Ω :
there exists a bond (x, x') of Tη such that xf £ ΩC},XQ is a characteristic function

of the set Ω, AΩ'η is the lattice Laplace operator on Ω with Dirichlet boundary

conditions, i.e. the operator defined by Δ^nφ = χQAηχQφ.
Let us make a few comments on the above equations. They have a very sim-

ple structure, which will be used to construct their solutions. The first is a linear
equation on φ, with an operator on the left-hand side which has been thoroughly
investigated in the papers [2]. Under a proper smallness assumption on α it is a
positive operator, and the equation has a unique solution equal to the corresponding
inverse operator acting on the function on the right-hand side, which is expressed in
terms of given elements, like ψ , h, φ \QC . This solution may be substituted into the

second equation, which is a simple local algebraic equation on φ, α, and we obtain
an equation on α. It has a slightly more complicated form, but eventually it may
be reduced to an equation which may be solved by a contractive mapping theorem.
Basically we follow this strategy, with an important exception. We construct at first
a sufficiently good, almost ultra-local approximation of the solution, and then we
construct the solution using the equations and following the above strategy. The
objective of this is to obtain good locality properties of the solutions.

The equations (1.10) involve multiscale operators and configurations and to
formulate a main theorem on their solutions we have to modify properly some of
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the definitions in [1]. These are minor modifications connected with the fact that a
natural scale for the domain Ωj\Ωj+\ is the ξ-scale, ξ = L~J', not the Tf-scale. There

are almost no modifications for the spaces Ψj(δ)9 Ψ}(δ, ε) given by (3.18), (3.19)
in [1], but these spaces are important here, so we write the complete definitions
below

Ψ(Bk' > δ) = {(Φ> h) ' Ψ is defined on B^ U ΛQ and has values

in R", h e R", |$(i+) - ^(*-)| < δ for b = (Z>_, &+} C Aj ,

<Ay-ι 001 < δ for 6 C Γω, 6+ G Λ,, 6_ G Λy _ι, * G 5(6-) ,

\2 - 1| < (5, |v(l - (ιA7 W)o A)| < (L^Γ2<52 for x £ Aj ,

|v(|/z|2 - 1)| < <52,7 = 0, 1, ..., *}, (ι/0o = ||ϊ , (1.11)

Ψc(®k; δ, ε) - {(<A + ψ',h + ti) :(ψ,h)e Ψ(Mk', δ), ψ', hf are

defined on B* U /t0 and have values in C", |^7(6+) - ψj(b-)\ < δ for έ C /17 ,

|#(i+) - ^-ι(^)l < 5 for * C Γ^, Z>+ e ΛJ9 Z>_ G ^_ι, x

7 = 0, 1,2, ...,£} . (1.12)

These definitions means simply that the configurations (ψ -\- ψ f , h -j- h') restricted
to ΛJ belong to the spaces (3.18), (3.19) in [1], the only new element is that
they are well matched for neighboring Λ/_ι , Λj. We have added the set ΛQ to the
generating set B^ because of the configuration φ \dΩc on the right-hand side of the

first equation. Notice in (1.2) that ΛQ is one layer of big blocks in ®\ surrounding
the domain ΩI, and we assume that φ restricted to ΛQ satisfies the conditions in
(1.11). It is convenient to define.

Άo = Φ\ΛO (1.13)

We want to consider Eq. (1.10) extended analytically to complex configurations
ψ, h. The extension in ψ is uniquely determined, in h we take a non-unique but
natural extension replacing h by h + h' satisfying the conditions in (1.11), (1.12).
Thus, using the simplified notation by dropping B^, we consider the system of
equations

(-Jg;" + ρ*«ρ + α + v)φ = Q*a(ψ + φ') + v(h + h') + χδ

I ( ψ 2 _ l ) _ l α = 0, (1.14)

where we extend I//Q + I//Q onto ΩI putting it equal to 0. We can formulate now
one of the main results of this paper, the following existence and uniqueness
theorem:
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Proposition 1.1. Let us assume that the coefficients a, λ, v satisfy the inequalities
\ < a < |, 1 ̂  η2λ ^ +00, 0 < v ^ 1. There exist positive constants CQ, c\, K\,
K\c\ ^ CQ, independent of the coefficients in the above intervals, such that if

(φ J

Γψ',h + h1) G Ψc(^kl δ, ε) with δ, ε satisfying 0 < δ ^ ε ^ CQ, δ g c\, vε2 ^
£2, ί/z£π ί/z£re exists a solution of the system of equations (1.14). This solution is
unique in the space of all configurations φ, α satisfying only the restriction |α| <
(LJη)~2CQ on Ωj, j = 1,2, ..., k. It is an analytic function of (ψ -f ψ f , h + h') and
it satisfies the following conditions on the domain Ώy:

\φ - β*OA + f )| < *,δ, |3"ψ| < Kι(LjηΓlδ ,

- (W(*')\ < K.C^ηΓ^δ, 0 < α ̂  1 ,

\δφ(\l/',h')\ <ε + K{δ, where δφ(ψ',hf) = φ(\l/ + \l/', h + h f ) - φ(ψ, h) . (1.15)

solution corresponding to a real (ψ, h) G !P(1B^;5) w reα/ α^zί/ z's α minimum
of the function (1.4), hence it is a solution of the υarίatίonal problem (1.6), or
(1.9). 7ί satisfies the additional conditions

\φ-h\ <Kλ(UηΓl^r> \vφ ' Q*h'\ <Kλ(LJηΓ2δ2 (1.16)
V v

ow Ω7, /or α// /zx satisfying the last two conditions in (1.12).

Let us make some remarks on the above proposition. The conditions (1.15),
(1.16) have been formulated on Ωy, but the bounds improve with increasing
j, so equivalently we may formulate them on BJ(Λj) = Ωj\Ωj+\. The constant
Cα is an absolute constant depending on α only, it follows from the analysis
of [2(a)J that it can be taken as 0(1)-^-. The distance x~ x'\ is taken in

I1 -norm, i.e. \x—x'\=Σμ=ι xμ—x'μ\. The last condition in (1.15) means that
δφ(φ', h') is almost a contraction in ψ'. We denote the unique solution of (1.14)
by

φ(1Άk\ ιA -h ̂  h + h', a, λ, v), a(B^ φ -f ^ A + //, a, A, v) . (1.17)

In the future we will frequently simplify this notation dropping some of its elements,
in simplest form we will write φ^, o^ It is an analytic function of (ψ -f ψ' , h -f h')
defined certainly on the space Ψc(^k\c\, CQ). It can be extended analytically also
with respect to a, λ, v, but this we will study later.

Consider now the special case discussed in the first paper [1], the case where all
ΩJ = Tη. Then the space of configurations (ψ + ψ', h + h'} is the space Ψc

k(δ, ε),
and we can take JJη — 1 in the bounds (1.15), (1.16). The results of Proposition
1.1, important for paper [1], can be formulated as follows:

Corollary 1.1. If (ψ, h) G Ψk(δ), δ ^ c\, then the varίatίonal problem (2.2) in
[1] has exactly one solution in the space of all configurations φ such that
α| < CQ, α = f(|φ| 2 — 1). This solution can be analytically extended onto the
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space Ψc

k(δ, ε), if δ ^ ε ^ c0, vε2 ^ (S2, #ftd the extension has the properties

(φk(φ + <A', A + A7), A H- A 7 ) : ?P£(δ, ε) -> Φ£(l, ε; λ, v) ,

!P£(δ,ε)cΞ£(l,6), (1.18)

if ε + K\δ ^ ε, 2^(5 <; ε, or Mwp/j; if ε + 2K{δ ^ ε.

The above corollary together with the third inequality in (1.15) has been used
extensively in [1],

Proposition 1 . 1 is the fundamental result of the paper, but we prove several other
theorems; some of them play an even more important technical role in the presented
renormalization group method. The rest of the paper is organized in the following
way. We prove Proposition 1.1 in the next two sections, separating the case of
constant configurations at first. In the fourth section we discuss generalizations of

the second variational problem (2.6) in [1] and of the functions ι/j! .

2. Constant Solutions and Effective Potentials

In the next section we will construct an approximate solution of the system (1.14) by
patching up some local solutions. In this section we construct and study these local,
constant solutions. They are obtained by localizing the system to some sufficiently
small subdomains of Tη, approximating the localized configuration (ψ + ι//, h + h')
by constant configurations, and extending the obtained systems back to the whole
lattice. If we localize to a subdomain of Ωj\Ωj+\, then we obtain a system (1.14)
with Ωj = Tη, Ωy+i = 0. It has the form

(-Δ* + aj(VηΓ2QjQj + α + v)φ = aj(VηΓ2Qj(Ψ + f ) + v(A + h') ,

^W> 2 -l)~α = 0. (2.1)

It is natural to multiply it by (LJη)2 and to consider it on the ξ-lattice rather than
on the ^/-lattice, ξ — L~J . We get

(-Aξ + ajQ*Qj + (Ljη)2a + (LJη)2v)φ - ajQ*^ + f ) + (Uη)2v(h + h') ,

d^α^O. (2.2)

We have discussed scaling properties of φ, /, v in [1], in particular see (1.10). The
configurations φ, if/ + 1//, h -f- h' are unchanged by the rescaling, and α, λ, v are
rescaled to (Ljη)2(yL, (LJη)2λ, (LJη)2v. For simplicity, we denote αy and the rescaled
quantities again by α, α, λ, v in this section, but let us write the relations for future
reference,

a = aj9 κ = (LJη)2κk, λ = (L''η)2λk, v = (Vη)2vk , (2.3)

where we have denoted by α^, /£, v^ the quantities in (1.14), as they have been
originally denoted in (1.4). Notice that the system (2.2) is the variational system
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for the problem (2.2) in [1] for k — j. We consider the system (2.2) for constant
configurations ψ + ψ', h -\- h1', and we look for a constant solution </>, α. Later we
will prove a uniqueness theorem which will imply that it is the only solution. We
get the equations

(a + α + v)φ = a(ψ + ι//) + v(h + h') ,

I(</> 2 -l)-I α = 0. (2.4)

Now it is a simple system of algebraic equations for the vector φ and the scalar
α, and we can solve it calculating φ from the first linear equation, and substitut-
ing the solution into the second equation. We write this solution in the following
form:

v - f α

= (φ + f )0 + - - - . - + f

a + v + α

+ V - W + ̂ )o ® (Ά + Ά')o](A + A') (2.5)

The reason is that we would like to use smallness of the basic invariants of the
orthogonal group O(N\ introduced in [1] by (3.37). Let us recall these definitions:

U = VOA + Ά')2, V = (ψ + <//)o (h + h'\ W2 = (h + h')2 - V2 . (2.6)

The functions C7, K, ^F2 are complex valued functions of ψ + ψ', h + /z7, invari-
ant with respect to simultaneous orthogonal transformations of both vectors. We

consider these functions on a domain Ψ^onstίA ε) which is naturally defined by

one-point conditions in (1.11), (1.12), as domains Ψc

COΏSt(^, ε) in [1]. Inspecting
the proofs of the inequalities (3.39), (3.41), (3.43) in [1] we see easily that the
functions satisfy the inequalities with σε replaced by <5, assuming that v <; (|)2.
This can be formulated as the statement

([/, V, W2) : ^onst(,5, e) -^K(\, 2δ) x ΛΓ l, 22- x Jf θ, 56^ (2.7)

holding for ε sufficiently small. We can simplify it using the inequality δ ^ ε, and
we get

(U, V, W2) : Ψc

wnst(δ, ε) ̂  K(l, 8δ) x * l, - x Jf θ, - . (2.8)

The mapping is of course analytic. Now we substitute the solution (2.5) into the
second equation in (2.4). We obtain

Z - α l (Z-α) 2 + v2^Γ2 1

α + v + α 2 (<2 + v + α)2 /

where Z = a(U - l) + v(K- 1).
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Let us replace the functions U, F, W2 by complex variables w, v, w2, and take
z = a(u — 1) -f v(ϋ — 1). After simple algebraic transformations we obtain the fol-
lowing equation:

^
α

/ + α + v 2(0 + v)(λ + 0 + v)
vV). (2.9)

It is a very simple equation for α, its coefficients are bounded on the whole do-
main \ < a < |, 0 < v ^ 1, λ > 0, so for small z, v2w2 it has a unique small
solution. We formulate this obvious conclusion more precisely in the following
lemma.

Lemma 2.1. There exist two absolute positive constants C2, £3 such that if

(u, v, w2) e ̂ (1, c3) x £(1, ^) x AXO, £), fλew Eq. (2.9) λαs α M/H^we solution

in the disc |α < c?2. 77zw solution is an analytic function of z, v2w2 and it satis-
fies the bound

|φ, vV)| ^ 2(|z| -f |vV|) . (2.10)

It is easy to find explicitly some specific constants C2, c^ analyzing carefully
Eq. (2.9), but it is not important. The factor 2 in (2.10) can be replaced by any
number > 1 if 03 is sufficiently small. Now substituting the functions Z, W2 in
place of the variables z, w2 we obtain the function α(Z, v2 W2 ) which is defined

and analytic on any domain Ψ'constί^ ε) sucn tnat ^^ = C3> ^Y (2.8). This function
satisfies Eq. (2.9), and substituting it into the formula (2.5) we obtain a solution of

the system (2.4). The solution is an analytic function on the domains ^constί^ ε),
and it satisfies the bounds

/ S4\

< 2 3(5 + 22δ2 + 56-y < 8(5 by (2.7), assuming 78(5 < 1 ,

T
16(5

< ——, by the second equation in (2.4). (2.11)

Using again the proof of the inequalities (3.39), (3.41) in [1], in particular the
identities (3.40), and the formula (2.5), we obtain

|</>-OA + ι//)o| < 0(l)δ, | 0 - O A + <//)] < 0(1)5 (2.12)

with some absolute constant 0(1), e.g. we can take 0(1) = 80. For real solutions,

i.e. the solutions for real (ψ, h) G Ψconst(δ), we get

\Φ-h\ ^ μ-<Ao| + |<Ao-/*l

< 6— + 3(Vϊ^δ + δ2)— < 12— . (2.13)
v vε v
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Finally, for δφ(ψ' , A') = φ(\l/ + ψ' , A 4- A') - φ(\l/9 h) we have

\δφ(ψ',hf)-ψf ^ IφW + ψ^h + h^-W + ψ'y + lφWM-ψl < 0(1)5,

A')| < If 1 + 0(1)5 < ε + 0(l)<5. (2.14)

These inequalities give a rather crude quantitative meaning to the statement that δφ
is almost a contraction in i/Λ

We gather the obtained results in the following proposition.

Proposition 2.1. There exist positive constants CΊ, £4, C\, independent of a, λ, v
in the intervals ~ < a < f , λ > 0, 0 < v ^ 1, Λ wcA fAflf z/0 < (5 ̂  ε, vε2 ^ £2,

(5 ^ €4 and (if/ + ι// , /z -f- A 7 ) G Ψ^onstC^ ε)> ^e« Eg. (2.4) have a unique solution
in the space of all </>, α satisfying only the restriction |α| < 02. The solution is an

analytic function on Ψc

const(δ, ε)> ana ^ satisfies the bounds

\δφ(\l/',ti)\ < ε + Cιδ. (2.15)

The real solution corresponding to (ψ, h) 6 ^C0nst(<5) satisfies additionally the
bounds

\φ-h\<C\—=, \φ hf\<Cι— (2.16)
•y V V

for h' satisfying the conditions in the definition (1.12).

These results serve as a basis of constructions in the next section, leading to a
proof of Proposition 1.1.

In the future we will need some simple bounds for effective potentials determined
by the function (1.6), i.e. the action (1.4) calculated at the solution of Eq. (1.10). In
[1] we have defined the effective potentials for the localized actions $(j\y;ψ, h) by
the formula (2.25), taking constant configurations ψ ,h. We can localize easily the
function (1.6) and define the effective potentials in the same way. The localization
will be discussed in the next paper; now we simply write the resulting formula for
the effective potential corresponding to a point in Λj. We have.

(Ljη)d~2Vj(φ, h), V,(ψ9 h) = -\ψ — φ\2 H α2 -f -\φ - h\2 , (2.17)
2 2 / 2

where φ, α is the solution of Eq. (2.4), and the coefficients α, /, v are given by
(2.3). We consider here real (ψ, h) £ ΨCOnsϊ(δ\ δ ^ c4, and |A| = 1. Substituting
the solution φ given by (2.5) in this case we obtain

1 a , , , , , , , , ^ , , ,2

2 (a + v -4

a v l a 2 1
+ 7 ^"V0 ~~ ^0 * A) 77[V0 ~ ΨO A)] + τ-7C

(a -\- v -f α)z 2 (a -f- v -f a)z 2/

(a 4- α)2 /» j- /v
-v(l -ψ0 A)-f 7— —ro[fl(M - 1)- α]v(l -ι//o A)

(α + v + α) (α -h v + α)2

1 V - l ) - α ] 2 . (2.18)
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The function α is the solution of Eq. (2.9) with the right-hand side equal to

a

2(a + ,)U + ,

hence it is an analytic function of the invariants \ψ\ — I, v(l — ψo h)9 and its
expansion starts with a linear part equal to the linear part of the above expression.
Thus the function Vj(\l/, h) is also an analytic function of those invariants. Such a
general statement follows from symmetry considerations as in (3.25) in [1], but the
above formulas allow us to calculate explicitly lowest order terms of the expansion
of the function Vj. These are a quadratic term in \ψ\ — 1 and a linear term in
v(l — \l/o h}, and this lowest order part is equal to

Let us recall that the invariants are small for (ψ, h) £ ΨConst(δ), more precisely
\\\l/\ — 1| < δ, |v(l — ΨQ h)\ < δ2, so the lowest order part describes well the func-
tion Vj. Both terms in this part are nonnegative, so we can bound Vj from above
and from below by multiples of the above expression. To have uniform bounds
we must assume additionally that λ is not too small, e.g. λ ^ 1. Notice that here
λ = (L/'η)2λιC9 but by the inductive assumption (H.8) in [1] we have λk = λ^L2k,
and we have assumed /10 ^ 1, hence λ = λoL2j ^ A0 ^ l With this assumption
we have the following proposition.

Proposition 2.2. There exist absolute positive constants c5,γ2,C2,c5 ^ c4, such that
the effective potential Vj(\l/,h) defined by (2.17), or (2.18), satisfies the inequalities

l)2 + v ( l - l A o /0] (2.20)

on the domain ^co

The above inequalities can be proved by using the representation (2.18) in quite
an elementary way, although it is a bit lengthy and awkward. It can also be proved
by using the lowest order part and estimating a remainder in Taylor formula for
Vj. We omit the details. Let us notice that the invariant |^| — 1 can be replaced by

\ψ\2 — 1, both are equivalent on a neighborhood of the unit sphere. We will use
the above proposition, or rather the first inequality in (2.20), in the last paper only,
doing estimates in large field domains.

3. Proof of Proposition 1.1

We prove this theorem in several steps, some of them in a slightly more general
form than needed here, because we will use them in other proofs also. We start
with a local approximation, and then we expand around it.

At first we construct this sufficiently good approximate local solution of Eq.
(1.14). For this purpose we use constant solutions constructed and analyzed in the
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previous section. Take a configuration (φ -f \jj' ,h -f- h'} G Ψc(JΆk'9δ9ε) with (5,ε sat-

isfying 0 < δ ^ β,vε2 ^ δ\δ ^ c4. Then (ψ(y) + ψ'(y),h + h'(y)) G ^C0nst(<5,β)
for y G B^, and a configuration equal to φ(φ(y) + ψ'(y), h + Λ'(>0) on the cube
J(j) for y G /t/ should be such an approximation, if it is smoothed out prop-
erly. It is convenient to use here the continuous space torus instead of the lat-
tice torus Tη. We denote it by T and we identify Tη with the set of points

TΠ(ηZd + η(±,±,. . . , % ) ) . The lattice T$η is the set of points Tn(LJηZd +

Ljη(\, ±, . . . , ±)), /L7 C T$ and Zl(j) for 7 G Λj is the cube of the size Uη with a

center at j;. Denote by Δ(y) the cube of the size LJ+lη with a center at y. The fam-
ily of cubes {Δ(y) : ^ G B^} is a cover of the domain Q\. We take a decomposition
of unity {hy} corresponding to this cover and having the following properties:

hy G Cl(Δ(y)\ hy ^ 0, \dhy < 2(LJηΓl ,

\ddhy\ < 4(LJη)~2, hy — 1 on a neighborhood of j>,

J^ hy = 1 on a neighborhood of Q\ . (3.1)

We consider the above conditions on the continuous space, and d denotes one
of the derivatives dμ. It is easy to construct such a decomposition starting with a

proper function h G C$(] — | , |[) and taking its products, translations and rescalings.
Define a configuration φo by the formulas

φo(x) = PQ(X) — p== for Λ in a neighborhood of ί2ι ,

fa) = Σ,hy(x)φ(y\ φ(y) = φ(φ(y) + ψ'(y), h + h'(y)) for y e Bt ,
y

j Eh(x)φ2(y)γ
\yhy(X)Φ(y))

We consider these functions on the continuous space, and we claim that φ$ restricted
to points of the lattice Ω\ is a good approximation of a solution of Eq. (1.14).
This means that it satisfies the equations with a sufficiently small error, see
Lemma 3.1 below for a precise formulation. Let us define α0,/o on the lattice
Ω\ by the equalities

αo = _(02_ 1), (33)

/o = (~^ςiη + Q*aQ + αo + v)Φo — Q*a(Ψ + ^7) — v(Λ H- /z ;) — XdΩιΔη(ψo H- i/^ό)

From the definition (3.2) we obtain φ$ — p\, hence

V-; λ,Λt , ^ Y-, / Λαo — z_s"y^(Φ (y) ~ 1) = z^hy^y) - (3-4)

We would like to prove that </>o,αo satisfy the conditions (1.15), (1.16) with K\
replaced by some constant, and to estimate /Q. A bound for α0 is simplest to get
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using the above equality and the third inequality in (2.15). For x G A(y),y G Λj
we have

Λ/Γ2δ , (3.5)
y'

where we have used the fact that α(>>) in (3.4) is connected with α in Proposition
2.1 by the scaling (2.3). The sum in the above inequality is restricted to y' such
that A(y') touches A(y), which may include some points y' G Λj-\9 and then we

get the additional factor L2. To obtain remaining bounds we have to start with
some preliminary ones. We would like to estimate ΦQ(X) — φ(y) on A(y). At first
we consider

φ(x) - φ(y) = x G Δ(y) . (3.6)

From the second inequality in (2.15) and the conditions on ψ -j- ψf in the definitions
(1.11), (1.12) we obtain \φ(y') - φ(y)\ < 2(C\ + d)δ. Notice also that derivatives
of φ(x) can be represented by the above formula with corresponding derivatives of
hvι. Thus

\φ(x) - φ(y)\ < 2(d + d)δ, \dφ\ < 4 2d(d + d)(LJηΓλδ ,

15301 < 8 2d(d + d}(LjηΓ2δ on JQ;), y G A} .

Consider next the denominator in (3.2). We have

Φ2(*)= Σ flyι(x)hy2(x)φ(yι) φ(^2)

(3.7)

- Σ + + 1, hence

- 1| < 2Cr

1
3CΊ<5,

for (5 sufficiently small, where we have used the assumption on λ in Proposition 1.1.

The number φ2(x) is close to 1. So y φ2(x) is close to 1, and in particular

Similarly for p^ we have

Po are close to 1, and

?αo| < 2Cι

(3.8)

= 2Cιδ, hence PQ and

-1 <2C,«5. (3.9)

It is also easy to see that the norms \φ(x)\ are close to 1. Indeed we can write φ(ψ +

\j/',h + /z7) = φ(\j/,h) -f δφ(ψf,hr), as in (1.15), where the two configurations on the

right-hand side are given by the same formula in (3.2) as φ, only φ(y) is replaced
by φ(ψ(y),h) and δφ(φ'(y),h'(y)) correspondingly. From the last inequality in

(2.15) we have \δφ\ < ε + Cκ5, and from (3.8) we have \\φ(\lι,h)\ - 1| < 3Q5,
hence

(3.10)
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In particular the norms \φ(x)\ are arbitrarily close to 1 for ε,δ sufficiently small.
From (3.7)-(3.10) and the identity

φo(x) - φ(y) = (po(x) - 1) r- ί \/Φ2(x) - 1 j ^ + (φ(x) - Φ(y)) •>

we obtain the bound

\φo(x)- φ(y)\ < 10Cι<5 + 2(Cι + d)δ = O(l)δ on A(y), hence also

\(QjΦo)(y) - Φ(y)\ < 0(l)δ for y e Λj , (3.11)

assuming that ε, δ are small enough. To estimate derivatives of φo we use (3.7),
and we have to estimate dpo additionally. We have

dp0 = — ΣShyΦ2W = — ΣShy~^(y\ hence
£pQ y pQ y A

\dp0\ < 4 2d(V-lηΓld I δ ^ 4.2dLd(L'ηΓlδ on A(y) . (3.12)

Differentiating φ0 we get

\dφQ\ < O(l)(LJη)~lδ on A(y) by (3.7)-(3.12) , (3.13)

assuming that ε, δ are sufficiently small. We have established the bounds for the con-
tinuous space derivatives but obviously the same bounds hold for lattice derivatives.
We can estimate in the same way second order derivatives, and we obtain

\ddpQ\9 \8dφQ\ < 0(l)(LJη)'2δ on A(y). (3.14)

The constants 0(1) in all the above bounds are determined in a simple way by
C\,L,d and some absolute constants, like in (3.11) or (3.12).

To estimate the function fQ we consider at first the expression

MX) + (A

= aj(LJηΓ2[(QjφQ)(y) - (ψ(y) + ιj,'(y))] + (*o(x) + v)φQ(x) - v(h

= (L>ηΓ2{aj[φ(y) - (ψ(y) + ψ'(y))] + ((LJη)2*(y) + (Vη)2v)φ(y)

- (Vη)2v(h + h'(y))} + α7(I^)-2[(β^o)(^) - Φ(y)]

- oc(y))φ0(x) + (α(^) + v)(00(^) - Φ(y)) on

(3.15)

The expression in the curly brackets is equal to 0 by the first equation in (2.4),
taking into account the rescalings (2.3). The remaining expressions on the right-
hand side can be estimated by O(\)(U η)~2 δ using (3.11), (3.5), (2.15). Consider
the second and third terms on the left-hand side of (3.15). For x not in dQ\ their
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sum is equal to (Aηφo)(x) and it follows from (3.14) that it can be estimated by
O(\)(Ljη)~2δ. If x G dΩ\9 then the sum is equal to

)(I/SQ(X') + i/toOO — φo(x))] ("n.n." means nearest neighbor.)

The derivatives (d1 φ0 )((*,*'}) are bounded by O(l)L~lδ9 from (3.13). For the
second differences above we have

- Φ(y))

+ OM O - <M*')) + OAίOO - Άό(*')),

and using (3.11), the second inequality (2.15), and the conditions in the definitions
(1.11), (1.12) we can bound them by O(\)δ. Thus the sum for x G dΩ\ can be
bounded by O(l)(Lη)~2δ, where 0(1) is again a simple function of C\,L,d and
absolute numbers. Quite generally then the sum of the second and third terms on
the left hand side of (3.15) can be bounded by O(l)(L> η)~2 δ on Δ(y\ y G Λj.
Combining all the above bounds we obtain finally

|/o| < 0(l)(VηΓ2δ on Δ(y\ y G Λj .

This bound gives a precise meaning to the statement that φQ is a good approximation
of a solution of Eq. (1.14). The function f0 can be considered as an error of the
approximation, and this error is small for δ small enough. We have obtained most
of the inequalities in (1.15) for φQ, more precisely the second, the fourth and the
fifth. The fourth holds in a stronger form, for arbitrary second order derivatives by
(3.14). This implies that the first order derivatives satisfy the Lipschitz condition,
i.e. the third inequality with α = 0 and Cα = 1. From this we can easily get the
third inequality for an arbitrary α, 0 ^ α ^ 1, and Cα = 1. The first and the last
inequalities follow from (3.11) and (2.15). Consider now a real φo, i.e. we take
φo(ψ,h). From (3.8), (3.9), (3.11) and (2.16) we have

y

Γl-^= ^ 2LCι(Ljη)~l 4= on Δ(y\ and

Λ/V V/V

h'(y)\ ^ \(φ»(x) - φ(y» ti(y)\ -h \φ(y) ti(y)\

< 0(1)5 (LjηΓ2~ + Cλ(lJηΓ2— ^ O(l)(LjηΓ2— .
vε v v

Thus we have proved the following lemma.

Lemma 3.1. The functions φo>αo?./o defined by (3.2), (3.3) are analytic functions
of (ψ + ψf,h + hf) on any space Ψc(JBklδ,ε) and <5,ε satisfying the assumptions
of Prop o sit on 2.1, ε sufficiently small There exists a constant Cτ> depending on
Ci, L and d only, and such that ΦQ,UO satisfy the conditions (1.15), (1.16) of
Proposition 1.1 with K\ replaced by €3. The function fo satisfies the condition

|/o| < C3(UηΓ2δ on Δ(y\ y G Λj . (3.16)
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We have finished the first step of the proof of Proposition 1.1, the construc-
tion of the approximate solution </>o?αo Let us notice that these functions have
one additional very important property, they are almost local functions of (ψ + ψ',
h + h'). More precisely values ΦQ(X), αo(jc) for x £ Δ(y) depend on the configura-
tions (\l/ -f \l/',h + h') restricted to the union of all Δ(y') touching Δ(y), which we
denote by Δ(y). This property is crucial for constructions of various localization
expansions in the future.

In the inequalities above we have been using systematically the scaling factors
given by powers of LJη. It is convenient at this point to introduce appropriate
definitions and notations. We define

I/I, = max sup (Vη)σ\f(x)\ ,

|/|(α),σ = max sup sup sup V_ " |/(*) - f(x')\ . (3.17)_
J

We assume here that the generating set B^ is given and fixed. If there are more
generating sets, then we have to introduce an additional subscript indicating which
set we use in the above definitions. The above norms depend on powers of the
scaling factor iJη, and in all statements below we keep track of scaling properties
by formulating them in terms of these norms.

A next step is to write functions φ,α as perturbations of 0o>#o> and to write
equations for the perturbations. We write

φ = φo + δφ, α = α0 + <5α, (3.18)

and we take ψ -f \j/f + δψ in Eq. (1.14), to cover some other applications discussed
later. The configurations δψ are defined on B^, have values in <CN, and we assume
that they are small. Substituting the above functions into Eq. (1.14), and using Eq.
(3.3) we obtain the following system:

(-Δ%* -f Q*aQ + v + α0 + δ<x)δφ -f δaφ0 + /0 = Q*aδψ ,

^(2φ0 δφ + (δφ)2) - τ^α = 0 , (3.19)
Z A

where we have included the configuration δψ0 into the definition (3.3) of the func-
tion To? together with \l/$ + Ψ'Q. We slightly generalize again the above system writing
/i instead of — fo and considering f\ as another independent functional variable.
We replace also 0 by 4αι on the right-hand side of the second equation. Thus we
consider the system

(-Δ%* + β*αβ + v + α0 -h δa)δφ = Q*aδψ - (5αφ0 + /i ,

l-(2φ, - δφ + (δφ}2) - -λδκ = iαi . (3.20)

We look for a solution δφ, δu of this system. Such a solution depends on configu-
rations δι^,0o?^o?/ι?αι?

 and we now assume that they are all independent complex
functional variables. Let us define a space of these configurations determined by
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positive constants <5o,<5ι by the following conditions:

\δψ\ < δ\9 — < \φo < —, \φQ — 1| < (5o, |δ^(/>o|ι < <5o,

\Δηφo\2 < δ0, |α0|2 < δQ, \f\\2 < δ\9 |αι|2 < δ\ . (3.21)

The configurations φo,tto,f\ — ~fo constructed above belong to the space with
δo = δ\ = Qδ for ε sufficiently small. In the rest of this section we study mainly
the system of equations (3.20). Our basic goal is to prove an existence and unique-
ness theorem for solutions of the system. We obtain such results, under appropriate
assumptions, and they are formulated in Proposition 3.1 below. Let us start with
an analysis of the first equation in the system (3.20). It is linear in δφ, and the
corresponding linear operator with α0 4- δoc = 0 has been thoroughly investigated in
the paper [2(b)], Sect. B, in particular see Proposition 2.1. It is a positive opera-
tor and its inverse is bounded in proper scaled norms (3.17), see (2.57) in [2(b)].
Therefore the inverse to the linear operator in (3.20) exists also for α = α0 4- δoc
sufficiently small, and it can be constructed by the usual Neumann series expan-
sion

G(oc) = (-Δ%* + 2*fl2 + v + (χ)~1 = G ~ GαG(α)

= Σ,G(-<*G)n

9 where G = G(0). (3.22)
Λ=0

Using the bounds (2.57) in [2(b)] we can prove easily that there exists a constant
γ\ such that the series is convergent in all the norms occurring in the bounds, if
|α|2 < γ\. Then the operator G(α) is an analytic function of α on this domain, and
it satisfies the bounds (2.57) in [2(b)j with the constant multiplied by 2. We denote
this constant by BQ here. Later on we will need even more detailed and precise
bounds, so we postpone explanations of what is written above to a proper place.
Assuming smallness of α0 and <5α, for example assuming <50 ^ ^yι, |<5α| 2 < \y\,
we obtain that the first equation in (3.20) has a unique solution in δφ, and this
solution can be written in the form

δφ = G(α0 + δot)Q*aδψ - G(α0 + δa)φQδoί 4- G(α0 + <5α)/i . (3.23)

We substitute this solution into the second equation in (3.20), and we get

ΦQ G(α0 4- δa)φQδa - -<5α 4- φo G(α0 4- δa)Q*aδψ 4- ΦQ G(α0 4- <5α)/i
A

δa)Q*aδψ + G(α0 + δα)/ι )2 - (G(α0

+ G(α0 + δα)/ι) G(α0 + δa)φϋδa + (G(α0 + δa)φϋδaf = «ι . (3.24)
2 A

It is a non-linear equation for <5α, with διl/,φo9aiQ,fι,(x,ι in the space (3.21), where
<5o,<5ι are sufficiently small. To understand a structure of this equation we expand
the operator G(α0 4- <5α) up to the second order in <5α using the identity (3.22). We
have

G(α0 + <5α) = G(α0) - G(α0)^αG(α0) 4- G(α0)(5αG(α0)^αG(αo + <5α) , (3.25)
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and we substitute this expansion into Eq. (3.24). We write the obtained equation
in the following form:

= F0. (3.26)

The first term on the left-hand side is the linear part of Eq. (3.24), and it is given
by

=φ0 G(a0)φ0δa + <5α + (φ0 + G(a0)Q*aδψ + G(α0)/ι)
A

(SίA + G(α0)(SαG(αo)/i)

G(αo)/ι) GfaWoδa . (3.27)

The second term F2(^α) is a sum of terms which are at least of second order in
<5α. We can write it explicitly, but a resulting expression is too long, we need only
its general properties. It is a sum of terms which have one of the following two
forms:

φo G(α0)/, G(αo)/ G(α0)ί7 (3.28)

multiplied by ±1, or ±^, where f,g are equal to one of the functions ob-
tained by applying the operators /,<5αG(α0), <5αG(α0)<5αG(αo + <5α) to the functions
Q*aδψ,f\,φQδtt. The terms must satisfy the additional restriction that there are
at least two factors δa. Let us assume that δ\,y\ are sufficiently small, so that
3#o δ\ ^ 1, #0?! ^ I- Inspecting the function Fι(δtt) and using the bounds (2.57)
in [2(b)] we get easily the following bound:

The function F2(<5α) is an analytic function of α0,δα, and also a second order poly-
nomial in φo,δ\l/,fι. Finally, the right-hand side F0 in (3.26) is obtained by taking
the terms with <5α = 0 in (3.24), and it is given by

<ty + G(αo)/ι) + (G(*o)Q* aδψ + G(α0)/ι)2 - . (3.29)

We obtain easily the bound \FQ < \B§\ δ\ + \(B$\ ^i)2 + b\ ^ 2B0 f <Sι + δι <
6B()δ\. The function FQ is an analytic function of αo, and a second order polynomial
in φo,δ\l/9fι9θLι.

Consider Eq. (3.26). It follows from the properties of F2,Fo that its solvability
depends entirely on properties of the operator GQ. We write this operator as

G0δa = φQ G(α0)<Mα+τ<5α + ^ι<5α, (3.30)
Λ

and the operator RI is small. Indeed, from (3.27) we have

\Rιδ*\ ^ -i-^o

The operator ΦQ G(αo)Φo + 7 is not small, but i may be arbitrarily small, or even
0 in the limiting case λ = +00, and φo G(αo)φo is not well separated from 0. In
fact this operator is close to G(αo), the difference being small for <5o small, and the
inverse to the operator G(αo) contains the Laplace operator on the ^-lattice, which
is large for k large. Thus we expect that the inverse G^1 is not bounded uniformly
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in k. This is a problem, but a closer inspection of terms in Eq. (3.26) shows that
they are quite regular, as is clear from (3.28). In particular we may apply the
Laplace operator to them, and small terms remain still small. The Laplace operator
is a leading term in G^"1, so applying G^1 to Eq. (3.26), we should obtain an
equation to which a simple form of an inverse mapping theorem could be applied.
We shall now explain in detail the above statements, and discuss corresponding
bounds. We study first the application of the operator G~I(UQ) to expressions of
the form (3.28). Let us write a general formula for the Laplace operator of a product
of two functions. Dropping the superscript η we have

(Afg)(x) = (Af)(x)g(x) + £ df(b)dg(b) + f(x)(Ag)(x), (3.31)
best(x)

where st(x) = {b = {&_,&+) C Γ: 6_ = jc}. The same formula holds for the oper-
ator with Dirichlet boundary conditions on a set Ω; we have to put at least one of
the functions f,g equal to 0 on Ωc, and take x € Ω. It is convenient to write the
above formula in an operator form. Introduce a symmetrized product of gradients
of two functions as

(V/ . Vg)(x) = \ Σ d f ( b ) d g ( b ) , (3.32)
zbest(x)

then we have
Δfg = (Af)g + 2Vf Vg + f ( A g ) . (3.33)

Let us apply the operator G~I(UQ) to the expression φo G(αo)/ The function
G(OO)/ is extended naturally by 0 on Ω^, so we have

G-\a0)(φ0 G(α0)/) = (-Δφ0) G(α0)/ -2Vφo VG(«0)/

+Q*aQ(φo G(«o)/) - Φϋ Q*aQG(a0)f + φ0 f .

Using the assumptions (3.21) and the bounds for G(α0) we have

|G-'(αo)(Φo G(α0)/|2 g Mol/b + 2dδ0B0\f\2 + ^dδoB0\f\2 + \\f\2

^ 2I/la, for δo sufficiently small.

Similarly for the expression G(«o)/ G(αo)g( we have

= (-/IG(α0)/) G(a0)g - 2VG(α0)/ VG(α0)0

- G(α0)/ Q*aQG(^)g + G(α0)/ g ,

hence \G'\^}(G(^}f G(a0)g\2 ^ (B2

0 + 2dB2

0 + ^dB2

0+B0)\f\2\g\2

ϊ 5dBl\f\2\g\2 .

Now let us recall the structure of the function F2((5α) described after (3.28). From
the description and the above bounds it follows easily that there exists an absolute
constant 0(1) such that

o)^ ^ O(l)dB2

0\δa\2

2 , (3.34)
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if δo,δ\,yι are sufficiently small. For the function F0 given by (3.29) we obtain

5δ
l
 + 5dB

2
 δ + dL + + δ δ

{
 < 5dLδ

{
 + \6dB

2
δ\
2

< 6dLδι, i f δ i is sufficiently small, e.g. IβdBfa ^ 1 . (3.35)

For the operator RI we obtain

£ 2QdB*δι\δ*\2 . (3.36)

Finally, for the most important first two terms on the right-hand side of (3.30) we
have

= (—Zl0o) G(αo)0o<5# ~ 2V0o * VG(αo)0o<5# + [Q*aQ>Φo]

H- (0o ~~ l)<5α H—~δ& + 5α H- — (—ΔQ + Q*aQ H~ v)^α

Q! +β*αβ + v)(5α, (3.37)

where the last equality defines the operator R2, and the symbol [A,B] denotes the
commutator of two operators, i.e. [A, B] = AB — BA. The operator R2 is small, it
satisfies the bound

2 . (3.38)

We have used here, as in (3.35), the assumption λη2 ^ 1. We have also assumed
that $o is not small, e.g. $o ^ 4.

The above analysis shows that applying the operator G-1(αo) to Eq. (3.26), we
obtain the equivalent equation

<5α + T(-^Ω! + Q*aQ + v)^α + R2δa + G~l(aQ)R}δoc -f G-^oo^ίδα)

= G-1(α0)Fo, (3.39)

with terms satisfying the bounds (3.38), (3.36), (3.34), (3.35) correspondingly. We
have yet to study the first two linear operators above, i.e. the operator

1 + j(~< + Q*aQ + v) = \(~Δ%λ + β*αβ + v + λ) = \G~\λ). (3.40)

It is obviously an invertible operator and its inverse is equal to λG(λ). The inverse
has the same properties as the operators G(α), in particular it is bounded in the
same scaled supremum norms (3.17), the only problem is uniform boundedness in



626 T. Balaban

λ. This is actually very simple if λη2 is large enough, e.g. iff λη2 ^ 8dL2 + 2. Then
we can write the operator (3.40) in the rescaled form

and we can consider it as a small perturbation of the identity. Indeed, the norm
of the second operator above in the space with the norm | |2 can be bounded by
-y~2(4dL2 + \L~2 -hL~2) < y2(4dL2 + 1) ̂  |, hence the inverse operator is given

by the convergent Neumann series, and its norm in the same space can be bounded
by 2. The norm of the operator λG(λ) is bounded uniformly for all positive λ, i.e.
we have

\λG(λ)f\2 ^ 0(l)\f\2 (3.41)

with a constant 0(1) depending on d only, and independent of λ > 0. We need
this bound for λ ^ η~2, and we will prove it later in the next paper, together
with its localization expansion. A simple proof can be given using the localization.
Now we apply the inverse operator to Eq. (3.39) and we obtain the following
equation:

<5α + λG(λ)R2δa

= λG(λ)G-l(ao)Fo. (3.42)

It can be written in the simpler form,

δot + Hiδa +H2(δot) = HQ , (3.43)

with an obvious identification of the terms. Let us summarize basic properties
of these terms. We have shown that //i(5α,//2(<5α),//o are analytic functions of
δ\l/,φQ,<XQ,f\,oiι on domains (3.21) with δo.δi sufficiently small, and of <5α on the
domain {|<5α|2 < \y\}. There exists a positive constant B\, depending on BQ,d,L
only (hence on d,L only), such that these functions satisfy the bounds

#ιδα|2 ^ 5,(<50 + W*2, \H2(δa)\2 g 5ιHl, \H0 2 < Brfi . (3.44)

It is easy now to analyze Eq. (3.43) for small <5α. The function of δa on the left-hand
side defines an invertible mapping on a neighborhood of 0, because the sum of the
second and third terms defines a contractive mapping on such a neighborhood. More
precisely it is a contraction on the domain {|(5α|2 < c} with a contraction factor | if

δ\ -he) ^ ^. Then there exists the inverse mapping defined on the domain

o \2 < \cτ °r equivalently Eq. (3.43) has a unique solution δoc in {|<5α|2 < c} if
2 < \c. This solution can be constructed as a limit of a sequence of successive

approximations, so it is an analytic function of δ\l/,φQ,oiQ,fι,ctι, and it satisfies the
bound \δ(x,\2 ^ 2\Ho\2. Proofs of the above statements are quite simple and standard;
they can be found in many places. We formulate the conclusions in the lemma.

Lemma 3.2. Consider Eq. (3.43) and assume that its terms are analytic functions
of δ\l/,φQ,θLQ,f\,(x,ι and defined on the domains (3.21) for δo,δ\ sufficiently small,
and of δa defined on the domain {\δa 2 < \Ί\}- Assume further that they satisfy
the bounds (3.44). Then there exists a positive small constant c§ such, that if
OQ ^ C6, 2B\ δ\ ^ C6, then Eq. (3.43) has a unique solution δa in the domain
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{|<5α 2 < c6}, ana ^e solution is an analytic function ofδ\l/,φQ9<x.Q,fι,(x,\ satisfying
the bound

|δα|2 ^ 2|//o|2 < 2Bιδι . (3.45)

The above lemma completes the analysis of Eq. (3.20). Under the assumptions
of the lemma on δo, δ\ this system of equations has a unique solution 50, δoc in the
space of all configurations satisfying only the condition \δa\2 < c§. The solution c)α
satisfies (3.45), and the solution δφ is given by the formula (3.23), therefore it has
regularity properties determined by the properties of G(α) discussed after (3.22). In
particular we have

\δφ\ ^ 5 0 |

\ff*δφ\ι

<4£0£ι<3ι, (3.46)

where 0 < α ^ 1, and Cα is a universal constant depending on α and J only, for
example it may be chosen in the form O(l)(x.~d~l. We formulate the results of this
discussion in the following proposition.

Proposition 3.1. There exist positive constants c^K2 depending on d,L only, such
that for <5^,φo>αo»/i»αι in a domain (3.21) with δ$ rg c^K2δ\ :g c6 ί/ze system
of equations (3.20) has a unique solution in the space of all configurations δφ,δa
satisfying the restriction \δθί 2 < c$ only. The solution is an analytic function of
(5ι//,φo,αo,/ι,αι satisfying the bounds

\δφ\ < K 2 δ l 9 \ f f l δ φ \ l < K2δι9\dηδφ\(Λ)t2-* < CΛK2δι for 0 < α ̂  1 ,

<K2δl9\δx\2 <K2δ{. (3.47)

This proposition is one of the main technical results of the paper. It will be
used several times in the future, now we apply it to conclude the proof of Propo-
sition 1.1. We have constructed the approximate solution </>o,αo by the formulas
(3.2), (3.3), with properties and bounds described in Lemma 3.1. The corrections
δφ,δ% satisfy Eq. (3.19) with δψ = 0 and /o given by the second formula in (3.3),
hence Eq. (3.20) with δψ = 0,/ι = — /o and αi = 0. By Lemma 3.1 the configura-
tions δψ = 0, (/>o,α0,/ι = — /o,αι = 0 belong to the domain (3.21) with δQ — C^δ,
δι — C^δ if δ, ε satisfy the assumptions of Proposition 2.1, i.e. 0 < δ rg ε, vε2 ^ δ2,
δ ^ 04, and ε is sufficiently small. By Proposition 3.1 Eq. (3.20) in this case have
a unique solution if C^δ ^ c^K2C^δ ^ c^. The uniqueness holds on the space of
all configurations δφ,δ% satisfying the only restriction |<5α|2 < c$. This solution de-
termines a solution of the basic equations (1.14) by the formulas (3.18). It is easy
to see that the constructed solution of Eq. (1.14) is unique in the space of config-
urations φ,oc satisfying the only restriction |α 2 < ^c^, assuming that C^δ g ^c^.

Indeed, if φ, α satisfies (1.14) and |α 2 < \c^ then δφ = φ — φQ, δa — α - αo sat-

isfies the system (3.20), and \δa.\2 ^ oc\2 + |αo 2 < \c§ + C^δ ^ eg. Such a so-

lution is unique. Let us assume that ^c6 is smaller than the restriction on ε,
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and let us take c0 = \c^c\ = min{c4,(2K2 + l)~1C3~
1c6}. If δ,ε satisfy the con-

ditions 0 < δ ^ ε ^ co,vε2 ^ δ2,δ ^ c\, then the assumptions of both Proposi-
tions 2.1 and 3.1 are satisfied, and we have constructed the solution of the system
(1.14), which is unique in the space of configurations φ, α satisfying the restriction
|α|2 < CG By Lemma 3.1 and (3.47) this solution satisfies the bounds (1.15), (1.16)
of Proposition 1.1 with the constant K\ replaced by (2K2 + 1)0?. In fact it satisfies
all of them, except the last one in (1.15), with the constant (K2 4- 1)C3. The so-
lution is also an analytic function of (ψ + ψf,h + hf). We take Kv = (2K2 + 1)C3.
It follows from the above that we have proved all the statements of Proposition
1.1, except the one on the relation of real solutions to solutions of the variational
problem (1.6) or (1.9). A real solution, i.e. the solution corresponding to a real
configuration (ψ,h) £ Ψ(δ), is a critical point of the function (1.4) or (1.7), and
the only one in the domain {(</>, α) : |α 2 < CQ}. The solution α is obviously a max-
imum of the function (1.7) in α, so we have to show that φ is a minimum of (1.4).
Let us expand the function (1.4) around the solution φ9 Le. substitute φ + δφ in
the place of φ in (1.4), taking δφ = 0 on Ωc

λ. We get

A(ψ,φ + δφ) = A(ψ,φ) + (δφ,(-Δ^ -f Q*aQ + v + α + λφ <8> φ)δφ)

(3.48)

where we have used the variational equations (1.10). The quadratic form in δφ
above is positive definite, so φ is a minimum of the function (1.4). Notice that it
is the only critical point of (1.4) in the domain {φ : |f (|</>|2 — l)\2 < CQ}. Thus we
have completed the proof of Proposition 1.1.

Let us denote the solution of Eq. (1.14) by φki&k f°r simplicity. It is an ana-
lytic function of (ψ -f ψ',h -f hf) on ΨC(CI,CQ), and in the future we will need its
expansions around some fixed configurations. We write

φk(\l/ -f ψ + δψ,h + hf) = φk(ψ + ψf,h + ti) + δφk(δ\l/),δ\l/ = 0 on Ω\ ,

ψf + δψ,h + A 7 ) - <*k(ψ 4- ψ',h + h') + δκk(δψ) , (3.49)

and we obtain that δφk,δak satisfy Eq. (3.20) with φo = Φk(Ψ + ψ',h + h'),otQ =
<x,k(ψ + ψ',h + h'),f\ =0,αι =0. The configurations (5^,^,^,0,0 belong to the
domain (3.21) if \δψ\ < δ\,K\c\ ^ ^o, in particular if <50 = c6, because K\c\ ^ c6.
If K2δ\ ^ C6, then the assumptions of Proposition 3.1 are satisfied and we obtain
all the conclusions of this theorem. For future reference we formulate the above in
the following corollary.

Corollary 3.1. Under the assumptions of Proposition 1.1 the functions φk(Ψ 4-
ψ' -f δψ,h -h h'\ oLk(\l/ + ψf + δψ,h + hf) are analytic functions of (φ + ι//,A -f h1)
on the domains Ψc(δ,ε), and of δψ on neighborhoods of 0. They have ana-
lytic extensions in δψ onto the domains {\δ\j/\ < δ\} with K2δ\ ^ c$. The func-
tions δφk,δak defined by (3.49) satisfy Eq. (3.20) with φo = φk(ψ + ψ',h -h/z;),
UQ — %k(Ψ + Ψ', h + h'\ f\ = 0, αi = 0, they are analytic functions of δψ, φk, α^,
and they satisfy the bounds (3.47).

In the above constructions and proofs we have used extensively the special form
of the action (1.4), most importantly the fact that the third term is the ZΛnorm
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of \φ\2 - 1. This leads to the function (1.7) and to especially simple variational
equations (1.10). This is not really important and we can develop the whole theory
and obtain the same results for more general actions. We can also apply other
methods of analyzing the problem. Now we would like to sketch very briefly an
idea of another method applied to some class of actions generalizing (1.4). We
consider a simple generalization obtained by replacing the third term on the right-
hand side of (1.4) by a term with a more general potential function. We want to
preserve the invariance with respect to the orthogonal group, and to have the set
of minima equal to the unit sphere, hence we assume that the potential has the
form V(\φ\2 - 1), where V(z) is an analytic function on a neighborhood of the real
axis, whose expansion at z — 0 starts with a second order term. We have to assume
also that this term dominates the rest of the expansion on some bounded set. We
consider the following action:

ψ - Qφ)} + \

-l),l} + ^v | | (/)-/ Z i | 2 . (3.50)

We would like to cover again the case when the derivative K"(0) may be large. We
follow at first the steps of the previous proof: we consider the constant configurations
case, and then we construct the approximate solution φo. The variational equations
in this case have again the form (1.10), but the second equation is replaced by the
equation α = V(\φ\2 — 1), and we define correspondingly the configurations /o,αo>
i.e. αo = Vf(\φo\2 — 1) and /o by the second equation in (3.3). We expand Ak(ψ,φ)
around φo, and we get

- 1, 2φv δφ + (δφ)2),(2φo δφ + \δφ\2)2),

where
i

F2(M,ι?) = fdt(l - t)V"(u + tυ) .
o

We introduce variables χ, φ' such that δφ = φoχ -+- φ', % is real valued, φf has values
in JR.N and φ0 Φ' = 0. Then 2φ0 δφ + \δφ\2 = 2\φQ\2(χ + ±χ2) + \φ'\2, and we

make a non-linear change of variables χ = χ ( χ ' , φ ' ) such that 2\φo 2(χ + ^#2) +
\φ'\2 = 2\φQ\2χ'. From this we get

χ = ( 1 + 2χ' - Ά] 2 - 1 = χ7 + A2(/, \φ'\2) ,
V \Φo J

where h2(χf,\φf 2) is an analytic function of at least second order on a neighbor-
hood of χ' = 0, φf = 0. This change of variables yields the following form of the
expansion:

Φ" + Φoh2(χ', \Φ'\2),f0] + (ΦM' + Φ' + Φ0h2(χ', \Φ'\2),

' + Φ0h2(χ', \φ'\2))) + 2(V2(\φ0\
2 - \,2\φQ\χ'), \φ0\

4χ'2).
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The function V2(\φQ\2 - l,2\φQ\χ') has values close to ^K"(0) for \φQ

 2 - 1 and
2\φQ\χ' small enough, a bit more precisely we assume

\V2(\φ, 2 - l,2|00|χ') - V"(Q)\ ^ 0(K"(0))(||0o|2 ~ 1 + l / l )

'|), F"(O)>O.

We make a last change of variables, the simple rescaling χ' = λ~ϊχ, where
Λ = 2K"(0). It is easy to see that we obtain an action in χ, φ'9 whose second
order terms determine a quadratic form with a positive operator. An inverse to
this operator has properties similar to properties of G(α0). The remaining terms are
small in comparison with the quadratic form, so that their contributions to vari-
ational equations can be treated as small perturbations. These equations can be
solved then again by an application of the inverse mapping theorem. A proof based
on the above ideas is as straightforward as the proof given before, but there are
more technical details to work out. Nevertheless it was important to present these
ideas to give a right perspective on our assumptions on the class of models consid-
ered here. We will also use them in the future discussing the first renormalization
transformation.

4. Functions Connecting Minimal Solutions for Two Generating Sets

In this section we study generalizations of the second variational problem (2.6) in
[1]. We consider now two generating sets, one after j steps denoted by 1B7, and
one after k steps denoted by ΊB'k. We may identify them with the corresponding
sequences of domains {Ω\,...,Ωj} and {Ω'λ,...,Ω'k}, j rg k, considered in */-scale.
We assume that

ΩI C Ω'j, . . . , ΩJ C Ω'j and we write B7 -< Bj> . (4.1)

Let us stress that in the future we will need this geometric setting in full generality
described above. We will comment on some applications later, after formulating
Proposition 4.1 on the variational problems. To each generating set there corre-
sponds a renormalization transformation which is a composition of the one-step
renormalization transformations (1.11) in [1] such that blocks of the transforma-
tions of the nth step are contained in the corresponding nth domain. We assume
here, as we have stated in Sect. 1 that the only changes of constants determin-
ing the transformations are given by scaling transformations, more precisely in
the 77th step transformations we put the constant βLn^d~2^ instead of βLd~2 in
(1.11) [1]. This composition is an integral transformation with a Gaussian ker-
nel, and the quadratic form defining this kernel is equal to (1.5) multiplied by
βLk(d~2\ if A: is a number of steps. Consider the transformation determined by
By. It is clear by (4.1) that we have to perform some additional transformations
to get the one determined by JR'k. We take the composition of those additional
transformations, and we would like to understand its structure and properties. We
need them to formulate and investigate the generalization of the problem (2.6)
in [1].
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To study the compositions we start with the following basic formula:
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-;U|(?-(ρ«/θωlΊexp -r Σ B(x)\ψ(x) - f ( x ) \ 2

= const, exp

= const, exp

-inf-A\θ-(Qψ)(y)\2

Φ 1 2

--C\θ

B(x)\ψ(x) - f(x)

L~d (βsrh)ω i
(4.2)

where the constant is equal to the integral above calculated for θ = 0, / = 0.
It can be calculated explicitly in terms of the constants A,B(x), but it is not
important; it will be a part of an overall normalization constant for the composition
we want to study. The first equality above is quite general, it holds for any Gaus-
sian integral with a linear form added to the quadratic form. The second equality is
obtained by calculating and substituting the minimum of the expression in the curly
brackets. Let us now discuss applications of this formula. A composition of renor-
malization transformations from the n + 1st and n + 2nd steps is obtained by tak-
ing A = 0n+2*d-Va9 B(x) = #,<"+1*/-2>a, θ = fa+2(y), ψ = ψn+ι,f = QΨn, and
a result is a transformation given by the kernel (4.2) with C — βL(w+2)(ΰ?~2)02,
«2 = -jτ~\ It is clear that composing transformations from r steps we obtain a
kernel

const, exp - (Qrφn)(y)\2 (4.3)

Applying (4.2) with A = βL^r+^d~^a,B(x) = βL(n+r*d-Var, θ = \l/n+r+l(y),
ψ = ψn+r,f — Qrψn, we obtain the above kernel with r replaced by r -f- 1, and ar+\
given by the equation

L~2a
-, hence a, = a

1 -L

1 -

-2

(4.4)

The sequence ar is decreasing and ar \ ^oo = a(\ — L 2). The formula (4.3) has
been used before to formulate the variational problem (2.6) in [1], and also the
definitions (1.4), (1.5) if r—j,n — ^. It applies also to the problem we con-
sider here if the cube An+r(y) intersects the set Λn only. Let us recall that if a

point y <Ξ Γε , then A j ( y ) denotes a continuous space cube with a center at y and
sides of the length ε. Consider now the case when An+r+\(y) intersects two sets
Λn9Λn+\, but each An+r(x) for x G B(y) intersects only one of those domains. For
x G B(y) Π Λn the composition of transformations we study, with blocks contained
in An+r(x), is given by (4.3) with x instead of y. The corresponding composition
for x e B(y) n Λn+\ is given by (4.3) with n,r,y replaced by n + l,r — l,x. Now
we take these transformations and compose them with the next transformation for
the block B(y\y G τ^n+r+l\ This composition has a kernel which can be calcu-
lated applying (4.2) with A = βL^n+r+l^d~^a9 B(x) = βZ(n+r)(ί/-2)αr for x G B(y) Π
Λπ, B(x) = βfr+W-Var^ for x G B(y) Π Λn+l, θ - ψn+r+l(y),ιl/ - \l/n+r, f ( x ) =
(QrΨnKx) for xeB(y)nΛn9f(x) = (Qr^\l^+l)(x) for x€B(y)nΛn+l. The
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kernel is given by the last expression in (4.2), where the constant C is equal to

(L-*\B(y)nAn\± +L~<t\B(y) n Λ+il^) + 1

The quotient above replaces the constant ar+\ in the previous case. It is determined
by the intersection B(y) Π By, or by the intersection An+r+ι(y) Π By, and we denote
it by a(Am+r+ι(y),JBj). From the monotonicity of the sequence ar we obtain the
inequalities

The average (Qf)(y) in (4.2) is now equal to the following average of a configu-
ration \l/ defined on By,

xeB(y)ΠΛn+l

Let us consider a general situation. Take a point y e T^p> such that Ap(y) does not
intersect the sets An with n ^ p, and take the composition of all the renormalization
transformations applied after the transformations determined by By, and correspond-
ing to blocks contained in the cube Ap(y). We assume that the composition is a
transformation with a Gaussian kernel of the form

const, exp \~βL*d-Va(Ap(y)9Mj)\\l/p(y) - β(^(j;),By)ι/f 1 , (4.5)

where the averaging operation applied to ψ is given by the formula

ΓKA ( MD M ^ ^ \Δ«W\ I < Λ tΛ^Q(Δp(y\TΆj)\lt=Σ Σ Λ ( Λ |*M*)> (4 6)
«=o jcezi^Cj ^^n I^^L"11

and the constant a(Ap(y),ΊBj) is given by the formula

1 />-! \ Λ (v
- = y* Y" i
, \ TD \ ' J ' J I

The constant in front of the exponential in (4.5) is a normalization constant which
can be calculated explicitly from the requirement that the integral of (4.5) with
respect to the variable ψp(y) is equal to 1. The formulas (4.5)-(4.7) coincide with
all the formulas obtained in the special cases discussed before, and are easy to
prove by induction. Take y' G Γ(/7+1) and such that Ap+\(y'} does not intersect the
sets Λn with n ^ p+ 1. If Ap+ι(yf) intersects Λp, then the block B(y') must be
contained in Λp, because Λp is a union of large blocks, i.e. blocks of the order
m, where Lm = M. In this case the composition determined by Δp+\(y') is just the
basic renormalization transformation (4.3) for n — p,r — 1. Thus we may assume
that Δp+\(y'), and therefore also Δp(y) for y €#(/), do not intersect An with
n ^ p. Then we use the inductive assumptions (4.5)-(4.7) for the cubes Ap(y)9

and we compose the transformations for those cubes with the next renormalization
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transformation for the block B(y'). We calculate the kernal of this composition
using the formula (4.2) with A = βL(P+l*d-Va, B(y) = βLP^-^a(Δp(y\^j\ θ =
ψp+ι(y'),ψ = \l/p,f(y) = Q(Ap(y),TBj)\l/9y G B(y'). We obtain the last exponential
in (4.2), and the formula for C implies that this constant is equal to βL^p+l^d~2^
a(Ap+ι(y/),]Rj), where a(Δp+\(y'\1Άj) is given again by the formula (4.7). In this
calculation we have to use also Eq. (4.4). It is also easy to see that the average
(β/)(y) is equal to Q(Ap+ι(y')9lBj)\l/ given by (4.6). Thus we have proved the
formulas (4. 5) -(4.7). From (4.7) we obtain the inequality

ap £ a ( A p ( y ) 9 M j ) ^ a{ = a . (4.8)

It means that all these constants belong to the interval [α(l — L 2 ) 9 a ] 9 a fact which
is important for bounds.

Now we take the generating set B[ and a product of the transformations defined
by (4.5) for points of the set. To write this product in a simple and convenient way
we introduce some new definitions and notations. We define the averaging operator
β(Bί,B, )by

(β(Bί,B, )M/) = Q(Δp(y'\Kj)ψ if y G Λ'p Π Ω^c ,

(β(Bί,B, )M/) - ψp(y') if y G 4 Π β</> = 4 Π Λp , (4.9)

for p = 0, 1, . . . , k9 where we take now A'Q = Ω'^AQ — Ω\. This operator transforms
functions ψ defined on By U AQ into functions defined on Wk U A'Q. Next, we define a
multiplication operator 0(B£,By) on a space of functions defined on the set BjJ. U A'Q
by the function

α(y;Bί,B, ) - a(Ap(yf)^j)(LPηΓ2 if y' <= Λ'p Π

a(y'ι JB'k9 By) = arbitrary number if y' € Λ'p Π Λp . (4.10)

Notice that the above definition depends on the scale of the original lattice, and
is rescaled properly together with the lattice. Further, let us denote by Γ(BΠ) the
composition of the renormalization transformations determined by a generating set
Bw. It has a Gaussian kernel with a quadratic form equal to a corresponding form
(1.5) multiplied by βLn(d~2\ Finally, we denote by Γ(B^,B7) the composition of
the renormalization transformations applied after Γ(By) and leading to Γ(B^), i.e.
defined by the equality

T(ΊB'k,ΊΆj)T(JΆj) = Γ(Bi). (4.11)

We have obtained a representation of the transformation Γ(B£,By), and we formu-
late the above results in the lemma

Lemma 4.1. The transformation Γ(BJ.,By) has the following Gaussian kernel:

const. expί-I* ( r f"2)(^-β(Bί,By )^, α(B^,By)(f - β(B[,By)ιA))l , (4.12)

where ψ is defined on By U AQ, ψ' is defined on Wk U A'Q9 and ψ — ψ' on (Jp=o(4 n

Λp). The scalar product above is defined for the η-scale, i.e. the sum over points

of 4 ^ Ωp is multiplied by the volume (Lpη)d . The constant in front of the
exponential is the normalization constant.
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The generalization of the variational problem (2.6) in [1] can be obtained by
applying the saddle point method to the integral in

Γ(Bί , B; ) exp[- /fc/<d-2) A(Bj; ψ , φ(®j •; φ); h, fl(B, ), λj, Vj )] . (4. 1 3 )

This leads to the variational problem

, (4.14)

where ψf is a fixed configuration on B£ U A'Q, ψ is a variable configuration defined

on By U AQ and satisfying the restriction ψ = ψf on {JJ

p=Q(Af

p Π /t^). The action is
rescaled to the ^-lattice, and we denote the rescaled coefficients by ^(By), λ^^k-
For simplicity we drop the superscript "T/" and the subscript "£" in formulas below.
The value of the action in (4.14) is equal to the infimum (1.6), or to (1.9), and
the above variational problem can be reformulated as the problem

inf inf sup < - (φf —
Φ Φ α 12

^{oc, |Φ|2 - 1) - ^H2 + V-\\φ - h\\2 , (4.15)

where ι// is a fixed configuration on IB[ U λ!^ and ι/^,ί/) satisfy the restrictions

(Λ; Π Λp),ψ = ψ on Ωf - Λ0 ,
p=0

hence φ = ψ = ψ' on Ω(c = Λ'Q . (4.16)

There are some simple relations between the two problems (4.14)-(4.15). A domain
of the function of ψ in (4.14) is the set of all ψ such that (ψ,h)e ?F(By;cι). It

follows from Proposition 1.1 and the equality (1.8) that if \jj is a critical point of
this function, then ιj/, φ(IBy ι^), (Z/^)~2α(By;ι^/) is a critical point of the function
in the curly brackets in (4.15). Let us study these critical points. The corresponding
variational equations are

φ) = 0 ,

or more explicitly, for y' e ^\/lp,_y € Jp(y)Πyln, « ^ 1,

y) - (QnΦ)(y)) = 0,
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-Jfao Λ'χo, ψ - χaΩ Λ Vό + «Άo + v(ιAo - A) = 0 on βf n Ωί ,

] g*(B>(B,Xβ(B, )tf - tfO - Δφ - χacil J> + αφ + v(φ - h) = 0 ,

- l)-7« = 0 o n Ω f Π Ω ί . (4.17)
A

Writing these equations we have used the restrictions (4.16), or even more precisely
φ = \I/Q on Ωf Π Ω'l5 φ = I//Q = ΨQ on Ωf. Notice that the third and fourth equations
are exactly Eq. (1.10) for B7, rescaled to the ^-scale. The first equation, or the more
explicitly written system of equations, is a very simple system of linear equations
for variables φ °n ®/\®Jt? an<^ ^ *s eas^ to see ^at ^ ^as a uni(lue solution for
all ψ',φ in corresponding vector spaces. We take the explicitly written equations,
divide by αn(Lnη)~2, multiply by (LnL~pY, sum over y e Δp(y/)Γ\Λn9 and sum
over n. We obtain an equation from which we calculate Q(Ap(y/),JBj)\l/9 substitute
it into the original equation and calculate finally the solution ψ. It is given by the
formula

where y G Λp(y') Π Λn, y' G Λ'p\Λp. It is clear that this solution is also a solution
of the following variational problem: find the infimum with respect to ψ of the sum
of the first two quadratic forms in (4.15). By the first equality in (4.2), which is
valid quite generally, this infimum determines a composition of the two transfor-
mations determined by the two quadratic forms. This composition is given by the
formula (4.11), so the resulting quadratic form is equal to (1.5), in particular at the
point y' G Λ'p we get the form \βLP(d-2}αp\ψfp(yr} - (Qpφ)(y')\2. It can be calcu-
lated also by substituting the above solution into the sum of the quadratic forms.
After simple calculations we obtain a quadratic form, which is a sum over y' G B .̂
of the forms

Of course the two expressions must be equal, so the constant in front of the quadratic
expression above is equal to ^βLp^d~2^αp, From this we obtain the identity

, 7 p

In the above expressions involving the constants j- we have to include also the case

n — 0, and for consistency we have to put -̂ = 0, or «o = +00. Using the above
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identity we can write the following simple formula for the solution φ:

Ψn(y) = (QnΦ)(y) + —(LnL-P)2(^(y')-(Qpφ)(y')), (4.19)
&n

for y £ Δp(y') Π An9 n ^ 1, y1 G Λ'p\Λp. We can drop the restriction y' $Λ'p Π AP9

because for yf € Λ'p Π Λ^ we have 7 = 7', n = p9 and the above formula is reduced
to the identity φn(y) — Φp(y') — Φp(yf\ We can extend it also on the domain Ωf Π

Ω[ , because then we have n — 0, -̂ = 0, hence the second expression on the right-

hand side vanishes, and the formula is reduced to the identity φo(y) — φ(y) —
(Qoφ)(y). Thus (4.19) holds on the whole set B; U (Ωf Π ΩJ ). It can be written
also in the following form:

φ = Qφj)φ + — |— β*(Bί,BχB;)W - β(B£)Φ) on B7 U (Ωf Π Ωj ) . (4.20)

Now we write the second equation in (4.17) with φ instead of φo, using the identity
φo = φ on Ωf ΠΩi, and we substitute the solution φ into the second and third
equations. After some simple transformations with a use of the identity (4.18), and
combining the two equations we obtain the first equation in (1.10) for the generating
set B£. Combining the fourth and fifth equations in (4.17) we obtain the second
equation in (1.10). These statements are very easy to understand if we substitute
the solution φ into the function in (4.15). The sum of the first two quadratic forms
is then equal to the form (1.6) for Wk, by the composition formula (4.11), and the
function in (4.15) is equal to the function (1.7) for BjJ.. The variational equations are
then Eq. (1.10) for JBjJ.. The above analysis and Proposition 1.1 lead to conclusions
formulated in the lemma below.

Lemma 4.2. If (φ',h) e Ψ(Wk;δ), δ <; c\9 then the system of equations (4.17)
has a unique solution in the space of all configurations φ,φ,a satisfying the re-
strictions (4.16) and \oc\f

2 < CQ, where \u\'2 is the norm (3.17) determined by the
generating set B£. The configurations φ, α of this solution satisfy the system of
equations (1.10) for the set B£, hence they are equal to φ(Ί&f

k;φ
f\ α(JB£;ι/) The

configuration φ of the solution is given then by the formula (4.20), so it is equal
to the function

ί;^)), (4.21)

defined on IB7 U (Ωf Π Ω( ). The functions determining the solution have the ana-

lytic extensions onto the spaces Ψc(TB'k;δ, ε) with δ, ε satisfying the assumptions of
Proposition 1.1, and they satisfy also the naturally extended equations (4.17), i.e.
like Eq. (1.14), with φ',h replaced by the corresponding complex configurations.

This lemma answers completely the questions about critical points of the func-
tion in (4.15). There exists exactly one critical point in the domain {\ot,\2 < CQ}>
the solution of the system (4.17), and it is also easy to see that it is a solution of
the variational problem (4.15) by expanding the function around the critical point
and considering second order terms of the expansion, as in (3.48). This is of no
particular importance for us, so we omit this simple calculation.
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Our fundamental goal is to understand the variational problem (4.14), or more

generally critical points of the function in (4.14). We have noticed already that if ψ

is such a critical point, then ι^,</)(lB7;^), (Z7^)~2α(IBJ;^) is a solution of the system
(4.17). We have constructed the solution ι/^(lB7,IB^),0(IB^),α(IB^) of this system,
so the question is if ^(B7,B[) is a critical point of the function in (4.14). Quite

generally, let us take a solution $,$,α of the system (4.17), always assuming the
restrictions (4.16). Consider the third and fourth equations in this system. Reseating

them to the L"7 -lattice we obtain that ψ,φ,(LJη)2όί satisfy the system (1.10) for By

instead of B^. If (ψ,h) G <F(By;ci) and \(Ljη)2& 2 < CQ, the norm is determined by

By, then the configurations \jj,φ,(LJη)2& restricted to Q\ yield the unique solution
of the system in the domain { |αJ2 < CQ}, therefore we obtain, after rescaling them
back to the ^-lattice, the identities

φ = φ(ΊRj',ψ),& = (L^Γ2α(By;ι/0 on Ω, . (4.22)

From this we conclude further, taking into account the remaining equations in (4.17),

that ψ is a critical point of the function in (4.14). Thus we have to check when
\l/(JRj,]R'k), (LJη)2a(&k) satisfy the above conditions, i.e. for what δ

GKBy;B£),A) G y(By;d), |(L^)2α(Bί)|2 < c0 . (4.23)

For simplicity let us denote the solution of the system (4.17) described in Lemma 4.2

by ψfr \φk,y k The configurations φk,Kk satisfy the conditions (1.15), (1.16) of

Proposition 1.1, and % is given by the formula (4.21). Take a bond (71,^2)
C Λn and denote by y{,y'2 the points of B^ such that y( G ̂ Pl,y'2 G Λ'P2,

y\ G Apl(y[)9y2 € Άp2(y'2). Of course p\ ^ n, p2 ^ n, \p\ - p2\ ^ 1, and we have

' ^ \(QnΦk)(yι)-(QnΦk)(y2)\

^ 3Kιδ. (4.24)

If the bond (y\,y2) C T^ is such that y\ G Λn-\9 y^ G An, and x G #(.Vι), then
the only important difference in the above bound is that we have the term
\(Qn-ιΦk)(x) — (QnΦk)(y2)\ on the right-hand side, and it can be bounded by dK\δ,
so the overall bound is (d 4- 2)K\δ. Take now a point y G Λn and denote again by
y' the point of BjJ. such that y' G Λ'p,y G Δp(y'). Then p ^ n and we have

i| < \\(QnΦk)(y)\ - ι\ + (L"L-p

^ \\(QnΦk)(y)\2 - i +κ,δ ^ 1 E L-2nd\φk(Xl) - φk(X2)\2

(4.25)
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where we have used the assumptions λη2 ^ 1, L ^ 3, and δ sufficiently small, e.g.
d2K\δ ^ 1. Further, we have

δ
\Ψί (y^~h\ < (Qn\Φk - h\)(y) + K\& < (Lpη)-lKι—= + Kλδ

V v

^ 2(LpηΓlKι-4= = 2LJL~pKl— ^ 2(LnξylKλ— , (4.26)
Vvk /7Γ" ^~

where ξ = L J and v/ = (L/'η)2Vk = (LJη)2v is the rescaled constant v. From the
above inequality we obtain

(\tij\y)\ - I)2 + (\h\2 - 1) + 2(\tij\y)\ - $\y) A)

hence using the previous bound on \ψ^\y)\ — 1 and the condition on h in the

definition of Ψ(ΊR'k9δ) we obtain

and

Γ2KΪδ2 . (4.27)

The above inequalities hold also for n = 0. Let us make a few comments on these
inequalities. Basically we have repeated the arguments (3.1)-(3.6) [1] of the proof
of Lemma 3.1 in [1], only taking into account various scaling factors LnL~p. Ac-
tually we can improve them keeping track of those scaling factors more carefully,
but we do not need such improved inequalities, except the case when we con-
sider them on a domain X C Ωf

k Π Ωj. Then we get additional scaling factors which
are the same powers of JJη as the powers of σ in the definition (3.13) [1] of
the spaces Ψj(σ,ε). We introduce localized spaces Ψj(X 9 σ 9 ε ) by the same defini-
tion (3.13) [1], but with all conditions restricted to a domain X. Then the above
improved inequalities can be summarized as the statement that the configuration

(\l/[J\h) restricted to X belongs to the space Ψj(X\ZlJη9K\δ). In this case we im-
prove also the constant replacing d + 2 by 3, as in Lemma 3.1 [1]. Notice further

that in (4.24)-(4.27) we have used only the fact that ψ^ is related to φk by the
inequality

(4.28)

where y G Λn9 y G Ap(y'), y' G Λ'p9 and that φk,&k satisfy the conditions (1.15),
(1.16), and the second equation in (1.10) or (1.14). From this we obtain a gener-
alization of Lemma 3.1 in [1] which will be formulated later on. Let us formulate
a part of these conclusions in the following lemma.
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Lemma 4.3. If δ ^ cλ,(φ',h) € Ψ(TB'k; δ), X c Ω'k Π Ω, , then

j.Bi; f),A) € <?(%(</+ 2)^,5), (4.29)

Ψ^X Wη^δ). (4.30)

Finally, for .x £ £n(j) we have

^ c0 . (4.31)

From (4.29), (4.31) we obtain that the conditions (4.23) are satisfied if (d + 2)
K\δ ^ c\. Assuming this we obtain the identities

From these identities we conclude also that ψ^ is a critical point of the func-
tion (4.14). Unfortunately we cannot conclude that it is a unique critical point
of this function considered on the domain *F(B7;ci). To obtain uniqueness we
have to restrict this space. Let us recall again that if ψ is a critical point, then
φ(ΊRj'9\j/)9 (Lnη)~2u(]&j',ιj/) is a solution of the system (1.10) for the set B .̂ and

the configuration i/Λ If (\l/'9h) G Ψ(ΊR'k'9cι) and |(Zy?/)~2α(B7;ι/0|2 < c0, then this
solution is unique and equal to φk^k Thus we have the uniqueness in the domain
Ψ(JBJ9cι) restricted by the condition \(Ljη)~2u(^j\\l/)\f

2 < c0.
We have finished the discussion of the variational problems (4.14), (4.15) and

the related equations (4.17). Let us stress that the most important result is the con-
struction of the function ϊ/r(B7 ,Bj.) satisfying the identities (4.32). These identities
play a crucial role in our renormalization group approach, and we need them also
for the analytically extended functions. They are not immediate because the analytic
extensions are not uniquely defined, and we have to refer again to the analytically
extended equations (4.17). To repeat the above arguments leading to the identities
(4.32) we have to prove a statement corresponding to (4.29) for the complex spaces.
Take a space Ψc(ΊRr

k'9δ9ε) with δ9ε satisfying the assumptions of Proposition 1.1. We
use the same simplified notations for the considered functions as before. The func-

tions φk,y-k have the analytic extensions onto this space, therfore the function ψ^
has also the extension defined by the formula (4.21). Denote elements of the space
by (ψ' H- δ\l/' ,h + h1}, where (ψ1r,λ) are elements of the real subspace *F(B^; (5), and

write the complex functions in the form φk + δφk, ock + δotk, ψ^ + δψk^> where
(j\

φk.Ukτ'Φk are tne corresponding real functions, as in the last formula in (1.15).

Notice that δψj^ has the representation (4.21), but with φk9ψ
f replaced by δφk,δψf.

The bounds (1.15) hold for the complex functions, hence we can bound the differ-

ences δ\l/^\y\) — διj/^\y2) as before, but we obtain the constant 2(d + 2)K\δ on
the right-hand side. Further we have

|(f (/) + δφ'(y')) - (Qp(φk + δφk))(y')\

- (QPΦk)(y')\ < B + 3K:δ , (4.33)
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and

\($\y) + δ^\y))2 - (4j\y))2 < \(Qn(φk + δφk))2(y) - (Qnφk)
2(y)\

+2(3^5 + K2δ2) ^ 1 £ L-2nd\(φk + δφk)(x) - (φk + δφk)(x')\2

Z x,x'&Bn(y)

1 £ L-2

d2(L"L-p)2K2δ2 + ^(Qn\(δak\)(y) + 6K^ + 2K2

λδ
2 < 6Krf + (d2 + 2)K2δ2

A

Kιδ < 9Kιδ, where y G Ap(y') Π ΛΛ9y' G Λ'p , (4.34)

and we have used again the assumptions λη2 ^ 1, L ^ 3, d2K\δ ^ 1. Take a con-
figuration h' satisfying the last two conditions in the definition (1.12) of the space

*Fc(IB£;<3,ε). It is defined on Wk and |v*λ'(/)| < (LPη)'2^ for y' £ Λ'p9 hence
for y G Ap(y') Π Λn we have

vkh'(y')\ < (^I^Γ2- ^ (Lnξy2- , (4.35)
ε ε

and the configuration β*(B^,IB7)/z/ satisfies the first of the two conditions for the

space Ψc(ΪBjiδ,ε}. To check the second condition we estimate the product

1% - 0 0 1

2(Uη)2(Qn vkφk h\y')\Xy) + 2(LnL

2(LJη)2(LpηΓ2Klδ
2 + 2(IwO~2^ι^2 ^ (^ξ)""2^^2 . (4.36)

The above inequalities combined with Lemma 4.3 yield the following lemma:

Lemma 4.4. If δ,ε satisfy the assumptions of Proposition 1.1, (ψ1 + c)ι//,// + Λ') 6
^(B^; 5, ε) and X C Ω'k Π Ωy ,

,ε) , (4.37)

7 -f δψ\h + Qϊ-jti)\xz ΨJ(X^Uη9Kλδ) . (4.38)

Finally, notice that the estimates (4.31) hold also for the complex configuration.
Now the rest of the argument goes on like in the real case, the only change is
that we consider the complex solutions of the extended system (4.17), i.e. the
system in which ψ',h are replaced by ψf + δψ',h + /z', and we have to assume
that 2(d + 2}K\δ,ε satisfy the assumptions of Proposition 1.1, which reduces to the
additional conditions 2(d + 2)K\δ ^ ε,2(d -f 2}K\δ ^ c\. We may also replace ε
by 2(d + 2)Kιε in (4.37), and then the assumptions take the form 2(d + 2)K\ε ^
co,2(ί/ + 2)K\δ ^ c\. With these assumptions we obtain the identities (4.32) for
the analytically extended functions.
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We summarize the main results in the proposition below.

Proposition 4.1. If (ψ',h) G Ψ(Wk;δ),δ ^ c\, then the function in (4.15) has a
unique critical point in the domain of all configurations ψ,φ,a satisfying the
restriction \ct\'2 < CQ, or equivalently the system of equations (4.17) has a unique
solution in this domain. This solution is given by the functions iKBy, B^ i//), </>(B£;
ι//), α(B£,t//), where the first function is given by the formula (4.21) and satisfies
(4.29). If(d + 2)K\δ ^ c\9 then iKB^B^ i//) is a critical point of the function in
(4.14), actually it is a solution of the varίatίonal problem (4.14), and it is a unique

critical point in the domain {ψ : (ψ,h) <E ^(IB/ ci), |(ZΛ/)~2α(IBy ;^)|2 < <?o} The

function has analytic extensions onto domains Ψc(Wk;δ, ε) with δ,ε satisfying
the assumptions of Proposition 1.1, the extensions determined by the formula
(4.21) and by Proposition 1.1, and satisfying (4.37). If 4dKιδ ^ ε,4dKιδ ^ ci,
or if 4dK\ε ^ CQ,4dK\δ ^ c\9 then these analytic extensions satisfy the identi-
ties

φ(Bj ,ψ(Bj,B'k;ψ')) = φ(ΊB'k ,φ'),(LJηΓ2a(Bj ,φ(Ej,]β'k ,φ')) = α(Bj^') , (4.39)

where we have assumed that the functions φ(JBj'9ψ), α(By;ι/f) are extended beyond
ΩI by putting

φ(x'9Ώj'9ψ) = ιK*),α(*;IB7;ιA) - y(^2W - I) for x £ ifi , (4.40)

and similarly the functions φ(Wk ,\l/'),a(B'k;ι//') beyond Ω(.

Let us mention now some applications of the functions ^(B7,B^) constructed
above. One application was described in the paper [1], where the inductive assump-

tions on the effective actions were formulated in terms of the functions ψ^\ In
dealing with the "large field" problem we will use more general ι/^(B;, B^.), for
which Ωf

n — Ωn for n g j. The generating sets BJ, will be used also as determining
a kind of "soft" boundary conditions, and in such role these functions will be used
in full generality in various localization problems, i.e. in constructing expansions of
the type described in the inductive hypothesis (H.5) in [1].

We will need also the functions and the composition formula (4.39) in the case
when the basic system of equations is the system (3.20). It corresponds to the
variational problem

inf inf sup {f - Q(B'k,Bj)διl,,a(B'k,BjM -
δφ δφ δa

(δφ,
, A

--(δ^ αι)Π. (4.41)
λ ] )

Keeping δψ fixed and solving the variational problem with respect to δφ,δot we
obtain the system of equations (3.20) for the generating set B7. We keep the
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same notations and assumptions as in Sect. 3, so this system has the unique so-
lution δφ(JBj •; δ\l/ , </>o, αo, f\ , «ι ), (5α(B7 δψ , </>o, αo> /i , αi ). Substituting this solution
above we obtain a variational problem in δψ, and its solution is, by defini-
tion, a function ^(B^B^i/^^ao^/uaO- Solving the full variational problem
(4.41) we obtain a system of equations corresponding to (4.17), with some ob-
vious changes connected with the form of the functional in (4.41). The equation
for δψ is the same as the equation for ψ in (4.17), and it has the unique solu-
tion given by (4.19), or (4.20), with φ replaced by δφ. Substituting this solution,
we obtain the system (3.20) for the generating set B£, which has the unique so-
lution δφCΆfciψ', φθjθco,/ι,αι), ^(^^^ao,/!,^). From this we obtain the
representation

, (4.42)

which holds under the assumptions of Proposition 3.1. By this proposition the func-
tion (ty(By,B£) can be bounded by (2K2 + l)<5ι, hence if K2(2K2 + l)<5ι ^ c6,
then it has values in the domain of the functions <5φ(B7), <5α(B7), and we have the
identities

,̂ Φo, OQ, , f\ ,

, /i, «ι ) =

(4.43)

They hold for the analytically extended functions on domains (3.21) with δo ^
c^K2(2K2 + l)<5ι ^ C6. We will use these identities in the future to solve various
localization problems also.
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