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Abstract: This paper further develops the combinatorial approach to quantization of
the Hamiltonian Chern Simons theory advertised in [1]. Using the theory of quan-
tum Wilson lines, we show how the Verlinde algebra appears within the context
of quantum group gauge theory. This allows to discuss flatness of quantum con-
nections so that we can give a mathematically rigorous definition of the algebra of
observables stfcs of the Chern Simons model. It is a *-algebra of "functions on
the quantum moduli space of flat connections" and comes equipped with a positive
functional ω ("integration"). We prove that this data does not depend on the par-
ticular choices which have been made in the construction. Following ideas of Fock
and Rosly [2], the algebra s/cs provides a deformation quantization of the algebra
of functions on the moduli space along the natural Poisson bracket induced by the
Chern Simons action. We evaluate a volume of the quantized moduli space and
prove that it coincides with the Verlinde number. This answer is also interpreted
as a partition partition function of the lattice Yang-Mills theory corresponding to a
quantum gauge group.

1. Introduction

This paper is a second part of the series devoted to combinatorial quantization of
the Hamiltonian Chern Simons theory. Here we continue and essentially complete
the analysis started in [1].
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To set the stage let us reproduce the well-recognizable landscape of 3D Chern
Simons theory. The latter is a 3-dimensional topological theory defined by the action

CS(A) = -^Tr/ (AάA + ̂ Λ . (1.1)
4π M \ * J

Here M is a 3-dimensional manifold, A is a gauge field taking values in some
semi-simple Lie algebra and A: is a positive integer. In this setting the theory enjoys
both gauge and reparametrization symmetry which makes it topological. Elementary
observables satisfying the same symmetry conditions may be constructed for each
closed contour Γ in M as

(1.2)

Choosing the manifold M to be a product of a circle and a 2-dimensional orientable
surface Σ, one gets a Hamiltonian formulation of the model. The direction along
the circle plays the role of time. Actually, one can relax topological requirements
and treat the problem locally. Then such a splitting into time and space directions is
always possible. The problem of quantization in the Hamiltonian approach may be
stated as follows. One should construct quantum analogoues WΓ of the observables
(1.2) corresponding to space-like contours. The main questions which arise in this
way are the following. We should describe the algebra generated by Wp in terms
of commutation or exchange relations. Next, if we are going to use this algebra
as a quantum algebra of observables, a *-operation and a positive inner product
are necessary. The final step is to construct *-representations of the algebra of
observables. Linear spaces which carry such representations may be used as Hubert
spaces of the corresponding quantum systems.

The Hamiltonian formulation of the Chern Simons theory leads directly to the
moduli space of flat connections on a Riemann surface. The latter appears as a phase
space of the Chern Simons model. The action (1.1) introduces a natural symplectic
form and a Poisson bracket on the moduli space. So, one can look for quantization
of this moduli space in the framework of deformation quantization. This is actually
a mathematical reformulation of the same problem as Hamiltonian quantization of
the Chern Simons model.

In the spirit of deformation quantization one should start with the Poisson bracket
on the moduli space. This object was considered for some time in mathematical
literature and there are several descriptions of the corresponding Poisson structure.
The one suitable for our purposes has been suggested recently by Fock and Rosly
[2]. The main idea of this approach is to replace a 2-dimensional surface by a
homotopically equivalent fat graph. This gives a finite-dimensional or combinatorial
description of the moduli space. The name "combinatorial quantization" originates
from this fact. Another important achievement of [2] is that the only object which
is used in the description of the Poisson bracket is a classical r-matrix (solution
of the classical Yang-Baxter equation). When the Poisson bracket is represented in
terms of r-matrices, the quantization procedure is almost straightforward. Roughly
speaking, one has to replace solutions of the classical Yang-Baxter equation by the
corresponding solutions of the quantum Yang-Baxter equation. In conclusion, the
way to deformation quantization of the moduli space was much clarified by [2].

In [1] we have started a description of the quantum algebra of observables. We
have introduced such an algebra for any pair of a fat graph and a semi-simple rib-
bon quasi-Hopf algebra. There we followed the ideas of [2]. The novelties of our
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approach were introduction of the *-operation and of the quantum Haar measure on
the algebra of observables. A Haar measure on this type of algebras has been pre-
viously considered in [3]. We succeeded to extend our consideration to quasi-Hopf
algebras as well. This is motivated by the fact that the most interesting examples
- like quantum groups at roots of unity - do not meet the condition of semi-
simplicity. After a certain truncation, however, they become semi-simple (weak)
quasi-Hopf-algebras [4,5]. Thus, all the essential technical tools for quantization of
the moduli space were introduced in [1]. On the other hand, an important piece of
the quantization was still missing there: the quantum analogue of the flatness condi-
tion. The "algebra of observables" stf eventually included some field configurations
with nonzero curvature. In this paper we overcome this problem and complete the
program of quantization.

The quantized algebra of functions on the moduli space (moduli algebra) is
expected to provide the description of the algebra of observables in 3-dimensional
Chern Simons theory. In principle, we can change the point of view at this point
and treat the theory of graph connections with a quantum gauge group as a sort
of 2-dimensional lattice gauge theory. As usual, one may be interested in corre-
lation functions of Wilson line observables provided by the trace functional. This
2-dimensional interpretation has its own continuous counterpart. Assuming that in
3-dimensional formulation the moduli algebra reproduces the algebra of observables
of the Chern Simons model exactly, one concludes that in the 2-dimensional for-
mulation we obtain an exact lattice counterpart of gauged WZW model or so-called
G/G model (for the relation of CS and G/G model, see e.g. [6]). From time to
time it is useful to switch from 3-dimensional interpretation to 2-dimensional and
back. So, we shall use the vocabulary of both these approaches.

Let us give a short description of the content of each section. Section 2 collects
main theorems of [1]. This gives the possibility to understand the results of the paper
without referring to [1]. However, we do not give any proofs here and refer the
interested reader to the original text. Section 3 is devoted to Wilson line observables
Wp. In particular, we prove that for Γ being a contractible contour, Wp belongs to
the center of the algebra of observables. We study in detail the commutative algebra
generated by Wr for a given Γ. It is proved to coincide with the celebrated Verlinde
algebra. On the basis of the Verlinde algebra we construct central projectors in
the algebra stf and define a quantum analogue of the flatness conditions on the
graph. The algebra of observables s$cs with the condition of flatness imposed is
our final answer for the quantized algebra of functions on the moduli space of
flat connections. In Sect. 4 we prove the correctness of our definition. From the
very beginning we replace the surface by a fat graph. This can be done in many
ways. We prove that observable algebras ^Cs which arise from different graphs are
canonically isomorphic to each other. We pick up a particular graph which consists
of a bunch of circles intersecting in only one point on the surface and describe the
algebra thereon in Sect. 4.2. Then we revisit the "multidimensional Haar measure"
in Sect. 5.1, and obtain a graph independent "quantum integration" for jtfcs This
is used in Sect. 5.2 to determine the volume of the quantum moduli space.

Let us mention here that there is an ambiguity in normalization of the "integra-
tion measure." In this paper we use some particular normalization which may be
referred to as lattice Yang-Mills measure. The corresponding volume of the quantum
moduli space resembles the answer for the partition function in the 2-dimensional
Yang-Mills theory. Along with this normalization there exists a canonical one which
is fixed by the requirement that the volume of each simple ideal in the moduli
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algebra should be equal to the square root of its dimension. The volume of the
moduli space evaluated by means of the canonical measure reproduces the famous
Verlinde formula for the number of conformal blocks in the WZW model [7]. In
this way we get a consistency check of our approach. In the 2-dimensional inter-
pretation the Verlinde formula gives the answer for the partition function of our
lattice gauge model. It coincides with the experience of the continuous G/G model
(see e.g. [8]). Advertising here this result, we postpone a more detailed discussion
to the next paper.

For simplicity, we work with ribbon Hopf-algebras throughout most of the text.
The generalization to ribbon quasi-Hopf algebras is explained in Sect. 6. Proofs for
this section are partly given in a separate appendix of the paper. Let us mention
that there is a formal overlap between some of the results in Sects. 3,5 and the
recent work of Buffenoir and Roche [15]. While their work is restricted to real
deformation parameters q, we are interested in the "physical" case where the defor-
mation parameter is a root of unity. This causes a number of problems connected
e.g. with *-structures and semisimplicity. Once they are overcome, the theory at
roots of unity has the advantage of involving only finite sums and allowing for the
beforementioned physical application to Chern-Simons theories.

After this brief introduction we turn to a more systematic presentation of the
main results. There are two basic ingredients used as the input for our construction.
The first one is a semi-simple ribbon (weak quasi-) Hopf algebra .̂ Equivalence
classes of irreducible representations of <& are labeled by I,J,K, . . .. Furthermore one
needs a compact orientable Riemann surface Σ&tm of genus g and with m punctures.
These punctures are then marked so that the representation class 7V is assigned to
the vth point (v = l,...,m).

Our combinatorial approach requires to replace Σgtfn by a homotopically equiv-
alent fat graph G and to equip G with some extra structure called "ciliation." The
ciliated graph will be denoted Gcn. In [1] we assigned a *-algebra 3S(GC\\) to this
ciliated graph. It is generated by quantum lattice connections and quantum gauge
transformations. A *-subalgebra j/(G) C &(GC\\) generated by invariant quantum
lattice connections has to be singled out. Our attempt to implement the flatness con-
dition that will finally lead to Chern-Simons observables, is based on the following
theorem.

Theorem I (Fusion algebra and characteristic projectors). For every contractίble
plaquette P of the graph (or lattice) G, there is a set of central elements c!(P) G
jtf C $ which satisfy the fusion algebra (or "Verlinde algebra"), i.e.

cl(P)cJ(P) = YJN
I

K

JcK(P), (1.3)
K

(c!(P)T=c!(P). (1.4)

If the matrix S/j = Λf(\xl

q ® tr^)(R'R), J^ being equal to some nonzero real

number, is ίnvertίble, a set of characteristic projectors χ!(P) can be constructed
from the elements c!(P). They are central orthogonal projectors within j/, i.e.

Explicit formulas for both cl(P) and χf(P) can be given (see Eqs. (3.19) and
(3.22) below).
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Projectors are the analogue of characteristic functions on a manifold in the non-
commutative framework. We will show that the "support" of χ°(P) consists of a
manifold quantum connections, which have trivial monodromy around the plaquette
P. So χ°(P) plays the role of the δ-function at the group unit. A similar construction
has been developed in [3]. This consideration motivates the following construction

of an algebra J^cs °f Chern-Simons observables,

**cs} = ** Π Λ^)Π/V(ΛO . (1.6)
v=ι

Here Pv, v = 1, . . . , w, denotes the plaquette containing the vth puncture on Σ^m.
It is marked by 7V. ^o is the set of all plaquettes on the graph G, which do not
contain a marked point.

Actually £#cs comes w^m some extra structure. First the *-operation on jtf

restricts to £#cs Moreover, the generalized "multidimensional Haar measure" ω
on ,s/ which was constructed in [1] furnishes a positive linear functional ωcs on

jtfcs These data turn out to depend only on the input (Γίy?m,^).

Theorem II (Chern Simons observables). The triple (̂ ^ , *,ωCls) of an alge-

bra J&CS with ^-operation * and a positive linear functional ωcs ^ cs ^ ̂
does not depend on the choice of the fat ciliated group Gcι\ which is used in the
construction.

Positive linear functional generalizes the concept of integration. Having con-
structed ωcs will allow us to calculate the volume of the quantum moduli space.
Actually, it coincides with the Verlinde number assigned to the same Riemann sur-
face with marked points. This may be considered as a representative consistency
check of the combinatorial approach.

2. Short Summary of [1]

Before we continue our study of Chern-Simons observables we want to review some
notations and results from [1]. We will not attempt to make this section selfcontained
but keep our emphasis on formulas and notations frequently used throughout the
rest of this paper. Compared with [1], our notations will be slightly changed to
adapt them to our new needs.

The theories to be considered here live on a graph (or lattice) G. The latter
consists of sites x,y,z e S and oriented links ±/,±/,±& G L. We also introduce a
map t from the set of oriented links L to the set of sites S such that t(ί) = x, if i
points towards the site x. Let us assume that two sites on the graph are connected
by at most one link (we will come back to this assumption later).

Our models on the graph G will possess a quantum gauge symmetry, which is
described by a family of ribbon Hopf *-algebras assigned to the sites x G S. They
consist of a *-algebra &x with co-unit εx, co-product AX9 antipode £fX9 R-matήx Rx

and the ribbon element vx. Let us stress that we deal with structures for which the
co-product Ay. is consistent with the action

(ξ 0 η)* = η* 0 £* for all η,ξe&x
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of the *-operation * on elements in the tensor product <§x ® ̂ . This case is of
particular interest, since it appears for the quantized universal enveloping algebras
Uq(^) when the complex parameter q has values on the unit circle [5].

Given the standard expansion of Rx G &x ® &x, Rx = Σrxσ ® rxσ, one con-
structs the elements

Among the properties of ux (cp. e.g. [9]) one finds that the product ux£fx(ux) is in
the center of &x. The ribbon element vx is a central square root of ux^x(ux) which
obeys the following relations:

v2

x = uxyx(ux), yx(vx) = vX9 εx(vx) = 1 , (2.2)

vx = υ~\ Δx(vx) = (R'xRxΓ\vx ® vx) . (2.3)

The elements ux and vx can be combined to furnish a grouplike element gx =
u~lvx G $x. It will play an important role throughout the text. So let us list some
properties here:

(2.4)

Examples of ribbon-Hopf * -algebras are given by the quantized enveloping algebras
of all simple Lie algebras [9].

The algebras &x at different sites x are assumed to be twist equivalent, i.e. the
Hopf-structure of every pair of symmetry algebras ^x,^y is related by a (unitary)
twist in the sense of DrinfePd [10]. We emphasize that - for the moment - we
restrict ourselves to co-associative co-products Ax. As in [1], the discussion of the
quasi-co-associative case is included at the end of the paper.

The total gauge symmetry is the ribbon Hopf-* -algebra & — (^)^X9 with the
induced co-unit ε, co-product A, etc. There is a canonic embedding of &x into ^
and we will not distinguish in notations between the image of this embedding and
the algebra &X9 i.e. the symbol &x will also denote a subalgebra of &.

Representations of the algebra & of gauge transformations are obtained as fami-
lies (τx)X£s of representations of the symmetries ^x. At this point let us assume that
&x are semίsίmple and that every equivalence class [J] of irreducible representations
of &x contains a unitary representative τ^ with carrier space VJ . For the moment,
the most interesting examples of gauge symmetries, e.g. Uq(^),qp = 1, are ruled
out by this assumption. It was explained in Sect. 7 of [1] how "truncation" can cure
this problem once the theory has been extended to quasi-Hopf algebras.

The tensor product τx \Eί τζ of two representations τ!

χ9 τζ of the semisimple al-
gebra &x can be decomposed into irreducibles τx . This decomposition determines
the Clebsch-Gordon maps Ca

x[IJ\K} \VI^VJ\-^ Vκ ',

Ca

x[IJ\K}(τ( El τί )(£) = τκ

x(ξ)Ca

x[IJ\K] . (2.6)

The same representations τx in general appears with some multiplicity N%J . The
superscript a — l9...9NχJ keeps track of these subrepresentations. It is common to
call the numbers Nj/ fusion rules. Normalization of these Clebsch Gordon maps
is connected with an extra assumption. Notice that the ribbon element vx is central
so that the evaluation with irreducible representations τx gives complex numbers
v1 = τx(vx) (twist equivalence of the gauge symmetries implies that τ^(ι^) does not
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depend on the site x). We suppose that there exists a set of square roots κ/,κj — v1 ,
such that

Ca

x[IJ\K](R'xy
jCb

x[IJ\LΓ = <S«, A,L— . (2.7)

Here R'x = Σr2

xσ ® rxσ and (/ζ)/J = (τx ® ̂ X^X Let us analYze tm's relation in
more detail. As a consequence of intertwining properties of the Clebsch Gordon
maps and the /^-element, τκ(ξ) commutes with the left-hand side of the equation.
So by Schurs' lemma, it is equal to the identity eκ times some complex fac-
tor ωab(IJ\K). After appropriate normalization, ωab(IJ\K) — δa^ω(IJ\K) with a
complex phase ω(IJ\K). Next we exploit the *-operation and relation (2.3) to find
ωab(IJ\K)2 = v/vj /vκ. This means that (2.7) can be ensured up to a possible sign
±. Here we assume that this sign is always +. This assumption was crucial for
the positivity in [1]. It is met by the quantized universal enveloping algebras of all
simple Lie algebras because they are obtained as a deformation of a Hopf-algebra
which clearly satisfies (2.7).

We wish to combine the phases KJ into one element κx in the center of &X9 i.e.
by definition, κx will denote a central element

κx E &x with τ^Ocjt) = KJ . (2.8)

Such an element does exist and is unique. It has the property K* — κ~{.
The antipode £fx of ̂  furnishes a conjugation in the set of equivalence classes

of irreducible representations. We use [J] to denote the class conjugate to [J]. Some
important properties of the fusion rules Nj/ can be formulated with the help of this
conjugation. Among them are the relations

N£* = 1, N*K

J = N^1 = Nf* . (2.9)

The numbers v1 are symmetric under conjugation, i.e. vκ = vκ . Let us also mention
that the trace of the element ^x(ux)v~λ in a given representation τ7 computes the
"quantum dimension" dj of the representation τ1 [9], i.e.

rfjΞtΓίτV)). (2.10)

The numbers dj satisfy the equalities didj — ΣNχJdκ and dκ = dg.
We can use the Clebsch Gordon maps C[KK\0] to define a "deformed trace"

tή. If^GEnd(F^), then

. (2.11)

This definition simplifies with the help of the following lemma which will be applied
frequently within the next section.

Lemma 1. The Clebsch-Gordon maps C[KK\$\ satisfy the following equations:

1. For all ξ G &x they obey the intertwining relations,

id) - Cx[KK\0](id ® τf (&x(ξ))) ,

id)Cx[KK\θγ - (id 0 τϊ(&x(ξ)))Cx[KK\0]* . (2.12)
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2. With normalization conventions (2.7) one finds

dκ**(Cx[KK\0]*Cx[KK\0\) = eκ ,

= eκ . (2.13)

Here action of the trace \xκ on the first resp. second component is understood
and eκ = e% is the identity map on Vκ.

Proof. The first two relations are a consequence of the intertwining properties of
C[^£|0] and the defining relations of an antipode £fx. Using (2.12) one can check
that the traces on the left-hand side of Eqs. (2.13) commute with τκ(ξ) and hence
are proportional to the identity e% . To calculate the normalization, one multiplies
with τκ(g), evaluates the tr* of the expression and uses the normalization (2.7) of
the Clebsch Gordon maps.

As a consequence of this lemma we find the simple formula

x)). (2.14)

In particular this implies that d& — ir^(eκ).

While the gauge transformations ξ G & live in the sites of G, variables U!

ab(i) are
assigned to the links of the graph G. They can be regarded as "functions" on the
non-commutative space of lattice connections. Together with the quantum gauge
transformations ξ £ ^ they generate the lattice algebra 36 defined in [1]. To write
the relations in J*, one has to introduce some extra structure on the graph G. The
orientation of the Riemann surface Σ determines a canonical cyclic order in the
set Lx = {i G L : t(i) — x} of links incident to the vertex x. Writing the relations in
$ we were forced to specify a linear order within Lx. To this end one considers
ciliated graphs Gcn. A ciliated graph can be represented by picturing the underlying
graph together with a small cilium cx at each vertex. For i,j G Lx we write i ^ y,
if (cx,i,j) appear in a clockwise order.

In contrast to [1], we will write relations in 3% in a matrix notation. This means
that the generators U!

ab(I) G Si are combined into one single object

Such algebra valued matrices are widely used in similar contexts and will have
many advantages for the calculations to be done later. With this remark we are
prepared to review the defining relations of £8. The rest of our notations will be
explained as we proceed.

^ is characterized by three different types of relations.

1. Covariance properties of the generators Ul

ab(i) under gauge transforma-
tions are the only relations involving the generators ξ G ̂ . If jc = t(i), y = t(—i),
they read

ξU'(i) = U'(i)ι4(ξ) for all ξε9x,

μfy(ξ)U'(i) = U'(l)ξ for all ξeyy,

ξUl(i) = U'(i)ξ for all ξ € &2, z £ {x,y} . (2.15)
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Here we used the symbol μx(ξ) G End(F7) (8) $ which is defined by

μ[(ξ) = (τ(® i ά ) A z ( ξ ) for a l l i e d . (2.16)

The covariance relations (2.15) make sense as relations in End(F7)(g)^, if ξ is
regarded as an element ξ G End( V1 ) 0 $ with trivial entry in the first component.
We will not distinguish in notation between elements ξ G & and their image in

2. Functorίalίty for elements U!(i) on a fixed link / confirms again that U\i)
is a covariant object with respect to two copies of the Hopf algebra acting from
the left and from the right,

U!(i)UJ(i) = ^Ca

y[IJ\KTUK(i)Ca

x[IJ\K] , (2.17)
ΛΓ,α

ul(i)ul(-i) = 4, υ\-ϊ)υl(ί) = 4 . (2.18)
The Clebsch Gordon maps C;[IJ\K]9 Ca

y[IJ\Kγ have been introduced in the last
section. One can view their appearance in the multiplication rule as a consequence
of the generalized (for Hopf algebras) Wigner-Eckhart theorem. It is important that
the left and right indices of U!(i) always belong to conjugate representations. In
this respect the subalgebra formed by the matrix elements of U f ( i ) resembles an
algebra of functions on the quantum group1. To explain the small numbers on top of
the U9 one has to expand U*(i) G End(F7) 0 3t according to U*(i) = Σ w7 (g> u!

σ.
Then

U1 = ̂ mI

σ^eJ ®u!

σ

and similarly for UJ (ί). Here and in the following, ej denotes the identity map
on VJ.

3. Braid relations between elements C/7(z), UJ(j) assigned to different links
have to respect the gauge symmetry and locality of the model. These principles
require

U!(i)UJ(j) = UJ(j)U!(i) for all ij e L without common endpoints , (2.19)

U I ( i ) U J ( j ) = UJ(j)UI(i)RI

x

J for all ij G L with t(i) =x = t(j) and i <j.
(2.20)

R[J is the matrix ((τ7 0 τ^)(^) 0 e) e End(F7) <g> End(FJ) 0 OS.

Braid relations for other configurations of the links ij can be derived. As an
example we consider a case where j, —i point towards the same site x and —i> j.
Then

UJ(j)(RjJU'(i) - U'(i)U\j) . (2.21)

In this form, braid relations will be widely used throughout the text.
Let us briefly describe some of the results obtained in [1]. The lattice algebra J*

allows for a ^-operation. Its definition uses the elements κx introduced in (2.8), or

1 More precisely, there exist symmetry valued matrices F!

x G End( V1) 0 ̂ x such that the
U!(i)Fx's generate a subalgebra of ^ which is isomorphic to the dual of the symmetry Hopf-

algebra #„. (see also [1]).
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rather the element K G <& they determine in <& = Π^ Before we can explain how
* acts on ̂ , we need some more notations. Let σκ : : & ι— > ̂  be the automoφhism
of J* obtained by conjugation with the unitary element K G ̂ , i.e.

K^Ffc for all F G J* .

σκ extends to an automoφhism of End(F)®^ with trivial action on End(F).
Suppose furthermore that BeEnd(V)®& has been expanded in the form
B = mσ ®Bσ with mσ 6 End(K) and Bσ e J*. If V is a Hubert space and m* the
usual adjoint of the linear map mσ, the *-operation on ̂  induces a *-operation on
End(K) 0 ^ by means of the standard formula ^* = m* 05*. With these nota-
tions, the definition for * in [1] becomes

(£/'(i))* = σ^Xc-zXtf;1)7) (2 22)
Again / is supposed to point from y = t(—i) towards x — t(i) and R[ = (τ[ 0
id)(#z)EEnd(F7)<S>^, etc.

Another ingredient in the theory of the lattice algebra 3$ is the functional ω :
$ H-> C. It can be regarded as the quantum analog of a multidimensional Haar
measure. If we assume that the links z'v, v =!,...,«, are pairwise different, i.e. / V Φ
± //t for all v φ μ, then

ω(t/7'(/ι) - - £/ / Λ(ιΛX) = 6(0^,0 5/Λ,o (2.23)

for all ξ G ̂  and every set of labels /v. Details and examples of explicit calculations
with ω can be found in [1].

It is interesting to consider the quantum analog of functions on the space of
lattice connections. They form a subset (U) in $. More precisely, (U) is generated
by the matrix elements U!

ab(i} G & of quantum lattice connections U!(i) with the
labels /, / running through all their possible values. Here the word "generate" refers
to the operations of addition and multiplication in ,̂ while the action of * is not
included. So - except from special cases - (U) will not be a *-subalgebra of .̂
This is one of the reasons, why we prefer to call (U) a subset (as opposed to
subalgebra) of .̂ The other reason is related to the case of quasi-Hopf symmetries
^ which will be discussed below. One of the main results in [1] is

Theorem 1 (Positivity) [1]. Suppose thai all the quantum dimensions dj are pos-
itive and that relation (2.7) is satisfied. Then

ω(F*F) ^ 0 for all F G (£/}

and equality holds only for F = 0.

In this theorem, the argument F*F of the functional ω is in & rather than in
(U). Since ω was defined on the whole lattice algebra ^ the evaluation of ω(F*F)
is possible nevertheless.

Invariants within the subset (U) are the quantum analog of invariant functions
on the space of lattice connections. They form a subset jtf,

*/ = {A G (U) C &\ξA = Aξ for all ξ G ̂ } .

Actually, stf C (U) is also a subalgebra of ̂  and the *-operation on & does restrict
to a *-operation on stf . The positivity result of Theorem 1 implies that ω restricts
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to a positive linear functional on the *-algebra j/ (under the conditions of the
theorem). Let us finally mention that j/ is independent of the position of cilia
which entered the theory when we defined 38.

3. The Quantum-Curvature and Chern Simons Observables

Observables of Chern-Simons theories are obtained from the algebra (U) C & of
"functions" on the space of the quantum lattice connection in a two-step procedure.
The restriction to invariants was described in [1]. The second step is to impose the
flatness condition. This will be achieved in Sect. 3.2 below after some preparation
in the first subsection.

3.1. Monodromy Around Plaquettes. To begin with let us consider a single pla-
quette P on the graph G. We assume that all cilia at sites on the boundary dP of
this plaquette lie outside of P. In more mathematical terms we can describe this
as follows: suppose that ij are two links on dP and that /(/) = x = t(j). Without
any restriction we can take / ^ j. If k G L is a third link on G with t(k) = x and
/ ^ k ^ y , then / = k or / = j, which means that in the situation encountered here
there can be no link in between ij.

Next let ^ be a curve on dP, i.e. a set of links {/v}v=ι,...,n with t(iv) =
t(—iv+\), v = l , . . . , w — 1. Its inverse — # is the ordered set — ̂  = {— ΪΛ+I-V}V=I,...,Λ.
On the set of curves ^ one can introduce a weight w(^) according to

n-\

= Σ sgn(/v, /v+i ), where
v=l

f - 1 if i < -j

Obviously, w(^) changes the sign, if the orientation of ^ is inverted, i.e.
-w(-#).

From now on we will assume that ^ moves in a strictly counter-clockwise
direction on dP, i.e. — iv+\ > ίv for all v = l , . . . , / ι — 1. The starting point t(—C) =
t(—i\ ) of # will be called y while we use x to denote the endpoint x = t(^) = t(in).

The quantum-holonomy along ^ is the family {t/7(0}/ of elements U!(i) G
defined by

Here K/ are the complex numbers which have been postulated in relation (2.7). Let
us gather some of the properties of the holonomies in the following proposition.

Proposition 2 (Properties of £/7(^)). If <& satisfies the requirements described
above and ^ is not closed (i.e. t(^)ή=t(— ̂ )), the holonomies U1^) have the
following properties:

1. They commute with gauge transformations ξ G ̂ Xγ for all xv = t(iv\
v = ! , . . . , « — 1. In other words, the holonomies are gauge invariant except for
their endpoίnts.
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2. They commute with UJ(ί) if the endpoίnts of i and the endpoints of <& are
disjoint,

whenever {t(i\ t(-i)} Π {*(#), /(-#)} = 0.

3. They satisfy the following "functoriality on curves"

(3.2)

- 4 , (3.3)

an d behave under the action of * as

(U!(V)T = σ^lξU^-VKR-1)1) . (3.4)

4. The elements U1^) and £/7(-^) are related by

(3.5)

where g^ — (τ*(gy) ® eκ\

Proof. 1. is essentially trivial. 2. is an application of the braid relations for composite
elements (Proposition 6, [1]). If i has no endpoint on # the assertion is trivial. Let us
suppose that / has one endpoint z e S on %> and zφjt, j;. Without loss of generality
we assume z = t(i). We decompose the curve ^ into two parts ]̂ = ̂ λ , ̂  = ̂ 2

such that ^7l(^?2) ends (starts) at z. The corresponding elements (77(^v) satisfy
standard braid relations with UJ(i\ i.e.

if ^l,-^2 < i. Similar relations with (R'z ') instead of Rz hold if C1,-^2 > ί.
Because of the assumptions on #, other possibilities on the order of ^\-^2J do
not exist. In the first case, braid relations for composite elements imply that

1 / ' / 2 2 J 2 J 1 / l /

1

Again, R has to be substituted by R' in case that ίίί1, —Ή2 > /. The representation
τ° appears because C/7^1)^7^2) is invariant in z. Since (τ° ® τ/)(Λ z) = (εzΘ
τ/)C#z) = e/, we obtain the desired commutation relation. The last case in which
both endpoints of / lie on the curve ^ is treated in a similar fashion.

3. We prove the first relation by induction on the length n of the curve (€. For
n — 1, <β = i\ and the relation holds because of functoriality on the link i\. So let
us assume that the equation is correct for curves of length n — 1. We decompose ^
into a curve & of length n — 1 and one additional link in. Using the definition of

the braid relations (2.21) and functoriality for curves of length less than n
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we obtain

jC^KL

Here z = t(%') and we used relation (2.7) for the last equality. The other two
formulas in 3. are obvious. 4. is a generalization of the formula (4.8) in [1] within
our new notations. We want to justify it here. It follows from the functoriality of
holonomies (3.2) and relation (2.7) that

Cy[KK\0](R'yf
κU*(V) = vKCx[KK\0]UK(-%).

Here we also applied K&K£ — VK With the intertwining relation (2.12) of the Cleb-

sch Gordon maps C[^AΓ|0] and the definition of g^ = (τ^(gy) 0 e\ this can be
rewritten in the form

1 -s l K - 2 K
C ϊΊSrKr\(\\πK.TT f(/?\ 11 Γ* \W\Γ\\ΊΊ ( (#\y[KK\()\gyU (Ή ) = VκLsX[KK \(J\U ( — 15 J .

Multiplication with CX[KK\Q]* and taking the trace iτκ results in the desired ex-
pression for Uκ(—^) as a consequence of Eq. (2.13).

Let us now turn to the definition of monodromies. This corresponds to the case
of closed curves ^ which was excluded in the preceding proposition. ^ starts and
ends in the point x on dP. For such holonomies we introduce the new notation

M7(^) Ξ U!(^) for # closed . (3.6)

Proposition 3 (Properties of the monodromies). If ^ w a closed curve which satis-
fies the requirements described above, the monodromies M7(^) have the following
properties:

1. They commute with all gauge transformations ξ G ^ with ξ ^ &x. Their
transformation behavior under elements ξ G &x is described by

2. They commute with UJ(i) if x is not among the endpoints of i, i.e. x^
i),t(-i)}.
3. They satisfy the following "functoriality on loops":

^) = Σ Ca

x[IJ\K]*MK(^)Ca

x[IJ\K] , (3.7)

e[ , (3.8)
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and behave under the action of * as

(Ml(^)Y = σΛ/ζXί-tfXO') (3 9)

4. The elements M7(^) and M7(-^) are related by

Mκ(-^) = dκt^(Cx[KK\QTCx[KK\Q]g^M^(^)RJκ). (3.10)

Proof. 1, 2. are obvious from the proof of Proposition 2. For the proof of 3.
one breaks ^ into two non-closed parts ^\^2 such that t(^\) = y = ^(—^2) and
exploits the simple braid relation

UI((ig2)RI

x

JUJ((igl) = UJ(<gl)(R'yy
jUI(<#2) . (3.11)

Using the functoriality of the holonomies L/r/((^v) derived before, the functoriality
on loops follows. Giving more details on the proof of 3, 4 would amount to a
repetition of the proof of Proposition 2.

Remark. From the functoriality relations (3.7) of the monodromies one derives the
following quadratic relations:

M1 (^)R1/MJ(^)R^ = R(J MJ (%)RfI

χ

J M1 (%). (3.12)

Relations of this form were found to describe the quantum enveloping algebras of
simple Lie algebras [11].

From the monodromies one can prepare new elements cl e stf C &. For the
closed curve ^ on the boundary dP of the plaquette P we define

cf = J(p) = Kl^q(M!(V)) = K/tΛM'Wτ^)). (3.13)

We recall that τx(gx) = gx = τx(u~lvx) and the last equality is a consequence of
Lemma 1. The elements c1 have a number of beautiful properties. They will turn
out to be central elements in the algebra j/ of invariants in (U) and satisfy the
defining relations of the fusion algebra.

Proposition 4 (Properties of c7). If all eyelashes at sites on the boundary of the
plaquette P lie outside of P, the elements c1 = cl(P) have the following properties:

1. They are independent of the choice of the start- and endpoint x of the closed
curve C6.

2. They are central in the lattice algebra &. In particular c1 are invariant
elements in (U) and hence central in j/.

3. They satisfy the fusion algebra

clcj = Y,NI

K

JcK , (3.14)
K

=cr. (3.15)

Proof 1. We break the curve ^ at an arbitrary point y on dP and start again from
the braid relations of the holonomies on the two pieces Ή*,^2 of ,̂

Ul(^λ)R^Ul(^2) - U'&WJ'U'W1). (3.16)
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y with g!

y from the right and with g[ from the le
and me expansion R~} = Σs\σ ®s2

zσ result in

Now multiply with g!

y from the right and with g[ from the left. Usage of τI

x(ξ)gI

x =

yσJJ y\ yσJ^ \ '

• ~ ' '' <?')> . (3.17)

Here we made use of the formula («9£ 0 id )(/?;,) = Ry

l. We will insert this for-
mula frequently in the following without further mention. After multiplying the
two matrix components in the last equation we take the trace tr7. With u[ —

σK2

σ) = (v!)2τ'z(Slσ^-](s

2

zσ)) the result is

Finally, we insert g(u[ = υ1 , Definitions (3.6,2.11) of the monodromy M7(#) and
the g-trace tr^ to end up with

where <$' starts in the site y and runs along ^2 and <€\ to end up in y again. This
means that instead of x one can choose any other site y on the boundary of P to
define c1 .

2. is a simple consequence of the properties of the monodromy (Proposition 3)
and 1.

3. The first relation is easily obtained from the "operator products" (3.7) of

the monodromy. One just multiplies the latter from the right with gxgx(R~ιyj

KjKj, uses the relation Ca

x\IJ \K\gfy = g^Cx[IJ\K] (this is (2.5)) and takes the
trace of both matrix-components of the equation. For the right-hand side of (3.7)
this leads to

r.h.s. = ic/KΛtr7

K,a K

where we also inserted the normalization (2.7) of the Clebsch-Gordon maps and
the definition of the numbers N^J . The evaluation of the left-hand side is equally

simple. After application of the intertwining relation of g^ and the trace property
for tr7 one obtains

.

The simple calculation rxσ^~\rxτ) <g) r^τr%σ = ^~l(rxτs
]

xσ) 0 ^τsxσ = e 0 e shows

l.h.s. - /c/KXtr7 ( g ) t r y [ M / ^ M J ^ = c1 cj .
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Let us turn to the behavior of c' under the action of *. The relation (3.9) implies
that

= K^M^-Vrtte1)] = /cΓ'tr'tM't-^). (3.18)

Here sxσ are still defined by the expansion R~l = Σsxσ ®sxσ and we used the
relations ux = έ%(sxσ)sxσv

2 and u~λ = sxσέ%(sxσ) (sum over σ is understood). For
the fourth equality we inserted the quasi-triangularity of the element Rx. μ7(£) was
defined in (2.16). It also appears in the transformation law of the monodromies

ξ) for all ξe&x.

The latter was used in the above calculation to shift the factor μx(slσ) from the left
to the right of M7(^). After this step, another application of the quasi-triangularity
leads to the final result of the above calculation.

At this point we can insert the relation (3.10) and apply Lemma 1 several times:

(c7)* = K^d^tr1' 0lrO[CΛ[//|0]*CΛ[//|0]^M/(«')/^/Jί]

= c1

3.2. The Algebra stfcs of Chern Simons Observables. The results of the preceding
subsection show that for every plaquette P on the graph G there is a family {c!(P)}ι
of elements in the center of j/(G) with the properties

c1(P)c\P) =

These elements are obtained as follows: suppose that j/(G) has been constructed
with some fixed ciliation on G. The corresponding ciliated graph will be denoted
by GC,I. Now choose an arbitrary plaquette P and some ciliation on G such that
no cilium lies inside of P. We call this ciliated graph Gc i l/. By Proposition 12 in
f l ] we know that there is an isomorphism E : j/(Gcil/) ι—> j3/(GCu). We can now
use the expressions in the first subsection to construct the elements c1 explicitly in
j/(Gcil/). Their images c!(P) =E(c!) in jtf(Gc\\) will be central and generate the
fusion algebra. The automorphism E has been constructed in [1]. From the general
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action of E and the definition (3.13) for c1 one can obtain the explicit expression

c'(P) = (K/Γ^+Xίί/'α, )t/'(i2) . . . t/'(iπ)) > (3-19)

where {/Ί,/2, •••,*«} is a closed curve that surrounds P once and w(dP) = w({/ι,/2,

. . .,/„}) =b 1 if the cilium at c = φ'Λ) lies msίde the plaquette P. Formula (3.19) no
longer depends on the position of cilia.

Let us describe next, how one obtains "characteristic projectors" χ!(P) from
the Casimirs cJ(P). In fact this step is quite standard, but it requires an additional
assumption on the gauge symmetries .̂ From now on we suppose that the matrix

( \~}/2

with Jf = f £ 4 < oo (3.20)

is ίnvertible. A number of standard properties of S can be derived from the in-
vertibility (and properties of the ribbon Hopf-* -algebra). We list them here without
further discussion. Proofs can be found e.g. in [12].

= SJLSIL(^dLΓ] (3.21)
K

with Cjj = NQJ . For the relations in the second line, the existence of an inverse of
S is obviously necessary. Invertibility of S is also among the defining features of a
modular Hopf-algebra in [13].

Theorem 5 (Characteristic projectors). Suppose that the matrix S = (S/j) defined
in Eq. (3.20) is invertible so that it has the properties stated in (3.21). Then the
elements χJ(P) G stf defined by

χ'(P) = JΓd,(SC)lκc
κ(P) = ^d,S1KcK(P) (3.22)

are central orthogonal projectors in s/, i.e. they satisfy the following relations:

χ'(Pγ = χ!(P), χ'(P)χJ(P) = δu χ!(P) . (3.23)

Proof. The simple calculation needs no further comments,

χ Y =



578 A. Yu. Alekseev, H. Grosse, V. Schomerus

Let us also determine the action of * on the projectors χ7,

(χ'γ = jrdlsΓj(cJγ = jvd,SjlC

J = χ' .

This concludes the proof of Theorem 5. The result is quite remarkable and central
for our final step in constructing Chern Simons observables.

Consider once more the graph G that we have drawn on the punctured Riemann
surface Σ. Suppose that G has M plaquettes P, m of which contain a marked point.
The latter will be denoted by Pv, v = 1 , . , . , / w . Let us use ^ for the set of all
plaquettes on G and &Q for the subset of plaquettes which do not contain a marked
point. By construction, the plaquettes Pv contain at most one puncture which is
marked by a label 7V. To every family of such labels 7V, v = l,. . . ,ra, we can
assign a central orthogonal projector in j/.

m

)= Π ΛP)Π/V(Λ) (3.24)

Since all elements χ7(P) commute with each other, the order of multiplication is
irrelevant.

Definition 6 (Chern Simons observables). The algebra £#£$ of Chern Simons
observables on a Riemann surface Σ with m punctures marked by 7V, v = 1, . . . , w,
is given through

(3.25)

Remark. Notice that the *-operation on j/ restricts to a *-operation on £/cs> The
same is true for the positive linear functional in [1].

To call elements in stfcs "Chern Simons observables" has certain aspects of
a conjecture. A full justification of this name needs a detailed comparison with
other approaches to quantized Chern-Simons theories. This is discussed at length
in a forthcoming paper [14]. Some remarks are also made in the last section of
this paper. At this point we can only give a more "physical" argument by showing
that elements in <$#cs have "their support on the space of lattice connections which
are flat everywhere except for the marked points." So whenever we multiply an
element A £ ^Cs with the matrix M7(^) and ̂  wraps around a plaquette P e &Q,
only the contributions from flat connections survive in MJ(%>). Since flat connections
have trivial monodromy, this means that for all A G £#csτ AMJ(^) ~ AeJ up to a
complex factor which depends on the conventions. This will follow from the next
proposition.

Proposition 7 (Flatness). The elements χ°(P) and M7(^) satisfy the following
relation:

(3.26)

Here ^ is a closed curve on the boundary dP of the plaquette P which starts and
ends in the site x.

Proof. The point of departure is the operator product of the monodromies (Eq. (3.7)),
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As in the proof of Proposition 4.3 we obtain

= */ Σ ^Cx[ΪI\0](Rx

ιyjc;[IJ\K]*Mκ(V)

= */ Σ -Cx[KK\^(R'xy^Ca

x[JK\ϊγCa

x[JK\ϊ]

Mκ(V)(R'xf
κCx[KK\0]* .

While the second equality follows from the definition (2.11) of the g-trace, the third
equality is a consequence of the following lemma.

Lemma 2. The Clebsch-Gordon maps satisfy the following two relations:

Cx[ΪI\0](R'xy
jCx[IJ\K]* =

a/vK

with an ίnvertible, complex matrix A.

The proof of the lemma relies on intertwining properties and normalizations
of Clebsch Gordon maps. Since it is somewhat similar to the proof of Lemma
1- though certainly more sophisticated - we leave details to the reader.

As we continue to calculate χ°MJ(^), we will use the completeness of Clebsch
Gordon maps, i.e. the relation

Σ -^—(R'xy^C;[JK\I]*Cx[JK\I] = ej 0 / . (3.27)
la KJKK

With χ° = Σ ^dic1 it follows that
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4. Changing the Graph G

The quantum algebra <$#£$ is shown to depend only on the marked Riemann
surface Σ^m with punctures labeled by 7V and the quantum symmetry (S. Then a
particular graph is described which allows for a relatively simple presentation of
eβ/cs This presentation will be useful for explicit calculations (see e.g. Sect. 5.2)
and the discussion of representation theory in a forthcoming paper [14].

4.1. Independence of the Graph. We plan to prove some fundamental isomorphisms
within this section. The algebra j/ of invariants can be constructed in many different
ways. One first chooses a fat graph G on the punctured Riemann surface Σ^m and
equips it with cilia at all the sites. Then one constructs the lattice algebra ^ for this
ciliated graph and considers the algebra stf of invariants in (U) C 3$. Even though
@& depends on the position of eyelashes, the algebra ^ that is obtained following
these steps does not (Proposition 12, [1]). We will see now that the concrete choice
of the graph G is also irrelevant once we restrict ourselves to the subalgebra j/cs
of "functions" on the quantum moduli space of flat connections (as long as the
graph G is homotopically equivalent to the punctured Riemann surface ΣίΛ/M).

Proposition 8 (Dividing a link). Let G\ be a graph and construct a second graph
G2 from G\ by choosing an arbitrary link ί on G\ and introducing an additional
site x on ί so that i is divided into two links i\,i2 on G2 with t(i2) = t(ί\ t(—ί\) =
t(-i) and t ( i \ ) = t(-i2) = x. Then the algebras stf\ = sf(G\) and ̂ 2 = <^(G2)
are isomorphic as ^-algebras.

Proof. We know already that the algebras j/ do not depend on the ciliations
(Proposition, [1]). So choose an arbitrary ciliation for G2 and introduce the same
cilia at the corresponding sites of G\. Generators in 36 \ and ̂ 2 will be distinguished
by a subscript, i.e. U[(i) G 36\ and U[(i) G 362. Looking at the proof of the prop-

erties of holonomies we see immediately that the product κflU2(i\)U2(i2) satisfies
precisely the same relations in 362 = 36(^2tC\\) as U[(i) does in 36\ — 3S(G\tC\\) (the
sign depends on the position of the cilium at the new point jc). This establishes an
isomorphism of (U\) with

(U2)x = {U G (U2)\ξU = Uξ for all ξ G 9X} . (4.1)

This isomorphism is consistent with the *-operation * and clearly induces a *-
isomorphism between jtf\ and £02.

Let us remark that this simple proposition shows how to define a lattice algebra
&(G) and the corresponding algebra j/(G) on a multigraph G, on which two given
sites may be connected by more than one link. Our original definition in [1] did
not include this case. If G is a multigraph, one can always construct a graph G'
(which has at most one link connecting two given sites) simply by dividing some
of the links on G. Even though the resulting graph G' is certainly not unique, the
algebra &/(Gr) is. This makes jtf(G) = stf(G') well defined for every multigraph
G. The idea can be extended to the lattice algebra ^(G). Since we will need this
in some of the proofs to come, let us briefly explain the details. Suppose that the
link / on G has been divided into two links i\ and i2 on G1'. Then we define the
element U!(i) by (± depending on the ciliation)
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Observe that the right-hand side is meaningful since the arguments i\^iι are links
on a graph G' (whereas / is a link on a multigraph so that Ul(ι) was previously
not defined). If we identify the set S of sites on G and the corresponding subset of
sites on G', we can set ^(G) to be the subalgebra of &(G') which is generated by
components of Ul(i\ i G L and the elements ξ G &x, x G S. Along these lines, even
graphs with loops (i.e. links which start and end in the same site) can be admitted.
Needless to say that it would have been possible to give a direct definition of ^(G)
for all these types of graphs similar to the definition of $ in [1]. But the more
complicated the type of graph becomes the more cases have to be distinguished
in writing the defining relations of 38. For many proofs this would have been an
enormous inconvenience. On the other hand, our results for algebras on graphs G
imply corresponding results for algebras on multigraphs G since the latter have
been identified as subalgebras of the former. After this excursion we can give up
our strict distinction between graphs and multigraphs.

Proposition 9 (Contraction of a link). Let G\ be a graph and construct a second
graph G^ from G\ by contracting an arbitrary link i on G\. This means that on
the subgraph G\ — ί which is obtained from G\ by removing the link ±z, the end-
points t(i) = x and t(—i) = y of i are identified to get GI. The resulting algebras

and s$2 = stf(Gϊ) are isomorphic as ^-algebras.

Remark. Observe that G^ can be a multigraph even if GI is a graph. So objects
on G2 have to be understood in the sense of our general discussion preceding this
proposition.

Proof. To prove the proposition we will adopt the following conventions. The site
on G2 that corresponds to the pair (x,y) of sites on G\ will be denoted by z. We
will use the same letters for a link k G L\ on GI and its "partner" k G L2 on G2. In
addition to /', the site x is the endpoint of n other links j\9...,jn. We assume that
they all point away from x, i.e. t(—jv) =x for all v = !,...,«. Next we introduce
a ciliation on G\ such that / becomes the largest link at x and — / is the smallest
at y. In a canonical way, this induces a ciliation for GI.

As in the proof of the preceding proposition, the desired isomorphism will be ob-
tained by restricting an isomorphism between (U\)x and (6/2). From definition (4.1)
it is obvious that (U\)x is generated by components of U^(k\ A φ ± z, ±/v, and

••Jn\J}U ί ( i ) , (4.2)

where the maps C\J\ ...Jn\J] are only restricted by the property

.Ja\J] = C[J, - Λ |J]rf(O for all ξ&9x.

This guarantees that components of the elements (4.2) are invariant at x. We define
a map Φ : (U\)x ι— > (ί/a) by an action on these generators.

= Uξ(k) for all * Φ ± i, ±jv e L\ , (4.3)

, - Jn\J]U >(i)

- Λ|J] . (4.4)
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Indeed Φ can be extended to an isomorphism. Let us start to establish the con-
sistency with the multiplication. It is clear that Φ respects all relations between
generators Uf(k), kή= ± /, ±yv, and between such U^(k) and elements (4.2). Sup-
pose next that we have two elements in {£/2) which are both of the form of the
right-hand side in Eq. (4.4). Their multiplication defines maps C",F by

' UHjn)C'[Kλ " Kn\K]

= FU$l(jι) - - UHM'lLt Ln\L]Ca

x[JK\L] . (4.5)

F is just a simple combination of Clebsch-Gordon maps, but since it will be of no
concern to us, we do not want to spell this out. On the other hand we may multiply
elements in (U\)x of the form (4.2). When dealing with the product

ί/'ΌΊ) U{"(jn)C[Jι -Jn\J]u{(i)

• tf F'OΊ) uHjn)C'[Kλ ..Kn\K]U?(i) , (4.6)

we first apply the proposition on braid relations of composites to move U^(i) to the
right. The elements on links jv can then be rearranged precisely as in (U2) before.
The result of these manipulations is

with the same F9C" as in Eq. (4.5). For the second equality we used functoriality
on the link /. We see that Φ maps products (4.6) to the element on the right-hand
side of Eq. (4.5). This shows consistency of Φ with multiplication. Consistency of
Φ with the *-operation is proved in a similar way. We leave this as an exercise.
Since elements in the image of Φ generate (ί/2), we established Proposition 9.

Proposition 10 (Erasure of a link). Let G be a graph and P be a plaquette of
G. Suppose that the link i lies on the boundary dP of this plaquette and that
G' — G — / is the subgraph of G obtained by removing the link ±/. Then the
^-algebras χ°(/>)j/(G) and s#(G') are isomorphic. Denote the other plaquette
incident to the link i in G by P and the resulting plaquette which replaces P

and P in G' by P' . The *-subalgebras χ°(P)χI(P)^(G) and χ!(p')j/(G') are
isomorphic.

Proof. The proof is obtained as a reformulation of Proposition 7 above. We choose
cilia to be outside of P and ̂  — {— z',yΊ, . Jn} such that it surrounds P in clockwise
direction. With the decomposition ^ = ̂ 0 o {— /}, Eq. (3.26) can be restated as

Since <$tf(G') can be identified with the subalgebra of elements A G s/(G) which do
not contain U\±i\ the formula means that χ°(PX(G) = χ°(P)j/(G/) - ̂ (G1).
Now choose ^ — {i,jn+\, 9jn+n} to surround P in the clockwise direction and
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decompose it according to •? = {/} o <#0. It follows immediately that

= χ\P)c'(P) .

This implies the second statement of the proposition.
The last proposition reflects the topological nature of the Chern Simons theory.

Since elements in <z/cs have a factor χ°(P) for every plaquette P G &Q which does
not contain a marked point, the proposition implies that such plaquettes can be
arbitrarily added or removed from the graph G without any effect on j/cs

Contracting and erasing links and making inverse operations one can obtain from
any admissible graph on a punctured Riemann surface any other admissible graph.
The algebra of observables does not change when we contract and erase links. So,
we can conclude that this algebra is actually graph-independent as a *-algebra. Let
us note that such strategy of proving graph independence has been applied in [2]
to the Poisson algebra of functions on the moduli space.

4.2. Theory on the Standard Graph Gίy?m. Since the algebra s#Cs does not depend
on the graph G one may choose any graph on the Riemann surface to construct it.
This section is devoted to a special example of such a graph called the "standard
graph." It is also the basis for the representation theory of the moduli algebra
considered in a forthcoming paper [14].

The standard graph is one of the simplest possible graphs which is homotopically
equivalent to a Riemann surface Σg^m of genus g and with m marked points. It has
m + 1 plaquettes, m + 2g links and only one vertex. To give a precise definition
we consider the fundamental group n \ ( Σ f f t m ) of the marked Riemann surface. Let
us choose a set generators 1V9 v = l, . . . ,w; a^b^ i — !,...,# in n\(Σg^n) so that

1. /v is homologous to a small circle around the vth marked point,
2. al,bl are a- and ^-cycles winding around the z'th handle, which means in terms

of intersections

lv#lμ = lv#aj = lv#bj = 0, a,#bj = δtj , (4.7)

3. the only relation between generators in π\(Σg^n) is

lt lm[aι,bι] [ay, bβ} = \, (4.8)

where we use the notation [x, y] = yx~ly~}x for elements x, y of the group

We call such a basis in π\(Σ^m) a standard basis. Having a standard basis, one
can draw a standard graph on the Riemann surface Σ^m.

Definition 11 (Standard graph Gg,m). Given a standard basis in π\(Σg^n\ a standard
graph Gg,m corresponding to this basis is a collection of circles on the surface,
representing the generators / v , f l / , & / in such a way that they intersect only in one
"base point" p.
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α,

Fig. 1. Position of the cilium at the only vertex of the standard graph. The letters al,bl mark
loopends corresponding to the a- and ^-cycles.

Any standard graph may be supplied with a canonical ciliation which orders the
link ends such that /v < lμ < (fl/,6 z) < («/,&/) for all v < μ and / < j. Within

the /th pair (α/,6/) of a- and /^-cycles we assume the order of Fig. 1. The notion
lμ < (aί>bi) means for example that the elements in the triple (cilium, ends of /v,
ends of at and bt) appear in a clockwise order with respect to a fixed orientation
θf Σgίfn.

Still we have a big choice as there are infinitely many standard graphs. In
principle, we should describe how the formalism behaves when we pass from one
standard graph to another one. However, the algebraic content of the theory is
identically the same for any standard graph. So, we forget for a moment about this
ambiguity and turn to the corresponding graph algebra Sf^m = &(GCJ,m). To write
the defining relations of £fg^m one simply follows the general rules discussed above.
So in principle £fg,m = $(βg,m) suffices as a definition of ,̂w In view of the
central role, the graph algebra «9^>m will play for the representation theory of j/cs
we would like to give a completely explicit definition here.

Definition 12 (Graph algebra ^,m). The graph-algebra ^w is a ^-algebra which
is generated by matrix elements of M7(/v), Ml(μι\ M7'(6,) e End(F7) ® ̂ m,
v = !,...,/«, / = !,...,# together with elements ξ in a quasi-triangular Hopf al-
gebra ^* — ̂  with R-element R* — R and co-product Δ* —A. As usual, the super-
script I runs through the set of equivalence classes of irreducible representations
of .̂ Elements in <9^m are subject to the following relations:

= ΣCa[IJ\K]*Mκ(lv)Ca[IJ\K]

MI(ai)RIJM\ai) =

M\bl)RIJMJ(bi) =

(R-lyJM!(lv)RIJMJ(lμ) = M\lμ)(R~l)IJMI(lv)RIJ for v < μ ,

(R-v)IJM\lv)RIJM\aj)=M\aj)(R-l}IJMI(lv)RIJ V vj ,

(R-λyjMI(lv)tfJM'(bj) = MJ(bj)(R-l)IJM!(lv)RIJ V vj ,

(R~ιyjMI(ai)RIJMJ(aj) = MJ(aj}(R~l yjM!(aj)B?J for i<j,
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(R-])'JMI(a,)RIJMJ(bj) = MJ(bj)(/T')IJMI(aJ)RIJ for i <j,

(R-]yjM!(bi)RIJMJ(bj) = MJ(bj)(R-[yjM1(bj)RIJ for i < j ,

-1 IJ ' / IJ 2 J 2 J -1 IJ ] I IJ

μJ(ξ)MJ(lv)=MJ(lv)μJ(ξ),

μ\ξ)MJ(ai) = MJ(ai)μ/(ξ) , μj (ξ)MJ (b,) = MJ(b^J(ξ) ,

where μ\ξ) = (τ1 0 id)(zl(O) € End(K7) 0 $ as before. With M7(-/v), M7(-αz)
and M\—bt) being constructed from M7(/v), M7(βz) and Ml(b[) with the help of
formula (3.10) (s0 ί/zαί M7(/V)M7(-/V) = β7 e/c.) ί/ze αcί/ow 6>/ί//e ^-operation on
^0,m ^ S'̂ ^w through

(a,)T = σκ(R'M'(-a,)(R-]y) ,

where σκ means conjugation by K (see Sect. 2 for details).

This definition requires some comments. All links of the standard graph are
closed ("loops"). This explains why all the functoriality relations have the form
(3.7). The relations between generators on different loops reflect the particular cili-
ation described above and follow strictly from the rules given in Sect. 2. To verify
this, one should recall that quantum lattice connections on closed links were defined
in Sect. 4 as special elements in a larger lattice algebra &(G). Here G is a graph
on which all loops have been divided into two (non-closed) links by introducing
additional sites on the loops. After one has gained some experience with this type
of exchange relations, the rather pedantic procedure of dividing links will become
superfluous.

There is one more remark we need in order to prepare for a calculation in the
next section. We saw in Proposition 2 that holonomies which are made up from
products of lattice connections assigned to different links satisfy the same type of
functoriality as the lattice connection U!(i) themselves. A similar property holds
for the lattice connections M7(/) on loops /. We demonstrate this at the example
of M7(α«), Ml(bi) G End(F7) 0 «9^m,

κγlMI(bi)MI(ai)RIJκJlM\bi)MJ(al)

. (Rl)IJCb[IJ\LγML(al)Cb[IJ\L\

= Σκ-lCa[IJ\K]*Mκ(bl)Mκ(ai)Cb[IJ\K] .
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From this one can easily derive the following formula, which is similar to Eq. (3.10):

κγλMI(bi}MI(al) = rf/tr't/^'fc/A^ . (4.9)

It will be used in Subsect. 5.2.

5. Quantum Integration

The "multidimensional Haar measure" ω : stf >—» C mentioned in Theorem 1 restricts
to a positive functional on the algebra s$cs of Chern Simons observables. When
the latter is properly normalized, it does not depend on the choice of the graph
and thus furnishes a distinguished functional COYM : <s#cs •—» C. This functional is a
generalization of the integration measure in the lattice Yang-Mills theory. We use
this to calculate the volume of the quantum moduli space in the second subsection.

5.7. The Yang-Mills Functional ωYM. To define the functional ωYM we use the
same notations as in Sect. 3.2. In particular, the graph G which we have drawn on
the punctured Riemann surface Σ is supposed to possess M plaquettes. With the
finite real constant Jf = (]C(d/)2)~1/2 introduced in relation (3.20) we define

ωYM(A) = J^-2Mω(A) for all A e J/^} . (5.1)

Obviously, COYM inherits its positivity from the positivity of ω.

We have seen at the end of the preceding section that the algebra s$Cs = ^cs
does not depend on the graph G. The main purpose of this subsection is to establish
the graph-independence for ωγM-

Proposition 13 (Graph-independence of COYM)- Let G be a graph and suppose that
G' is a second graph so that either

1. G1 is obtained from G by dividing one link i on G into links i\,Ϊ2 on G1 by
adding one additional site x on /,

2. G' is obtained from G by contracting one link ί on G so that i is removed
and its endpoints are identified on G1',

3. G' is obtained from G by erasure of a link ί on the common boundary of
two plaquettes P,P', with P containing no marked point.

Then the Yang-Mills functional OJYM for the graph G is equal to the Yang-
Mills functional ωr

YM assigned to the graph G' (since in all three cases the corre-

sponding algebras s$cs — ̂ cs(G) are isomorphic to A'cs = j/^^ (G7), equality
of the functίonals is well defined).

Proof The first case is essentially trivial. It follows directly from Definition (2.23)
of ω. 2. can be derived by combining the first and the last case. The simple argument
is left to the reader. In turning to the proof of 3., let ^,#' denote two curves on
the boundary of P,P' such that {^,/} and {—/, *&'} are closed. Both are assumed
to move counter-clockwise. By definition, an element A in s$cs is of the form
A = ecsΛ. with

fτ\ m

ecs = 4V = Π ΛP) Π/W (5.2)
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being the unit element in the moduli algebra s#cs According to Proposition 10,
the element A G s$ can be written without usage of U!(±i). Given an arbitrary
presentation of A one simply has to replace UI(±i) by ί/7(=F^). In the following
we will assume that this replacement has been made. The image of A under the

isomorphism between jtfcs and £#'Cs ^s ̂  ~ ecs^ (ecs ^s tne umt element in jtf'cs).
With these notations, the statement of the proposition,

is equivalent to

Λ'-2Mω(ecsA) = ̂ -2(M-^ω(e'csA) . (5.3)

The different powers of Jf are due to the fact that G1 has one plaquette less than
G. This equation is a consequence of the following lemma.

Lemma 3. Suppose that F G stf — stf(G) does not contain elements U!(±i) with i
being on the common boundary of two arbitrary plaquettes P, P' of G. After i is
removed, the plaquettes P,Pf merge into a single plaquette P U P' on G' — G — i.
We have

ω(c\P}cJ(P')F) = (d1Γ
λω(cI(P^P')F)δu . (5.4)

Here cI(P),cJ(Pf) and c!(P(JP') are given by Eq. (3.19) (which holds for arbi-
trary but fixed dilations).

Proof of the Lemma. We want to show first that the left-hand side of Eq. (5.4) is
nonzero only for / =J. The formula (2.23) for ω reveals that the value of ω can be
nonzero, only if the argument has a component which contains the factor UQ(i). The
product cI(P)cJ(P')F contains U!(i) and UJ(-i) and these are the only elements
associated with the link i. Now UJ(—i) can be expressed as a linear combination

of UJ (i). The "operator product" of U!(i) and UJ(i) has components proportional
to ί/°(/), if and only if / is the conjugate of J, i.e. iff / = J. So we can set / = J
for the rest of the proof. For simplicity we will also assume that the cilia at the
sites x = t(i) and y = t(—i) lie outside of both P and P' . For different positions
of eyelashes, the proof contains some additional phases ( v / ) ± l which cancel in the
end. By Eqs. (3.19) and (3.18) we have

0), (5.5)

cI(Pf) = trj](UI\i)Ur(-Vf)). (5.6)

Functoriality on the link / gives

u'wu'wu'wu^-V) = Σ

If we apply tr l

q ® tr l

q to this relation, we multiply with F and evaluate the resulting
expression with ω to obtain

ω(cI(P)cJ(P')F)

= ω
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A formula similar to Eq. (3.5) allows us to rewrite the right-hand side so that it
becomes

This proves formula (5.4) and thus Lemma 3.
With the explicit expressions (3.22) for the characteristic projectors and Lemma 3

we can calculate

= ^2dκdLSκJSLjω(cI(P)cJ(Pl)F)

dfr
lω(cί(PυP')F)

SRΪω(cI(P U P')F)

PUP')F) . (5.7)
«/?

Proof of Proposition 13 (3.) (continued). For Proposition 13, P was assumed not
to contain a marked point so that it contributed with a factor χ°(P) to ecs P' was
arbitrary and so is the associated factor χL(P'). In the calculation leading to (5.7)
we can set K = 0 and use

with ' meaning that the product is restricted to plaquettes nonequal to P,P' ' . With
c/o — 1 and N%L = OL,R this gives the formula (5.3) and hence proves the proposi-
tion.

5.2. Volume of the Quantum Moduli Space. To demonstrate how computations
can be performed within the framework of this paper, the volume of quantum
moduli space of flat connections on a marked Riemann surface Σ is calculated2. In
practice we define the volume of the quantum space as an integral or trace of the
characteristic projector. In the framework of the 2-dimensional lattice gauge model
one can interpret this result as a partition function of the system. As there is no
Hamiltonian involved, we shall get just a number.

The "characteristic function" for the quantum moduli space is the projector

ecs = 47ί} = Π xV) ΠxVv) , (5.8)

which contains one factor for every plaquette of the graph which we have drawn
on the marked Riemann surface Σg^m. The 7V, v = l , . . . ,m, are the labels sitting
at the m punctures. ^0 denotes the set of plaquettes without marked point. If a
characteristic function is integrated, this gives the volume of the corresponding
space. In our case, integration is defined with the help of the Yang-Mills functional

ojγM and this means that the volume of the moduli space is O)YM(^CS )• Using

the graph independence of the algebra ^^s anc* me functional ωYM, we fix a

A similar calculation was also done recently by Buffenoir and Roche [15].
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particular graph from the very beginning. Let us use the standard graph discussed
in Sect. 4.2 for this purpose. This is certainly not necessary for the computations
to follow, but it simplifies the presentation and can help to make it as concrete as
possible. Before we give the general result, we would like to discuss two examples.

Example 1. Genus 0. Recall that the standard graph G^m on a Riemann sphere
with m marked points consists of m loops which start and end at the same vertex.
The standard graph has m + 1 plaquettes, one of which does not contain a marked
point. So the characteristic projector is

To calculate its expectation value, one should recall the formula (5.7). It allows

to relate the expectation value of the characteristic projector e^ on the standard
graph Gm to a similar expectation value on a simpler graph, from which one link
and one plaquette has been removed. One can actually iterate this procedure to get

Here P = \J™~Q

} Λ> and we used do = 1 and N%J = δj,κ. We stopped the calculation
before we integrate over the last link on the graph which separates the two plaquettes
P and Pm. From the definition of characteristic projectors and Eq. (3.22) one infers

XK(P) = lf(Pm) Using the property χκ(Pm)χL(Pm) = δκ,Lχκ(Pm) we can treat the
remaining expectation value as follows:

We made use of the normalization of (OYM on a graph with two plaquettes, the
definition (3.22) of characteristic projectors, the property ω(c7) = <5/?0 and properties
of the S-matrix. The result implies for the volume

' = (ΓR,)Σ<^
\ V=l / Kn

Ί'2X7*1/3...»Λ.-2'»^-2
κ{ "κ2

 no Λ

We want to rewrite this using properties of the matrix S. To this end we insert

7V0 ιn~2 '" = ^2Sκm_2jSjιm and move the first S through the product of fusion matri-
ces. This results is

(5.9)

Example 2. Genus 1 . The standard graph G\tfn has again m + 1 plaquettes. But this
time the plaquette PQ is bounded by the links /v as well as by a- and 6-cycles on
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the torus. Let us merge step by step all plaquettes into one and call it P. In this
way we erase all /v links so that the boundary of P looks as ba~{b~la. Using the
same arguments as in the first example we see that

_ . (5.10)
Kμ

Observe that the boundary of P contains every link twice so that the evaluation of
ω(χκ(P)) is quite nontrivial. Before one can integrate over the degrees of freedom
assigned to a particular link on the graph, one has to ensure that this link appears
only once and only in one orientation in the integrand. This can be done with the
help of exchange relations and functoriality. Let us calculate the expectation value
of (^(P) first. To this end we insert the formula (3.19) for ^(P) and invert the
orientation of the {— α, — b} in the middle. This is done with the help of Eq. (4.9).
Next functoriality can be applied on the link b which then allows to perform the
integration on b. In formulas this is

= djω((MJ <g> tr7~)[M

• C[JJ\0]MJ(a)gJ])

= djω((trj ® trJ)[C[JJ\Q]*C[JJ\0]MJ\a)(RfyJC[JJ\QT

- κjω((trj

In this expression we inserted the definition (2.11) of the g -trace. Now we can
integrate on the link a. The formula

t^(MJ(a))MJ(a) = £>/[(*- V"' ' C[JJ\K}*MK(a)C[JJ\Kl\

follows from functoriality and was derived earlier in Sect. 3. It shows that

ω(tr/(MJ(α))M-/(α)) = ̂ [v^ff1 C[JJ\K]*C[JJ\K}} = vjldjl .

We may insert this into our expression for ω(c'(Po)) which then becomes

ω(cJ(P)) = dj\trj <S>trJ)[C[jJ|0]*C[jJ|0]ί7J]

= </72tr,V) = </,-'. (5.11)

With the normalization of ωγM on a graph having only one plaquette, we find
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When this is finally plugged into the formula above, we can write an expression
for the volume,

l 2 Λ Γ 1 3 Λ T /Π— 2
\ Nκ2 •••Nκm_l

J \ V—\

where the last line employs the same type of algebra described in the first example.
Now we are sufficiently prepared to deal with the general case.

Proposition 14 (Volume of the moduli space). The volume of the quantum moduli
space of flat connections on a compact Rίemann surface ΣCJ^m of genus g and with
m punctures marked by 7V, v = l , . . . ,w evaluated with the Yang-Mills measure
is given through

(5.13)

Proof. The proof of this formula is again done with a calculation on the standard
graph (70, m. The latter has m -f 1 plaquettes. When we erase all links lv we are left
with the plaquette P which is bounded by a combination of a- and Z>-cycles which
corresponds to Eq. (4.8). We designed the proof for the g = 1 case in such a way,
that it can be applied directly to the higher genus. We leave this to the reader.
Let us just do the power counting for dj. A generalization of formula (5.11) for
the value of ω(cJ(P)) shows that every pair (#/,&/) of a- and ό-cycles contributes
with a factor dj2 until only ϊτj

q(ej) is left. So the g pairs (#/,&,) together with

tΐq(ej) = dj give rise to dj~2g, i.e.

Compared to the result for the torus, this gives an extra factor of d2~2fj in the final
formula for the volume of the moduli space.

5.3. Canonical Measure and Verlinde Formula. The functional ωYM that we have
discussed so far had the fundamental properties of being gauge invariant and graph
independent. These invariances fix the functional only up to a coefficient which may
depend on the genus g, the number m of marked points, the labels 7V, v = 1, . . . , m at
the punctures and on the deformation parameter q. Actually, there exists a canonical
normalization of the measure. This is used in the Chern Simons theory and we call it
ojcs- The different normalizations of ωcs and MYM can be encoded in the following
relation:

= λ(g,m,I\,...,Im9q)ωYM . (5.14)

The aim of this subsection is to explain the choice of the positive coefficients λ.
One can define the canonical normalization in two different ways. The first

approach is through the representation theory of the moduli algebra. Assume for a
moment that the latter is finite dimensional (this is indeed the case for q being a root
of unity). As a *-algebra with positive inner product, the moduli algebra is semi-
simple and splits into a direct sum of matrix algebras. One can fix the canonical
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functional ωcs by the requirement that -when restricted to a simple summand-it
coincides with the usual matrix trace. This approach furnishes a proper definition for
ωcs which is fundamental for the considerations to follow below. On the other hand,
a direct computation of the canonical normalization from this definition requires the
full information about the representation theory. This is the subject of the subsequent
paper [14] where the representation theory of the moduli algebra is considered in
detail.

Another approach refers to the theory of deformation quantization. Treating the
deformation parameter q as an exponent q — exp(h) of the Planck constant, one can
expand the commutation relations of the moduli algebra into formal power series in
h and identify this picture with deformation quantization of the moduli space (for
more details see [24]). According to the theorem of Tsygan and Nest [23] there
exists a unique canonical trace in the framework of deformation quantization. We
conjecture that this trace coincides with an expansion into the formal power series
in h of the canonical functional ωcs defined via the representation theory.

Both ways to normalize the functional ω include some complicated analysis
which is beyond the scope of this paper. Instead, we plan to describe a different way
to determine the coefficients λ(g,mj\^...jm,q) which characterize the canonical
functional ωcs This computation is based on several suggestive properties of the
moduli algebra which are more natural to prove in the context of the paper [14]. We
formulate these properties as theorems labeled by latin letters. Assuming validity of
these theorems, our method gives a derivation of the canonically functional ωcs
Actually, we are going to combine the ideology of the Topological Field Theory
and the algebraic approach of this paper.

Let us introduce some new notations first. Using the graph algebra corresponding
to some standard graph, one can assign a bunch of matrix generators M\x) to each
cycle x on a Riemann surface. As we have discussed above, they furnish elements
c7(jc)-one for every label /-when they are evaluated with the g-trace. For the
homologically trivial cycle c, the corresponding elements c7(x) belong to the center
of the graph algebra. If the cycle x is nontrivial, they are no longer central. Their
algebraic relations, however, remain those of a fusion algebra, i.e.

c'(X)cJ(X) = ̂ N'K
JcIi(x\ (c'(X)Y=cI(X), (5.15)

K

for arbitrary cycle x. We denote this algebra by i^(x).
Suppose that 3C be a subalgebra of an algebra ®/. The (relative) commutant of

3C e <& will be denoted by <g(SC,<3f).

Let jtfgtm" be a moduli algebra corresponding to a Riemann surface of genus
g and with m marked points. Consider the 0-cycle ag of some standard graph and
the fusion algebra i^(ag). Without proof we state

Theorem A (Induction in the genus g}. The commutant ^(i^(ag), J^g,™""* ) splits
into the direct sum of moduli algebras of genus g — 1 with m + 2 marked points

ΓJ f1 - (5-16)

Here the sum runs over all classes of irreducible representations of the symmetry
Hopf algebra.
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In the language of Topological Field Theory, evaluation of the commutant cor-
responds to shrinking the cycle ag so that we get a surface of lower genus. It has
two marked points at the place where the handle is pinched - one on either side
of the cut. Shrinking all the ^-cycles one after another, one produces spheres with
m-\-2g marked points.

We apply a similar technique to reduce the number of marked points. Consider

the moduli algebra ^om corresponding to a sphere with m marked points. Pick
up a cycle / = lm-\ o lm (i.e. the product of the two elementary loops lm-\ and lm)
and construct the fusion algebra i^(l). As before, we investigate the commutant of

^(/) in j/ow"" The result is given by the following theorem.

Theorem B (Induction in the number m of punctures). The commutant of 1^(1) in

j^Om''"' m* splits into the direct sum of products of moduli algebras corresponding
to m - 1 and 3 marked points

#(T^(/),^o wv"'/w*) - Θ^om'-ι/m~2'/} ® ̂ Q7/'""1'7'"* (5-17)
7

Here the sum runs over all classes of irreducible representations of the symmetry
Hopf algebra.

In Topological Field Theory the evaluation of the commutant should be inter-
preted as a fusion of two marked points into one. As before, one can imagine that
we create a long neck which separates these two points from the rest of the surface.
When we cut the neck, the surface splits into two pieces. The "main part" carries
the rest of the marked points and a new one created by the cut. The other piece
has only three punctures, two of them are those that we wish to fuse and the new
one appears because of the cut. Iteration of this procedure results in a product of
3-punctured spheres.

In the following we will need two simple consequences of Theorems A and B.
Namely, the decomposition of the commutant of the fusion algebra determines the
following decompositions of the unit:

β{/b..,/m} = ^e{h^im^ΐ} ?

7 &

ί7b...,7m} _ ̂  ί7lv..,w} ^Jΰπ-iΛ,}

Here e}}^ denotes the unit of the moduli algebra s$\^ The equations are a simple
consequence of the completeness of characteristic projectors, i.e. of Σ/Λ*) = id.

Now we can turn back to the discussion of the canonical functional cocs- By
definition, it is supposed to coincide with a usual matrix trace. When the standard
properties of a matrix trace are combined with the decomposition formulas for the

units egtm'"' » one arrives at
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By iterations, these equations reduce the evaluation of o)cs(eg,m ) to the knowledge

of ωcs(eQJ3K) This has a simple geometric interpretation. The algebraic information
in Theorem A and B about the decomposition of the commutant and the definition
of the canonical functional ωcs as the standard matrix trace mean that the volume
of the quantum moduli space does not change under pinching when it is evaluated
with the canonical measure ωcs Using this invariance, one can first decompose
the moduli space according to the decomposition of a punctured Riemann surface
into 3 -punctured spheres and then calculate the volume directly as a function of the
volume of the quantum moduli-space assigned to the 3-punctured sphere, i.e. as a

function of ωcs

In the algebraic context, the numbers c o c s ' ' ) nave to ^e determined from
the representation theory. For this we anticipate the following simple result (a proof
will be given in [14]).

Theorem C (3-punctured sphere). The moduli algebra ^ corresponding to a 3-

punctured sphere is ίsomorphίc to a full matrix algebra of the dimension d =

This means that the canonical functional ωcs obeys

Putting all this together, the normalization of ωcs is completely determined, i.e.

tt>cs(eg,m ) can be calculated. After rewriting everything in terms of the matrix S,
the result is

J \J=l^

In particular, for a surface of genus g without marked points one recovers the
famous Verlinde formula,

j

These formulas have to be compared with the corresponding formula for ωYM in
Proposition 14. From this comparison one infers

λ(g, m,Iι9...9Im9q) = ̂ 2~2g [dι . (5.20)
\ / /

Let us note that the Verlinde formula has been designed to compute the number
of conformal blocks in the WZW model. Witten related the space of conformal
bolcks to the space of holomorphic sections of the quantum line bundle over the
moduli space of flat connections. The latter is a natural Hubert space associated to
quantization of the moduli space by geometric quantization. We deal with another
quantization scheme which associates to the moduli space a quantized algebra of
fimctions. In this approach, the Hubert space arises as a representation space of
the moduli algebra. Actually, the canonical trace functional evaluated at the unit
element of the algebra provides a dimension provided by the Verlinde formula.
Equation (5.19) proves that this is indeed the case.

We get another interpretation of formula (5.19) if we switch to the point of
view of the two-dimensional lattice model. Then the canonical trace gives a partition
function of the lattice gauge model with the quantum gauge group. As this partition
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function coincides with the Verlinde number, it is natural to conjecture that the
lattice gauge model at hand is an exact lattice approximation of the gauged WZW
model (also called the G/G model). This is supported by the fact that the gauged
WZW model is equivalent to the CS model on the manifold which is a product of
a Riemann surface and a circle. To establish the equivalence one should consider
arbitrary correlation functions. The partition function is the simplest among them.
We do not go into detailed consideration in this paper.

6. Generalization to Quasi-Hopf Symmetries

All the theory developed above was valid under the assumption that the symmetry
algebras yx are semisimple. It is well known that this requirement is not satisfied for
the quantum group algebras Uq(&) when q is a root of unity. To treat this important
case we proposed (cp. [1]) to use the semisimple truncation of Uq(f&\ qp = 1,
which has been constructed in [5]. in this truncation, semisimplicity is gained in
exchange for co-associativity, i.e. the truncated Uq(&) of [5] are only quasi-co-
associative. In addition, the co-product A of these truncated structures is not unit
preserving (i.e. A(e)ή=e®e). This leads to a generalization of Drinfeld's axioms
[10] which was called "weak quasi-Hopf-algebra" in [5]. To fulfill our program,
we have to explain how the theory of Sects. 2 to 5 generalises to (weak) quasi-
Hopf algebras. In order not to clutter the presentation, we decided to outline proofs
without conceptual significance in a separate appendix.

In the quasi-Hopf context, there appear three additional distinguished elements
associated with the local gauge symmetry <gx. These are the elements aX9βx G &x and
the re-associator φx — 3?x 0 &x 0 &x. The re-associator φx satisfies the fundamental
relation

φx(Δx ® id)Δx(ξ) = (id ® Δx)Δx(ξ)φx for all ξ € <3X

and is quasi-invertible in the sense that

φxφ~λ = (id <g) Ax)Ax(e)9 φ~λ φx = (Δx ® \ά)Δx(e) .

Following DrinfeΓd, (x.X9βx are required to obey

&(£)*& = *xex(ξ), ξl

σβxyx(ξl) = βA(ξ),

ψlβx£fx(φ2

xσ)*xφlσ = e, ^X(φl

xσ)axφ
2

xσβx^x(φl) = e ,

with ζσ,φxσ,φxσ being defined through the expansions of Ax(ξ)9φX9φx — φ~λ as
usual. As remarked in [1], consistency with the *-operation means

Details and further relations can be found elsewhere (see e.g. [1] and references
therein).

An element ux G ̂ x is defined by relations similar to (2.1),

Notice that the second equation follows from the first by taking adjoints. ux and
the ribbon element vx G &x continue to satisfy vx = ux^x(ux). All other relations
(2.2,2.3) of the ribbon element remain true as well. As for ribbon-Hopf algebras,
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the product gx = u~lvx is unitary and enjoys the intertwining relation gx^x(ξ) =
On the other hand, gx is no longer grouplike. The correct generalization

of Eq. (2.5) can be found in Appendix A.
The representation theoretic statements and notations outlined Sect. 2 carry over

to the more general situation. In particular, Clebsch Gordon maps CX[IJ\K] are
defined and normalized by the relations (2.6,2.7). Starting with the definition (2.10)
of quantum dimensions, the theory is again subject to changes. It is possible to
describe them in a very economic way. Indeed, the whole theory in Sects. 2 and 3
can be rewritten for quasi-Hopf-algebras with the help of a small number of
"substitution rules." We collect these rules in the following table:

R(J -> &X

J = (τί ® ̂  ® id)(ΛΛ) - (τ^Θ r, <g> id)((φ2i3R\2φ'l)x) ,

C;[IJ\K] - Ca

x[IJ\K](φx

lyj = Ca

x[IJ\K}(τ!

x ® < ®

Ca

y[IJ\K]* -> (φ'yy
jCa

y[IJ\K]*with ω' = ω2ι3 for all ω

> (Λ;1 / . (6.2)

Before we give some examples of formulas we obtain with these rules, we have to
release a warning. Some of the formulas of the preceding sections were obtained
with the help of Lemma 1 . A similar lemma holds for the quasi-Hopf case, but it is
not obtained from Lemma 1 and the substitutions (6.2). Lemma 1 was used above
to simplify a number of expressions. As a result of these simplifications, factors gx

appeared in several formulas. The substitution rules (6.2) should never be used in
equations containing a factor gx. Instead one has to depart from the ancestors of
such relations (notice that we gave no substitution rule for gx\).

Let us consider the definition of the "deformed trace" (2.11) as a first example
of the substitution rules (6.2). In our present context the definition becomes

tή(X) = ^Cx[KK\0](φ-lfκX(^'xf
κ(φ'xf

κCx[KK\OT (6.3)

In Sect. 2 this formula was rewritten with the help of Lemma 1 . A generalization
of this lemma has been announced already.

Lemma 4. The map CX[KK\0] = Cx[KK\0]τj (α~ !) and its adjoint CX[KK\Q]* =

τx(β~l)Cx[KK\Q]* satisfy the following equations:

1. For all ξ G &x they obey the intertwining relations

Cx[KK\ϋ\(τ*(ξ) Θ id) = Cx[KK\0](id ® τ?(^(£))) ,

(τf (ξ) ® id)Cx[KK\θr = (id ® τ*(ίex(ξ)))Cx[KK\0\* . (6.4)

2. With the normalization conventions (2.7) one finds

= eκ

x ,

= eκ

x . (6.5)
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With Lemma 4, Definition (6.3) of tr^ simplifies to

) with n£ = τ?(yx(ώ*)oίxώln)ώ*

and wf = ^(φ2

xσ^χ-
[(φlβx))φlσ. (6.6)

Here q>χ = Σ Φxσ ® Φxσ ® Φxσ is used in me second line. Equation (6.6) should be
regarded as the analogue of formula (2.14).

The substitution rules for the defining relations of $ are straightforward to im-
plement. The resulting algebra is identical to the one introduced in [1]. Comparison
with our formulation in [1] is mostly obvious. One has to recall, however, that we
used the generators ϋl(ι) = m!

yU
!(i)- with m!

y given by the expression in (6.6)

- instead of generators U!(i) (cp. the remark after Proposition 17 in [1]). Let us
make some specific remarks concerning functoriality on the link. Within our present
formulation it becomes

i/7(Ot/7(-o = 4, i/7(-/)i/7(i) = 4 .
An argument similar to the proof of Proposition 2.4 reveals the following relation
between £/7(ι) and U'(-i):

ntxU
!(-i) = d^ClϊIlOYCίϊIlOm^U^i)] . (6.7)

This shows that U!(-i) = w7t/7(-z) and Uf(i) are complex linear combinations of
each other. The latter fact was used in [1] to implement functoriality on the link /.

In spite of its compact appearance, the matrix formulation for & has a major
drawback. This becomes apparent when one tries to construct elements in the algebra
j/. It is crucial to notice that the algebra stf (as it was defined e.g. in the case of
Hopf-algebras) does not contain all invariants in $ but only invariants in a special
subset (U) C &. This subset was easily described in the situation of Hopf-algebras,
but a similar matrix-description for the quasi-Hopf case does not exist. Our strategy
is now as follows: for a moment we will switch to the "vector notations" of [1]
so that we can construct elements in sϋ by the prescription given there. Applied to
elements on curves #, the general prescription will indeed reduce to the ordinary
matrix product of generators Ul(i\ Let us first recall the general procedure: We fix
a basis within every representation space V1 . Then:

1. Regard Si to be generated by elements ξ G ̂  and U'(i) = ml

yU
!(i). The

elements U*(i) transform according to ξU*(i) = ί/7(/)(τ7 0 i d ) ( A y ( ξ ) ) for all

ξe^y and as in Eq. (2.15) for all other elements in .̂ Here τ*x(ξ) =' τ7(^(0)
with l being the transpose w.r.t. the fixed basis in V1 ' .

2. Construct the (linear) set of all covariant products obtained from U!(i).
Covariant products were defined as follows ([5,4]). Suppose that Fv GEnd(K v) 0 ̂ ,
v = 1,2, transform covariantly according to the representations τv of $, i.e.
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ξFv = Fv(τv 0 id)( j(£)) for all ξe&. Then their covariant product is an element
F1 x F2 E EndCK1 ) 0 End(K2) <g> <# defined by

F1 x F2 = F'FV 0 τ2 0 id)(φ) .

3. With the help of Clebsch Gordon maps one can finally build invariants within
the set covariant products. These invariants are the elements of stf .

This procedure is now applied to elements which live on curves (6. Since the
construction is "local," i.e. it can be performed independently at all the sites c on
the curve, it suffices to consider one site x. As usual, we have two links ij with
t(i) = x — t(—j). In the following calculation we will omit the subscripts z. It is
understood that all objects which come with the gauge symmetry are assigned to
the site x,

Here ~ means "up to contributions at sites jyφx." The coefficients τ(jf(^
ensure invariance of the expression at the site x and Proposition 17.2 of [1] was
employed for the last equality. From the previous calculation we learn that the
matrix products of elements U!(i) furnish the right prescription to construct Wilson
line observables within our theory. So we define (77(^) as before by

and use M7(^) instead of f/7(^) whenever ^ is closed (and satisfies the other
assumptions specified in Sect. 3). Properties of U1^) and M7(^) are obtained
from Propositions 2 and 3 together with the substitution rules (6.2). The algebra of
monodromies M7(^) on the loop ^ reads for example

l)IJ (6.8)

(6.9)

(6.10)

Under reversal of ,̂ the monodromies behave as

. (6.1 1)

This algebra can be regarded as a generalization of quantum enveloping algebras
of simple Lie algebras (within the formulation of [11]).

The definition (3.13), our substitution rules (6.2) and formula (6.6) combine
into the following expression for the elements c1:

cl = /c/tr7(M7(^)) = κ:/tr/(m/M7(^)w7^7) . (6.12)
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As before, the c1 do not depend on the starting point x of ^ and they satisfy the
defining relations (3.14,3.15) of a fusion algebra. The derivation of these properties
is sketched in Appendix A. Once the fusion algebra is established, we can proceed
exactly as in Sect. 3.2 to build the characteristic projectors %!(P) XQ(P) continues
to implement flatness (cp. Appendix A). In a generalization of Propositions 7 and
10 this shows that the theory does not depend on the choice of the graph G. The
same holds true for the Chern-Simons functional

7. Appendix A: Proofs for Section 6

This Appendix contains some material which is used to prove the statements of
Sect. 6. The derivation of the fusion algebra and the generalization of Proposition
7 are discussed in some detail.

To begin with we have to recall a number of results on quasi-Hopf algebras. For
(co-associative) Hopf-algebras it is well known that A ( ξ ) = (if 0 ^)Δ'(<f~\ζ}).
A generalization of this fact was already noticed by DrinfeΓd [10]. To state his
observation we introduce the following notations:

with Σ Tσ 0 Uσ 0 Vσ 0 Wσ = (φ 0 e)(Δ 0 id 0 idXφ"1 ) ,

/ = Σ (^ ® y)(A'(Φl

σ))yA(φ2

σβ&(φl)) ,

With φ-l=ΣΦlσ®Φ2σ®Φl (7.1)

DrinfeΓd proved in [10] that the element / satisfies

fA(ξ)f~l =(&><& ^)(A'(^-l(ξ)) for aΆ ξe& ,

Ί - /Λ(α) . (7.2)

This remains true in the presence of truncation. The first equation asserts that /
"intertwines" between the co-product A and the combination of A and £f on the
right-hand side.

When we perform this construction for the algebras ^ we end up with elements
fx £ &x ® ĵc fx appears in the expression for Δx(gx) = Δx(u~lvx),

AM = gx® gx(^x ® ̂ X/Γ1)/, (7.3)

This is a generalization of Eq. (2.5) and shows that gx is no longer grouplike.
Without proof we state a number of useful relations which follow from the basic

axioms of a weak quasi-Hopf algebras (cp. [16]). With ^ = φ2i3^i2φ~1 we have

[(id 0 id 0 Λ)(φ)]23i4(id 0 A 0 id)(3t)(e 0 φ~l ) = ̂ ι34(id 0 id 0 Δ)St , (7.4)

0id0id)(^)(id0id0 JXφ" 1 ) = [(id 0 id 0 Λ)(^)] 1324^234 . (7.5)
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These two relations are in fact equivalent to Drinfeld's pentagon and hexagon equa-
tions. If we use m = £f(φ[

σ)oίφ^ ® φ% and w = φ2

σ^~λ(φl

σβ) ® φ\ as before then

(id ®Δ)Δ(φl)(ιά <8> Δ)(w)(e <8>

= φ(Δ (8) id)(w) , (7.6)

Γ\<f <8> 50(<p* <g) <^)(e 0 m)(id o J)(/ιι)(id ® Δ)Δ(φ3

σ)

= (Δ®\A)(ni)φ-λ . (7.7)

Here f = Σfσ®fl is the element (7.1) and /' = Σ/2®/i of course> a11

these relations hold also "locally" at the sites x of the graph.
We are now prepared to prove the basic properties of the elements c1 G #0

defined in (6.12).

Independence of x . The definition of c1 depends on the curve # on the boundary
of the plaquette P through the site x at which ^ starts and ends. We want to show
that c1 does not change, if we use the site y E dP instead of x. As in the proof
of Proposition 4 we break the curve ^ at an arbitrary point y on dP and use the
braid relations

11^1). (7.8)
From Eq. (7.4) one obtains

e 0 mz = (e ® ^Z(p2

zσ) 0 e)[(iά 0 Az)(mz)]2i3@z(plσ ® ^z(/4)) (7.9)

with ^z = Σplσ ®Pzσ ®Pzσ This relation and the co variance properties (2.15)
furnish

Now we use the equation

to cancel the factors mz in between the two factors U1 . Then one multiplies the two
components of Eq. (7.10) and evaluates the trace tr7 of the product. To simplify the
resulting expression, the formula

) 0 e)

is inserted. This leads to

trVXC^1)^2)^') = tr'ίmX^^VX) ,

which establishes the independence of c1 on the choice of the site x on dP.
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Fusion algebra. The derivation of the fusion algebra in the quasi-Hopf case departs
from the "operator products" of monodromies

λ)IJ . (7.10)

Let us omit the subscript x for the rest of this section. Together with the covariance
of monodromies, μl(ζ)Ml(<$} = M7(^)μ7(O for all ξ E &X9 the formula (7.9) can
be used to convert the factor $ on the left-hand side of the operator product into
a factor m,

j J 2 Θ β ®

From here we can calculate e'er7 using the relation (6.12) and

(p\ ® A(pl))(e ® w)(e ® ̂ -'(Pσ) ® e) = ^T1 [(id 0 J)w]213

together with Eqs. (7.6,7.7). The result of a short calculation is

c!cj = K/K /Σί f r 7 ®trJ)[(ffyJCa[IJ\K]*mκMκ((g)wκ

^-1 0 5^-1)(/-1))/'/ flf7 9J]

(tr7 0 tτJ)[Ca[IJ\KγmκMκ(^)wκgκCa[IJ\K](R-l)IJ] .

The last equality is a consequence of Eq. (7.3). The fusion algebra clcj =
finally follows from the normalization (2.7).

Evaluation of (c7)* is left as an exercise. As an intermediate result one shows

Then relation (6.11) is inserted. After application of Lemma 4 one uses Eq. (6.1)

and writes 3t as a product φ2i3^i2φ~1 This gives the result (c7)* = cl .

Flatness. Every line in the prrof of Proposition (7) can be "translated" with the
substitution rules (6.2). There is only one problem. In the second part of the proof
(i.e. after Lemma 2) we exploit the completeness (3.27) of Clebsch Gordon maps,
which fails to hold in the case of truncation. Even though completeness was the
fastest way to get the desired results, it is not necessary. In fact, (quasi )-associativity
of the co-product does suffice. We want to show this with φ = e 0 e 0 e. The case
of nontrivial φ is again obtained with the rules (6.2). From associativity of the
tensor product of representation it follows that

eJCx[KK\0] = Σ Fab(I J K)Cb

x[ΪK\J]Ca

x[JK\ϊ] .
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The complex coefficients are a subset of 6j-symbols. We may use the normalization
(2.7) to rewrite this as

κ)cb

x[ϊκ\j].

These two formulas can be inserted into the first equation after relation (3.27) and
furnish an alternative calculation of χ°MJ. It does not use the completeness (3.27)
and remains valid in the case of truncation.

8. Discussion and Outlook

In this paper we have introduced a new quantum algebra. It is natural to interpret
it as a quantized algebra of functions on the moduli space of flat connections (moduli
algebra). This algebra plays the role of the observable algebra in the Hamiltonian
Chern Simons theory. The construction of the moduli algebra requires a quasi-
triangular ribbon *-Hopf algebra to be used as a gauge symmetry. A lot of examples
of such symmetry algebras are provided by quantized universal enveloping alge-
bras of simple Lie algebras. Given a Riemann surface of genus g with m marked
points, a simple Lie algebra, a onumber q being some root of unity and a set
of m representation-classes [/v] of the corresponding quantized universal envelop-

ing algebra, one can construct the moduli algebra <$$ c$ . This means that we have
completed the program of deformation quantization of the moduli space and now
we are going to discuss perspectives of the combinatorial approach to quantization
of the Chern Simons model.

The main question which arises naturally is the comparison to other quanti-
zation schemes already applied to Chern Simons theory. Among them we pick up
two approaches which are the most suitable for comparison. These are geometric
quantization [17,18] and the Conformal Field Theory approach which was used
originally to solve the Chern Simons model [19]. Both these approaches use the
Hamiltonian picture of quantization. So, their results may be easily compared to the
results of combinatorial approach.

Opening the list of unsolved questions we start with

1. Compare results of geometric quantization and the Conformal Field Theory
approach to combinatorial quantization.

Geometric quantization as well as Conformal Field Theory produces the Hubert
space of the Chern Simons model rather than the observable algebra. In the Confor-
mal Field Theory approach, vectors in the Hubert space are identified with conformal
blocks of the WZW model. More precisely, they come as solutions of a certain sys-
tem of linear differential equations. In the case of the Riemann sphere this system
of equations was discovered in [20] and called the Knizhnik-Zamolodchikov equa-
tion. For higher genera it was considered in [21,17] etc. Geometric quantization
provides a more abstract picture of the Hubert space. There it appears as a space
of holomorphic sections of the quantum line bundle over the moduli space. It is
possible to find a contact between these two pictures, of the Hubert space. The key
observation is that each complex structure on the underlying Riemann surface pro-

vides a complex structure on the moduli space. Thus, the δ-operator in the quantum
line bundle depends on this complex structure. One can think that for each complex
structure on the surface we get its own geometric quantization and its own Hubert
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space. One needs a projectively flat connection on the space of complex structures
in order to identify these bunch of Hubert spaces with the unique Hubert space
of the quantum theory. Here one makes a bridge with the Conformal Field Theory
approach. It appears [17] that the linear system of equations for conformal blocks
may be reinterpreted as a covariance conditions with respect to some projectively
flat connection.

While these approaches to quantization provide Hubert spaces, our combinatorial
quantization provides an algebra of observables. The natural route for comparison
is to realise the algebra of observables in given Hubert spaces. This is the second
point in our list.
2. Represent the moduli algebra in the Hubert spaces of the Chern-Simons theory
provided by geometric quantization and Conformal Field Theory.

In principle, this is the central question of the whole program and-provided
it is done-one can stop here. However, there are a couple of questions that one
should add to the list. The first one concerns the action of the mapping class group.
It is known that the project!ve representation of the mapping class group acts in
the Hubert space of the Chern-Simons theory. This representation proves to be
useful in constructing invariants of 3-manifolds. One can try to relate this idea to
the moduli algebra.
3. Construct the action of the mapping class group on the moduli algebra.

The last question which we would like to mention here concerns a very par-
ticular application of the machinery that we have developed. It has been recently
proven that the relativistic analogue of the Calogero-Moser integrable model may
be naturally realized on the moduli space of flat connections on a torus with a
marked point [22]. It would be interesting to develop this idea from the point of
view of the moduli algebra.
4. Work out details for the example of a torus with a marked point.

We are going to consider the listed problems in the forthcoming paper [14].
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