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Abstract: Yang-Mills models with compact gauge group coupled to matter fields
are considered. The general tools developed in a companion paper are applied to
compute the local cohomology of the BRST differential s modulo the exterior space-
time derivative d for all values of the ghost number, in the space of polynomials
in the fields, the ghosts, the antifields (^sources for the BRST variations) and
their derivatives. New solutions to the consistency conditions sa + db = 0 depend-
ing non-trivially on the antifields are exhibited. For a semi-simple gauge group,
however, these new solutions arise only at ghost number two or higher. Thus at
ghost number zero or one, the inclusion of the antifields does not bring in new solu-
tions to the consistency condition sa + db = 0 besides the already known ones. The
analysis does not use power counting and is purely cohomological. It can be easily
extended to more general actions containing higher derivatives of the curvature or
Chern-Simons terms.

1. Introduction

In a previous paper [1], referred to as I, we have derived general theorems on
the local cohomology of the BRST differential s for a generic gauge theory.
We have discussed in particular how it is related to the local cohomology of the
Koszul-Tate differential δ and have demonstrated vanishing theorems for the co-
homology Hk(δ\d) under various conditions. In the present paper, we apply the
general results of I to Yang-Mills models with compact gauge group and provide
the explicit list of all the non-vanishing BRST groups Hk(s\d) for those models.

It has been established on general grounds that the groups Hk(s) and Hk(s\d)
are respectively given by

I H"iv HΛΛ\\ k > Π

(1.1)
.0 k < 0
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and

//*(,!*) *{"4W'W» ^° (1.2)
\H-k(δ\d) k<0

(see [2] and I where this is recalled). Here, γ is the longitudinal exterior derivative
along the gauge orbits, denoted by d in [2]. The isomorphisms (1.1) and (1.2)
are valid for arbitrary gauge theories and hold when the "cochains" (local g-forms)
upon which s acts are allowed to contain terms of arbitrarily high antighost number.

Now, in the case of Yang-Mills models, the BRST differential is just the sum
of δ and γ,

s = δ + γ (1.3)

and so, is not an infinite formal series of derivations with arbitrarily high antighost
number (as can a priori occur for an arbitrary gauge system). It is thus natural to
consider local g-forms that have bounded antighost number, and to wonder whether
the equalities (!.!)-(1.2) still hold under this restriction. Our first result, derived in
Sect. 3, establishes precisely the validity of (!.!)-(1.2) in the space of local g-forms
with bounded antighost number.

The isomorphisms (!.!)-(1.2) are useful in that they indicate how BRST in-
variance is equivalent to-and can be used as a substitute for-gauge invariance.
However, they are not very explicit and a more precise computation of Hk(s) or
Hk(s\d) is desired.

It has been shown in [3] that in each cohomological class of s, one can find a
representative that does not involve the antifields and which is thus annihiliated by
γ. It then easily follows that

Hk(s)~Hk(γ,#)/Λ (k>0), (1.4)

where (i) <? is the algebra generated by the vector potential Aa

μ9 the ghosts Ca, the

matter fields yl and their derivatives (no antifields); and (ii) JV is the ideal of ele-
ments of S that vanish on-shell. Since the cohomology of γ in S is well understood
in terms of Lie algebra cohomology, Eq. (1.4) provides a more precise character-
ization of Hk(s) than (1.1) does. The representatives of (1.4) are polynomials in
the "primitive forms" on the Lie algebra with coefficients that are invariant polyno-
mials in the field strengths, the matter fields and their covariant derivatives [4-9].
Furthermore, two such objects are in the same class if they coincide on-shell. To
get a non-redundant list, one may split the field strengths, the matter fields and their
covariant derivatives into "independent" components, which are not constrained by
the equations of motion, and "dependent components," which may be expressed
on-shell in terms of the independent components. The cocyles may then be chosen
to depend only on the independent components. The isomorphism (1.4) is a coho-
mological reformulation of a theorem proved long ago by Joglekar and Lee [10]. It
plays a crucial role in renormalization theory [11,12].

We derive in this paper an analogous, more precise characterization of the
local cohomology Hk(s\d) of s modulo d. For each value of the ghost degree, and
in arbitrary spacetime dimension, we provide a constructive procedure for building
representatives of each cohomological class. We then list all the solutions, some of
which are expressed in terms of non-trivial conserved currents which we assume
to have been determined. We find that contrary to what happens for the cohomol-
ogy of s9 there exists cocycles in the cohomology of s modulo d from which the
antifields cannot be eliminated by redefinitions. Thus, there are new solutions to
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the consistency conditions sa + db — 0 besides the antifield independent ones, as
pointed out in [13] for a Yang-Mills group with two abelian factors.

However, if the gauge group is semi-simple, these additional solutions do not
arise at ghost number zero or one but only at higher ghost number. Accordingly, the
conjecture of Kluberg-Stern and Zuber on the renormalization of (local and inte-
grated) gauge invariant operators [14,15] is valid in that case (in even dimension).
Differently put, there is no consistent perturbation of the Yang-Mills Lagrangian
of ghost number zero, besides the perturbations by gauge invariant operators (or
Chern-Simons terms in odd dimensions). Also, in four dimensions, there is no new
candidate gauge anomaly besides the well known Adler-Bardeen one. Our results
were partly announced in [16] and do not use power counting. They are purely
cohomological.

The BRST differential contains information about the dynamics of the theory
through the Koszul-Tate differential δ. Therefore, if one replaces the Yang-Mills
Lagrangian — l/8tr(F/n'Fμv) by a different Lagrangian containing higher order
derivatives of the curvature, or Chern-Simons terms in odd dimensions, the lo-
cal BRST cohomology generically changes even though the gauge transformations
remain the same. We show, however, that the procedure for dealing with the Yang-
Mills action works also for these more general actions.

2. BRST Differential

We assume throughout that the gauge group G is compact and is thus the direct
product of a semi-simple compact group by abelian t/(l) factors. As in I, we take all
differentials to act from the right. Furthermore we assume the underlying spacetime
manifold to be flat and homeomorphic to Rn(n > 2) and use the ^-dimensional
Minkowski metric to raise and lower Lorentz indices μ, v,

The BRST differential [17,18] for Yang-Mills models is a sum of two pieces,

s — δ + γ with antigh δ = — 1 and antigh 7 = 0, (2.1)

where δ is explicitly given by

δAa

μ = 0, δCa = 0, δy1 = 0 ,

zL (a zL a?

Wμ = ~^r> sc; = -DμA7 + flf^ y, δy? = -- .̂ (2.2)

Here, ^0 = ̂ 0V,AV') - * tr(F^v), where Dy

μy
l = dμy

l - gAa

μT
l

ajyJ. We
assume for simplicity that the matter fields do not carry a gauge invariance of
their own and belong to a linear representation of G. The differential y is given by

yAa

μ = DμC
a, yCa = -l-gCa

bcC
b Cc, yyl = gTl

aj^Ca ,

yA*a* = gA^Cc

abC\ yσa = gC*Cc

abC\ yy* = -gTJ

aιy*Ca . (2.3)

There is no term of higher antighost number in s because the gauge algebra closes
off-shell. One has

δ2 = 0, y2 = 0, yδ + δy = 0. (2.4)
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As explained in I, Sect. 4, we shall consider ^-independent local g-forms that are
polynomials in all the variables (Yang-Mills potential Aa

μ9 matter fields yl

9 ghosts

Ca, antifields A*a

μ, y* and C*) and their derivatives. This is natural from the point of
view of quantum field theory and implies in particular that the local g-forms under
consideration have bounded antighost number, x-dependent solutions are discussed
in Sect. 13 below.

Now, the general isomorphism theorems (!.!)-(1.2) have been established under
the assumption that the local g-forms may contain terms of arbitrarily high antighost
number. Our first task is to refine the theorems to the case where the allowed q-
forms are constrained to have bounded antighost number. This is done in the next
section.

3. Homological Perturbation Theory and Bounded Antighost Number

Theorem 3.1. For Yang-Mills models, the isomorphisms

Hk(y,HQ(δ)) k ^ 0

0 k < 0

and

= (3.2)
.H-k(δ\d) k < 0

also hold in the space of q-forms that are polynomials in all the variables and
their derivatives.

Proof. We extend the action of the even derivation K of Sect. 10 of I on the ghosts
as follows:

K = Nd+A9 (3.3)

where N(ι is the operator counting the derivatives of all the variables,

C3 4)

and where A is defined by

dR , _, , dR

dR dR ΘR

* * (3 5)

The antifields y* are associated with second order differential equations, while
the antifields y* are associated with first order differential equations. We give A-
weight — 1 to the ghosts so that y has only components of non-positive ^-degree,

y ^ y O + y- 1 , (3.6)



Local BRST Cohomology in Antifield Formalism: II 97

just as δ,

δ = δ° + δ~l + (Γ2. (3.7)

Evidently one has [K, dμ] = dμ so that the exterior derivative d increases the eigen-
value of N(ι and K by one unit.

The undifferentiated ghosts are the only variables with negative ΛT-degree (dμC
a

has degree 0, dμvC
a has degree 1, etc....). Furthermore, because the antifields all

carry a strictly positive degree, a form with bounded AΓ-degree k cannot contain
terms of antighost number greater than k -f g, where g is the dimension of the Lie
algebra (=number of ghosts). It is thus polynomial in the antifields.

We have indicated in Sect. 10 of I that if a is ^-closed, has positive antighost
number and has ^-degree bounded by k, then a = δb, where b has also AΓ-degree
bounded by k. Similarly, if a is ^-closed modulo d, has both positive antighost and
pure ghost numbers, and has ΛΓ-degree bounded by k, then a = δb + dc9 where b
has AΓ-degree bounded by k and c has AΓ-degree bounded by k — 1 (a = δb + dc
follows from [19]; the bounds on the A:-degrees of b and c are then easily derived
by expanding the equality according to the AT-degree, and using the acyclicity of
(5o, of δo mod d and of d). These properties are crucial in the proof of the theorem.

Let a be an s-cocycle which is polynomial in all the variables and their deriva-
tives. Let us expand a according to the antighost number,

a = ao + a\ -\ \-am . (3.8)
One has

δal+\ + ya, = 0, i = 0, l ,2, . . . ,w - 1 (3.9)

and

yam = 0. (3.10)

The isomorphism between Hk(s) and Hk(y,Ho(δ)) is defined by [a] ι—» [«o] To
prove the theorem, one must verify that this map is injective and surjective. This is
done as in [2], by controlling further polynomiality through the AΓ-degree in a man-
ner analogous to what is done in I, Sect. 10. For instance, let us prove surjectivity.
Let flo be a representative of //*(y,//o(<5)), i.e., be an antifield independent solution
of δa\ + ya0 = 0. Since aQ and a\ are polynomials, they have bounded ^-degree.
We denote this bound by k. To show that a$ is the image of a polynomial cocycle a
of s, one constructs recursively #2> #3? etc by means of (3.9). Because both δ and
y have components of non-negative AΓ-degree, the higher order terms a^ #3, etc....
may be chosen to have also AΓ-degree bounded by k. Thus, the recursive construc-
tion stops at antighost number k + g (at the latest) and a = ao + a\ + + a^j is
polynomial. Injectivity, as well as (3.2) are proved along the same lines. D

To conclude, we note that Theorem 3.1 holds for all "normal" theories in the
sense of Sect. 10 of I, and, in particular, for Einstein gravity. Moreover, the reader
may check that there is some flexibility in the proof of the theorem, in that one may
assign different weights to the variables and nevertheless reach the same conclusion.

4. Cohomology of y

In order to characterize completely H*(s\d\ one needs a few preliminary results.
Some of them have been developed already in the literature, while some of them
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are new. These results are: the cohomology H*(γ), the invariant cohomology of d
and the invariant cohomology of δ modulo d. They are considered in this section
and the next two.

The cohomology H*(y) of γ has been computed completely in [4-9,3]. The
easiest way to describe it is to redefine the generators of the algebra. The new
generators adapted to γ are on the one hand Aa

μ, its symmetrized derivatives
S(μι...μkA

a

μ }, (k = 1,2,...) and their y-variations; and on the other hand χu

A and

the undifferentiated ghosts Ca, where the χu

Δ stand for the field strengths, the matter
fields, the antifields and all their covariant derivatives, (u stands for representation
indices; while A stands for spacetime or spinorial indices unrelated to the gauge
group.) The χu

A belong to a representation of the Lie algebra ^ of the gauge group.
Indeed, the field strengths belong to the adjoint representation, the antifields Aaμ

and C* belong to the co-adjoint representation, while the antifields yf belong to
the representation dual to that of the /. As a result, the polynomials in the χ's
also form a representation of the Lie algebra & of the gauge group: to any x G &,
there is a linear operator p(x) acting in the space of polynomials in the χ's as
an even derivation and such that p([x\,X2]) = [p(*ι)>p(*2)] The representation p
is completely reducible. The polynomials belonging to the trivial representation are
the invariant polynomials.

The crucial feature in the calculation of H*(y) is that Aa

μ, its symmetrized
derivatives and their y-variations disappear from H*(γ) since they belong to the
"contractile" part of the algebra. More precisely, one has

Theorem 4.1. (i) The general solution of ya = 0 reads

a = ά + yb, (4.1)

where a is of the form

δ = Σ«Λx2)<tf/(C'β). (4.2)

Here, the α/ are invariant polynomials in the χ's, while the ωj (Ca) belong to a
basis of the Lie algebra cohomology of the Lie algebra of the gauge group.

(ii) a is y-exact if and only if αj(χ^) = 0 for all J.

Proof. The proof may be found in [4-9,3] and will not be repeated here. D

Note that the α/ involve also the spacetime forms dxμ. This will always be
assumed in the sequel, where the word "polynomial" will systematically mean
"spacetime form with coefficients that are polynomial in the variables and their
derivatives."

5. Invariant Cohomology of d

Let α(χ^) be an invariant polynomial in the χ's. Assume that α is J-closed,
da = 0. Then one knows from the theorem on the cohomology of d that α = dβ
for some β. Can one assume that β is also an invariant polynomial? If α does not
contain the antifields, this may not be the case: invariant polynomials in the 2-form
Fa = (l/2)F"lvdxμdxv are counterexamples (and the only ones) [7,9]. However, if
antigh α > 0, one has:

Theorem 5.1. The cohomology of d in form degree < n is trivial in the space of
invariant polynomials in the χ's with strictly positive antighost number. That is,



Local BRST Cohomology in Antifield Formalism: II 99

the conditions

yα = 0, da — 0, antigh α > 0, deg α < n, α = α(χ^) (5.1)

imply
a = dβ (5.2)

/or some invariant β(χ\
yβ = Q. (5.3)

Pr<9o/ The proof proceeds as the proof of the proposition on p. 363 in [9]. We
shall thus only sketch the salient points.

(i) First, one verifies the theorem in the abelian case with uncharged matter
fields. In that case, any polynomial in the χu

Δ is invariant since the χ's themselves
are invariant. To prove the theorem in the abelian case, one splits the differential d
as d = do + ί/i, where d\ acts on the antifields only and do on the other fields. Let
α be a polynomial in the field strengths, the antifields, the matter fields and their
ordinary (=covariant) derivatives. If dα = 0, then d\&N = 0, where α^ is the piece
in α containing the maximum number of derivatives of the antifields. But then,
UN = d}β

N~\ where βN'1 is a polynomial in the fΔ. This implies that α - dβN~λ

ends at order N — 1 rather than N. Going on in the same fashion, one removes
successively uN~l,(xN~2,... until one reaches the desired result.

(ii) Second, one observes that if α is invariant under a global compact symmetry
group, then β can be chosen to be also invariant since the action of the group
commutes with d.

(iii) Finally, one extends the result to the non-abelian case with coloured matter
fields by expanding α according to the number of derivatives of all the fields (see
[9], p. 364 for the details). D

What replaces Theorem 5.1 in form degree n is: let α = pdx° dxn~λ be exact,
α = dβ, where p is an invariant polynomial of antighost number > 0. [Equivalently,
p has vanishing variational derivatives with respect to all the fields and antifields.]
Then, one may take the coefficients of the (n - 1 )-form β to be also invariant
polynomials.

Theorem 5.1 can be generalized as follows. Let α be a representative of //*(y),
i.e.,

9 (5.4)

where the α(χ) are invariant polynomials. Because dγ -f yd = 0, d induces a well
defined differential on H*(y). This may be seen directly as follows. The deriva-
tive dvίj = Duj is an invariant polynomial in the χ's since D commutes with
the representation, while dωj = yώj (A, C) for some ώj . Thus doc = ±Σ(Z)α/)α/ +
y(ΣoίjώJ) defines an element of H*(γ) (yaj = 0), namely the class of Σ(Doίj )ωj =
Σ(dttj)ωJ . What is the cohomology of d on H*(γ)7 Again, we shall only need the
cohomology in form degree < n and antighost number > 0.

Theorem 5.2. Hj'l(d,H*(γ)) = Ofor k ^ 1 and I < n. Here g is the ghost number,
I is the form degree and k is the antighost number.

Proof. Let α = Zα/ωJ be such that da. vanishes in H*(γ), i.e., da = yμ. From
the above calculation, it follows that Σ(Daj)ωJ = yμ' . But Σ(D(Xj)ωJ is of the
form (4.2). This implies that Docj — docj — 0 by (ii) of Theorem 4.1. Thus, by
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Theorem 5.1, α/ — dβj, where βj are invariant polynomials in the χ's. It follows

that α = Σ(dβj)ωJ = ±d(ΣβjωJ) =f y(ΣβjώJ) is indeed ^/-trivial in //*(y). D

Theorem 5.2 is one of the main tools needed for the calculation of H*(s\d)
in Yang-Mills theory. It implies that there is no non-trivial descent [20-22] for
H(y\d) in positive antighost number. Namely, if ya -f db = 0, antigh a > 0, one
may redefine a —> a -f γμ + dv = a' so that ya' = 0. Indeed, the descent ya + db =
0, γZ? + dc — 0,... ends with e so that ye = 0 and c/e + y (something) = 0. Thus the
class of e is trivial and by the redefinition e —> e + y/ + £/w, we may take e to
vanish, etc.

6. Invariant Cohomology of δ Modulo d

The final tool needed in the calculation of H*(s\d) is the invariant cohomology
of δ modulo d. We have seen that Hk(δ\d) vanishes for k > 2. Now, let ak

p be a
^-boundary modulo d with form degree k and antighost number p,

ak

p = δμk

p+l+dμk-[, p ^ \ . (6.1)

Assume that kp is an invariant polynomial in the χ's (no ghosts). Can one also

assume that both μk

p+l and μk~l are invariant polynomials? The answer is affirmative

as we show in this section.
To that end, we associate with Equation (6.1) a tower of equations that starts

at form degree n and ends at form degree k — p + \ if A; ^ p or 0 if k < p,

an

p+n-k = Wp+n-k+ι + dμn

p~
l

n_k (6.2)

ak

p = δμk

p+l+dμk-1 (6.3)

or
aP-k

where the α's are all invariant polynomials. One goes up the ladder by acting with
d and using the fact that if an invariant polynomial is c)-exact in the space of all
polynomials, then it is also (5-exact in the space of invariant polynomials (Theorem
2 of [3]). So, for instance, acting with d on (6.1) yields dak

p = -δdμk

p+{. Since

dak

p = Dak

p is an invariant polynomial, there exists by Theorem 2 of [3] an invariant

polynomial α*+\ such that δak

p~^_\ = -dak

p. The acyclicity of δ implies then that

β^+'i = dμk

p+\ + ̂ n+2 f°r some ^n+2 One goes down the ladder along the same
lines, but by applying δ and using Theorem 5.1.

Using again Theorem 2 of [3] and Theorem 5.1, it is easy to see that if any

of the μ\ is equal to an invariant polynomial modulo δ or d exact terms, then all

of them fulfill that property. That is, if μ\ = M{ + δp*l+l + dpj

l~ for one pair (ij)

(j - ί = k - p - 1), then μf = M™ + δpf+l + dp™~1 for all (/,m). Here, the Mf
are invariant polynomials. Thus, to prove that the μ's are invariant, it suffices to
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establish the property for the top of the ladder, i.e., for the «-forms. It is also clear
that one has

Lemma 6.1. If ak

p in (6.1) is an n-form of antίghost number p > n, then the μ's
in (6.3) may be taken to be invariant polynomials.

Proof. The proof is direct. If an

p — δμn

p+l -\-dμn~λ with p > n, one gets at the

bottom of the ladder a°p_n = δμ° +l. But then, by Theorem 2 of [3], one finds

lflp-n+\ = MQ

p_n+\ + δpQ

p_n+2, where Mp_n+] is an invariant polynomial. This im-

plies that all the μ's are of the required form, and in particular that μ"p+] and μn

p~
]

may be taken to be invariant polynomials. D

We are now in a position to establish the following crucial result about the
invariant cohomology of δ.

Theorem 6.1. If the invariant polynomial kp is a 6-boundary modulo d and has

non-vanishing antighost number, kp — δμk

p+} -\-dμk~l (p > 0), then one may as-

sume that μk

p+\ and μk

p~
l are also invariant polynomials. In particular, H/,(δ\d) — 0

for k ^ 3 in the space of invariant polynomials.

Proof. The proof proceeds as the proof of Theorem 5.1. Namely, one verifies first
the theorem in the abelian case with a single gauge field and uncharged free matter
fields. One then extends it to the case of many abelian fields with a global symmetry.
One finally considers the full non-Abelian case.

Since the last two steps are very similar to those of Theorem 5.1, we shall
verify explicitly here only that Theorem 6.1 holds for a single abelian gauge field
with uncharged free matter fields. So, let us start with an n-foπn ap solution of
(6.1) and turn to dual notation,

ap = δb'p+l+dtj»p (p^l). (6.4)

We shall first prove that if the theorem holds for antighost number p + 2, then
it also holds for antighost number p. To that end, we take the Euler-Lagrange
derivative of (6.4). This yields

(6.6)

(6.8)
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where Z^/

/?_1), X(p)μ, Y'(p+\γ Xfa and Y(p+\y are obtained by differentiating b'p+\\_Z' =
0 if p — 1]. The explicit expression of these polynomials will not be needed in
the sequel. In (6.8), Dβ is the differential operator appearing in the linearized
matter equations of motion (δL^QQ/δyl = Dijy

/). Because δRap/δC*, δRap/δA*μ,
δRap/δAμ, δRap/δyl and δRap/δy* are invariant polynomials, i.e., involve only the

χ's, one may replace in (6.5)-(6.9) the polynomials Z(

/

/7_1), X{p)μ9 Y(p+\γ X(P)
 and

Y(p+\)i which may a priori involve symmetrized derivatives of Aμ, by invariant

polynomials Z(p-\), X(p)μ9 Y(p+λγ Xl

(p} and Y(p+\)i depending only on the χ's,

p = δX( ) ι -3 t Z( _ i ) , (6.11)

δRaa , _„„„ ^ _dvχμ ^ (6^
δAμ ~^(P^

(6.13)

This is obvious for Z(p_i) and A7"/ ) (simply set ^4μ and its symmetrized derivatives

equal to zero in Z^7 ^ and A^' ^ this commutes with the action of <5). The assertion

is then verified easily for A^, Y(p+\y and ̂ +i).

Now, the invariant polynomial Y(p+\) is (5-closed modulo d by (6.12) since
δaplδAμ is of the form dvW

v for some ^^ίv = -Wvμ (this follows from the fact
that ap depends on Aμ only through its field strength). Thus, it is ^-exact modulo

d because Hn

p~\(δ\d) ~ Hn

p+2(δ\d) is zero (p + 2^ 3). This means that 7(^+1)

can be written as 57^+2) + 3V^'+I), where ^+2) and S^+l) are both invariant
polynomials since we assume that the theorem holds for antighost number p + 2 in
form degree n, or, what is the same, by our general discussion above, for antighost
number p + 1 in form degree n — 1 .

If one injects relations (6.10)-(6.14) in the identity

one gets, using Y('p+\) = δT(p+2) + di-Sfp+o and making integrations by parts, that

ap - δbp+ι + dμp* , (6.16)

where bp+\ is manifestly invariant. This proves that the theorem holds in antighost
number p if it holds in antighost number p + 2 (pμ may also be chosen to be
invariant by Theorem 5.1). But we know by Lemma 6.1 that the theorem is true
for antighost number > n. Accordingly, the theorem is true for all (strictly) positive
values of the antighost number. D
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7. Calculation of H*(s \ </)-General Method

We can now turn to the calculation of H*(s\d) itself. The strategy for computing
H*(s\d) adopted here [16] is to relate as mush as possible elements of H*(s\d) to
the known elements of H*(γ\d) [23, 4-9, 3]. To that end, one controls the antifield
dependence through Theorems 5.2 and 6.1. This is done by expanding the cocycle
condition sa + db = 0 according to the antighost number. At maximum antighost
number k, one gets yak + dbk = 0. Theorem 5.2 and its consequences for the descent
equations for γ in the presence of antifields then implies, for k ^ 1, that one can
choose bk equal to zero. Thus ya^ = 0, and by Theorem 4.1, a^ — Γα/(χ^)α/(C)
up to y-exact terms. [The redefinition a^ — > a^ + ymk + drik can be implemented
through a — > a + sm^ + dn\^ which does not change the class of a in H(s \ d).] The
equation at antighost number k — 1 reads δa^ + ycik-\ + dbk-\ = 0. Acting with y,
we get dybk-\ = 0, which implies ybk-\ + dc^-\ = 0.

If k — 1 ^ 1, Theorem 5.2 implies again that one can choose γbk-\ — 0 with
bk-\ = Σβj(χ"A)ωJ(C). Inserting the forms of a^ and bk-\ into the equation at
antighost number k— 1 gives Σ(δctj + dβj)ωJ(C) = y(somethίng) which implies
δuj -\-dβj = 0 by part (ii) of Theorem 4.1, i.e. α/ is a (5-cycle modulo d. Sup-
pose that α/ is trivial, ocj = δμj +dvj. Theorem 6.1 then implies that μj and vj
can be chosen to be invariant polynomials. The redefinition a — > a ± s(ΣμjωJ —

Σvjώj) — d(ΣvjωJ) allows one to absorb a^. [Recall that yώj — dωj . The corre-
sponding redefinition of b is b — •> b — s(ΣvjωJ\ which leaves b^ equal to zero since
γvj = 0.] Consequently, we have learned (i) that for k ^ 1, the last term a^ in any
s-cocycle modulo d may be chosen to be of the form ΣocjωJ (C\ where the α/ are
invariant polynomials; and (ii) that for k ^ 2, α/ define (5-cycles modulo d which
must be non-trivial since otherwise, a^ can be removed from a by adding to a an
s-coboundary modulo d.

We can classify the elements of H*(s\d) according to their last non-trivial term
in the antighost number expansion. The results on the cohomology ofH*(δ\d) show
that only three cases are possible.

Class I. a stops at antighost number 2,

a — a0 -\- a\ + a2 (7.1)

(with α0 = 0 if gh a = -1, or α0 = a\ = 0 if gh a — -2). The last term a2 is
invariant,

(7.2)

and the α/(χ^) define non-trivial elements of H2(δ\d).

Class II. a stops at antighost number one,

a = a0 + a\ (7.3)

(with flo — 0 if gh α = — 1). The last term a\ is invariant,

(7.4)

We shall see in Sect. 9 below that the α/(χ^) must also be non-trivial (5-cycles
modulo d.
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Class HI. a does not contain the antifields,

a = aQ. (7.5)
Then, of course, gh a ^ 0,

8. Solutions of Class /

The solutions of Class / arise only when H2(δ\d) is non-trivial, i.e., when there
are free abelian gauge fields. This is a rather academic context from the point of
view of realistic Lagrangians, but the question turns out to be of interest in the
construction of consistent couplings among free, massless vector particles [24].

One can divide the solutions of Class / into three different types, according to
whether they have total ghost number equal to —2 (type 7Λ), —1 (type /&) or ^ 0
(type /c).

Type Ia. If gh a = —2, then a reduces to a2 and cannot involve the ghosts. The
solutions of Type Ia have form degree n and are exhausted by Theorem 13.1 of/,
in agreement with the isomorphism H~2(s\d) ~ H2(δ\d). They read explicitly

a = a2 = /αC*, /α - constant , (8.1 )

where C* are the antifields conjugate to the ghosts of the free abelian gauge fields.
We switch back and forth between the form notation and the dual notation. The C*
should thus be viewed alternatively as ft-forms or as densities.

Type Ib If gh a = — 1, then a2 must involve one ghost CA. This ghost must be
abelian since one must have yCA — 0. Thus,

«2 - /A*C*aCA, fAa = const, (8.2)

where the sum over A runs a priori over all abelian ghosts. The equation in antighost
number one yields for a\,

aι = fA^A**" (8.3)

up to a solution m\ of ym\ -f dn\ — 0 which however is not relevant for a\9 cf.
discussion of Class Ic -solutions given below (m\ turns out to be a solution of
Class II a up to a trivial contribution). The next equation δa\ + dbo = 0 is then
equivalent to

fAΛF
A

μγF^v = dpk*> (8.4)

for some kp . This equality can hold only if the variational derivatives of the left-
hand side vanish identically, which implies fAΛ — 0 for A φ β and faβ — — //jα. Thus,
one gets finally

*to + C*C*lί), f«β = -fβ«. (8.5)

Type Ic. If gh a ^ 0, then all three terms αo» a\> and a2 are in principle present.
The term a2 reads

a2 = faJC*«ωJ(C) , (8.6)

where ωJ(C) belongs to a basis of the Lie algebra cohomology. The ωj (C) can
be written as polynomials in the so-called "primitive forms." The primitive forms
are of degree one (CA) for the abelian factors and of degree ^ 3 (trC3,trC5,...)
for each simple factor [25].



Local BRST Cohomology in Antifield Formalism: II 105

It will be useful in the sequel to isolate explicitly the abelian ghosts in (8.6).
Thus, we write

«2 - E^f*rAt...Ak(or(C)CA> CA«C*« , (8.7)
k K .

where ωΓ(C) involve only the ghosts of the simple factors. The pure ghost numbers
of the terms appearing in (8.7) must of course add up to 2 + q, where q is the total
ghost number of a. The factors ωΓ(C) have the useful property of belonging to a
chain of descent equations [20-22] involving at least two steps

dμω
Γ(C) = γώr

μ , (8.8)

d[μώ^ = yώ[μv] . (8.9)

For instance,

(see [23, 7]). By contrast, the abelian ghosts belong to a chain that stops after
the first step. One has dμC

A = yAA, but there is clearly no fμv such that d[μAV] =

yfμγ. Since it will be necessary below to "lift" twice the elements ωJ(C) of the
basis through equations of the form (8.8) and (8.9), the abelian factors play a
distinguished role.

A direct calculation shows that

= ~ J

dμr» (8.11)

for some Vμ. This fixes a\ to be

*Λμ (8.12)

up to a solution m\ of ym\ + dn\ = 0. Using again the absence of a non-trivial
descent in positive antighost number, we may assume n\ = 0 and m\ = Σjμj(χu

A)ωJ

(C) by a redefinition m\ —> m\ + doc + yβ that would only affect #o as αo -^ #o +
δβ (if it exists). That is, a\ takes the form (8.12) modulo an invariant object of
antighost number one.

Compute now δa\. One finds

δa, = - I^^-L—o//;™,...̂ ' - C^-'J$F"" + δnn

(8.13)
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for some V . Here, Mμvaί is explicitly given by

(8 14)

At antighost number zero, sa -\- db = 0 requires δ(a\ — m\) to be y-exact modulo
d. Hence, ao exists if and only if the first term on the right-hand side of (8.13) is
weakly y-exact modulo d, i.e.,

j n = γm0 + δμ/ιg (8.15)

for some m^ and ΠQ of antighost number zero. This forces this first term to vanish,
as we now show.

By acting with γ on (8.15), one gets dγnG — 0 and thus y«o + dn'Q = 0. Accord-
ingly, ΛO is an antifield independent solution of the y-cocycle condition modulo d.
This equation has been completely solved in the literature [4, 7-9] and the solutions
fall into two classes: those that are annihilated by y and are therefore invariant
objects (up to redefinitions); and those that lead to a non-trivial descent, i.e. those
for which no redefinition can make n'Q equal to zero. This second class involves
only the forms Aa =Aa

μdxμ, Fa = (l/2)F°vdxμdxv, their exterior products, and the

ghosts. Thus, «o — «o + «o> where w0 belongs to the first class and «o belongs to
the second class.

The solutions of the second class are obtained by considering the descent y«0 +

dn0 = 0, yfl0 + dήQ = 0, etc. . .. One successively lifts the last term of the descent,

which is annihilated by y all the way to n$. The term dήo itself can be written
as a y-exact term, unless there is an "obstruction." This obstruction is an invariant
polynomial which involves ωj (C) and the components Fμv but only through the
forms Fa and their exterior products, but no other combination [23]. In particular,
the dual of Fa cannot occur. Accordingly, the obstruction cannot be written as a
term involving FA

vF*μv plus a term involving the equations of motion, plus a term
of the form dήo, with ΠQ invariant. This means that the obstruction must be zero if
α0 is to exist, so that dήo — yμo by itself. By adding to α0 a solution of Type ///
if necessary, we may assume ΪΪQ to be absent.

If ΠQ reduces to the invariant piece no, Eq. (8.15) and Theorem 4.1 imply that

— Σ^-p^ΛrΛ,... '̂ C^-'̂ F"1* + δm, - Σ(A<«jV = 0 (8.16)

with WQ — ̂ n^ωj . If we set in this equality the covariant derivatives of Fμv equal

to zero, one gets the desired result that folrAl..ΛkC
Al CAk~lFμvFCίμv should vanish.

This implies that f^rA\...Ak (0 nas as non-vanishing components only /αΓoq..^; and
(ii) is completely antisymmetric in (α,αι,. ..,α^). The solutions of Class Ic are
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consequently exhausted by

(8.17)
*!

(modulo solutions of Class //). This ends our discussion of the solutions of Class /,
corresponding to elements of H2(δ\d).

[The analysis has been performed explicitly for spacetime dimensions greater
than or equal to three. In two spacetime dimensions, there are further solutions. The
solutions of ghost number -2 read (df/dF^)C^ (\/2)(d2f/dF^dF^μ,ΛlμAl\
where / is an invariant polynomial in those field strengths Fμv that obey DμFβ} = 0
on-shell. The solutions of ghost number -1 and higher are constructed as above,
by multiplying the solutions of ghost number —2 with the y-invariant polynomials
ωJ(C), and then solving successively for a\ and UQ. There are possible obstructions
in the presence of abelian factors which restrict the coefficients of ωj. We leave
the details to the reader.]

9. Solutions of Class //

The next case to consider is given by a cocycle a whose expansion stops at antighost
number 1. Again, we may consider two subcases: Type 7/α, with ghα = — 1; and
Type lib, with gha ^ 0.

Type IIa If ghα = —1, then a reduces to a\ and does not involve the ghosts. It is
clearly an invariant element of H\(δ\d\ by the equations ya\ — 0 and δa\ + dbo =
0. The groups H^(δ\d) are non-zero in form degree n (conserved currents) and
n — 1 (if there are uncoupled abelian fields). Thus, given a complete set of invariant
non-trivial conserved currents, one may construct H~l(s\d) explicitly.1

Let jμ

Δ be such a complete set and let X^Δ, XΔ be the corresponding global

symmetries of the fields, δ^Aa

μ =XflA,δ^yl = X1

Δ. One has

δ(X«ΔAγ+Xl

Δy*} = dμfΔ . (9.1)

In order for a\ to be invariant, we impose XμΔA*a

μ + Xl

Δy* to be invariant i.e.,
to be annihilated by y. Because the equations of motion involve derivatives of
the field strengths and are not invariant polynomials in the forms Fa, there is no
obstruction to taking jμ

Δ annihilated by y as well. [It turns out that the condition

1 Since we are working in the space of local forms which do not depend explicitly on the xμ,
it is understood that we have in mind here z-independent conserved currents which are non-trivial
in this space, cf. remarks in Sect. 13.
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Aaμ -\-X^y*) = 0 can always be fulfilled, in the absence of free abelian fields,
by a suitable redefinition of the global symmetry within its equivalence class. This
actually follows from the relationship between H(s\d) and H(δ\d) and will be
spelled out in detail elsewhere [26].]

One gets for the BRST cohomology H~l(s\d):
In form degree n - 1 :

a = f*A*^9 f* = constant .

In form degree n:

a = f\X^1 + Xtf ), fΔ = constant .

Turn now to the solutions of Type lib.

(9.2)

(9.3)

Type lib- We must solve ya^ + δa\ -\-dbo = 0 with a\ = ]ζα/α/ . The derivation
above does not imply that 60 is annihilated by y and thus, it is not clear at this stage
that the α/ belong to H(δ\d). However, by acting with y on δa\ + ya0 + dbo = 0,
one gets again that ybo + dcQ = 0. The analysis proceeds then in a manner similar
to that of Type II c. As mentioned above, the general solution to ybQ + dcQ — 0 is

known [4, 7-9] and takes the form 60 = &o + &o, where (i) bQ is annihilated by y
and thus given by bo = Σβoj(χ)ωJ(C) (up to irrelevant y-exact terms) with βoj

invariant polynomials in the χ's; and (ii) bo is y closed only modulo a non-trivial d
exact term and involves the forms Aa = Aa

μdx>1, Fa = (\!2)Fa

μvdxμdx\ and Ca. The

obstruction [23] to writing dbo as a y exact term involves the forms Fa and ωJ(C).
It cannot be written as the sum of a term proportional to the equations of motion
and a term of the form dbo and bo invariant since such terms involve unavoidably
the covariant derivatives of the field strengths. Thus, the obstruction must be absent

and dt>Q = -yaG, for some α0 The equation δa\ -f yao + db0 = 0 splits therefore

into two separate equations ya$ -f db$ = 0 and yάo + dbo + δa\ =0.
The first equation defines a solution _of Class ///. We need only consider in this

section the second equation. Because bG is annihilated by 7, we may follow the
procedure of Sect. 7 to find again that the invariant polynomials αj in a\ define
elements of H\(δ\d). One gets explicitly:

In form degree n - 1 :

a = f}(ωJ

vF£v +

In form degree n:

f* = constant .

μa = f j [ j μ

Δ + f f = constant .

(9.4)

(9.5)

[In two dimensions, there are further solutions obtained by taking ff = dfj/dFfi{9

where f j are arbitrary invariant polynomials in the FQJ . We leave the details to the
reader.]

The solutions of Class / exist only if there are free, abelian gauge fields. For a
semi-simple gauge group, Class / is empty. By constrast, the solutions of Class II in
form degree n exist whenever ther are non-trivial gauge invariant (.x-independent)
conserved currents, or, equivalently, corresponding non-trivial global symmetries.
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They occur at ghost number — 1, or —1 + / / , where // is the ghost number of the
element ωj of the chosen basis of the Lie algebra cohomology. For a semi-simple
gauge group, // is greater than or equal to three. Thus, the solutions of Class //
occur at ghost number —1,2, and higher, but not at ghost number 0 or 1. The

solutions at ghost number 2 are given by (9.5) with ωj = trC3 and ώj

μ = 3tτC2Aμ.
We close this section by pointing out that one may regroup the conserved cur-

rents JA (viewed as (n — l)-forms) and the coefficients X1

Δ into a single object

GΛ = d"X(X;AA:>' + X^y* )+jA, (9.6)

which has the remarkable property of being annihilated by the sum s = s + d,

sGA=Q. (9.7)

This equation is the analog of a similar equation holding for q*9

q*,=C;+A; + *F,, (9.8)

where the C* are viewed as w-forms, the A* are viewed as (n — 1 )-forms and the
dual *Fy to the uncoupled free abelian field strength are (n — 2)-forms. One has
also

sql = 0 . (9.9)

In verifying these relations, one must use explicitly the fact that the spacetime
dimension is n through d(n-form) — 0.

10. Non-Triviality of Solutions of Classes / and //

We verify in this section that the solutions of Types / and // are all non-trivial.

Theorem 10.1. Any BRST cocycle a modulo d belonging to Class I or to Class
II is necessarily non-trivial, aή=sc + de.

Proof. The idea of the proof is to show that if a — sc + de, then, the α/(χ^) all
define trivial elements of H2(δ\d) or H\(δ\d). So, assume that a = sc + de. Expand
this equation according to the antighost number. One gets

#o = ycβ + δc\ + dβQ, a\ = yc\ + δc2 + de\ (10.1)

and
0 - γct + <5c, +ι + de, (ί ^ 2) (10.2)

(we assume a to belong to Class II for definiteness; the argument proceeds in the
same way for Class /). Let c stop at antighost number M,c = CQ + c\ + + CM-
Then, one may assume that e stops also at antighost number M. Indeed, the higher
order terms can be removed from e by adding a d-exact term since Hk(d) = 0
for k < n. Now Eq. (10.2) for / = M reads JCM + de^ = 0 and is precisely of the
form analysed above. Since M ^ 2, one may assume eM = 0 and then, by adding
to CM an s-exact modulo J-term (which does not modify a\ that CM is of the form
CM — Σyj(Zj)ωJ(C") Next, the equation at order M — 1 shows that CM can actually
be removed, unless M — 2. Thus, we may assume without loss of generality that
c = CQ + c\ -f C2, C2 = Σj.ΛZj)^^) and e = βQ -f- e\. It follows that the equation
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for a\ reads
Σ>/Gtf)ωr/(O = γci + Σδyj(χu

Δ)ωJ(C) = de} . (10.3)

By acting with γ on this equation, we obtain as above that e\ may also be chosen
to be invariant, e\ = Σβj(Zj))ωJ(C). Accordingly, (10.3) reads

= yc\ , (10.4)

from which one infers, using Theorem 4.1, that

This shows that all the α/ are <5-exact modulo d, in contradiction to the fact that
they define non-trivial elements of H*(δ\d). Therefore, the cocycle a cannot be
s-exact modulo d. D

11. Solutions of Class ///

The solutions of Class /// do not depend on the antifields and fulfill γao + dbo = 0.
As we have recalled, these equations have been extensively studied previously and
their general solution is known [4, 23, 7-9]. For this reason, we refer the reader to
the existing literature for their explicit construction.

The solutions are classified according to whether Z?o can be removed by redefi-
nitions or not.

Type IΠa. γa0 = 0.

Type IHb y«o + db$ = 0, with Z?o non-trivial. In that case, a$ and bo may be as-
sumed to depend only on the forms Aa,Fa,Ca and their exterior products.

The elements of H(y\d) not involving the antifields are non-trivial as elements
of H(s\d) if and only if they do not vanish on-shell modulo d. Thus, the non-trivial
elements of H(γ\d) of Type ////> remain non-trivial as elements of H(s\d) since the
forms Aa and Fa are unrestricted by the equations of motion. However, the solutions
of Type ΠIa may become trivial even if they are non-trivial as elements of H(γ\d).

The solutions of direct interest are those of ghost number zero and one. At ghost
number zero, Class ΠIa contains the invariant polynomials in the field strengths, the
matter fields and their covariant derivatives. The Yang-Mills Lagrangian belongs to
Class IΠa. Class IΠb contains non-trivial solutions at ghost number zero only in odd
spacetime dimensions 2k -\- \ if we require these solutions to be Lorentz invariant
(see also Sect. 13 for remarks on this point). These non-trivial solutions are the
Chern-Simons terms, given by

^cs = tr(AFk + •••), (11.1)

where the dots denote polynomials in Aa and Fa whose degree in F is smaller than
k and whose form degree equals 2k + I.

At ghost number one, Type ΠIa contains solutions of the form "abelian ghost
times invariant polynomial." The abelian anomaly CFμvdxμdxv in two dimensions
belongs to this class. Type IΠa contains no solution with ghost number one if the
group is semi-simple. Type ΠI^ contains the famous Adler-Bardeen anomaly.
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12. More General Lagrangians

In the previous discussion, we have assumed that the Lagrangian was the standard
Yang-Mills Lagrangian. This assumption was explicitly used in the calculation since
the dynamics enters the BRST differential through the Koszul-Tate differential.

It turns out, however, that for a large class of Lagrangians, one can repeat the
analysis and get similar conclusions. These Lagrangians are gauge invariant up to
a total derivative and thus read

Se = &Q(y,Fμv,Dμy,DpFμV9...) + &cs , (12.1)

where j£?o is an invariant polynomial in the matter fields, the fields strengths and
their covariant derivatives, and where the Chern-Simons term 5έ*cs is available
only in odd dimensions if we insist on Lorentz invariance. We shall assume that
the Yang-Mills gauge symmetry exhausts all the gauge symmetries. We shall also
impose that the Lagrangian 3? defines a normal theory in the sense of Sect. 10 of
I. The calculation of H(s\d) can then be performed along the lines of this paper.

(i) First, one verifies that the y-invariant cohomology Hk(δ\d) is described as
before: Hk(δ\d) is zero for k strictly greater than 2; for k = 29 it is non-zero only if
there are uncoupled abelian gauge fields, in which case it is spanned by C*; and for
k= 1, it is isomorphic to the set of non-trivial global symmetries with invariant a\.
Thus, the dynamics enters explicitly Hk(δ\d) only at k=l9 through the conserved
currents.

(ii) The solutions of Class / make a further use of the dynamics through the
study of the obstructions of the existence of «o A case by case analysis, which
proceeds as in Sect. 8, is in principle required. Recall, however, that Class / exists
only in the academic situation where there are uncoupled abelian gauge fields.

(iii) Class // also uses the equations of motion in the proof that a\ should
define elements of H\(δ\d). It must be verified whether the equations of motion
can or cannot remove obstructions given by polynomials in the forms Fa. Again,
the analysis proceeds straightforwardly as in Sect. 9.

(iv) Class /// is obviously unchanged since it does not involve the antifields
(only the coboundary condition is modified, since the concept of "on-shell trivial"
is changed).

The analysis is particularly simple for the pure Chern-Simons theory in three
dimensions, without the Yang-Mills part. We take a semi-simple gauge group. Class
/ is then empty. Class // is empty as well since there is no non-trivial a\ annihilated
by y. Only Class /// is present. Among the solutions of Class ///, those that are of
the Subtype ΠIa turn out to be trivial since the field strengths and their covariant
derivatives vanish on-shell. Thus, we are left with Class IΠb. These solutions are
obtained from the standard descent, with bottom given by the elements ωj of the
basis of the Lie algebra cohomology (trC3,trC5 etc), with constant coefficients (no
F since F — 0 on-shell). This agrees with the analysis of [27].

13. Discussion of ^-Dependent Solutions

We point out again that the analysis has been carried out in the case of local forms
which do not depend explicitly on the spacetime coordinates xμ. This is natural in
the quantum field theoretical context. Nevertheless one may ask how the results
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change if performed in the larger space of local forms which can also depend on
the xμ. Of particular interest are the cohomology classes of H~}(s\d) in that larger
space since they provide all non-trivial global symmetries.

Our analysis goes through step by step even in the larger space of x-dependent
local forms2 until one arrives at Eq. (8.3) resp. (8.12) in the cases //, resp. Ic. The
discussion of these equations however yields now a different result since additional
(jc-dependent) contributions m\ to a\ are available (recall that a\ was determined
by (8.3) resp. (8.12) only up to y-invariant contributions m\ which turn out to
be irrelevant in the space of jc-independent forms). One finds e.g. that in «Φ4
dimensions not only the antisymmetric part of the constants fΛβ occurring in (8.2)
provides solutions of Type //> but the symmetric part too. The latter are given by

and are clearly of Type //, for «Φ4 (in the case n = 4 they reduce to solutions

of Type Πa). The piece A*^xvF^f^ occurring in (13.1) is the contribution m\
mentioned above. In Class Ic one finds analogous .x-dependent solutions which we
do not spell out.

The solutions of Class II a correspond as before to non-trivial global symmetries
δΔA

a

μ = XμΔ9 δΔy
l =X1

Δ such that X°ΔA*a

μ + Xl

Δy* is y-invariant. However, now A

labels global symmetries which are non-trivial in the space of x-dependent local
forms (both XμΔ and X1

Δ can involve the xμ). Class // contains therefore solutions
which were not present before (as, e.g., those involving the Lorentz transformations
if J^o is Lorentz invariant). Furthermore, it can (and does) happen that some sym-
metries which are non-trivial in the space of ^-independent forms become trivial
in the space of ^-dependent forms. An example is provided by the global symme-
try δΔA*μ = ξ*μ = const, which becomes trivial since it can be written as a gauge
transformation δΔA*μ = dμε

a with jt-dependent parameter εα = xμζ°fl.
There is another subtlety arising in the analysis of solutions of Class // in

the space of ^-dependent forms. We shall discuss it in more detail now since it
concerns in particular the structure of jt-dependent conserved Noether currents and
thus has a direct physical relevance. Namely, recall that the jΔ occurring in (9.1)
are conserved Noether currents corresponding to ^-independent solutions of Type
II a . As we have pointed out in Sect. 9, these currents can be always taken to be
gauge invariant, i.e. to satisfy γjΔ = 0. This property of the currents is however less
obvious for ^-dependent solutions of Type II a. Nevertheless it still holds, at least
if we restrict the investigation to local forms depending polynomially on the xμ

9 as
we shall prove in the following. For simplicity we consider only one free abelian
gauge field, i.e. the very simple case ^o = —(l/4)FμvF

μv (the reasoning can be
adopted in the general case straightforwardly). In that case the solutions of Type
II a are (non-trivial) solutions of

δa = dj, a = d"xXμ(x, [F])A*μ , (13.2)

where X μ ( x 9 [ F ] ) is a polynomial in the xμ and the dμι_μkFpσ9 and where y, the
conserved current, is a local (n — 1 )-form which generally depends polynomially
on the xμ as well. According to (13.2), dj is a gauge invariant w-form. Hence, j

2 One has of course to add the *'s as arguments of functions where necessary in the preceding
steps; in particular, invariant polynomials α/(χ) have to be replaced by α/(x, χ) where they occur.
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itself is gauge invariant up to a monomial of degree | in the field strength 2-form
[7,9]. Since such a monomial cannot occur in odd dimensions, we can reduce the
investigation to even dimensions and conclude in this case:

n = 2r: dj = db + κF'\ F = dxμdxvFμv, (13.3)

where K is a constant and b, the gauge invariant part of 7, is a polynomial in the
xμ and the dμι_μkFpσ. We have to show K — 0.

To this end we use SL(2r,7? ̂ transformations in spacetime, whose infinitesimal
form reads

SAX* = -AW, δλdxμ = -Aμdx\ δΛAμ = ΛμAv, [δλ, dμ] = Λv

μdv

with A G sl(2r,R) (i.e. the A are real traceless 2r x 2r-matrices). The conclusion
K = 0 can be reached from the fact that Fr is SL(2r,7?)-invariant whereas δa is
not (as a consequence of the fact that the Lagrangian ^0 is not SL(2r,R)-but
only Lorentz-invariant). To make the argument precise we note that (13.2) can be
decomposed into parts transforming according to irreducible representations under
§L(2r,Rγ. Hence, each of these parts has to satisfy (13.2) separately. Fr occurs
only in the SL(2r, ̂ -invariant part which reads

[δα]0 = rf[*]o + κF r, (13.4)

where [δa]o and [b]o denote the SL(2r,7?)-invariant parts of (δa) and b respectively.
In (13.4) we have used already that d, unlike <5, commutes with the SL(2r,R)-
transformations which implies [db]o = d[b]G. We can assume [δa]0 and [Z?]0 to
have total degree r in the Fμv and their derivatives since this holds also for Fr (all
other parts of [δa]o and [b]o must cancel separately). Furthermore a simple scaling
argument (xμ —> λ~lxμ,dμ —>• λdμ,Aμ —»• λAμ) shows that we can assume [δa]o and
d[b]o to contain only monomials whose total degree in the xμ equals the total
number of derivatives acting on the Fμv.

Assume now that we can show [δa]o — 0. Then we can conclude K — 0 from
d[b]o = —κFr since otherwise we would obtain a contradiction to the results of
[7,9] stating that the Fp with p rg n/2 are just those forms which are closed but
not exact in the space of local gauge invariant forms.

Therefore, to complete the argument, we need to show that (13.4) implies
[δa]o = 0 or n = 2. Note that [δa]G is an n-form which is (i) SL(2r,^-invariant and
(ii) weakly zero. We show in the following that (i) and (ii) contradict each other
unless [δa]o = 0 or n = 2. To this end we determine first all ft-forms satisfying (i)
and the above mentioned restrictions on the total degrees in the xμ, Fμv and the
derivatives acting on them. Note that the volume element dnx is SL(2r,/^-invariant
and that sμ]-μ2r

9 εμι...μ2r and δv

μ are the only SL(2r, ̂ -invariant tensors which are
available to contract the indices of the xμ and dμι_μicFpσ in a SL(2r,/^-invariant
way. Hence, (i) requires that all indices of the xμ are contracted with indices of the
dμ\...μkFpσ. The number of remaining "free" indices of the latter (i.e. those indices
which are not contracted with jc's) equals then 2r = n by the counting and scaling
arguments given above. Hence, these free indices have to be contracted with ε^1 -μ2r

and thus are totally antisymmetrized. Taking into account the Bianchi identities, it
is then straightforward to verify that the 2r free indices stem soley from monomials

3 This is possible since sl(2r) is semisimple and since the space on which it acts (polynomials in
dxμ, xμ and the F/tv and their derivatives up to some arbitrary but finite order) is finite dimensional.

Notice that here we use the locality of the forms, as well as their polynomiality in the xμ.
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rγn _ p\ pmβ p ττm+\ _ γv s^m
°μv — X X ϋpι...pm

rμv, n

μ — X <Jμv ,

where w = 0,1,.... The SL(2r,^)-invariants constructable from the G's and 77's
and one εμι'"μ2r are linear combinations of functions of the form

Recall now that we are only interested in functions which have total degree r in
the Fμv and their derivatives. The only functions (13.5) satisfying this constraint
are those with k = r, i.e. those which do not depend on the 77's at all. They also
satisfy the constraint imposed by the scaling argument. Hence, the functions we are
looking for are linear combinations of

P(m\,...,mr) = G μ f v ι - - G%Vrε
μιV}"μrVr . (13.6)

As indicated by the notation, the P(w,) are characterized and distinguished com-
pletely by their arguments ml = (m\9...9mr). Notice that (a) P(m/) is totally sym-
metric in all its arguments, (b) the sum of these arguments is the total degree of
P(rrii) in the xμ and (c) the arguments m/ indicate the order of the derivatives of
the Fμv occurring in the 7>(mz). We conclude that there is only one P(m/) for fixed
total degree in the xμ and fixed orders of derivatives of the Fμv.

Since the equations are homogeneous in the derivatives of F9 different P(ml) can
never combine to weakly vanishing terms unless each P(/w/ ) itself vanishes weakly.
For r > 1 (i.e., for w φ 2 ) one readily checks that no P(/w/) vanishes weakly since
the equations of motion constrain only those derivatives dμι,,,μkFpσ for which at least
one of the μ/ equals p or σ. One easily makes sure however that 7>(m/) contains
monomials which do not involve these derivatives at all if «Φ2. In contrast, in two
dimensions all P(nii) = P(m) vanish weakly apart from P(Q) = Fμvε

μv since the
equations of motion set to zero all derivatives of the field strength. Therefore the
case n = 2, which we have anyhow, excluded, provides the only counterexample to
the result K = 0. This counterexample is obtained for δa = d2xP(l) since P(l) =
xpdpFμvε

μv = 2xpεpvdμF
μv implies

n = 2: δ(2εpvx
pA*v) = dp(xpFμvε

μv) - 2Fμvε
μv,

which is the dual version of (13.4).
Hence, assuming polynomiality in the xμ (and n ^ 2), one still can take the

conserved currents corresponding to solutions of Type Πa to be gauge invariant and
the classification of all solutions of Type 77 in the space of local forms depending
polynomially on the xμ can be performed as in Sect. 9.

For the sake of completeness we finally note that, in the space of x-dependent
forms, Class 777α consists of solutions of the form "invariant polynomial in the χ^"
times "function of the xμ" Among the solutions of Type 777 ,̂ present in the space
of c-independent forms, only those "survive" in the space of .x-dependent forms
which are Lorentz invariant. The others become either trivial or can be "shifted" to
Class 777α. This follows immediately from an inspection of the descent equations

sap + dap+l = 0, sap'1 + dap~2 = 0,..., sap~k = 0

associated with these solutions (the superscript of the α's denotes their form degree;
one has k > 0 since solutions of Type 777^ have by definition a non-trivial descent).
Namely the BRST invariant form ap~k occurring at the last equation is a linear
combination of forms

dP~k = ocp~k~f
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where the ηl(dx) are /-forms involving only the differentials, ωJ(C) denote the
polynomials in the ghosts introduced in Sect. 4 and ap~k~l(F) are invariant ho-
mogeneous polynomials of degree (p — k — ί)/2 in the curvature 2-forms Fa =
l/2dxμdxvFμV. Now, in the space of ^-dependent forms, άP~k is trivial unless ηl(dx)

is a 0-form. Namely for / > 0 one has ηl(dx) = dηl~l(x,dx) which implies, using
(8.8),

/ Φ O : &~k = sbP~k + dbP~k~!,
where

bP-k-l = α^'-'ω y-1, bP-k = (Xp-k~iώj

μη
l-ldxμ .

By standard arguments one verifies that trivial contributions can be removed from
ap~k. Hence, we can assume / = 0 and ap~k to be Lorentz invariant (but note that
this reasoning is not possible in the space of ^-independent forms since there the
forms ηl~l(x, dx) are not available). As mentioned above, this implies eventually
that the parts of ap which are not Lorentz invariant become trivial or equivalent
to solutions of Class IΠa in the space of ^-dependent forms. A simple example for
the latter case is provided by the 4-form a4 = fμAβdxμAAFB, where f^β = fμBA are
constants and AA and FB denote abelian connection 1-forms and curvature 2-forms
respectively. Namely one has a4(fμABx

μAAFB) - «4? where a* = fμABXμFAFB is an
jc-dependent solution of Type ΠIa.

14. Conclusion

In this paper, we have explicitly computed the cohomology groups Hk(s\d) for
Yang-Mills theory. Our work goes beyond previous analyses on the subject [17,20,
4,28-31,23,22,5,7,9], in that (i) we do not use power counting, and (ii) we ex-
plicitly include the antifields (=sources for the BRST variations). We have shown
that new cohomological classes depending on the antifields appear whenever there
are conserved currents, but for a semi-simple gauge group they occur only at ghost
numbers g = -1 and g ^ 2. Our results confirm previous conjectures in the field.
[The existence of antifield-dependent solutions of the consistency equation at ghost
number one for a theory with abelian factors was anticipated in [28]. The structure
of these solutions was partly elucidated and an argument was given that they cannot
occur as anomalies.]

The central feature behind our analysis is a key property of the antifield for-
malism, namely, that the antifields provide a resolution of the stationary surface
through the Koszul-Tate differential [2]. It is by attacking the problem from that
angle that we have been able to carry out the calculation to completion, while pre-
vious attempts following different approaches turned out to be unsuccessful. Thus,
even in the familiar Yang-Mills context, the formal ideas of the antifield formalism
prove to be extremely fruitful.

Our results can be extended in various directions. First, one can repeat the
Yang-Mills calculation for Einstein gravity with or without matter. This will be
done explicitly in [32]. Second, at a more theoretical level, one can analyze further
the connection between the local BRST cohomology, the characteristic cohomology
and the variational bicomplex [33]. This will be pursued elsewhere.

Acknowledgements. We are grateful to J. Collins, M. Dubois-Violette, O. Piguet, A. Slavnov, J.
Stasheff, R. Stora, M. Talon, C. Teitelboim and C. Viallet for fruitful discussions. This work has
been suppported in part by research funds from the Belgian "F.N.R.S." as well as by research
contracts with the Commission of the European Communities. M.H. is grateful to the CERN
Theory Division for its kind hospitality while this work was being carried out and completed.



116 G. Barnich, F. Brandt, M. Henneaux

References

1. Barnich, G., Brandt, F., Henneaux, M.: Local BRST cohomology in the antifield formalism:
I. General theorems. Commun. Math. Phys. 174, 57-91 (1995)

2. Henneaux, M., Teitelboim, C.: Quantization of Gauge Systems. Princeton, NJ: Princeton Uni-
versity Press, 1992

3. Henneaux, M.: Phys. Lett. B313, 35 (1993)
4. Dixon, J.A.: Cohomology and Renormalization of Gauge Theories I, II, I I I , Unpublished

preprints (1976-1979); Commun. Math. Phys. 139, 495 (1991)
5. Bandelloni, G.: J. Math. Phys. 27, 2551 (1986), 28, 2775 (1987)
6. Brandt, F., Dragon, N., Kreuzer, M.: Phys. Lett. B231, 263 (1989)
7. Brandt, F., Dragon, N., Kreuzer, M.: Nucl. Phys. B332, 224 (1990)
8. Brandt, F., Dragon, N., Kreuzer, M.: Nucl. Phys. B332, 250 (1990)
9. Dubois-Violette, M., Henneaux, M., Talon, M., Viallet, C.M.: Phys. Lett. B289, 361 (1992)

10. Joglekar, S.D., Lee, B.W.: Ann. Phys. (NY) 97, 160 (1976)
11. Collins, J.C.: Renormalization. Cambridge: Cambridge U.P., 1984
12. Collins, J.C., Scalise, R.J.: The renormalization of composite operators in Yang-Mills theories

using general covariant gauge. Phys. Rev. D50, 4117 (1994)
13. Brandt, F.: Phys. Lett. B320, 57 (1994)
14. Kluberg-Stern, H., Zuber, J.B.: Phys. Rev. D12, 467, 482, 3159 (1975)
15. Zinn-Justin, J.: Quantum Field Theory and Critical Phenomena. 2 ed. Oxford: Clarendon Press

1993
16. Barnich, G., Henneaux, M.: Phys. Rev. Lett. 72, 1588 (1994)
17. Becchi, C., Rouet, A., Stora, R.: Commun. Math. Phys. 42, 127 (1975); Ann. Phys. (N.Y.)

98, 287 (1976)
18. Tyutin, I.V.: Gauge Invariance in Field Theory and Statistical Mechanics. Lebedev preprint

FIAN n° 39 (1975)
19. Henneaux, M.: Commun. Math. Phys. 140, 1 (1991)
20. Stora, R.: Continuum Gauge Theories. In: New Developments in Quantum Field Theory and

Statistical Mechanics, Levy M., Mitter, P. (eds.) London: Plenum, 1977; Algebraic Structure
and Topological Origin of Anomalies. In: Progress in Gauge Field Theory, G. 't Hooft et al.
(eds.) London: Plenum, 1984.

21. Zumino, B.: Chiral Anomalies and Differential Geometry in Relativity, Groups and Topology
II. B.S. De Witt, R. Stora Amsterdam (eds.) North-Holland, 1984

22. Baulieu, L.: Phys. Rep. 129, 1 (1985)
23. Dubois-Violette, M., Talon, M., Viallet, C.M.: Phys. Lett. B158, 231 (1985); Commun. Math.

Phys. 102, 105 (1985)
24. Barnich, G. , Henneaux, M.: Phys. Lett. B311, 123 (1993)
25. Chevalley, C., Eilenberg, S.: Trans. Am. Math. Soc. 63, 589 (1953); Koszul, J.L.: Bull. Soc.

Math. France 78, 65 (1950); Hochschild, G., Serre, J.P.: Ann. Math. 57, 59 (1953)
26. Barnich, G., Brandt, F., Henneaux, M.: Conserved currents and gauge invariance in Yang-Mills

theory. Phys. Lett. B346, 81 (1995)
27. Delduc, F., Lucchesi, C., Piguet, O., Sorella, S.P.: Nucl. Phys. B346, 313 (1990); Blasi, A.,

Piguet, O., Sorella, S.P.: Nucl. Phys. B356, 154 (1991); Lucchesi, C., Piguet, O.: Nucl. Phys.
B381, 281 (199?)

28. Bandelloni, G., Blasi, A., Becchi, C., Collina, R.: Ann. Inst. Henri Poincare 28, 225, 255
(1978)

29. Bonora, L., Cotta-Ramusino, P.: Commun. Math. Phys. 87, 589 (1983)
30. Baulieu, L., Thierry-Mieg, J.: Nucl. Phys. 187, 477 (1982); Baulieu, L.: Nucl. Phys. B241,

557 (1984)
31. Thierry-Mieg, J.: Phys. Lett. 147B, 430 (1984)
32. Barnich, G., Brandt, F., Henneaux, M.: Local BRST cohomology in Einstein-Yang-Mills

theory, to appear in Nucl. Phys. B
33. Anderson, I.M.: The variational bicomplex. Boston HA: Academic Press 1994; Contemp. Math

132, 51 (1992)

Communicated by G. Felder




