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Abstract: If P is an elliptic self-adjoint perturbation of the Laplacian Δ on 1R3,
and the coefficients of P — Δ decay super-exponentially, then we show that P has
infinitely many resonances. The resonances are defined here as the poles of the
meromorphic continuation of (P - λ2)~ι.

1. Introduction and Statement of Results

The purpose of this note is to show the existence of infinitely many resonances
for super-exponentially decaying elliptic self-adjoint perturbations of the Laplacian
in R 3 .

The key component is the extension of Melrose's Poisson formula to that class
of perturbations:

tτ(U(t) - £ / o ( 0 ) = Σ e-λ'', t>0, (1.1)
resonances

where U(t) denotes the perturbed wave group and U0(t) the free one and where
we included square roots of eigenvalues among resonances. The formula (1.1) was
proved for compactly supported potential and obstacle scattering by Melrose [9,10]
and was then extended to more general compactly supported perturbations in [18].
It was used by Sjόstrand and the second author [17,18] and then by Farhy [4]
and Vodev [22] to obtain lower bounds on the number of scattering poles in a
variety of situations, always using the strong singularities of the wave group. It is
obvious however that non-vanishing of the wave trace for t > 0 already guarantees
the existence of resonances or eigenvalues. That non-vanishing can be immediately
inferred from the non-vanishing of the higher heat/wave coefficients, that it is those
which do not correspond to ^-functions at t — 0. As was pointed out to us by
Melrose, the vanishing of the zeroth coefficient in odd dimensions implies that the
number of resonances is infinite (see Proposition 4.3 of [12] for consequences of
that for scattering by compactly supported potentials in odd dimensions) but unlike
in [17,18,4,22] this does not seem to lead to quantitative information.
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IE(t,x,y)l < C(x,y,N) exp(-t N), t > T N

for all N > 0, implies E(t,x,y)=0 for t > Ix-yl.

Fig. 1. Decay of the fundamental solution

Our motivation came also from a question concerning the fundamental solution
of the perturbed wave equation in R'\ n odd: does a super-exponential decay of the
fundamental solution inside of light cones imply its vanishing there? For self-adjoint
elliptic perturbations and n = 3 this is answered affirmatively in the Corollary below.
In some sense this is a unique continuation theorem at t = oo and it motivates
also the super-exponential decay assumption for the perturbation - at the moment
however we need to assume that the decay is uniform, 0(exp(-,4|x|1+' ;)) for fixed
ε > 0.

From the scattering theory point of view the super-exponential decay assumption
is reasonable as it guarantees a meromorphic continuation of the resolvent to C and
thus a global definition of resonances. It is also natural if infinitely many resonances
are to be expected: in one dimension there exist potentials of exact exponential decay
and with finitely many resonances (see for instance [3] for the computation of the
scattering matrix for that type of potentials).

Let C%°(R.n) denote the space of C°° functions with bounded derivatives. We
can state the application of the present method as

Theorem. Let P be an elliptic self-adjoint operator on L2(lR3,^/gdx):

F, g = (giJ) = {gu Γ

where F, gif e C£°(IR3) satisfy for some fixed ε > 0 and A, B,

\V(x)\ S Be~A^l+\ and \gtJ(χ) - δtj\ S Be~A^+\ 1 S ij ύ 3 . (1.2)

If FφO or the metric gtj is not flat then the meromorphic continuation of

(P - λ2)~x has infinitely many poles.

Expressing the resolvent in terms of the wave group immediately gives

Corollary. Let P be as in the Theorem above and let E(t,x,y) be the fundamental
solution for the wave equation:

(D2 - P)E(t,x,y) = 0, E(0,x,y) = 0, dtE(0,x,y) = δ(x - y).

V V x,y € R3 and V N e N 3 T,C such that V t > T \E(t,x,y)\ ^ Ce~N\ then
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We remark that the argument used here is similar to that in the proof of Corollary
25 of [1] where the analytic Riemannian three manifolds for which the strong
Huyghens principle holds are characterized to be flat. We note that a slight extension
of computation of [1] in Lemma 6 below shows the same conclusion for Schrodinger
operators on compact three manifolds, except for the locally symmetric case and
Ag + | τ , where τ is the (constant) scalar curvature.

2. Upper Bounds on the Number of Resonances for Non-Compactly
Supported Perturbations

To generalize the Poisson summation formula to our case we need a uniform poly-
nomial bound on the number of resonances for non-compactly supported perturba-
tions. Here we will only consider elliptic self-adjoint operators in IR",/? odd. Thus
we define

P = -Σdχ,<>iA, + V, au € L°°(IR'?) Π Lip(IR'7),

V e Z,°°(IR'7), (a,,-) > c0/, co > 0, (2.1)

eAMl+L\ai, - διy (jc)| S B, eA^+ί'\V(x)\ ^B. (2.2)

where ε,A,B are fixed.
The regularity assumptions in this section are considerably weaker than in the

Theorem above since all that is needed here is (2.2) and the boundedness (P + i)~ι :
L2(Rn)-> H2(WLn).

The meromorphic continuation of the resolvent is essentially well-known but
before presenting its proof we need two lemmas. We denote by R and Ro the
resolvent of P and A = —^d2, respectively,

R(λ) = (P- λ2)'1: L2(R/?) -> //2(1R'?), Imλ > 0 λ2 £ σ(P),

R0(λ) = (A - λ2yι: L 2 (5r ) -* H2(W.n), Im λ > 0 .

recalling that for n odd Ro(λ) extends to an entire family of operators

6>-<x>1+V(lR'7) -> eW
l+dH2(WLn\ δ > 0, where (x) = (1 + | x | 2 ) i

For N G IR we define

XN(X) = x(\x\KC\N\h) and (x)N

 ά= χN(x)(\ + |x| 2)ΐ ,

where C is large, χ G C°°(R), 0 ^ χ ^ 1, χ(t) = 0 for t < 1 and χ(t) = 1 for
t > 2. We use this to define weighted L2 spaces

L2

N(Rn)d= eN{x)NL2(lRn).

We now have:

Lemma 1. For Im/ ^ 0, n odd, N > 0 and \λ\ ^ CN,

Ro(λ) = Θ,,(Nτ./(\ + μ|)) : L2_N(W.") - , 4 ( R Λ ) , (2.3)



404 A. Sa Barreto, M. Zworski

and for Im λ > —N -f y, y > 0 we have

Ro(λ) = < W 1 ) : L2_NW) -> 4 ( R " ) , (2.4)

e-NW»Ro(λ) = &,,N,γ,λ(\): L2_N(Rn) -> H2(JR"). (2.5)

Proof. We define χJU*) = χ(W/(C|N|r)) so that ^ Ξ I on supp χι

N. We then
rewrite the reduced kernel as

γ}N). (2.6)

To estimate the norms we write for Im λ ^ 0,

Ro(λ) = T / cos(tyfΔYhdt. (2.7)

Since χί

Ne~N(χS)N = χ]

Ne~~N(χ\ the norm of the first term is bounded by the norm of
e-^W/?o(A)e"^w. Let ι/> € C^°(IR) satisfy 0 ^ ^ ^ 1, φ = 1 in |JC| < 1 and φ =
0 in |x| > 2. Then (2.7) and the sharp Huyghens principle show that the operator
with the kernel φ(\x - y\2)R0(λ)(x,y) is 0((1 + μ i Γ 1 ) : L2(IRW) -^ L2(IR"). Since
that eliminates the singularities at x — y, Schur's lemma gives the same bound for
the operator with the kernel

e - " « ( l - ψ)(\x - y\2)R0(λ)(x,y)e-N^ ,

since in fact it gives the norm Θ(N~]). For the second term in (2.6) we note that

by the finite speed of propagation the integration can be restricted to [0,C"Λ^ ] and

thus the norm is bounded by C"JV«/(1 4- \λ\).
To estimate the norm of the remaining two terms we consider the Schwartz

kernels:

which vanishes unless t — \x - y\, that is t = |_y| + &(Nt). Hence

where z+ = z for z ^ 0 and z+ = 0 for z < 0. Thus

with the same estimate for the fourth term.
Since L2

±N ~ e±N^L2{Win), (2.4) is immediate but now the norm estimates
depend on N (as they do in the identification above). For (2.5) we use
(I + λ2)R0(λ) and (2.4). D
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Lemma 2. For λo G ΠR+, \λo\ ̂  C\N > c with C\ sufficiently large,

^ = Θ^iN-2) : L2_N(Ί&n) -* L2_N(Kn), (2.8)

eN{x)NR(λ0) = Θ,(\) : L2_N(Rn) -> / / 2 ( R " ) . (2.9)

worm estimate on (2.9) depends in ε,A,B in (2.2), Lipschitz constants of aifs
and Co /« (2.1).

Proof We briefly recall the argument from [15] and noting that |V(x)#| ύ C we
start by writing

eN{x)N+c(x)(p _ jl)e-N(x)N-c(x) = P + N A N + N2CN _ χ2 _ ^2 ? ( 2 > 1 Q )

where 4̂/v is a first order operator with uniformly bounded coefficients and c^ is
a smooth bounded function. Since R(μ) = Θ{\μ\~x~k) : L2(WLn) -> Z / 1 " ^ ^ ) , it =
0,1, for μ G /R+, we have for -λ2 - N2 > A^2,

where the first factor on the right-hand side is invertible on L2(IRW). Hence the
conjugated operator (2.10) is invertible on L2(IR") with norm Θ(N~2) and we
obtain (2.8).

For (2.9) we integrate by parts and use (2.1) to get

(PR(λo)u,R(λo)u)L2 ^ C3||V^(/ίo)t/||22 -C2N(VR(λo)u9R(λo)u)L2 .
—N ^—N —N

From (2.8) we obtain that

eN{x)NVR(λ0) - ^(A^-1) : L2_N(WLn) -^ L2(WLn).

Next we observe that for some B^ G Diff'(IR72) with uniformly bounded coefficients,

PeN{x)NR(λo) = eNW»(Θ(N2)R(λ0) + Θ(N)BNR(λ0) + (/ + λ2)R(λ0)).

Thus if u G ̂ ( R 1 1 ) one obtains that ^^>^Λ(Ao)M G L2(WLn) and PeNW"R(λ0)u G

Z 2(RΠ). Hence (2.9) follows, as P is uniformly elliptic. D

Proposition 1. For P satisfying (2.1) and (2.2) ί/ze resolvent (P - λ2)~x: Z2(R^) —>
^(IR 1 2 ) , ImA > 0, /I2 ̂  ^(.P), Λα̂ 1 α meromorphic continuation

R{λ) : e-^ 1 + f ) L 2 (R r t ) -> eW I + ' i / 2 (R n ) ,

/or αwj; δ > 0. ΓAe jT7ofe are of finite rank and their multiplicity

multiplicity of λo = rank J R(λ)λdλ
(?D(A0,ε)

w independent of δ.

Proof We write β = P - A. Thus for Im/ί > 0, A2 £ σ(P),

R(λ) = R0(λ) - R(λ)QR0(λ),
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which using the resolvent identity R(λ) = R(λ0) + (λ2 - λl)R(λ)R(λo) gives

(λ2 - λ2)R(λ0)QR0(λ)) = R0(λ) - R(λo)QRo(λ). (2.11)

To obtain meromoφhic continuation we follow the standard application of Fredholm
theory once we show that R(λo)QRo(λ) is compact from L2_N(lR.n) to itself. Since

QeN{x)N = ΘN(\) : H2(WLn) -> L2_M(ΈLn) (2.12)

for any M (with norm independent of M), if \λ\ < CN, Im/l > -N + γ then (2.5)
shows that

for any M. If we choose λ0 as in Lemma 2 with \λo\ > 2M > 2N then by (2.9),

R ( λ 0 ) : L2_M(WLn) - > β ~ M ( ) 2

so that

(λ2 - λ2)R(λ0)QR0(λ) : L i ^ ( R Λ ) - <TA

with the last inclusion compact since M > N. Putting λ = λo (which is possible
as long as |A0| ^ CN) we obtain the invertibility of / + (λ2 - λl)R(λo)QRo(λ) at
one point and by the compactness of the second term we obtain a meromorphic
inverse from //^(IR/1) to Z / L ^ I R " ) if Im/l > -N + y. Hence for \mλ > -N + y
we established the meromorphy of

Since the ranks of the poles are finite and since the polar parts at λ0 are in L^(IR^) ®
L^(1RΛ), AT > — Imλo m ^ independence of the multiplicity of TV and δ follows. D

Proposition 2. Let N(r) be the number of poles of R{λ) in {ζ: \ζ\ S }̂ counted
with their multiplicities. Then there exists a constant C$ depending only on δ >
0,ε,A,B in (2.2), CQ in (2.1) and the Lipschίtz constant of the coefficients of P
such that for any δ > 0,

N(r) S Cδr
n{mίix{1^>ϊ+Έ+δ» . (2.13)

Proof We apply a modified version of the Fredholm determinant argument of
[10,11,24,19,20] - see also [25 and 6]. Thus we start by estimating the character-
istic values in the good and bad half planes, Imλ ̂  0 and Imλ ̂  0 respectively.
More precisely for any large N we choose λo G z'IR+, 2C\N ^ \λo\ ̂  C\N, where
C\ is the same as in Lemma 2, and consider two regions

Imλ^O, \λ-λo\^2>C\N and \mλ ^ 0, \λ\ < -N. (2.14)

We introduce the reduced kernel

KN(λ,λ0) = eN{x^{λ2 - λ2

0)R(λo)QR0(λ)e~N^N (2.15)
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and denote by μj(A) the characteristic values of the operator A : L2 —> L2, that is,

the eigenvalues of (AA*)τ. When Imλ ^ 0 and |λ| ^ CN then

. \\e

c{x)+N{x)NQeN{x)N(I+ A)~ι\\

x | |(7 + A)e-N<x)NRo(λ)e-N{x)N || , (2.16)

where the norms are defined by || || = || ||/,2(IR»)-+L2(IR») By Lemma 1 and inter-
polation we get

\\(I + A)e-N{x)NR0(λ)e-N{x)N\\ S CN]+^ max(l,7V/(l + \λ\)),

and by assumption (2.2)

independently of N. To estimate the characteristic values in (2.16) we introduce
φ G C0°°(£(0,2)), 0^φ^l9φ=l in 5(0,1) and φR(x) = φφ and let AR be
the Dirichlet Laplacian on B(03R). Then

j-ϊ +e~CR).

where we used Lemma 2 and the Weyl estimate on the number of eigenvalues of
AR. Optimization in R gives for Im/ ^ 0, \λ\ ^ CN,

μj(KN(λ,λ0)) ^ QiV3+^max(l,iV/(l + \λ\))j~^ , (2.17)

for any δ > 0.
In the second region in (2.14), I m l < 0, \λ\ < | we write

and we only need to estimate the first term on the right-hand side. We rewrite
operator as

e"(*)N(λ2 _ λ2)R(λo)Q(Ro(λ) _ Ro(-λ))e-
N^

so that

μj(KN(λ,λo)-KN(-λ,λo)) g CN2μJ(eN
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Using the spectral resolution of the Laplacian as in [19,24,25] we now write
R0(λ)-R0(-λ) = EχEj, where Eλ : L2(S"~ι) -» e^χS>L2(ΊΆ") has the kernal

cλ'2^ e

iλ(χ'ω), ω e 5"- ' . If Δsn-, is the Laplacian on S""1, it follows that

μj(KN(λ,λ0)-KN(-λ,λ0)) g \\eNω»QeA2^+'(I + Δy]\\

x μj((I + A)e-ί{x)]+':Eλ(I + Agn-i )m(I + Δs,,->)"")

x \\Eje-N{x)N\\

^ C3\\(I + A)e-ΪM]+Έλ(I + Δ^rW

The two norms are estimated by Schur's Lemma:

s u p e ^ d + | 2 | ) 2 + 2 i V ? w l + £ + W « C m ( 2 / n ) ! ^ Ceέ^ΨC"\2m)\
X

where eδ^ terms guarantees integrability in x, and

since \λ\ < ^N.

We now use the estimate μ/((/ + Δsn-\) m) ^ Cj n~] and optimize in m.
Hence

so that for Im/ί ^ 0, |A| < \N we obtain

3 ^ <r ί CeCN]+\ if 7 <

I QΛ^3+^ max(l,iV/(l + | A | ) ) / " ^ if y >
(2.18)

for any 5 > 0.
By the proof of Proposition 1, the definition of K^(λ,λo). (2.15), and estimates

(2.18) we see that for λ in (2.14), the poles of R(λ) are among the zeros of

hN(λ)= det (I + (KN(λ,λo))n)
2

with multiplicity of the pole of R(λ) less than or equal to the multiplicity of the
corresponding zero of h^(λ) - see Appendices to [21 or 7].

Since |de t (/-M) | ^ Π θ + l*j(A)) for A trace class and since μj(Bn) S
(μ ,ΛB))n we can use (2.18) to estimate hN(λ). If |Ao| = C\N9 λ0 E zΊR+ we choose

Co > 0 such that

{λ: I m l ^ 0} C D(09N/2),
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Fig. 2. Bound on the number of poles

in fact we can take c0 <

(2.18) shows that

c\ + \ - C\ - see Fig. 2. For λ £ dD(λo,4Cι + c0N)

\h»(λ)\ S

since for any <5 > 0

Πd +
1

Π
1

i + ί

Since hN(λ0) = 1, Jensen's inequality immediately bounds the number of zeroes

of hN(λ) in D(λo,CιN + co7V) by QiV Λ ( i n a x ( 1 ^' ϊ + i + < 5 ) ) for any (5 > 0. Hence, we
obtain a bound in D(0,c0iV) (see Fig. 2) and that proves the proposition. D

Remark. For our application in the next section we only need a polynomial bound.

The expected "sharp" bound is (^(r'^"^) and (2.13) gives that if ε < 1. By refin-
ing the representation of the resolvent that improvement is very plausible as is a
generalization to arbitrary compactly supported perturbations of operators satisfying
(2.1) and (2.2) as has been initated for the Laplacian in [16]. We should remark
however that the simple method above already gives the expected bound with the
exponent n(\ -f ε)/ε in the potential case. In fact, the operator K^(λ,λo) can then
be replaced by eN^N VRo(λ)ε~N{x)N which reduces the power 3 + \ to 1 + ^ in
(2.17), but the modified proof of Proposition 1 requires now that (2.2) holds for
3αF, |α| ^ 2. This gives the desired improvement. We also note that when n = 1
and ^ ^ Z, the bound is optimal as can be seen by the methods of [23]. In fact,
Froese [5], using a different method, proved recently asymptotic formulae for the
number of poles for a class of non-compactly supported potentials, including some
cases where ^ G l
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3. Generalized Poisson Formula

We will now apply the estimate (2.13) of Sect. 2 to generalize Melrose's Poisson
formula [11,18] to a class of non-compactly supported perturbations. Although we
consider only operatoes P satisfying the assumptions of Theorem in Sect. 1 it will
be clear from the simple argument in the proof of proposition 3 that further gen-
eralization would follow from extending Proposition 2 to other perturbation and
relaxing regularity assumptions.

We start by introducing a family of compactly supported perturbations of A. Let
φ e C0°°(£(0,2)) satisfy 0 ^ φ g 1, φ = 1 in £(0,1) and let φR(x) = φ(x/R). We
then consider

(3.1)

If R is large enough then PR is an elliptic compactly supported perturbation of A on
IRΛ Let us denote by URQ) the wave group for D2 — PR and by {λ1}} the resonances
of PR (that is, poles of the meromorphic continuation of the resolvent (PR — λ2)~x

included according to their multiplicity). The standard observation based on partial
hypoellipticity (see [11 or 18,Lemma 3.1]) shows that UR(t) — Uo(t) is trace class
in the sense of distributions. Here Uo(t) is the trace wave group associated to
D] - A.

We will need two continuity results as R —* oc both of which are essentially
well-known but we outline the proofs for the sake of completeness.

Lemma 3. The operator U(t) - Uo(t) is trace class as a distribution in t and

Π(UR(t) - C/0(0) ^ tr(t/(O - C/0(0) (3-2)

Proof We recall that

U0(t) = eιtAQ , U{t) = eitA ,
where

A O) > A = \ P 0

acting on H](lRn) φ L2(Rn) (see Sect. 2 of [18]). Hence

U(t) - U0(t) = jU0(t - s)(A - A0)U(s)ds .
o

Also, for \r\ < T9 eM^U0(r)e-M^ = ΘTM(l) : / P + 1 ( R Λ ) ΘHs(Έtn) -> Hs+ι(Rn)
0 Hs(Έίn) by the Huyghens principle. This and the partial hypoellipticity of D1 — P
and D2 - A (see e.g. Lemma 3.1 of [18]) show that for p e C^°(IR) and any M
and 5,

/ ( ί / ( 0 - U0(t))p(t) : //'(IR^) Θ L 2(RΛ) -> e~M^Hs+\Win) Θ ^ ^ ^ ( I R 1 7 ) .

and hence the operator is trace class.
To consider the limit (3.2) we note that

-^tv(UR(t)-U0(t)) = -R-]ttv
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where ψ'R(x) = ψ(x/R). Hence, for p e C0°°(IR)

d
R —(tr f(UR(t) - U0(t))p(t)dt)

dR

'(I + A)- 1

The last trace class norm is uniformly bounded in R (since JPR sintPRtp(t)dt
is uniformly bounded from L2(WLn) to Hs(Win)). Hence the derivative of the trace
is rapidly decaying and (3.2) follows by integration. D

Lemma 4. Let T > 0 be such that no scattering pole of P has modulus T. Let
{My}7=1 be the scattering poles of P in D(0,T) included according to their multi-
plicities. Then there exists a constant R(T) such that for R > R(T) the poles of
PR in D(0, T) are given by {μf}^ and μf -» μj as R -* oo.

Proof Again for the reader's convenience we outline the modification required
by non-compact support (see [13] for the compact case and also Theorem 3.1 in
Chapter 1 of [8]). Let RR(λ) denote the meromoφhic continuation of the resolvent
(PR - λ2)~ι and let r(T) be such that

%,r(η)CD(0,Γ), D(μhr(T))ΠD(μj,r(T)) = φ, if^Φ/i,.

Then for R large enough (so that \\PR - P\\eτ{x)H2_^e-τ{χ)L2 is small enough depend-
ing on T) we have

RR(λ) = (PR -P)R(λ))-1 , λeD(O,T)\{jD((μhr(T)))

as operators e T^L2 —• eτ^L2. The continuity of the poles follows. D

We can now prove

Proposition 3. Let P be an operator satisfying the assumptions of Theorem in
Sect. 1. If U{t) is the wave group for D2 — P, Uo(t) the free wave group and
{λj} the set of poles of the meromorphic continuation of (P - λ2)~] (included
according to their multiplicities) then

tr(E/(O - t/0(0) =

in the sense of distributions.

±t > 0 (3.3)

Proof. Let φ G C^°(1R+). By Lemma 3 and Melrose's Poisson formula for com-
pactly supported perturbations (see Theorem 3 of [18]) it suffices to show that

that is ΣΦ(*j)
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Since the upper bound in Proposition 2 is uniform with respect to R,

we use the Paley-Wiener estimate \φ(λ)\ ^ CM{\ + \λ\)~M, Im/l ^ 0, any M, to
decompose the sums as follows:

= Σ

and

ΣΦΨj)= Σ

for any M. We now choose a sequence 7* —> oc such that for each T — Tk the

assumptions of Lemma 4 are satisfied. Since then Σ μ ι<r Φ(^j) — Y2\λR\<τ f

as R —> oo, we get

as /? —>• oo and consequently

4. Existence of Resonances

As was noted in [18] lower bounds for resonances can be obtained from the singu-
larities of ix{U{t) — Uo(t)) which "spread out" from 0, that is are not (5-functions.
A weaker immediate statement is

tr(U(t) - t/o(0)φ 0 t > 0 => there exists at least one resonance or eigenvalue
(4.1)

and that conclusion is sufficient for the Corollary in Sect. 1.
When P is an elliptic operator with C°° coefficients on W\Θ, Θ C IR" bounded,

δΘ smooth, then tr(U(t) - Uo(t)) has a full asymptotic expansion at t = 0 and when
(Pφφ, Example 5.2 of [18] gave a lower bound rn~]~ι\ any ε > 0, for the number
of poles. In greater generality, assume that tr(U(t) — U0(t)) has a regular asymptotic
expansion at t = 0:

tv(U(t) - £/0(0) ~ c _ π ( P ) D r % ( 0 4- c_Λ +

+ . . . + co(P) + c,(P)|/| + . . . . (4.2)

Lemma 5. If co(P) = 0 απ<i Q ( P ) Φ 0 for some k > 0 in (4.2) ίήew ί/zerβ exwίί
infinitely many scattering poles.

Proof. Since the non-vanishing of Q ( P ) clearly gives the existence of resonances
or eigenvalues we only need to check that there are infinitely many - there can
only be finitely many eigenvalues. Otherwise however the value at t = 0 would be
the number of λ/s, and since CQ(P) = 0 that is impossible. D
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In dimension three the now standard procedure of computing the wave/heat
coefficients using the Hadamard parametrix constructions gives

Lemma 6. If n is odd and P — Δg + V then c2k(P) = 0 and if n — 3 then

c\{P) = aj ( ^ ( 6 | R i c | 2 + 3τ2) - l-Vτ + X-V2^ rfvol,, a ΦO

where Ric is the Rίcci curvature tensor of g and τ its scalar curvature.

Proof We shall briefly outline the argument using heavily the notation from [1]
where the computation is done for Δg on a compact manifold. The computation
reduces to that case by compactification and continuity. In fact, we can approxi-
mate tr(ί/(O - Uo(t)) by tr(£//?(*) - £/o(0) using Lemma 3 and then can observe
that tγ(UR(t) — Uo(t)) is equal, for t small, to the trace of a self adjoint reference
operator on a torus (see Sect. 5 of [18]). The assumption of the decay of coefficients
and the boundedness of their derivative give, by interpolation, exponential decay of
all derivatives. This is much stronger than the standard short range conditions (see
[14]) needed for the convergence of all the heat/wave coefficients. Thus we need
to study the operator P = Δg + V, V e C°°(M), on a compact three dimensional
manifold, (M,g). From Sect. 28 of [1] we have

costy/P(x,y) = C0(uζ(x, y)\t\δ'(xf - t2)

-X-uv

x{x,y)\t\δ{xy2-t2)

+ ^uζ(x,y)\t\(xy2 - t2)°_ + . . . ) , (4.3)

where xy denotes the distance between x and y, uv

k satisfy a modification of trans-
port equations (9) in [1] giving a modification of (10) there:

uy

M{x,y) = Θ-kx,y)JskΘkx,xs)(Λ2 + V{xs))uv

k{x,xs) ds , (4.4)
0

where Jt5 = exp .̂si;, x\ = y, Θ(x,y) = \άetgTeχ-\ expx\ and Δ2 denotes the
Laplacian applied in the second variable. We are interested in computing
IM U2^x^χ)^vo\i F r o m (4.4) we obtain the expression of uv

k in terms of u^ — u\
of [1]:

j 1

u\(x9y) = u}(x9y) + θ^(x9y)fV(xs) ds ,
o

1 l 1

uii^y) = u2(x,y) + Θ~i(x9y)JsΘϊ(x9xs)V(xs)u\(x,xs) ds
o

-f θ-kx,y)Ssθhx,Xs)(Δ2 + V(xs))

0

/ , 1 \

x 0-i(x9xs)fv(xXs)) ds' ds, (4.5)
V 0 . /
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where xs/(s) — expx s
fw, x\ (s) = xs. When x = y we have xs = x and we only need to

check the value of A2{Θ~^{x,xs)/0 V{xsr(s))ds')\Xs=x. Since Θ(x,y) — 1 vanishes

quadratically at x = y, we get (see (4.4)) u\(x,x) + fQ zlzF(expz(l — s')w)\z=xds\
where expz w = x. In normal geodesic coordinates centered at z (identifying M
with TZM) we have expz(l - s')w = (1 - s')(x - z) and ΔZ = ~Σ d\ m o d $(* ~
z)Difϊ2. Writing K(expz(l - s')w) = K(z) + (1 - s ')W(z)(x - z) + (1 - s')2

(HessK(x - z\x - z)/2 + ̂ P(x - z) 3, we obtain

z!zF(expz(l -s')w)\z=x = ΔV(x)-2(l - s')ΔV(x) + (1 - /

Returning to (4.5) we see that

After the integration over M the last term disappears and Sect. 24 of [1] gives the
lemma. D

We can now prove Theorem of Sect. 1. For that we only need ci(P)φO and that
is obvious from Lemma 6 if R = 0 and V φ 0. Hence we only need to consider the
non-flat case. Since τ = tr Ric, the Cauchy-Schwartz inequality shows, in dimension
three, 3|Ric|2 ^ τ2 with equality only if

Ric = (l/3)τ/rf. (4.6)

If this were true at every point of M, then by Theorem 1.97 of [2], the scalar
curvature τ (and in fact by Proposition 1.20 there also the sectional one) would be
constant which is impossible here as τ(x) —• 0 as |x| —> oo and the metric is not
flat. Hence

cx{P)la > J ( ^ τ 2 - ^Fτ+ ^ dwolg . (4.7)

Since 4(l/72)( 1/2) = (1/6)2 the expression on the right is positive semi-definite
and consequently we obtain the needed fact that ci(P)Φ0.

Remark. Since our result depends on the exact values of the constants in Lemma 6,
to gain the reader's confidence, we will verify it for the case of the three sphere
(see also the comment after the Corollary in Sect. 1). We put V = τ/6 = 1 so
that the eigenvalues of P = A + V are (k + I) 2 with multiplicities (k + I) 2 , k —
0,1,.... Hence trcosί\/^ + V = \Σne%n2eιnt which near t — 0 is a multiple of
<5Q(0 Hence c\(P) = 0 as putting V = τ/6 and |Ric|2 = τ2/3 (since in that case
(4.6) clearly holds) in Lemma 6 shows.
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