Commun. Math. Phys. 172, 661 — 677 (1995) Communications in

© Springer-Verlag 1995

Vertex-IRF Correspondence and Factorized L-operators
for an Elliptic R-operator

Youichi Shibukawa

Department of Mathematics, Hokkaido University, Sapporo 060, Japan.
Email: shibu @ math.hokudai.ac.jp

Received: 16 September 1994 /in revised form: 27 March 1995

Abstract: As for an elliptic R-operator which satisfies the Yang-Baxter equation,
the incoming and outgoing intertwining vectors are constructed, and the vertex-IRF
correspondence for the elliptic R-operator is obtained. The Boltzmann weights of the
corresponding IRF model satisfy the star-triangle relation. By means of these inter-
twining vectors, the factorized L-operators for the elliptic R-operator are also con-
structed. The vertex-IRF correspondence and the factorized L-operators for Belavin’s
R-matrix are reproduced from those of the elliptic R-operator.

0. Introduction

In [12,13,14] we have introduced an infinite-dimensional R-matrix. It is a new
solution of the Yang-Baxter equation. By means of the Fourier transformation of the
R-matrix, we defined an R-operator acting on some function space. This R-operator
also satisfies the Yang—Baxter equation. Since this operator is deeply linked to an-
alytic properties of an elliptic theta function, we call it the elliptic R-operator. We
have shown some properties satisfied by the elliptic R-operator, for example, first in-
version relation, fusion procedure, etc. For the trigonometric degenerate case of the
elliptic R-operator, we proved that the finite-dimensional, trigonometric R-matrices
are constructed from the R-operator through restricting the domain of the R-operator
to some finite-dimensional subspaces. Recently Felder and Pasquier [4] showed
that Belavin’s R-matrix [3,11] can be obtained through restricting the domain
of a modified version of the elliptic R-operator to a suitable finite-dimensional
subspace.

In [1], Baxter has introduced the intertwining vectors for the eight-vertex model.
Jimbo, Miwa and Okado [8] constructed the outgoing intertwining vectors between
Belavin’s vertex model and the Af,l_)l face model. We call this relation the vertex-
IRF correspondence for Belavin’s R-matrix. Hasegawa [6,7], Quano and Fujii [10]
defined the incoming intertwining vectors which are the dual vectors of the outgoing
intertwining vectors. Then they constructed the factorized L-operators for Belavin’s
R-matrix. The vertex-IRF correspondence plays a central role in their methods.



662 Y. Shibukawa

The aim of this paper is to extend the result above to the elliptic R-operator.

Our strategy to construct factorized L-operators for the elliptic R-operator is as
follows. At first we define incoming intertwining vectors (;I-); of the elliptic R-operator
R(¢) and establish a vertex-IRF correspondence. The vertex-IRF correspondence
plays the most important role in this paper. Next we find finite-dimensional sub-
spaces with the following property (cf. Theorem 1.3);

R(E)(Vil(&1) © V(&2 + 1)) C Vi(&) ® Vil&r + 1),

where &pp := &) — &,. Then we define outgoing intertwining vectors ¢x(&)5(z) €

Vi(€ + |A|x), which are the duals of &Z'Vk(éﬂ 7j)- Making use of the properties of

the incoming and outgoing intertwining vectors, we can easily construct factorized

L-operators.

This paper is organized as follows. In Sect. 1, we review the properties of the

elliptic R-operator R(&) proved in [12,13,14,4]. In Sect.2, we shall define in-
K/

coming intertwining vectors q’)Z and Boltzmann weights W | 4 ¢ v | of an IRF
K

model. Then we have the vertex-IRF correspondence for the elliptic R-operator

(Theorem 2.1).

Theorem 0.1 (Vertex-IRF Correspondence). For A,k,v € A,

-x’ -V
d)i, ® d);c/ .
K'ed

K/
¢, ® P RE) = T VV[A & v
K

Because the elliptic R-operator satisfies the Yang—Baxter equation, we can show
that these Boltzmann weights satisfy the star-triangle relation. This IRF model can
be regarded as the limiting case n — oo of the Af,l_)l face model. In Sect. 3, making
use of the results obtained by Felder and Pasquier [4], we shall construct outgoing
intertwining vectors in the same way as [6,7,10]. We can consequently define
factorized L-operators Li(¢) (Theorem 34).

Theorem 0.2 (Factorized L-operator). For &),&, ¢ Z + Zx,

(1 ® R(E))Ek(E) ® 1)1 ® Li(&)) = (Le(&) © (1 ® Li(EN))R(En) ® 1)

In the last section, after stating the results obtained by Felder and Pasquier
[4] more precisely, we show that the vertex-IRF correspondence and the factorized
L-operators for the elliptic R-operator imply those for Belavin’s R-matrix.

1. Review of the Properties of an Elliptic R-operator

In this section, we review the construction and the properties of an elliptic R-
operator [4, 12,13, 14]. We fix t € € such that Im ¢ > 0 and define an open subset
D C C by

D:{zeC;[Imzl < ImTT} .
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Let ¥~ be a space of all functions f holomorphic on D and such that
fz+1)=f(z) VzeD.

Similarly let ¥°®¥" be a space of all functions f holomorphic on D x D with the
property

far+Lzn)= f(zi,z2+ 1) = f(z1,22) Vzi,z2€D.

Now we define an elliptic R-operator R(¢) on 7' ®7". Let u be a complex
number such that p ¢ Z + Zt and let ¥,(z) = ¥1(z,7) be an elliptic theta function

Tc\/——l(m—%—%)Zr-l—Zn\/j(nH——;-) (z+-21-)] .

The elliptic theta function ¥;(z) satisfies the following properties.

9i(2)= T exp
meZ

(1) 91(z) is entire,

(2) %z + 1) = =i(2),

(3) V1(z + 1) = — exp(—2nv—1z — nv/—=11)9)(2),

(4) 91(z) has simple zeros at z € Z + Zr,

(5) ¥1(z) satisfies the three term equation (cf. [15] p. 461);

(x + y)h(x — y)di(z +w)di(z — w)
+ 91(x + 2)01(x — z)0(w + y)hi(w — y)
+ 91 (x +w)di(x — wydh(y +z)0(y — 2)
=0,

(6) Y1(=z) = =th(2).
Definition 1.1 (Elliptic R-operator). For f € ¥"®¥", we define

(&)1 (z21 — u)97(0)
V1(—=p)d1(z21)

91(z21 — £)91(0)
Y1(z21)

R fNz1,2) = f(z2,21) + f(z1,22),

where z31 :=z; — z1, 91(0) = %(z,r)]zzo and & € C. The complex number & is

called a spectral parameter.

We set X = {(z1,22) € D X D; z51 € Z}. By the property (4) of the elliptic theta
function 9,(z), the function R({)f has the singularities at the points (z1,z;) € X.
The lemma below tells us that all singularities are removable.

Lemma 1.1. There is a unique function F holomorphic on D x D and such that
F(z1,22) = (R(E) f)z1,22) for (z1,22) € D x D\X.
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Proof. For (z1,z;) € D x D\X and m € Z,

(R(E)fNz1,22)
_ N (E)1(0)f(22,21) Vi —p—m)—9(—p) zm—zi—m
P(—p) zy—z1—m V1(z21 —m)

fz2—mz)— f(z1,21) z—z1—m

+91(£)D1(0)

Z—z1—m 91(z21 — m)
P 9 PR
+ﬂ1(0)ﬁ {f(zl’zl) 1G] zzé—zjnim (=0
+01(z01 — & — m)f(Zl,Z‘zzz—_nZ :i(zl,zl)} '

Thus there is a function F continuous on D x D and such that F(z;,2,) = (R(¢)f)
(z1,22) for (z1,z2) € D x D\X. In fact, we define

F(z1,22)

B (EW] (— )+ (=& (—p) 2 f)
LONCIRACONED 1(2,2) + 91(8) (L @2) - £6.2))

. (z1,22) = (z,z + m),
(R(E) f)(z1,22), otherwise .

Making use of the Riemann removable singularity theorem (cf. [5]), this function
F is holomorphic on D x D. O

We also denote by R(¢)f this holomorphic function F. It is easy to see that
RSNz + L,z2) = (RE) fNz1,22 + 1) = (R(E) [ )z1,22)

for (z1,2z2) € D x D. Hence R(¢)f € ¥ Q¥ for f € ¥ &Y, and R({) is an operator
on ¥'® as a result.
Let ¥'®¥'®Y be a space of all functions f on D x D x D and such that

fla+ Lz,z3) = f(z,2 + L,z3) = f(z1,22,23 + 1) = f(21,22,23) V z1,20,23 €D

By the three term equation of ¥,(z) (the property (5)), we get the following theo-
rem.

Theorem 1.2 ([12, 13, 14]). R(¢) satisfies the Yang—Baxter equation on V"V @V,
(1 ® R(E2))R(E13) @ 1)(1 @ R(éx3)) = (R(&23) @ 1)(1 @ R(E13))(R(612) ® 1)1,1)
(1.

where ;= & — &)

For (e Cand n=1,2,..., let V,(&) be a space of all functions f holomorphic
on € and such that

fe+1)=f(z),
fz+1)=(—1)"expnvV~1(¢ — nz)) f(2) .
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It is well known that V,(&) has dimension n. We easily see that
i

{ﬁ[—zﬁ}(é—nz nr)exp(n\/_nz)} (12)
2

JEZ/NZ

is a basis of V w(&). Here 19[ ](z,r) is a theta function with rational characteristics;

[ J (z,t) = Y. exp[nv/—1(m + a)*t + 2n/=1(m + a)(z + b)] .

mel

In [4] Felder and Pasquier show the following.

Theorem 1.3 ([4]). R(E12)(Va(&1) ® Va2 + 1)) C Val(&2) @ Vol &1 + p).

Remark 1.1. Let ¥"~ be a space of all functions f holomorphic on D and such
that

fe+1)=~-f(2).

We set ¥~ ®¥ ~ and ¥~ ®¥ ~®7 " in the same way as ¥". Then we can define

the elliptic R-operator R(i) on ¥ ~®Y ", which is the same as in Definition 1.1.

It is easy to see that R(¢) on ¥~ @7 ~ satisfies the Yang—Baxter equation (1.1).
We denote V, (£) as a space of all functions f holomorphic on € and such

that
fz+1)=-f(2),
f(z+1:)=(—1)”exp2n\/—_1< —nz+ )f(z)
We have
RER)V,T(E) @V, (G + 1) C V(&) @V, (& +p).

A basis of V(&) is as follows.

{19 [l z i] (& — nz,nt)exp (nv/—1(n + l)z)}
2

JEZ/nT

Remark 1.2. Let ./ be a space of the meromorphic functions on C2. Then we note
that the elliptic R-operator R(&) can be regarded as an operator on .# and satisfies
the Yang-Baxter equation (1.1).

2. Incoming Intertwining Vectors and Vertex-IRF Correspondence

In what follows pu € R\Z, and let A be a set of sequences 1 = (4,) (i € Z) such
that
€D,

/1,']" :il—ijétZ—FZy \/l#]EZ
We take » € R such that ré¢ Q + Qu, and set

n=ir (I€Z).
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Then n = (y;) € A. Hence, for any p, the set A is not empty. For i € Z, we define
the sequences & = (d;;) (j € Z), and for 4 € A, let 4+ pg; denote the sequence

A'a ]#la
()»+,u85)j={ ! o
/1,‘—{-[1, J =1

We note that A + ug; € A for all i € Z by the definition of A.

Definition 2.1 (Boltzmann Weight of the IRF Model). For A,k,k’,v € A, Boltzmann
K/
weights W | 2 ¢ v | € € of an interaction-round-a-face (IRF) model are given

K
as follows (cf. [1,6,7,8,10]). For 1 € A, we put

A+ pgi 1 Y
W [’1 ¢ A+ 2ue | = MQM i
A+ g | 1(1)
N A+ pe; 7 P
A+ ug; i 1(451)
At b 1 904 — 0%(0)
Wi A ; A= 14 — 1)Uy ).
[ lf/zsi e +81)_ (A )0 (—p) (+7)

otherwise we set

Kl
W[)L ¢ v} =0.
K

Next we define incoming intertwining vectors of the elliptic R-operator.

Definition 2.2 (Incoming Intertwining Vector). For A,k € A, define an incoming
intertwining vector ¢; € ¥v™ as follows:

—x f(A), FEZst k=A+us,
¢, f = { .
0, otherwise .

The incoming intertwining vectors are the Dirac delta functions essentially. By
Definition 1.1 we can get a vertex-IRF correspondence for the elliptic R-operator.

Theorem 2.1 (Vertex-IRF Correspondence). For A,k,v € A,
K’ ,
G,0pR(E) = S W [l E vl @, @2.1)

K

K'eA

where both sides are the operators V' @Y — C.

It is to be noted that, by Definition 2.1 and 2.2, both sides of Eq. (2.1) are zero
unless there exist i, j € Z such that k = A + pg;, v =4+ u(e + ¢;). The other cases
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are as follows:

TAtue 7 A+2ue Ji(p— 5)793(0) TAtue 7 A2ue

¢). ®¢l+#8i Ié(é) = 191(#) ¢l ®¢i+ﬂ81 ’
=Atpe,  TAtu(eite;) ¢ 9 }.',' ——f 9 (0) -2+ €, =Au(e+e5)
57w g R = LD G g g
Jl
191(6)’[91()7'; - ,u)19’1(0) -l+psj®d—)l+u(a,~+sj-)
(=1 F g

for ij.
Since R({) satisfies the Yang—Baxter equation (1.1), we can show

Proposition 2.2. The Boltzmann weights of the IRF model satisfy the star-triangle
relation;
B
« &3y
KI

K o
= Z /4 l:/i & V] 74 [K’ &1 V] w [/{ 51/2 ﬁ] > (2.2)
K

K/€A v K

K/

o
Wk &, v W{z &3 x’}W
y K
p

K'ed

for Lk, v, B,y € A.

Proof. Unless there exist i,/,k € Z such that x = 4+ pe, v= A+ u(s; +¢;) and
y = A+ u(e + ¢ + &), both sides of Eq. (2.2) are zero. Then we assume that

K = A+ e, V=214 u(e + &), y=A+ue+e +e) (iL,jkeZ).
Moreover both sides of Eq. (2.2) are zero unless
o=A+pg, A+pg or A+ ug

and
B=A+pu(ei+¢e), A+pe+e) or A+ pu(e+er),

so it suffices to show Eq.(2.2) in each case.
Since R(&) satisfies the Yang—Baxter equation (1.1),

(1®R(E1))R(E3)® (1 ®R(En))f) (21,22,23)
= ((R(&3)® 1) (1@ R(E13)) (R(E12) ® 1)) (21, 22, 23) -

Putting z; = 4;, zp=2A; +ud; and z3 = A+ u(dx +d) in the coefficient of
f(z1,22,23), we obtain Eq.(2.2) in the case o =1+ us; and f =4+ u(e +¢).
We can prove the other cases in the similar way, so we omit the proof. O

Remark 2.1. We define an incoming intertwining vector (;_Sf € (7"7)* in the same
way as Definition 2.2; for f € ¥'—,

f(ﬂ'l')a Jdi€eZstk=2, + ug;,

0, otherwise.

#ir={
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In this case, we also get a vertex-IRF correspondence; for A,k,v € A,

K b,
&Z@&Lé(é)zzW[z E v|d, @
K

k'eA

3. Outgoing Intertwining Vectors and Factorized L-operators

To begin with, we define outgoing intertwining vectors of the elliptic R-operator
(cf. [6,7,10]).

Let k; and k; be integers such that k) < k», and we set k:= (k1,ky) and
k=k —k +1.For hx € Aand k; < j < ky, we define ¢ (¢)y € C by

e =
Buer! =8 (0] | b deke) enplnvTh))
2

where |A[x = Zfik] Ai.

Proposjtion 31. For AeA and E@Z+Zt, the k—by—k matrix
(‘bk(f)ﬁ—usu)kl <ij<ky is invertible.

Proof. Since
(D), Yy i<k, = diag (exp my/=TkAy,, - -, exp /= Tk, )

L_j=k
X (19 [2 r k j|(é+|/1'k—-k/1,,k’t)> ,

2 k1 Sijshk

it suffices to prove

k.
det (19[%_,;" ](€+|/1Ik—k/1i,kr)> +0.

2 ki1 Si,)<ky

The Weyl-Kac denominator formula for Ag_)l (cf. [9,7]) yields

1_
det <19 [2 X k] (kui,kt)>
2 16, j<k

— (/T _%(k_l)(k—Z)ﬂl(iui) T 9i(uy).
i=1

1<j<isk

Here n(t) is Dedekind’s n-function

v/ —1t
12

n(t) = exp 10—0[ (1 — exp2nyv/—1m1).
m=1
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Then we obtain

1 _ =k
det (19 [2 i ] &+ | — kli,kt))

2

L_ 7
T (ﬁ [2 . k] &+ 1 - kxfm-bkr))
2 1=i, <k

= (=D VET)) 1 EDg ) T By

kZi<jsh

ki, j<ky

thereby completing the proof. [J

The proposition above says that for L,k € A, ki < j < ky and ¢ ¢ Z + Zt, there
exist ql)k(é) € € which are characterized by the followmg duality relations;

S O(EN B = 8
S B (T = 6y
and for kA1 + ue (k) £ Vi < k) we set

")y =0.

Definition 3.1 (Outgoing Intertwining Vector). For A,k € A and ¢ ¢ Z + Zr, an
outgoing intertwining vector ¢x(&)5(z) € Vi(E+ |Alx) of the elliptic R-operator is
defined as follows (cf. (1.2)):

(3.1)

ky 1 _j=k
P(9)(2) = 3 Pw(&)5 ;0 [2 i ] (& + [Alx — kz, kt)exp(nv —1kz) .
2

Jj=k

Equation (3.1) is equivalent to

{Z, 2 B (B =id on Vi@ + ), 2

& (&) = 8y for ki < i,j < ks

The outgoing intertwining vectors satisfy the following:
Proposition 3.2. For ), kx,vE€ A and &,& ¢ Z + Zx,

K
(R(&12) px(E1)5@P(E)0)(z1,22)= 3 ¢k('fz)',§/(21)®¢k(51);l-/(zz)W [)» ¢ V] .
k€A K

Proof. By Definition 2.1 and 3.1, it suffices to show

REDCED] " @ (&)™) z1,22)

b Jtpe Atp(ei+e;) ¥ At Hei
Z d(&); T @)®Pk(81),y,, (@)W | 4 , o A+ e +e)
I=k + uer
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for any A € A and k; < Vi, j < kp. With the aid of Theorem 2.1 and Eq. (3.2), we
obtain for ki £ Va, b < ks,

—Atue,  TAtu(eite)  , x Tt Hea A Hlea
F " @ F e (R @ i) ) 21, 22))
ko A+ ue
=Y W|i &l A+puEte)
1=k, y) + HE;
-+ TAtu(e+e)) ‘tea o
X (3, @ G BEDE @)D (8 ) 22)
3 A+ peg
=W Al A+t E) | O e ituleates) -
A+ e

Then

k
55 (&))@ A(E T 2))

i,j=ky
Tibpe | hbueite), +pta T+ u(a
X (@ @G WREDPED, ™ ©Pi(E) T ) 21, 22))
k . ; .
= 3 )@@ (@2)
i,j=ky
y A+ ue,
XW A & A+ e+ &) | diruete) itutate)
A+ e
k2 At g A+ u(ea+ep) ¥ A+ Heéa
= 2 (&), N @)@P(E) e @I [ A En At pea ) |
=k A+ pg;

By virtue of Definition 3.1 and Theorem 1.3 we deduce

(RGP @Pu(E)i 1) (21, 22) € Vie(&a + |2)@Vie(Er + |2+ 1)
From Eq. (3.2), we are led to the desired result. O
For A,k € A and ¢ ¢ Z + Zr, we define an operator I:k(é)f Y — ¥ by
LENE) = (O5@ES (€ ).

Theorem 2.1 and Proposition 3.2 say
Lemma 3.3. For L,ve A and &,,& ¢ Z + Zx,

S R(ER)L(ENS L&) = 3 Li(&)s ®Lk(E1)LR(E12)

KEA KeA

on VY.
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Proof. For f € V'@V,

S (R(EDL(ENSRLK(E)L f)(z1522)

KEA
= ;A R(E)D(EDERP(EDNz1,22) + (d; ) f
’ v K -K -y
= Y (&) (21)®P(E1)(z)W [ﬂ &2 V} (b, 20)f
KiK' €A K’
— Y (&) E)OR(EN () EE DL RER)T)
k'eA
= ZA@k(éz);f@L'k(él);R(fn)f)(zl,zn.
KE

We have thus proved the lemma. [J

Now we are in the position to construct factorized L-operators for the elliptic
R-operator. Let #~ be a space of all C-valued functions on A, and let ¥"®#" (resp.
W ®Y") be a space of all functions g : D x A — € (resp. A x D — C€) such that
g( -+ ,A) €V (resp. g(4, + ) € ¥") for any 1 € A. We define a factorized L-operator
L(&) : V"W — W RV as follows [2,6,7,10]. For g € ¥ Q% and ¢ ¢ Z + Zr,

(Lu(&)g)(A2) = ‘Z,A(L'k(é)';fg( <, K1))(2). (3.3)
K&

For 1 € A we set 8* € # as follows:
SH(K) = S
We note that ¥~ =[], . €6 (cf. [6]). Then, for f € ¥,

(LS ® 8))(42) = (Lu()f))

and Eq. (3.3) is hence equivalent to

Li(E(f ®3) = 3 6" @ L(&)sf .
<y

We define ¥ ®@¥ QW (resp. W Q¥ @) by a space of all functions g :
DxDxA— C (resp. AxDxD— C) such that g( -, -,1) € ¥ &Y (resp.
g4, +, - )EY®Y) for any A € A. By means of Lemma 3.3, we immediately
obtain the following theorem.

Theorem 3.4 (Factorized L-operator). For &1,&y ¢ Z + Zx,

(1 ® R(E)(&) © DA ® Li(&)) = (L(&) © D1 © L(&))R(E) @ 1),

where both sides are the operators V"V QW — W RV Y.

Remark 3.1. In the same way as this section, we can construct factorized L-operators
for R(¢) on ¥ ~®¥ ~ by using V,7(&) instead of V(&) (cf. Remark 1.1 and 2.1).
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In this case, outgoing intertwining vectors are characterized by the following duality
relation:

S, PR (O] = 8,
SF 0 B (O = 8

Here, for ALxke A, k =<j =<k, we define d;k(f)fj € C as follows (cf.
Remark 1.1):

_ e 1 _ j=k
P& =, (19 [2 kj_kl} (&4 |A] — kz,kt) exp(nv/—1(k + 1)z)> )

2

4. Vertex-IRF Correspondence and Factorized L-operators
for Belavin’s R-matrix

In this section, we apply Theorem 2.1 to the R-matrix obtained through restricting
the domain of the elliptic R-operator to some finite-dimensional subspace. Then
we will show that the vertex-IRF correspondence for Belavin’s R-matrix proved by
Baxter [1], Jimbo, Miwa and Okado [8] is obtained from Theorem 2.1. Moreover
we will construct the factorized L-operators for Belavin’s R-matrix obtained by
Hasegawa [6], Quano and Fujii [10]. First let us state the results proved by Felder
and Pasquier [4] more precisely.

For k = 1,2,..., let V(&) be a space of entire functions f of one variable such
that

fz+1)=(=f(z),
fz+1) = (—Dfexp(—2nv—1(kz — ¢+ ) f(2) .

We note that V;(¢) C ¥ if k is even and that V,(¢) C ¥~ if k is odd. In the same
fashion as Theorem 1.3 and Remark 1.1, we obtain

R(E)(Vi(&1) © V(& + ) C Ti(&2) ® Vi&r + ) -
The space Vi(¢) is of k dimensions and a basis is given by
i
k

L_
{ei(O)z) == {2 k ] (¢ — kz,kD)}jempa -
2

For k = 1,2,..., define a translation operator T;(&) on the space of all holomorphic
functions on C [4] by

@@ =1 (2~ )

T,(¢) maps isomorphically ¥ := V4(0) onto ¥.(¢). We modify the elliptic
R-operator as

Ri(£12) = Tu(&) 7' @ Tu(& + w) ' R(E1)Ti(E1) ® Ti(é + N)|,7k®,7k .
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We note that Iék(élz) is determined by the difference ¢,. In fact,

" 91(E)0 S 1)9;(0
(B Nerz2) = PN T ZIIRO) (o, £ kY

Di(—p)d(za1 + £2) k

B1(z21 + S — £)97(0) ¢ ¢
* H(zo + %—‘”) / <Zl - E’Zz * %> '

Felder and Pasquier prove

Theorem 4.1 ([4]). Ry(&) preserves Vi ® Vi and obeys the Yang—Baxter equation
(1.1).

Let {e/}jczuz C V; be the dual basis of {¢; := ¢;(0)} C V;
ei(ej) =0y .
Now we define an operator Rk(é)* on 17,: ® 17,(*, the transpose of Rk(é) on V, ® V.
(Re(@)e’ @ e’)ex ® ep) 1= (¢ @ &) Ru(ep ® ) -

Proposition 4.2 (cf. [4]). The R-matrix Ri(¢)* is Belavin’s R-matrix up to
constant.

Proof. Let A and B be operators on the space of all holomorphic functions on
C as

1
U@ =1 (z n ;) ,
T T
(Bf)(z) = —exp (2%\/—1 (z + ﬁ)) f (z + ;) ]
The space Vi s invariant under the actions of 4 and B. In fact, 4 and B are

expressed on ¥} as
2ny/—1j
k b

Aej = e, exp
Bej=e¢jy .
We define operators 4* and B* on 17,{* to be the transposes of 4 and B on i,
respectively;
A*el = el exp 21\_/](__:—11 ,
B*el =/,
To prove this proposition, it is enough to show the following [3, 6, 7].
(1) Ri(&)* is an entire End( 17,: ® I7k* )-valued function in £.
(2) Ri(é)'x @ x = x @ xRi(§)* x = 4%, B*.
() Re(E+ 1) = (1@4")"Re(E)* (A" ® 1) x (—1).
(4) Re(E+ 1) = (1@ B ) 'Re(&)*(B* @ 1) x (—exp2ny/—1(E+ § — £)7".
(5) Ri(0)* = 9}(0)id.
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The operator R;(¢) on ¥ ® V; has the properties below, which imply the properties
(2), (3), (4), and (5) above, respectively.

) Ri(O)x ®x =x @ xRy (&) x=A4,B.
(B) R(6+1) = (1 @ DR(ENA® 1) x (—1).
) R+ D=1 @BR(DB® 1) x (— exp2ny/~1(¢+3 - §) 7"
(5) Ri(0) = 9;(0)id.
The proof is quite straightforward, so we omit it.

To prove (1), it suffices to show that Ri(&) s an entire End(¥, ® V;)-valued
function in &£. Let us introduce another basis of ¥y (cf. [4]);

N . T
o= 2] 63))

In the same way as [4], we can calculate the matrix coefficients of ﬁk(é) on ¥ @ Vi
with respect to the basis {&; ® &;} and can check that all matrix coefficients are
entire in &. This completes the proof. [

JETIKT

For 4,k € A, we put ¢(&)f 1= J)i oTh(€+ Ak — k'“)le - Since
-1
P 0 Ti(E + Ak — kp)(e))

1 J

_ {19 {i;%] (E+ Ak —kikt)  ifk=A—pe (ki £ 3 S k),

2
0, otherwise ,

we get

k—1 _ .
HO = % 1 o Tu(E + |2k — ku)(ey)e!
2

k—1 1 _J
_ { 219[2 i "](é+lilk—ka,-,kr)ef, if k=4 —pe (b <3 S k),
) =0 2

0, otherwise .

Hence the vector ¢(&)% is nothing but the outgoing intertwining vector of Belavin’s
R-matrix [6,7], which was first discovered by Baxter [1], Jimbo, Miwa and
Okado [8].

On the other hand, we put

K K
W[/l 14 v}::—-W{v 14 /1},
K K

and then Theorem 2.1 and Remark 2.1 lead us to
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Theorem 4.3 (Vertex-IRF Correspondence for Belavin’s R-matrix [1, 8]). For A,«k,
ve A,

Re(En) (&)@ p(&)h = 3 d(E2)s ®¢>(51)K:W{/1 ~flz V} .

K'€A
Next we construct the factorized L-operators for Belavin’s R-matrix proved by
Hasegawa [6], Quano and Fujii [10]. To begin with, we introduce outgoing inter-
twining vectors in V;(&) in the same fashion as Definition 3.1. In the sequel, we fix
ki,k; € Z such that k = ky — k; + 1 and assume that A, x,v € A and the £, &,&; ¢

Z+Zr. A
For ki £ j £ ky, we define ¢, (&)} € € by

Gy = (e, (& + 1A
and also define (pk(é)}fj € € by the following duality relations (cf. Proposition 3.1):
z_h@k(é)’“‘s’%(é)’*“’ =1,
B GO ) = 8
For k1 + ug; (ky £ Vi £ k) we set
k(&) ;=

Outgoing intertwining vectors @k(&)5(z) € Vi(¢+ |Alx) of the elliptic
R-operator are defined as

P();(z) = Z(Pk(é),,ej £+ 1AE) -

j=ki
Then we define the operators I:k(é)f as follows:

(Lu(E5/)E) == p(E)5 )P, f

where f € ¥ if k is even and f € ¥~ if k is odd. In the same way as Sect. 3,
these operators satisfy (cf. Lemma 3.3)

SSREDL(EDS @ Lx(&)) = S L&) © Li(&1)LR(Er) -

KEA KEA

We put
L&)} 1= Te(& + Il — ki)™ 'L (&~ k) Tl € + [l — ka)|
and denote its transpose as i;(é)ﬁ : I7k* — 17,:. Thus, for Belavin’s R-matrix Ri(¢)*,

Y Re(En) (&) © L(&)) = ZA Le(&)5 @ L&), ()
KE

KEA
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We define an operator L~;:(é) : 17,(* QW — W 17,: by

Lie)e @)= 3 & @ L(é)e .
I€A

The theorem below tells us that the operator l::(é) is the factorized L-operator
for Belavin’s R-matrix, which were first constructed by Hasegawa [6], Quano and
Fuyjii [10].

Theorem 4.4 (Factorized L-operator for Belavin’s R-matrix). For ¢1,¢&, ¢ Z + Zr,

(1® Re(Z12) )L (21) ® DA ® Li(82)) = (Li(&2) ® 1)(1 @ Li(8))Re(Er2)* © 1) .

Here both sides are the operators V;, @ V, @ W — W @V, @V, .

Acknowledgement. The author would like to express his deep gratitude to Professor Kimio Ueno
for useful advice, to Professor Takayuki Hibi for constant encouragement, and to Professor
Michio Jimbo for pointing out to him another proof of Proposition 2.2 which is used in this paper.

Note added in proof. We have two remarks about the incoming and outgoing intertwining vectors.

(1) We can add one more parameter to the incoming intertwining vector q_bf in Definition 2.2.
For o € R, we set
- fi+a), JEZst k=Ar+ps,
$3(00f = {

X otherwise .

These incoming intertwining vectors also satisfy the vertex-IRF correspondence (Theorem 2.1).
Making use of the incoming intertwining vectors q?;(a) instead of 43’;, we can construct the
factorized L-operators (Theorem 3.4).

(2) By means of the Weyl-Kac denominator formula (cf. Proposition 3.1), we obtain the
explicit form of the outgoing intertwining vector in Definition 3.1. For k) £ i < &y,

Y€+ 4 —2) H "91(2_/1]).

01(6) ki £75ky, j+i 19](}4])

P(E)H(2) = exp(nv/—Tk(z — A1)
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