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Abstract: We study the asymptotics for the density of states of the magnetic
Schrodinger operator with a random potential. By using the methods of effective
Hamiltonian, complex dilation and complex translation, we obtain in the large mag-
netic field limit, the asymptotic expansion for the density of states measure consid-
ered as a distribution.

1. Introduction

We study the density of states of the magnetic Schrodinger operator with a random
potential defined on L?(IR?)

Py = (Di+ By) + Dy +7(x.y),

where D, = (1/i)0, D, = (1/i)d, and B > 0 is a constant. Let v be a C§° function,
the potential V is defined as
VE)= Y oo x —i)= > oui(X), (1.1)
iez? i€z?
where ¥ = (x, »), « = {¢;};cz2 form a random field, i.e. a family of random variables
indexed by Z* on a probability space (£,P). We denote by (f) the expectation

value of the random variable f. One can always suppose that Q = RZ’, In this
case,

t0(J) = o(j), (1.2)
and the translation operators, T;(i € Z*) in Q are defined by
To(j) = w(j —i). (13)
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Hence for random potentials of the form (1.1), we have, by using (1.2) and (1.3),
Vo) =vroE —i). (1.4)

dpP =[] g(o)do;,
€72

We take

where g is a Cj° function. We say that the o, are independent identically distributed
(i.i.d.) random variables. The action of T} is ergodic on (£,P) : if 4 C Q satisfies

VieZ T 'A=4,

then P(4) = 0 or 1. The operator Py, is an ergodic operator.

When V' = 0, the Hamiltonian Pg has eigenvalues 4, = (2n + 1)B, n € N with
infinite multiplicity. These are the so-called Landau levels.

We define the “magnetic translations” t%(j = (ji,/2) € Z*) by
—1Bj(x—

L1 . .
[rfu](x,y):e 2Vu(x = ji,y — o).

In particular
[T(Jho)u](x’ y) = u(x - jl, y) s

[20,1)(x, ¥) = e P2 u(x, y — ja).
Let j A k be the determinant of (j,k) in the canonical basis. We have the rela-

tions R
[PB,Oa‘Cj] = O s

BB _ YiB(jnk) B
Tka =e2 TH—/\”

rfrf = e’B(’/\k)tfff .
When V' +0, we have

B v B _ pho
™2 PEyT, =Pyl
where we used (1.4). Hence by standard arguments concerning ergodic operators
[CFKS, Pa], the spectrum of Py, o(Pg,) is almost surely constant with respect to
w, Le.
o(Pg,) =0(Pg.) as.,

where a(Pp,) is a non-random set. Without loss of generality we may assume range
v C [~1,1]. If moreover we take supp g C (—p, p) with p < B, then a(Pg,) is
contained in the union U,[4, — p, 4, + p]. We will show later that the density of
states measure p” is also almost surely non-random:

p” =p as.,
where p is a non-random measure.

The density of states of the magnetic Schrodinger operator with a random
potential was first studied by the physicist Wegner [We] (see also [BGI, KP]). This
is a physically measurable quantity. In the strong field limit B > 1, Wegner de-
veloped a heuristic argument. According to his argument, if one is only interested
in the density of states for low energies, one only needs to take into account the
lowest Landau level, and one can neglect the contributions of other Landau levels.
This way Wegner was able to compute exactly the first term of the density of states
for a Gaussian white noise potential.
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In this paper, we justify the Wegner approximation in some weak sense, and
obtain an asymptotic expansion for p considered as a distribution. We show
that, there exist C°° functions p,(¢), such that for all Ny e N, ¢ > 0, if f &
C°(((—B,—c) U (¢,B)) + (2n + 1)B) satisfies |&/ f| = O(B/) for B > 1, then for
every m € N:

JFEYdps(E) = B[ f(t+ (2n+ 1)B)py (1) dt
+ [ S+ @n+ 1B (1) dr
+B7 [ f(t 4 @n+ DB () dt + - -
+B D[ (14 @2n+ DB (1) de + OB™"), (1.5)

where t = E — (2n+ 1)B is the renormalized energy and dpp(E) is the “non-
random” density of states measure that we mentioned earlier. In particular, if v
has support contained in the unit square centered at the origin, we have

1 t\ dy
(n) /
t = — F "y — N
ILO ( ) 2 f O(I)Q ('}') I”,’| 5

where  Fy(y) = f ||VLH

(note that p{”’(¢) is independent of n) and

2n dy
o= R >g< ) o

where F|(y) = d) J—

ir=y

IIVDII

If we further assume that v = 0 and that the supports of v, intersect so that

Yu=2s>0 (1.6)
€72

for some postive constant s, then we show that the expansion (1.5) holds for all
/€ C°((—B,B) + (2n + 1)B) satisfying |¢/ /| = O(BM).

We use the Grushin method to study this problem as Helffer and Sjostrand [HS]
did in the case where V' is periodic. We take # = B~! < 1 to be our semi-classical
parameter. For all z' in [4, — a, /, 4 a], the study of PJ —z' can be reduced to
the study of an effective one-dimensional operator denoted by E_, /h: z' € a(Py,)
if and only if 0 € g(E_,./h). The symbol of E_, has an asymptotlc expansion in
h, the principal symbol being A(V (x,¢) — z), where z =z' — 2,.

The effective Hamiltonian is the starting point of our analysis. The additional
parameters o; and the associated probability density g(x;) enable us to use scaling
arguments (see Sect. V). To order O(h>), E” (x,¢) only depends on the poten-

. . _ . 1 .
tial and its derivatives at (x,&). For |Imz/| =2 h27 (¢ > 0), (E®, )~ admits a
parametrix, i.e. an asymptotic expansion in powers of A, the first term being

1
Vo —z)°
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In order to study the density of states, we need to have control over the non-elliptic
regions where |o,0; — z| < 1. By the ergodic theorem, the density of states p® exists
almost surely and is equal to the averaged density of states p (see Sect. III). Once
we take the average, we have

(E= (0, &) = (EZL(x + i1, ¢+ 12))

((i1,i2) € Z*). Therefore we only need to have bounds on (E_ (x,¢)) for (x,¢) € E
with [E the unit square centered at the origin.

Due to the “local” nature of the operator E_.(x,¢); the influence of the non-
elliptic regions on E:L(x,cf) decreases as j increases. To exhibit this, we complex
dilate in o,: o; — a;e'’r, where 0, = 1/|]].

This is our scaling argument in dimension 2. (The precise form of the scal-
ing relation depends crucially on the dimension.) We can in this way control
the non-elliptic regions up to the scale L = O(h~") for all N € N. Hence for
all z such that Rez#0, the asymptotic expansion for (EZ!) is valid for |Imz]
not too small (|Imz|~! = O(h~")). For all fixed Ny € N, we study the inte-
gral [ f(t)dp(t) for all f such that |0/ f]=O(h="0/) and with support away
from {(2n+ 1)B,n € N}. We show that the p, are C°° functions away
from 0.

If we make the further assumption (1.6), then we complex translate in «, :
o +— a; +10,, where 0, =1/|j|, to control the non-elliptic regions. We show
that (1.5) holds for all f such that |0/ f] = O(h~™/) and that the p, are
C** functions.

By a standard procedure, (1.5) can be extended to include Holder continu-
ous functions (B independent) /" € C*,0 < x < 1 with an error which is of order
O(h*>).

This result should be compared with the periodic case:

V)= X ox—1i),

€72

ie. o, =1 forallie Z?. There one needs much stronger conditions on f, namely
|0/ f| = O(h=//2+))(e > 0). Moreover, in the periodic case, p, has singularities.
Of course this is due to the fact that our estimates on the parametrix for £_! is

valid only for |[Imz| = h,

The nature of the spectrum of Py, is presently not known. The operator Py, is
conjectured to have pure point spectrum with localized eigenfunctions (commonly
known as localization) for certain ranges of energies. This conjecture has been
used in building theories of the quantum Hall effect [Bel]. It is our eventual aim to
prove this conjecture and this paper constitutes a first step toward research in that
direction.

II. The Reduction and the Associated Grushin Problem

Classes of Symbols. We say that a symbol Q(x, ¢, k) is in the class S°(IR?) if it
verifies

3ho, Vo€ N?, 3C,, V(x,¢) € R?, Vh €]0, hol, DI D2O(x, &, )| < C, .
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One can associate with it a pseudo-differential operator (p.d.o.) (this process is
called the A-quantization of Weyl)

xl

(0" (x, hDy, hyu)(x) = (2mh)~" [/ME—"9 0 <)i—,c“,h> u(x"dx'dé .

Similarly, one can define the classes of operator valued symbols:
. k pk’
SO(Rz Eo Ds/ﬂ(B ->B'\> )) >

SURT; #(B), ©)),

SO(]RV,;; 2(C,BY)),
where the B (k € Z) are defined by:
B) =L*(R,),
Bl =(1+D}+y")"B).

By K'is the dual of B"‘, and Z(E,F) designates the space of bounded operators
from E to F. Unless specified otherwise, we will in general denote the symbol
and its corresponding operator by the same letter. We will use #(#,) to denote the
composition of 1-quantized (h-quantized) Weyl symbols.

In this paper, we will also frequently encounter Q, symbols in SO(]R‘Yt i
associate with Q the following p.d.o. (the Weyl (4, 1)-quantization):

(" (x,hDy, y, D, hyu)(x, )
(47'[2]1) lfe(lh)<\’ X’ $) 1(1—\ II>Q<

). We

: —;x , X——g—y— g, ,h) u(x, y')dx'dy'dédn .
We identify O with operator valued symbols in S°(IR?.; Z(L*(R,),L*(RR,))). We
use # to denote the composition of such operator valued symbols when the (x,¢)
variables are held fixed and the composition is only in the (y,#) variables.

We now consider the operator Py in the introduction. By a standard argument,
there exists a unitary operator U such that Py is unitarily equivalent to

PP, =uPy, U™ =B+ y )+ V" (x+B""?y,B"'D, - B'*D,).

(See Proposition 1.10 of [HS]). Renormalizing, we get (for simplicity, we now
generally drop the superscript w)

HY) =D*+y* —@2n+ 1)+ B V" (x+B72y,B7'D, —B7'2D,),

where # is the Landau level that we are interested in, B~! = 4 is our semi-classical
parameter as mentioned earlier. (Note that the symbol of V" is V(x + h'?y,
E—h'"n).)

Let z be a complex parameter such that Az is in the open disc B(0, 1) centered
at 0 with radius 1. Define R” to be the operator from L*(IR,) to L2(]R§u‘,) such
that

(R0 )(x, ») = ha(9)0- (%),
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where 4, is the n'h eigenfunction of the harmonic oscillator, defined by
ha(y) = Ba(@) = y)'e

with the constant f, > 0 chosen such that |4,]| = 1. The operator R!" from
LA(R?,) to L*(IR) is defined by

u— (ROw)x) = [ha(y)ulx, y)dy.
Note that R is the adjoint of R"). R" is in S°(R2.; #(€,B%)) and RY in
SO(R2.; £(Bi'2,€)). We study the following associated Grushin operator:

. ) hz — Hy})  R™

Ppy(x,<) = o ,

R" 0
where / ’
Hyp = DY+ 37 = @n D)+ bV e+ 112y = 07D,

is in SR} .; £(B5H,BY)). The operator # is in the class S°(IR]; Z(By"' x
(E,B’;, x €)) for all non-negative integers k.
1. The Case V =0. We have

Qn+ 1)+ hz — D2 — y? R!”)

yg(;(z) = ( R(n) 0
+

For |hz| < 1, #{)(z) is invertible [HS], and its inverse, denoted by &{"(z) can be
written as " "
Ey'(2) Elo )

t?gf&(z)“l = O@gl)(z) = < (n) (n)
EZy  EZL4(2)

We decompose L*(IR? ) as follows:

L2(R7)) = 3 Chiy) © L(Ry) = DE;

It is well known [HS] that Eé")(z) is a p.d.o. whose Weyl symbol ey(x, y,¢,n;2)
satisfies

eo(x, y,¢,1;2) = eo(y,1;2) -
eo is holomorphic in z in B(0,4~") and is in class S°. In the decomposition 6B, £/,
we have:

(Ee" (@) k) = (1 = 8,001k /(2(1 = n) — 2)
(where one has identified £, with L>(IR,)). One also has

(n) __ p(n), (n
EO,+ - R— > EO.—

=Ry, E" (2)=—hz.

2. The Case V +0. By standard perturbation theory, it can be shown [HS] that there

exists an /g such that for all 4 €]0,h0], 2y} is invertible with the inverse &"
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whose (operator valued) symbol
e ExGD) Ey(nEe)
S(x.&z) =7y = ( ' ) )

E_(x,&z) E_i(x.¢2)

where
hé(x, ) € SUR] . Z(Bf x €,B x ©)),

v

Ei(x.€) € SUR{: £(C.B}")),

6,00

E_(x,¢) € YR} Z(BL, D)),

.G

E_(x.O)/h € SR} 5 Z(C,€)) = S"(R;).

R

E_ is called the effective hamiltonian and one has
hz € G(HY)) <= 0 € a(E_,).
This is the operator that we shall be studying for the rest of the paper.
If hz ¢ o(Hy}).), then
(hz — HY))™' = E(z) — E.(2)EZL(2)E_(2).

Moreover, it can be shown [HS] that there exists By =k, ' such that for all B
with |B| = By, E_ is a symbol analytic in z and (i € Z*) for z € B(0,h~") and
o, € B(0,a), and is real for z real. £_; has an asymptotic expansion in #:

E_ =110, +0(h>).

nz0
The principal symbol is
Qo(x,&2) = (V(x,¢) —z).

The next term 1is

Oi1(x, ¢ z) = Tr Hess V(x,¢),

where Hess denotes the hessian.

2n+ 1
4

III. The Density of States Measure

Let f € Co(IR); it can be shown [HS] by using the various Sobolev spaces naturally
associated to Ppj that the distribution kernel Ky of f(Pgy) € C>*(R? x R?).

Since ’
B\—1po B _ pho
(T,) PB,VT_; =Py,

we have
T,

() (PR = [(Pgy) .
Let K¢ 5(x, y) be the kernel of f(Pg) ); we have

T,
K¢ (x + jx + j) = K,/ (x,x)
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for all j € Z°. By the ergodic theorem, we have

lim K '“(x x)dx = K9 o(x,x)dxP(dw) as.
L—oc (2L +1)? |j|z<:L veflE fxeflE 1o
:<fK/,B(x,x)dx> 5 (31)
E
where L € N, | | denotes the sup-norm, [E is the unit square centered at the origin

and () is, like before, the expectation with respect to . Define
: 1 0]
Trf(P“’ )= Rlingo WTr(Z;ef(PB,V k) s (3.2)

where y; is a C5° function on R? with support in the square of center 0 and length
2R and equal to | in the square of center 0 and length 2(R — 1) with derivatives
bounded independently of R.

We now show that almost surely Trf(P;;V) exists and is finite. Since for any
Re(L—-1/2,L+1/2) (L > 1)

(Trlkf(Pg),V)VR TT/L+1 zf(P“) )Zl+|/2)/4R2 = O(1/R),

we only need to show that the limit in the R.H.S. of (3.2) exists along half integers
(R=L+1/2). Let

D= [ K% x)dx— [ zr(x0)K?(x,x)zx(x)dx.
IX| <L+1/2 IX|<L+172

Note that the difference in the integrands has support only for L — 1/2 < |x| <
L+ 1/2. We conclude that |[D| < CL. Therefore the limit in the R.H.S. of (3.2)
exists almost surely and we have

Tr f(P§,) = (vol E)~! fK"’ (x,x)P(dw)

= (VOI]E) f K,,B(x,x)>dx a.s.
E

= (Tr f(Pg))) .

We can associate to Tr a positive measure pgy. It is the density of states measure.
We have
(Tr f(PEy)) = [f(E)psy(dE)
for all f e Ci°(R).
If /€ C°(R), we can use the usual functional calculus [HS] (see also [S]) to
obtain for 4 self-adjoint

) = 5= [0:7E) — A) N dz Az,

where [ € Cy°(€) is an almost analytic extension of f, i.e. =/ on R and
=/ vanishes on R to infinite order. In order for f(4) to be a pseudo-differential
operator, we shall choose f in a restricted class of h-dependent functions in C§°
that will be made more precise later.
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Using the same unitary transformation U as the one we used for Py, we obtain

Tr yof (P )ik = TrUgpU™'U f(PR, U UggU™"
Writing yz = UypU ™", the symbol of yz is xr(x, y,&,n) = yplx + h'2y, & — h'2y).

We have
IR+ Ry, = 12Dy € SURY; Z(L(R,), BF))
with & = 0. For all z such that |Imz|=0, we have
(n+ 1)B+z—Pgy)" =h(hz — Hgy) ' = h[E(z) — E4(2)E_}(2)E_(z)] .

Since E(z) is holomorphic in z, we have
o _ s ih .. _ _
US(PU™" = f(PR)) = =3~ [ &/ BB (2)E-(2)dz N dz
as before. Therefore
/! 0] / lh F —1 —
Tr /S (P g = =5 Tr { YR ( [0=fE(z)E~ (2)E_(z)dz A dz) XR} .

We now show that XRE+E;'LE_XR is trace class for [Imz|=0. Hence we will have

ih .. = - -
Teif (PEy R = =5 J &S Tr GREEZLE )z N dz . (33)

Lemma 1. The operator E_yg is Hilbert-Schmidt from L*(R,,L*(R,)) to L*(R,,
C) = L*(R,). Moreover |E_yg|lus < Ch™'2R, where C is a constant independent
of R,h and w.

To prove the above lemma, we need the following well known fact:

Proposition 1. The operator P (x,hD,) from L*(R.; # ) to L*(R,; # ), where
Hy and Ay are arbitrary Hilbert spaces, is Hilbert—Schmidt if and only if

f||PW(X>Cf)||§45<//,,//ﬂdxa]é < 00

Moreover, when P¥ (x,hD,) is Hilbert—Schmidt, we have

1 . .
1PY (x, hD )| ys = ﬁf”l’w(x,C)||?1s<//;,.//z)dXdC :

Proof of Lemma 1. We consider E_#yr(x, <) as the composition:
CEop N g2 K s k>0,

Let A_; be the symbol for [1 + »? + Df,]“". It verifies

030k £ Cop(1+ [ D777

for some C,; and where [[(y,n)| = (»* +7*)"2. Let

Kee(yon) = (A xr)(,m)
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Using the composition formula for two Weyl 1-quantization symbols a, b:

o 1\’ A
a”#bw()’:’?):<ﬁ) ffel()llz A‘zll)a(y_yl,n_m)

X b(y — ya,n — m)dyidy2dndns
we have

1

K\’,'j(y, ’7) =

— R+ 'y = ¥2), &= 1P — n2))dy 1 dvadidns
Since yx has support in a square of length 2R, we have
1 .
(¥ =y —m)| = WH(%CN —R] (34)
for some C > 0. Let |[(x,¢)| = R+ 1. Define:
Y = (yi,11, 2.1m2)
Y, = components of Y
oY) = yim —my
L'(Y.Dy) = (y + (1 = 70)IVOM)IF) "Gy + (1 = 9y)VO(Y)Dy),  (3.5)
where yy is a Cj° function: yy =1 for |[V|| <1 —f,yy =0 for ||[Y] = I,
(0 < f < 1) then
[10) — 0Y)

By a straightforward computation, we have

4
L(Y,Dy) = ao(Y) + 3_ a,(Y)Dy,
=1

where
0%ao| < C(||Y |+ 1)~

|0%a,| < C(||Y||+ D)~ (3.6)

Integration by parts N 4 5 times, with N = k, we have

1 I X<
Kec(pm = [ fe Q) R Y)Yy
where
PGS w0 ¥) = LY LA (= yin =m0z + (0 = y2),& = B2 = n2))]
From (3.5) and the bounds on A_g, 7z and their derivatives, we have

I g V)L S O+ 3+ nf 4+ v3 +13) " V2 + [y =y — )l

|(x,i)|*R)’

FO =2 =m)l = =517
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where F' is such that
Fuy=1 ifuz=0,

F(u) =0 otherwise .

Cuse 1.

[, O - R

(v, = TochE

From (3.4) we have:

1 .

l(y2m2)| =2 W(K%CN —R).
Therefore
Cy 1

| N (J’a’7)| = (1+ “YH2)5/2 [(|(x,f)| - R): + I]N

for all (x,¢).

Cuse 2.

I(x,) =R
2ChY2 7

(v, = (3.7)

then
x.¢ C — —
IVl S el 10 = e =l 0+ o™

Using (3.7), we have

Cy |
[14+ 1Y IPP2 [((x, )] — R)4 + 1]mm (V20

I Y| <

for all (x,¢).
Hence, taking N = k, we have

1 : »
Kool £ 5 [TV i Y)dY £ G+ (060 = R). T
for all (x,¢). Similarly, we have
030K (vl £ Crapll + (06O = R

for all o, § and all (x, ¢). Therefore
”XI?V(X + hl/zybé - hl/zD}’)”g/(LZ(IR‘_)AB:A)

= |1+ 32 + D2y F (e + 2y, & — V2D,

SRR, (K2 0)

< G+ ((x, 6 — R T7F. (3.8)

Since the embedding of B™ in B" for m > n + | is Hilbert—Schmidt, we have

)ZR(X’ i)HHS(Lz,B—A'/) = HI”HS(B*",B—‘/)“ZR(X’ &) L(L2,B—H)

< Gl + ([ O = R4 17
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for all ¥/ > k+1 and all (x,¢), where 7 is yz viewed as an operator valued
symbol. Similarly, we have

A § ~ [ —k
10202 7006 Ol sz g1ty S Copin [T+ (5 )] = R)4 17

for all &’ > k + 1. Since yx is chosen such that the bounds on yz and its derivatives
are independent of R, the composition of the symbols:

E_#yr € SY(RY;; L(LA(R,), €))
uniformly in R. Hence

“E—#i/e(x;f)”//&(lﬁ,,q*) < G+ (J(x,9) —R)+]_k (3.9)

for all k > 0. By Proposition 1, we have
|E_yzllus < Ch™'?R.

Proposition 2. The operator ZRE+E:LE~ZR is trace class on L*(R,L*(R,)) for
[Imz|=0.

Proof.

IRE+EZVE_yrlln S |l zRE+ sl EZLINE-zellus < (C*A™'/[Imz])R?

where we have used the fact that yzE, is the adjoint of E_yg, and is therefore
Hilbert—Schmidt.
Using the property of cyclic invariance of the trace, we have

Tr (zrE+EZLE-zr) = Tr(E- y3E EZ})

= Tr ((7% VPE_ELE-L) + Tr([E—, 1rlo(rEEZL) + Tr (1 [E—, 1rloE+EZL)
=TrA, + Trd, + Trds, (3.10)

where X;;)(x, &) = yr(x, &) and we have written

By the classical equality:

1 . ¢
s = 5. J et )P,

we obviously have:
Lemma 2. 4 is Hilbert-Schmidt, and
Iz llns = Ch™ 'R .
Corollary. 4, = (5 E_ELE”\ is trace-class for |Imz|+0:
Tr((ry VE-ELEZ}) = Tr(z E_E.EZL5)) .

Furthermore, TrA; < Ch~'|[Imz|~'R%, with C independent of R,h and w.
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Lemma 3. 4, and Az are trace-class and
Trd; £ Ch 'Imz|7'R¥? Trds < Ch~'[Imz|7'R*?,

where C is independent of R,h and w.

Proof. We already know that
IE_, xrlollus < Ch™ 'R
We now show that, in fact
ILE-, zrlollus < Ch™'2RY2.
Let y%, = 1 — yz. Replacing )ZR by 7% in (3.8), we have

[1+ (R~ —* forall k > 0. (3.11)

Let 7" =1 -z} Viewing /(1)‘ $E_(x,¢) as the composition of operators

(e £

ci g

and using the fact that the embedding of L? in B~*" is Hilbert-Schmidt for k' > 1,
we have

e £
12 #E- (. Ol saz.)

1

BH 12 i so,

[IA

Cillr V(B ,(F)”]”HS(Lz,B*"/)

< G+ R~ [ )3T (3.12)

for all K > 0, where we used the composition formula for two symbols. Hence from
(3.11) and (3.12),

IE—, 75100, s < Gl + (R —|(x,E):1* k>0.

Since .
[E—, xrlo = —[E—, 7&]o
and
IE_, 721o(x, s < Cill + (|6, )| —R): 1 k>0,
we have
||[E—,XR]0(X,5)”1/5(;%.,@ =G ~RI™" k>0.
Therefore

......

This yields the results for Tr4, and TrA4s.

We now put Trf (P3 ) in a convenient form, which we will use later to compute
the asymptotics.

Proposition 3.
Tr f(Pgy) = (Trf(P"’ )

l TrA — o — v
= Zein [o=f([G-E_ s #,E-L)(x, E,2))(dZ A dz)dxdé  as.,

where IE is a unit square.
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Since E_, is holomorphic in z, it is now enough to control E:J[r when
Imz| — 0.
Proof of Proposition 3. Combining (3.2), (3.3), (3.10), the corollary to Lemma 2
and Lemma 3, we have
Te f(Py) = (Te f(P))

: —1 (A | .
:RILngo mf@g $,0.E_  $,E” ﬁh/ ](x,g,z))

X (dz Ndz)dxdS as.,
where we used the identity (see [HS])

h'0.E_, =E_3$E, .

Let T = GZE_J;,EZI, T = ,(R)#;,Tﬂ /“). For convenience, we view 7 as 7/,
where / is the identity operator from L?>(IR) to L*(IR), with symbol the function
1. Using the composition formula for four Weyl h-quantization symbols, we have

(writing X = (x,¢))

1
(2mh)*

T(X) = [ QWX — YOT(X — Vo) (X — Y)IX — Ya)dY

where ¥V = (Y, Y2, Y3, Y4), Y, = (yum),dY =[], dyidn, and
O4(Y)=0(Y1,Y2) + 0(Y2, Y3) + 0(V3,Ya) + (Y1, Ya) + 0(¥a, Y2) + 0(Y3, Y1) ;
o is the canonical symplectic form:
oY, Y)) =y =y, -

We first treat the case |X| > R+ 1. Noting that Q4(Y)/h = Q4(h~"?Y), we see
that

t
_L_(h* 1/2 Y. hl/‘ZDy )elQ4,/'/1 — eiQ4//’l
l. b b

where L' is as defined in (3.5) with obvious modifications. By straightforward com-
putation, we have that

IVOs()IIP = 1Y,

, A O
y - (0 _A)Y,

B
Y2
V3
Va4
m
2
n
M4

where



Asymptotic Expansion for Magnetic Schrodinger Operator 415

and similarly for Y’, and

-1 1 0 -1
1 -1 1 0

A is clearly invertible, hence ||Y||?/C < ||Y'||*> £ C||Y|]* for some constant C > 0.
Therefore

8
L=bo(h™"*Y)+ 3 b, (k2 Y )i Dy,

=1

with by, b;(i +0) satisfy the same estimate as ag,a;(i+0) in (3.6). Using the esti-
mates on by, b;(i+0), we obtain that

S by (h™'PY)(h'*Dy ) (3.13)

|Bl=N

with
"B (V)] < C(|| Y| + 1) "2V (3.14)

We therefore have, for all N € N,

7 (X) QeI N DX — YDT(X = V) = Y)I(X = Yy)]dY .

REDE
Since |X| > R+ 1, we have |Y;| > (|X| — R)/C,|Y3] > (|X| — R)/C. Since

C
171l = Timz]

with C independent of w, we have by Beals” Lemma [Bea] as stated in [S],

h 3
|(/Ia/j’T| 1/{1’1’1&){ <1, <|Tn’7|i> ) |Imz|_1—1—/f ,

where C, is independent of w. Hence using (3.13), (3.14) and taking N > 8, we

have
Cy

R)N_8|Imz|7+N :

7(X)| <

(We do not keep track of powers of A, since it is not important here.) For |[X]| <
R — 1, we write

7= 5 h)4fe'Q4<”/h1(X YOT(X = Y)IX = )X — Yy)ld
1

- (zw [eQ4h(1 — AYX = Y)T(X — YDIX — YOI — Ya)]dY

(M)J SAIIX — TX = Y2)(1 = £ )X = V)UX — Ya)ldY

(ZW S [¢O — )X - YT = 1) = 7 )X = 13)

x WX = Yq)]d
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The last three terms in the sum are bounded by

Cy
R— X[V —8|Im 2|7V

with Cy independent of w, by using the same method as before. The first term is
precisely
T(X) = 0.E_#E-L(X).

For R—1 < |X| < R+ 1,7 (X) is bounded for |Imz|+0. Hence upon taking the
limit R — oc and taking into account the periodicity of (E’:Eﬁﬂ?hE:lr(x,cf)), we
obtain the proposition.

IV. Study of the Operator f (P;’;, v)
Let S¥ denote the class of symbols @ such that
'01 ‘1/5 (Z(X C h)l /jhfl\vé(:wr/i) )

For [Imz| = h°(0 < & < 1/2), hE_} is a p.d.o. whose symbol admits the asymp-
totic expansion:

hEZ, ~ S F,,
jz20
where :
h/Q; —(1-20) koo
b= €% =S/ (>0),
Fo=—1 s € 5 = 80
0 — V . - )
al ke
hEZ, — S F; €SN forall NeN.
j=0
Q/ are functions of the Q;(i < j) and their derivatives; in particular, Q, =-0.

(Recall that E_, = Zn>0 W10, + O(h™).) Since ¢.E_, is also in class S° and
has the asymptotic expansion:

0.E”, = h(1 + hSY + K>Sy +---)

with S; € SO for all w, 0,E”_ #,(E”, )~ admits the following asymptotic expansion:
+ + p p

1 S Q(')
OLEC BEC, = ph | ’
C —+ThE VU)*Z—*_ <V{J}_Z+(V(U_Z)2 +

for [Imz| = A°(0 < & < 1/2).
Using the random character of the parameters «,, we have:

Proposition 4. For all N € N, C > 0 there exists ho, such that for all h €10, h],
all z satisfying |z| < h™! with [Rez| = 1/C and [Imz| = W /C,(0.E_ $,E_') is
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in class S°, i.e. |6f6€((62E,+#hE:'+)(x, & 2))| £ Cyap. Moreover, (6ZE_+¢F;,E;'L>
is a classical symbol in Sy, i.e. there exist A; € Sy, such that

(0.E_ 84EZL) = S WA, +O(h™),

120
where A, € S°.

We shall prove the above proposition by scaling: we gradually take into account
the potentials at larger and larger length scales. Since (0,E_#,E_}) is Z? transla-
tionally invariant, we only need to prove Proposition 4 for (x,¢) € IE, where E is
the unit square centered at (0,0).

Without loss of generality, we may assume v is a Cg© function with support
contained in the square centered at (0,0) and of length b, with b € IN. Let 4, be an
increasing sequence of squares centered at (0,0) of length /, = 2"b + 2. Let A/, A/
be two corresponding sequences of squares centered at (0,0) of lengths /, =1, — b
and /) =1, + b respectively. Clearly for all (x,¢) € E, dist((x,¢), 04)) = (I}, —
1)/2, where 04), is the boundary of A. Let H, be the reduced operator when
V,(x) = Zle/l“ 2,0(X — i)(E_ is the reduced operator when V(X) = Zielz o, (X —
i)). The principal symbol for H, is clearly A(V,(x,&) —z). We write

E-\ =Hy'+H ' —Hy'+Hy ' —H ' Hy - Hy L+ ECL - Hy
=Hy '+ Hy ' M H + Y UG o H VARG + Hy Ay L

where 4, = H,_, — H,, A~N0+1 = Hy, — E_, and we used the resolvent equation:
A" =B ' =B Y(B—A4)A""; N, is yet to be determined. Hence:

0.E_ E_} =(0.E_ )Hy '+ (0.E_)Hy "A1H, "+ (0.E_ )H, ' A Hy !
NI (aZE_+)H,;0‘jNﬁ,E:‘+ . (4.1)
To prove the above proposition, we need to complex dilate in o. The Grushin
problem remains well posed and we have the following:
Lemma 4. Let h €]0,hg). Suppose z is such that |z| < h™', and « is such that

|ot|oc = 2Rg for some Ry > 0, then for t such that |t|oc < Ry, we have

|<V7[‘[,,(O(), t>| < sup II—[H(fx + Wt)| 5

|w|=1

(V.E_((2), )] < IS’?Pl |E_y(a+wt)|.

Proof. We prove the second assertion, the first can be proved in the same way. We
have

0
(VLE_ (), t> = a_E—-i—(O‘ +wit)|y=0 -
w

Hence

(VoLE_i(2), )] < |Sﬁlg1 |E_ (o0 + wr)|

by the Cauchy inequality.
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For z such that RezImz < 0(RezImz > 0), we define V) = et! V(Vy=e V)

(0 > 0). Let E_,(0), H,(0) be the corresponding reduced operator.

Corollary. 7~ '0E_(0)/00 and h~'0H,(0)/00 are bounded symbols in Sp.

From [HS] we have the following asymptotic expansion for H,:
Hox,&hz) = 3 00 & g,z — bz,
720

with
g=nh",

=(n) . P
0,"(x.&,9.2) = (1) [hu(D)@ (3.2, D, & O )(¥) dy
W (3,x,Dy, &) = VI [x + gy, & — gDy J#u(eo( . Dy, )V Y

and ey(y,D,,z) is the symbol of the operator Eé") as in Sect.I.1. £_, corre-
sponds to taking the potential to be V. By symmetry arguments, it is easy to see
that

~(n) p ~(n)
Qj (X, C,,QJ) - Q/ (X, éa -—992) .

So H,(x,&,g,z) has an asymptotic expansion in A(= g*),

Hy(x, & hz) = Y OV (x, &z, WY — hz .

jz0

It is easy to see that Q(,.")(x,q") only depends on the potential and its derivatives at
(x,¢). We deduce that:

@2l A, &) < " 42)

for all N, (x,&) in A, | or R*\A) and C%) is independent of w. (Recall that
Ay = Hyy — Hy)

Proof of Proposition 4. We use the expansion (4.1). We assume RezImz < 0, the
other case can clearly be treated in a parallel manner. We first estimate the term
(0.E_ H, ' A,H™"). We complex dilate: , — ae'” with 0, = 1/, for all i € A,.
We see that for n such that 1/I, < |Imz|, complex dilation will not give us a
better estimate on A, '. Hence for a given N, N is chosen to be the largest integer
such that 1/ly, = |Imz| = WV /C; Ny is therefore at most of order N log(1/h).
Let
<azE7+#h1_1,,__]|iFhAn#h[{n_l>c déf f azE—+“‘¢h]—1n__ll#hAnﬂh[_In_]g(:x)d“ 5
)

where o = {a}ica,, do=[],c,, du 9(%) = l,cq, 9(ou), i-e. the LHS is the con-
ditional expectation value conditioned upon %, ¢ A,. Then

|<azE—+#thill:”FhAnﬁth_lH g |<62E7+ﬂhH,,__llﬂhAnﬁl1Hn‘I>c|oc 5
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where | | is the L>-norm with respect to «,, i ¢ A,. Hence it is enough to estimate
[(0.E JriF;,H, Bl 4 H, ~1.|. By the Stokes formula, we have

((/E +ﬂ:/1 e ]ﬁhﬁnﬁ'}, >(.: f(/E +ﬁh1‘[" lﬁhﬁ,,ﬂh ”(oc)doc

o)
= f 0E +-ﬁ’/, e I#hA,,ﬁ/, fé(a)da
I(0n)
el o
+ —[0.E_ %,H "\ #,4,4,H " 1da, Nda ,
Q0y) )=1 94,

where a = {2,¢"},c1, = {a,}iea,, % is an almost analytic extension of %, such that
0% /0d|gan = 0 to infinite order and (0,) is the volume enclosed by I'(0), I'(0,)
and || = p for all i € A4,. (Recall that suppy C (—p, p).) We now choose

G(a) =[] §(a;),

€4,

where g(a,) is an almost analytic extension of g(«,) such that g(a,) € C°(C) and
0g/da,|r = 0 to infinite order.
Let hSy. = h~"H,(0) — 'V, +z, (0 < 0 < 0,), (Note that S;. € Sp.), then

", Ho(0)p) = Ao + h{¢, Sy ) —

where

jd)(x)e T Qb(J/)Vn< 5 >dxdydc

is real. Since J)S and 0.S are in S°, (¢, S;.¢) is real when 0 =0, Imz =0 we
have
Im| (¢, Sp.-p) | = C(0+ [Imz]) ]l ,

where C is independent of w. Hence there exists 4 sufficiently small, such that for
z with |[Rez| > ¢/,

dist (0, A" ZRp,0y) = ch(0+ [Imz]),
where 1" A,y denotes the numerical range of H,(0) and ¢ is independent of w.

We therefore have |

H'0))| £ ———m .

Similarly,
1

IH,- 1(0)” = m

Using Beals’ lemma, we have

_ 3
ool H,, < Cppmax (1 (" (0+ Imz))~"=7=F (4.3)
e\l ) = "\ (0 + [Imz])? - >

where (', j is independent of w. We now show that (C.E_,)%,H "~ ,ii/,A,,iihH (r,cf)
is small for (x,¢) € IE.

h
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Let y, be a Cg° function such that
X"(X) =1 ;171 = |X| é lfz/
=0 X| =/, -1 o [X|=1I+1

with derivatives bounded uniformly in n. We have by the composition formula,

[0 E_ + ﬁ},HI lﬂhdrrﬂhH_l](X)

27th
X {tndn }X — Y3)H, (X — Yy)]dY

( ! ) Je O MEE (X = YDH, (X — 1)

2nh
x {(1 = 7)) 4, }(X — Y))H, ' (X — Y)]dY .

4
+<L> f’Q4(Y)/h[(3E (X = Y)H, ‘(X h2)

The second term of the R.H.S. is of order O(4°°) by using (4.2). To estimate the
first term, we do integration by parts m + 9 times. We have

JeAIRAE (X = YOH, (X = V) {gadn }(X — Y)H (X = Yi)]dY
= [0 E (X~ YDH, /(X ~ 1))

x {andn (X = Y3)H, (X — Y4)]dY .
Using (3.13), (3.14),(4.3) and the fact that [X| < 1/2, we have

IL"OL0E (X — YDH (X = Y {ada J(X = Y)H TN (X = Y))|

q 2
|+ ||Y“>—2(m+))+|/)" A 3
<C AP 2 max , | ————
N |/f|§z+9< h'i2 (0 + |Imz])?

X (04 [Imz|)~ =11, (44)

On I'(0,), using the scaling relations: 0 = 0, = 1/, and |Y| = |¥3] = I,/c(c > 0),
we have

hm+9
C—__max(l (h/ ) )2 Z 1”—2m+2\/f|—7
(l + IIYH)Q |fl £m+9

C—”i—gmax(l,(h/,%ﬁ)zl”“ . (4.5)
(LY

L.H.S.

lIA

lIA

Since /, < Ch™", we see that for m > 23N — 9, the R.H.S. is small. Using the
estimate in (4.5), we have

[0-E_ 4,0 #44,8,H, WX < Cyh™
on I'(0,) for all M and n < Nj.
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Since the function 0 — [ |g(a;e)|da, is of class C!, i.e. the function is dif-
ferentiable and whose derivative is Lipshitz, we have

2
{ lg(a)lda = [ T] |G(o,e")|do; < (1+C'02) < C,
l((n) JEA,

where we used the fact that 0, = 1//,. We have finally

No
Z. [ NE_ 83 H,\ #n A5l G(a)| ds < Cyh™
n=1r,)

for all z satisfying |z| < A~" with |Rez| > 1/C and |Imz| > h"/C and we used
the fact that Ny < const N logh.
We are now left with the task of estimating the volume integral fQ{U,,)' Expand-

ing the wedge product, we have

[ An] a(ﬂ
Z _(C E_ +i;/1H

; i ,#hA,,ii;,H, yda, \da
(0,) j=1 04,

On IAly _
é Nf / Z ()N H |(](CX e’{))l |((/Z +§h n— lﬂhA”ﬁh )|
0 RIAnl J= %]

xda, Nda, \---Nday, ,
where N is an integer yet to be determined. We write
da; = "du, + ie"u;d0
da, = e"”doc, - ieA'()ocjdH .

From (4.4), we have

hm+9 1

—1
{83E7+#/1 n— 1#/141;1#/1 n ’ é CmWW
n

for all m positive integers. Hence
Ay 0(

Z —(6 E_ +#hH,, I#hAn#hH )ddl Nda
(i, i=1 94,

hm+9 0y -
< CCylAn|—— i JON BT g(eye [1 do; | do
j*1

0 JE|An]

where the factor |4,| comes from summing over j. Let N > 23 + m, then

N—23—m

0
RHS. < C,Cy~—re

e W1+ CO2)n < Cyh
n

for all N
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Since ||EZL(z)|| £ C/|Imz|, with C independent of w, we have from Beals’

lemma

fﬁﬁafE:H < Cx,/j|ImZ’—7+1+/j < Ca’/jh—N(7+1+/f) ,

with C, y independent of w. Hence by the same reasoning we obtain
[(0-E s $yHy, 1 dng i B4EZL)e| < CwhY

for all N
Similarly we obtain, after averaging, that the first (dominant) term in the R.H.S.
of (4.1) is bounded:

[(0.E_ #,Hy el < C.

Hence we have
(o.E_ #EZL)| < C

by summing the series. Clearly by the same argument we have
02300, E_ #,EL)| £ Cup .

This proves that (6ZE_+1$;,E:L) is a classical symbol in class S.

Proposition 4 yields:
Corollary. For all Ny € N, ¢ > 0; there exists hy such that for all h €]0,hy],
if fis a C3° function, with support contained in (—B,—c)U (c,B) satisfying
|/ f] < C,h=™, then

= [0/ (0.E", $4EZ] "MYdz A dz

is a classical symbol in Sy.

Proof. We construct f such that 0/ < Cyh~M[Imz|M for all M > 0. If
Imz| = hN//C, for some N’ > 0, then we take M = 0 and apply Proposition 4.
If Imz| < hNI/C, then from Beals’ lemma, we have

1
5 Af -
]8VOQ<EZE_+1$;1E‘D| é Cj‘/jm .

Hence
o-fore <aE CHETD) £ Cypah™ MM |Im z| M

< Cup Mh—NOMh(M—y—/)’—’/)N’ )
By choosing N’ = 2Ny, we have
|0:F 01000 E #EZ )| < Cyppgh™oM 2201

Clearly, if 2(z+ f) § — 14, we have a well defined p.d.o.. Hence with the
condition ¢/ /| < C,h=™/, A, is a classical symbol in the class So.
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V. Conclusion

We now state our main theorems. (Recall that suppg C (—p, p) and range v C

[-1.1])

Theorem 1. There exist pf")(t) (n € N) in CJ°(R\{0}) with support contained
in (—p, p) such that for all Ny € N, ¢ > 0, there exists By, such that if f €
Ce°((—B, —c)U (¢, B) + (2n + 1)B) satisfies |/ f| = O(BN) with B = By > 0,
then for every m € N :

(Tr f(Pgy)) = [ f(E)dps(E)
= B[ f(t+ (2n+ 1)B)py (1) dt
+ [f(t+@n+ DB (1) dt
+B7 1+ @n+ DB (1) dt + - -
+ B[ £+ Q2n+ DB (1) dt + OB™™),  (5.1)

where dpg(E) is the “non-random” density of states measure. One has for example:

(n) o ds
(t)_ [H(](%)dd, f[ ||VV|| s

AV

(n)

()= Hf/(% )doc, ———ds

o S 1o

where V7, is the intersection of the curve V(x, ) =t with the unit square centered

at (0,0). Note that p(l) is independent of n.
In particular, if v has its support contained in the unit square, then

o —— fFo(”)q< ) R

where
R = | o
and
2L e ) <£> &
8 vl
where

fio = (fnv [ )

Proof. Direct consequence of Proposition 4 and its corollary and straightforward
computation by using the asymptotic expansion for E:Jlr and 0.E_ .

Remark. Because of the extra integration over the random variable o, when we com-
pute dp,,/dt, we somehow are always computing Jg/da. Since ¢ is a C§° function,
SO 1S Py.



424 W.-M. Wang

If we further assume that v = 0 and that the support of v, intersect so that
e Vi =2 s > 0, then we have:

Theorem 2. There exist pf”)(t) (n € N) in Cg°(—p, p) such that for all Ny € N,
¢ > 0, there exists By, such that if f € C§°((—B,B) + (2n + 1)B) satisfies |/ ['| =
O(BM/ ) with B = By > 0, then for every m € N the expansion (5.1) holds.

Proof. We only need to prove that the expansion (5.1) holds for /€ Cg((—c,c) +
(2n 4+ 1)B) for some ¢ > 0 to be determined. We use a similar construction to the
one used in the proof of Proposition 4 in Sect.IV. We take H, to be the reduced
operator corresponding to the potential

V@)= Y qox -+ Y o(x—1i).

€4, 1EZ2\ Ay

Instead of complex dilating in o as in the proof of Proposition 4, we complex
translate in o
o, o, — i(signlmz)d, ,

where 0, = 1/I,. We assume that Imz < 0 (the other case can be treated in the
same way). Let H,(d) be the reduced operator corresponding to «; replaced by
a; +i3(0 < & < J,). The principal symbol for h~'H,(d) is

V,,é(x,é) —z= Yy qux&)+id Y vixdH+ > v —z.

JEAR JEAn JEL2\ Ay
Let ¢ € L*(R); we have

Re <¢>(V: "Z)¢> = <¢’ Z OC/Ui(j)> + <¢7 Z Uj¢> - Rez(¢,¢> 5

jE€An [EZZ\A,,

oy 22 vj) + |Imz[(¢, §)

je/l/l

o, > v;¢) 2 0.

je All

Im (¢, (V) —2)$)

1\

Since Zjezz v; = s > 0, we certainly have, for 4 small enough

(¢, 2" v,0) > 5/2(. ) . (5:2)

JEZ?

Let & = max(|#|oc, 3). For ¢ such that (¢,>° , v;¢) < s/(8*) (¢, ¢), we have

[, X2 ay0,0) = = (. ¢) .

JEAR

K|«

We also have from (5.2)

@ % uprzs(3-5) 00

JETA\ Ay



Asymptotic Expansion for Magnetic Schrodinger Operator 425

Hence

Re (9.7~ 0) 25 (5~ 53 ) (0.6) - Re(6. ).

Taking ¢ = 5/19, we have |Rez| < s/19. Therefore

max([Re(. (V2 — )¢}, |Im(.(V — 2)¢)]) = §<¢, 9) .

Let hS;. = h="H,(9) — V,;’ + z. The symbols @55, 0.S belong to S°. Hence for A
sufficiently small, we have

dist (0, N Rp,5)) = 'h(d+ [Imz]),
where A Ay, 1s the numerical range of H,(6). We therefore have

1

1, ¢ < 5
||Hll (b)” == Clh(5+ |Im2|) N

The rest of the proof follows exactly that of Theorem 1, with 6 replacing 0.
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