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Abstract: The Knizhnik—Zamolodchikov equation associated with s/, is consid-
ered. The transition functions between asymptotic solutions to the Knizhnik—
Zamolodchikov equation are described. A connection between asymptotic solutions
and the crystal base in the tensor product of modules over the quantum group
U,sly is established, in particular, a correspondence between the Bethe vectors of
the Gaudin model of an inhomogeneous magnetic chain and the @-basis of the
crystal base.

Introduction

In this work we describe transition functions between asymptotic solutions to the
Knizhnik—Zamolodchikov (KZ) equation and establish a connection between asymp-
totic solutions and the crystal base in the tensor product of modules over a quantum
group.

We consider the KZ equation associated with s/, and the quantum group U,s/,
general case can be considered similarly.

For a positive integer m, denote by L(m) the s/, irreducible module with highest
weight m. For positive integers my,...,m,, set L = L(m)® --- ® L(my).

Let Q = %h @h+e® f+ f@ecslY? be the Casimir operator. For i, de-
note by ;; the linear operator on L which acts as Q on the i and ;™ factors
and as the identity on the other factors. The KZ equation on an L-valued function
W(zy,...,2,) is the system of equations

W1~ 2

v, j=1..,n,
0zj KTz —z

where k is a complex parameter. In this paper we assume that x is not a rational
number. The KZ equation is defined over %, = {z € €"|z; %z, for i%}.
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100 AN. Varchenko
For any permutation ¢ € S,, define an open convex unbounded polytope
D, = {Z € an|ZO-(1) << Zo-(,,)} .

One can easily resolve singularities of D, and cover D, by local charts with
local coordinates u;,...,u, such that:

Uy =2z1+--+2z,, 0.1)
D, is defined in this chart by inequalities u; > 0,...,u,— > 0, (0.2)
The KZ equation in this chart has the form
oy oy 1
=0, — =-H;, j=1,...,1—n, 0.3
Ouy u; k7 / " (03)

where H, = Q,/u; + Reg, Q; is a constant operator on L, and Reg, is an operator
regular at u = 0.

We call such charts asymptotic zones; they are numerated by suitable trees 7.

The operators y,...,Q,_; commute and have a common eigenbasis. We dis-
tinguish an eigenbasis % = (v;(x),...,vy(x)) for nonrational k. For every j the
vector v;(x) is proportional to a fixed common eigenvector of ,...,£,_, and the
coefficient of the proportionality appropriately depends on k, see (2.3.1).

For each j=1,...,N and a nonrational «, there exists a unique solution i, to
the KZ equation with parameter x defined in D, and such that

n—1 i
W = (0,(K) + O(u, k)) [_Hl W (0.4)

where y; is the eigenvalue of €; at v;, O(u,x) is a regular function of u at u = 0,
and 0(0,x) = 0. (Notice that all numbers yu; are real.)

Thus, for each asymptotic zone (7, o) we construct a fundamental system of
solutions Y, = {Y;}.

Our first main result gives explicit transition functions between these fundamen-
tal solutions Y, and Yy, in terms of the ¢-6j-symbols, where ¢ = ¢(x) and
q(x) = exp(2mif), see (2.4).

In particular, if k¥ = is, s € R, s — +0, then g(x) — 00, and our formulae show
that for every o,7, 7’ the transition function between the fundamental systems of

solutions Y, , and Y7/ , has the form 1+ (O(q(x)_%), where 1 is the unit matrix
and the solutions composing Yr,, and Y , must be suitably enumerated, see (2.4)
and (1.3.12).

Assume that x = is, s € R and s — +0. For any asymptotic zone consider the
fundamental system of solutions defined by (0.4). Our second main result, see (2.5),
states that for every j the solution i, has an asymptotic expansion of the form

n—1

b = Tlu; ™ exp (~iS[s) Y- fis' - (0.5)
1=0

where S, f; are real-analytic functions of u in our chart regular at u = 0, the function
S is real valued, the functions f; are L-valued, and, in particular,

n—1 .
1w, P exp(—iS/s)| = 1.
=1
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The first term f; is a common eigenvector of the operators Hy,...,H,_ ;. The
first terms of asymptotics of the solutions ¥, form an eigenbasis of the operators
Hy,...,H,_i. We describe its limit at u — 0.

If the KZ equation has an asymptotic solution of the form

W(u) = exp(P(u)/K)i gi(u) - k',

one can show that go(u) must be a common eigenvector of Hy,...,H,_; and the
function go(u) is determined up to multiplication by a constant [RV]. One can
deduce from this remark that a solution having an asymptotic expansion of the
form described in (0.5) is unique up to multiplication by a function of s which has
the form 1 + O(s), where 0(0) = 0.

Our two main results have the following quantum group interpretation.

Let U, be the quantum group corresponding to the s/, and U,—y its special-
ization at g = g(x). For a positive integer m denote by L(m,q) (resp. L(m,q =
q(x))) the irreducible U, (resp. U,—4)) module with highest weight m. For
positive integers mj,...,m, and a permutation ¢ denote by L°(q) the product
L(mg1y,q) ® - - - ® L(mq(n),q). Denote by L7(g = g(x)) the corresponding product
for Uj—y(x). Denote by Sol(x), the space of solutions over D, to the KZ equation
with parameter x.

Our formulae for transition functions between the constructed fundamental sys-
tem of solutions allows us to construct an isomorphism

(k) : L7(q = q(x)) = Sol(x),

and show, once again, that the monodromy representation of the KZ equation is
isomorphic to the R-matrix representation of the braid group, where R is the uni-
versal R-matrix of Uy—y(), see [K,Dr, V1,FW]. Under the isomorphism 7,(x) each
of the constructed fundamental systems of solutions ., gives a basis %7, ,(x) in
L(g = q(x)), see (2.4).

In [Ka] the notion of a crystal base is defined. The module L(m, ¢q) has a standard
crystal base when ¢ — oo. The tensor product of the standard crystal bases gives
a distinguished crystal base in L°(q). Our isomorphism 7,(x) has the following
property:

For every T, the fundamental system of solutions Yr . lifts to the same distin-
guished crystal base of L°(q), see (2.6).

Therefore, we may conclude that the distinguished crystal base is given by (0.4) and
normalized by property (0.5). This gives an “asymptotic” definition of the crystal
base.

The proof of transition formulae between the fundamental solutions and the
proof of property (0.5) are based on integral representations for solutions to the
KZ equation, see [SV, V1]. Any solution in Sol(x), can be represented as a linear
combination of solutions of the form

Y(z) = f(DM(t,z), (0.6)
7(2)
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where M is a rational L-valued differential form of z and some variable ¢ =
(t1,.. ., ), (z) 1s a family of cycles in ¢-space,

k n
o= I G-z T _@—yy" 1 11E—n™".
=1 j=

ISi<jsn [Sl<)<k

In this construction cycles y(z) numerate solutions to the KZ equation. In [V1]
we identified the homology group of such cycles for a fixed £ with the subspace
of singular vectors in L°(q = q(x)) of a suitable weight, see precise statements in
[V1]. This construction after suitable renormalization gives us the isomorphism 7,
see (4.4).

If k = is, s — +0, then integral (0.6) is localized at critical points of the function
@ with respect to the variable ¢, and one can compute asymptotics of the solution
applying the method of steepest descent, see [RV, V2]. One can push the cycle y(z)
onto t-critical points of @. If y(z) “sits” on some of the f-critical points then each
of the points gives its input into the asymptotic expansion of the solution.

The symmetric group S of permutations of coordinates #,...,# acts on the set
of critical points of @.

In each asymptotic zone (7, ), one can describe asymptotics of ¢-critical points
of @. It turns out that the S; orbits of ¢-critical points of @ are in correspondence
with solutions 1, composing the fundamental system yr, ;. For any j we distinguish
a cycle y,(z) such that

(D) ¥ = [, o) PM,
(2) yj(z) sits exactly on one S; orbit of ¢-critical points,
(3) the asymptotic expansion of the integral at this orbit has property (0.5).

This gives a “topological” definition of the crystal base as the base in the homol-
ogy group of cycles corresponding to a fixed z. This base is formed by the classes
numerated by the orbits of #-critical points and each such a class has a representing
chain sitting on one orbit. In this construction z must be in an asymptotic zone.

The value of the function M at a t-critical point (#(z),z) of the function @
gives the first term of asymptotics as & = is and s — +0. This value M(#(z),z) is
an eigenvector of the commuting operators H,(z),...,H,—1(z).

The algebraic Bethe Ansatz is a construction of eigenvectors for a system of
commuting operators. One considers a vector valued function of a special form
and determines its arguments in such a way that the value of this function is an
eigenvector. The equations which determine these special values of arguments are
called the Bethe equations. The eigenvector is called a Bethe vector, for more details
see [FT].

One of the systems of commuting operators which can be diagonalized by the
ABA is the Gaudin model of an inhomogeneous magnetic chain [G].

It turns out that the function M (¢,z) is exactly the special function which appear
in the ABA for the Gaudin model and the Bethe equations for the Gaudin model
coincide with the equations on ¢-critical points of the function @, see [B,BF,RV].

This relation to the ABA and the above formulated results give us a corre-
spondence between the @Q-basis of the distinguished crystal base and the Bethe
vectors of the Gaudin model, see (2.6.5), or, more generally, between the crystal-
lization phenomenon in the theory of quantum groups and the Bethe ansatz con-
struction in statistical mechanics. On the Bethe ansatz and the KZ equation see also
[FFR].



Asymptotic Solutions to the K—Z Equation and Crystal Base 103

Section | contains preliminary information on bases in L and L’(g). In Sect. 2
we state the formulae for transition functions and the theorem about asymptotic
expansion (0.5). In Sect.3 we review integral representations for solutions and
describe asymptotics of critical points and the corresponding Bethe vectors. Section
4 contains the homological part of the work.

1. Bases in Tensor Products

(1.1). Quantum Group U,sl,. The Q(q"*)-algebra U, = U,sl, is the algebra gen-
erated by the symbols e, f, 4 with the relations

[he] = 2e,
[h, f1=-21,
le, f1=q""—q . (1.1.1)

Here ¢'/* is an indeterminate.

Remark. Usually one considers U, as an Q(g) algebra. Our choice of g"* instead
of ¢ is motivated by topological considerations in Sect. 4.
U, has a Hopf algebra structure with the comultiplication 4 defined by

AR =h@1+10h,
Ae)=e®q¢"* +1®e,
ANf)=f@1+q"af. (1.12)

By 4, the tensor product of U,-modules has a structure of U,-module.
Let

[nlg = (4" —a™")/(@"" =a~""),

(n)q — qn/2 _ q-—n/2 ,
n
[n],! = T1Ik],,
k=1
m_ € © _
oW ¢ T
o S =1, 1.13
f T ! (1.1.3)

Let V1 and ¥V, be U;-modules. The modules ¥} ® ¥, and 7, & V; are isomorphic.
The isomorphism is given by the formula

nensneniner, (1.1.4)

where P is the transposition of the factors. R € U,®U, is the universal R-matrix,

and ® denotes a proper completion of the tensor product. Denote the isomorphism
PR by R.
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Denote by S, the group of permutations of the set {1,...,n}, by B, the braid
group on n strings with the standard generators ay,...,0,—1, by 7:B, — §,, the
natural epimorphism.

Let V1,...,V, be U;-modules. For j = 1,...,n — 1, define an Uj-isomorphism.

Rijyi: @@V, = V1@ @V @V,®-QV,, (1.1.5)

as the map which acts as R on V; ® Vi1 and as the identity on the other factors.
For any braid ¢ € B, these isomorphisms induce a well defined isomorphism

R Vi® @ Vn—= Vig(y @ -+ @ Vegimy - (1.1.6)

(1.2). Bases in Tensor Products. For m € Z let V(m) be the Verma module with
highest weight m. V(m) is generated by its singular vector v, such that ev,, = 0 and
q"vm = q"v,. The elements (), j > 0, form a basis of V(m). For a nonnega-
tive m the vector f"*Dy, generates a proper submodule of ¥ (m). The quotient,
L(m), is the (m + 1)-dimensional irreducible U,-module with a basis generated by

(1) (m)
Uns [ 0my oy [0

The tensor product of irreducible modules is the direct sum of irreducible mod-
ules:

L(m) ® L(mz) = L(Jm1 — ma|) ® L(fmy — ma| +2) @ -+ & L(my + my),
and a singular vector of L(m; + m; — 2k) has the form

(my—k+1)y--(my =k + p),
(mi)g - (m = p+1)

. q—p(mz*ZkerJrl)/2f(p)vml ®f(k_”)vm2 ) (1.2.1)

P
(vmla kvmz) = Z(‘—l)p
p=0

This decomposition gives a basis {f ”)(v,,,l, kUmy)} in the tensor product.
The U,-isomorphism

R : L(my) ® L(my) — L(my) ® L(m,) (122)
is given by
f(l)(vmly k vmz) = R(m19m2;k)qfl(vmz7 k Um] ) > (123)

c(my —k+ 1)
R(my,my k), = (—1 3 (m1m2—4km2+2k(k+l))/4(m2)q (my 4
(1, ma; k)g = (=17 (1) - (m1 —k + 1),

There are two ways to decompose L(m;) ® L(my) ® L(ms3) into irreducibles.
These two ways give two bases in the triple tensor product: { /((Vm; sk, Umy sk Ums )}

and {f(l)(vmla kl(vmzy kzvm::, ))}
The matrix elements of the matrix, connecting these bases, are called the 6j-
symbols:

f(l)((vmla kl Umz )7 kz UM3)

= ; { ’]:lll’ 1(’223 km3 } f(l)(vmly k (Umzy ky+hy—k Um3 )) . (124)
b bl q
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There are numerous formulae for 6;-symbols, see, for example, [KR].

The singular vectors (Upm,, k Umy )> ((Umys &y Umy)s kyUms )s (Omys ky (OUmys ky Umy)), and
the matrix of 6j-symbols can be visualized as follows.

m,m, my

(1.2.5)

m, m, m

my m, my
ky ky kg

The braid group B; acts on the triple tensor products. The basis
((Omy» &y Umy )s ky Umy) 18 an eigenbasis for Ry 2, and the basis (vm,, &, (Vmys kyUm,))
is an eigenbasis for R, ;.

m, KO K
mg m, m

Ry K = R (my, my; k),

(1.2.6)

Consider the tensor product of n irreducible modules. We describe its bases, the
connecting matrices, and the R-matrix action.

An n-tree is a planar tree with n tops, one root, and (n — 1) internal triple
vertices. We numerate the tops by indices 1,...,n from left to right.

See an example in (1.2.7):

) @ O

(12.7)

For an n-tree we denote the set of its internal vertices by Iny. We say that an n-tree
has marked tops if a nonnegative integer is assigned to every top. Denote by m;
the number assigned to the j® top.

For an n-tree T with marked tops, we construct a basis in L(m;) ® - -- ® L(m,),
denoted by %r.

A coloring of T is a map c:Iny — Z>,. Define the weight of a coloring as
the number -

mc)=my+---+m,—2 > c(w). (12.8)

we&lngy
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Delete an internal vertex w, then the tree is decomposed into three trees: the left
branch, the right branch, and the part containing the root.

Denote by J/¢(w) the set of indices of the tops lying in the left branch of w,
denote by I'(w) the set of the internal vertices lying in the left branch of w. For
a coloring ¢, define the weight of the left branch as the number

m(wy = 32 m; =23 c(u).

jEJ"’ uelle

Let J"(w), I"(w), and m"(w) be the sets and the weight defined for the right branch
analogously.

Say that a coloring ¢ is admissible at a vertex w if c(w) < min(m'¢(w), m"(w)).
Say that a coloring of an n-tree T with marked tops is admissible it is admissible
at every internal vertex.

The elements of the basis #r are numerated by the pairs (c, /), where ¢ is an
admissible coloring and / = 0,...,m(c). The vector corresponding to (¢, /) is defined
inductively on n. Namely, let w be the internal vertex of 7 which is neighboring to
the root of 7. Let 7% and T” be the left and right branches of w. The coloring c
induces colorings ¢’ and ¢” of T/ and T”, respectively. Let 1,...,i be the indices
of the tops lying in the left branch of w. Let v’ be the vector in L(m)® -+ ®
L(m;) corresponding to the pair (c’®,0) and v" the vector in L(m,.) ® --- ® L(m,)
corresponding to (c¢”,0). If i = 1, then v’ = Upm,, Where vy, is the singular vector
of L(m;). If i =n —1, then v" = v,,, where v,,, is the singular vector of L(m,).
Define the vector v(c,I,T) by

v(e, ,T) = fOW", o), (1.2.9)

where ( +, o) + ) is defined by (1.2.1).
The Uj-action is given by

q"v(c,1,T) = "9 v(c,1,T),
ev(c,[,T) = (m(c) — I+ 1)v(c,! —1,T) for I >0,

ev(c,0,T)=0,
fo(e,,T)=[l+1]v(c, I +1,T) for I < m(c),
So(e,m(c), T)=0. (1.2.10)

Let T and T’ be n-trees. Let w; and w, be internal vertices of 7 and w{ and
wj internal vertices of 7. Say that 7 and 7" are adjacent at wy,w,,wj,wj, if in
a neighborhood of the vertices the trees have the form shown in (1.2.11), and the
trees are identical outside the neighborhood.

T= = 4 (12.11)

Wy
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Let T and 7’ be adjacent. Let ¢ and ¢’ be admissible colorings of 7 and I’
respectively. Say that the colorings are similar, ¢ = ¢', if the colorings are equal at
the corresponding internal vertices of 7 and 7' different from w, wo, wi, w5, and if
c(wy) + c(wp) = '(w)) + ' (W)).

The matrix, connecting the bases #r and %7 of adjacent trees is given by

{ml"(Wx) m"(wy)  m'(w)

cwi)  cwy) (W)

(e, L,T)= Y

d=c

} o(c’,1,T"), (12.12)
q

where { }, are 6j-symbols.

The matrix connecting the bases %7 and %y for arbitrary T and T’ can be
written as a product of the matrices connecting adjacent bases.

For j =1,...,n — 1, we describe the action of the operator

Ry ji1i:L(my) @+ @ L(my) — L(m) ® -+ L(mj1) @ L(m,) -+ & L(m,) .

Denote the first tensor product by L and the second by L’.

We say that an n-tree T is adjacent to the transposition of j and j + 1 if there
exists an internal vertex w such that the /™ top of 7 forms the left branch of w,
and the (j 4+ 1) top of T forms the right branch of w. Let T be adjacent to the
transposition of j and j + 1.

Let {v(c,,T;L)} be the T-basis of L and {v(c,/,T; L")} the T-basis of L. Then
for every (c,1) we have

Ry j10(e, LT5L) = R(mj,mysp;¢(w)) - (e, L T5L') (1213)

where R(mj,mjyi;c(w)) is defined by (1.2.3). As an example see (1.2.3) and
(1.2.6).

Formulae (1.2.12) and (1.2.13) describe the action of the braid group B, on the
tensor product of » irreducible U,-modules.

(1.3). Crystal Base. The tensor product L(m;) ® --- ® L(m,) has the trivial basis
v, @@ fUu,, 1, =0,...,m;, j=1,...,n. It turns out that all the tree
bases, constructed in (1.2), tend (in an appropriate sense) to the trivial basis as
q — oo. This phenomenon is described in [K] and is called crystallization.

For a finite dimensional U,-module M and 1 € Z, let M; = {u € M|q"u = q*u}
be the weight space of weight 1. We have M =, _, M;.

Any element u of M; is uniquely written in the form u =Y fu;, where
u; € kere N M;_,;. Following [K] define the endomorphisms & and f on M by

éu=>3 f0"y, Fu=Y fhy,.

Let A be the subring of Q(g'/*) consisting of the rational functions of ¢'/4
regular at g'/* = oo.
A crystal base of M is a pair (L, B) satisfying the following conditions.

L is a free sub-4-module of M such that M = Q(¢"" )R L, (1.3.1)
y

B is a base of the @-vector space L/g~"/*L, (1.32)

L=@ L, and B= [] B,, where
=74 JEX
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L,=LNM, B, =Bn(L;/qg7 VL)), (1.3.3)
éL C L and fL C L. Hence & and f operate on L/g~ /4L, (13.4)
éB C BU{0} and fBC BU{0}, (13.5)
For b, b’ € B, we have b’ = fb if and only if b = &b’ . (1.3.6)

For b € B, set &(b) = max{k = 0/é"b € B} and ¢(b) = max{k = Olfkb € B}.

(1.3.7) Example. For m € Zx, consider the irreducible module L(m) with the
basis fDv,, 1 =0,...,m. We have éfDv,, = fU=Dy, and ffDy, = fE+Dy,,
Let L(m)=@,AfPv, and B(m)= {fDv,|l=0,...,m} CL/g~"*L. Then
(L(m),#(m)) is a crystal base of L(m).

(1.3.8) Theorem, [K]. Let M, and M, be two finite dimensional U,-modules and
let (L;,B;) be a crystal base of M;, j =1,2. Set L=L, ®4L; and B = {b; ® by €
Lig=V4L|b; € B;}.

(i) Then (L,B) is a crystal base of M1 @ M.

(ii) For b; € B;, j = 1,2, we have

fhr @by if @(by) > &(by)
b1 ® fby if o(b)) = &(b2) ,
by ®eb, if (p(bl) < 8(b2)
eby @by if o(by) = &(by) .

(1.3.9) Theorem, [K]. Let (L,B) be a crystal base of a finite dimensional U,-
module M. Then there exists an isomorphism M = @j L(m;) by which (L,B) is

isomorphic to @ (Z(m;), B(m;)).

f(bl®b2)={

é(by ®bz)={

Consider the tensor product of n irreducible Uj,-modules, L = L(m)® -+ ®
L(my). Let & = L(m)Q, - Q, L(m,), B=RBm)® - B(m,). By (1.3.8),
(¥, B) is a crystal base of L. We call (&, #) the distinguished crystal base of
the tensor product L.

For any n-tree introduce

FLr =@ Av(c, 1, T),
(e.])

Br = {v(c,,T)} C Lr/q %1 . (1.3.10)
It follows from (1.2.10) that (¥, %) is a crystal base of L.
(1.3.11) Proposition. For any n-tree T, we have (£, %) = (QT,ZT).

Proof. 1t suffices to prove the proposition for n = 2. Let (U, k Um,) be the vector
defined by (1.2.1). Then for any k = 0,...,min(m,m;) we have

(Umys & Umy) = U ®f(/‘)vm2 modg~ 4% . (1.3.12)

This equality easily implies that ¥ = ¥ and then %4 = %7.
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(1.3.13) Corollary. For k; + k; < my,

{ml my m3} B {1 mod g~ 44 if k=k
ko ko k, 0 modg~'/#4  otherwise .

For Iy + ky > mo,

{ml m m3} _{lmodq"‘/4A ifk=mp—k ,
ko ko k], 0 modg~'44  otherwise .

(1.3.14) Remark. For a finite dimensional U;-module M, we have kere =
P, kere N M;.

A crystal base of kere of M is a pair (L;,B;) for each A such that keren
M; +£{0}. A pair (L;,B,) has to satisfy the following conditions.

L, is a free sub-4-module of kere N M; such that
kere "M, = Q(¢"RL; . (1.3.15)
4

B is a base of the Q-vector space L;/q"*L; . (1.3.16)

Obviously, a crystal base of kere is uniquely extended to a crystal base of M.
By (1.3.9), any crystal base of M is the extension of a crystal base on kere.

(1.4). Bases in Tensor Products of sly-Modules. Consider the Lie algebra g = sl,
with the generators e, f, 4 such that

[e9f] = ha [hs e] = 28, [ha f] = —2f .

Denote by 2 the Casimir element

1
§h®h+e®f+f®e€g®g.

Let Mi,...,M, be g modules. For i < j let Q,; be the linear operator on M; ®
- ® M, acting as Q on M, ® M; and as the identity operator on the other factors.

For a g-module M and 1 € C, let M; = {u € M|hu = Ju} be the space of weight
A and SingM; = kere N M, the space of singular elements of weight A.

For a nonnegative integer m, let L(m) be the (m + 1) dimensional irreducible
g-module. The module is generated by its singular element v, such that ev, =0
and hv,, = mv,,. The elements v, fv,,..., f"v, form a basis of L(m).

The Shapovalov form on L(m) is the bilinear form B™ such that

B™( v, fFom) = kIm}(m — k), B"(f v, flom) =0 for k=1 .

The tensor product of irreducible g modules is the direct sum of irreducible mod-
ules: L(m;) ® L(my) = L(|my — my|) @ L(|my —my| +2)® - - - ® L(my + my), and a
singular vector of L(m; + m; — 2k) can be chosen of the form

H"jo‘(m1 +my—2k+j+2)

my» my 1)? . —p— .
{U kU } Z( ) 1—[ l"‘])nj;op ](mZ"])

fpvml ® fk_pumz .
(14.1)
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This decomposition gives a basis { /*{vm,, x Um, }} in the tensor product. We have
Qf {Winys & vmy b = p(mi,mai k) + [ {Wonys k Umy }

w(my,my; k) = %mlmz——k(ml +mp)+k(k—1). (1.4.2)

For nonnegative integers mj,...,m,, consider the tensor product L = L(m;) ®

-+ ® L(m,). For any n-tree T the tensor product has a distinguished basis #r =

{v(c,1,T)}. The elements of By are numerated by the pairs (c, /), where ¢ is an

admissible coloring of 7 and [ =0,...,m(c), see (1.3). The vector v(c,/,T) is
defined inductively on n as in (1.3) but we use the formula

(e, ,TY = fH{0" conv"} (14.3)

instead of formula (1.2.9).

For any n-tree T and a permutation o € S, define a basis Br , = {v(c,[,T,0)}
in L(m;)® - -- @ L(m,). Namely, let P, : L(m) ® - - @ L(my) — L(my1)) ® -+ ®
L(mg(ny) be the permutation of factors. Let %7 = {v(c,/,T)} be the basis in
L(mg1y) @ - - - ® L(mgny) corresponding to the tree T with tops marked by mq (1), ...,
Moy Set v(c, 1, T,0) =P, v(c,1,T) for all ¢, 1.

For any 7,0 and an internal vertex w of T, define an operator Q,, 7, acting on
L(m)® -+ ® L(m,). Namely, for an internal vertex w, let J be the set of indices
of the tops of 7 which belong to the right branch or the left branch of w. Set

Quwro= E Q. (1.4.4)
z,,erjlu)

For every T,0,w the basis %7, is an eigenbasis for the operator £, 7 ,:

Qurovlc,,T,0)=wc,T,a,w) - v, T0o) (1.4.5)

for all ¢,/ and suitable numbers u(c, T, a,w), cf. (1.4.2).

(1.5). The Selberg Integral and Normalizing Constants. For any colored tree we
define a function called the normalizing constant.
The Selberg integral is the integral

k
I(ab;) =k [ T1e (=) TT (4 —6edey A+ Ady
4 j=1

1<i<j<k

where 4 = {t e R¥|0 < #; < --- < #; < 1}. The integral can be computed explic-
itly [M]:

o T (Z2 1) 1 (222 1) 1 (2 1)

I(a, by k) = ] . -
j=0 p(;a—_wgz—_f—_zu)p(ﬁ 1)

(15.1)

Set
q(x) = exp(27i/x) .
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Define Jy(a, b; k) by
Jila,b i) = (2m) (1) 7 HE DL (a,b, 1)

k—1

. 1‘[0(1 —kf(a+b—2k+j+2) (b= » (152)
=

where g-numbers ( ), are defined in (1.1.3).

Let T be an n-tree with tops marked by some nonnegative integers my,...,M,.
Let ¢ be an admissible coloring of c.

For an internal vertex w € Inr define its normalizing constant C(w,c, T, k) by

C(w, e, T, k) = Jepuy(m'“(w),m"(w); k)

where c(w) is the color of w with respect to ¢, and m'é(w) (resp. m’(w)) is the
weight of the left (resp. right) branch of w, see (1.2).
Define the normalizing constant, C(c,T,x), of a coloring ¢ by the rule

C(c, T, k) = ( D c(w)>! I1 Cw,c T,x)c(w) . (153)

we€lnr w€lny

2. Asymptotic Solutions to the Knizhnik—Zamolodchikov Equation

(2.1). Knizhnik—Zamolodchikov Equation. Let M,,...,M, be g = sl, modules,
M =M ®---&M,. The Knizhnik—Zamolodchikov equation (KZ) on an M-valued

function ¥(zy,...,z,) is the system of equations

0

K—lk =Hyy, i=1,....n,

0z,

where k is a parameter of the equation and
Q..
H= -1
j*iZi T

The KZ equation defines a connection on the trivial bundle M x €" — C" with
singularities at diagonal hyperplanes. This connection is flat. Parallel translation
with respect to this connection commutes with the g action on M.

For a solution y to the KZ equation we have

0 0

hence Y depends only on differences z, — z, of variables.

For nonnegative integers my,...,m,, let L = L(m;)® --- ® L(m,). For any A the
KZ equation with values in L preserves Singl;. The KZ equation with values in
P, SingL, determines the KZ equation on L.
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Denote by B the bilinear form B™ ® --- ® B™ on L, where B™ is the Shapo-
valov form on L(m), see (1.4). The operators Hj,...,H, are B-symmetric:

B(Hix, y) = B(x,H;y)
for all i/ and all x,y € L [RV].

(2.2). Asymptotic Zones. For g € S, let
Dy ={z € R"|z501y < - < Zg(n)} -
For g € S, and an n-tree T, we define a diffeomorphism
ur ¢ : Dy — R x (Rsg)""!

called an asymptotic zone.

The first coordinate of uz, is z; + --- +z,, the other coordinates are numer-
ated by internal vertices of 7. Denote by u,, r , the coordinate corresponding to a
vertex m.

Let ¢ = id. The coordinate u,, 1 i4 is defined inductively. For an internal vertex
w, let W be the set of internal vertices of T belonging to the shortest path in T
from w to the root. W can be empty. Assume that for any y € W the coordinate
Uy, 7.id is already defined. Let J* (resp. J”) be the set of the tops of T belonging
to the left (resp. right) branch of w. Set j¢ = max{j € J*}, /" = min(j € J"),

Uw, T, id I(er —Zl-ze) H Uy T,id - (221)
yeEW

For 0 € §,, let
T6:Dg — Dia,  (215...,2n) = (Zo(ly - - -1 Z5(n)) -

Set
Uw, T, 6 = Uw, T,id © Tg -
Let
Un =A{z1,...,2n € C"|z;i %2z, for all i,/} .

(2.2.2). Proposition. For every o, T the functions z\ + - - - + zy, {ity, 7, ¢ }wein, define
a diffeomorphism ur ; of D, onto R x (R~o)"~'. The map ur, , is extended to
a biholomorphic map of U, to € x (C*)*~'. Furthermore, u;la is extended to a
polynominal map of C" to C".

Now we will construct curves connecting the domains D, and lying in %,.

For j € {1,...,n— 1} let © be the transposition of j and j + 1. Let T be a tree
adjacent to 7, see (1.2), and w the internal vertex of T such that the j™ top of T
(resp. the (j + 1)) forms the left (resp. right) branch of w.

For any permutation o, the biholomorphisms ur,, and ur .. have the property:

Uw, T, 6 = —Uw, T, 017 »

Uy T,6 = Uy, T,4c fOr every internal vertex y different from w .
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Define a curve yr 4 . : [0,1] — %, by the rule:

uy, 1,6 = exp(it) for t € [0,1],

uy 7,¢ = 1 for all t € [0,1]and all y € Iny such that y+w .
We have y(0) € D, and y(1) € D,,. The curve yr , . forms a half circle connecting
D, and D,,. The complementary half circle is formed by the curve yr 4, .

For every 7,0 the biholomorphism ur , resolves singularities of the union of
hyperplanes in the following sense. Let

[:C —>C (z21,...,z:) ~ [[(z —z) .

i<j
Then for every o,7 we have

fourt = TI (uwr0)™ - (1+0())

we€lny

for suitable positive integers {a, }.
Consider the KZ equation with values in V =V, ® ---® V,,.

(2.2.3). Proposition. For any o,T, the KZ equation with respect to variables z; +
-+ +2z, and {uy, 1,,} has the form

0 0

oy 1 <Qw,ng

Guw, T,o K

+Reg> v,

where Reg is an End(V)-valued function holomorphic at ur , =0, and Q7.5 is
the constant operator defined in (1.4.4).

Uy, T, o

Example. For the tree in (1.2.7) and the identity permutation, the coordinates
are zy + zp + z3, Uy = z3 — zp, Uy = (22 — z1)/(z3 — z2), and the KZ equation has the

form
oy 1 [ Q1+ Q13 + O3 oy 1 /Qp
— =—| —— +Reg, —=—-|—+R .
6141 K < Uy + °8 8u2 K [Z5) + °8
(2.3). Asymptotic Solutions. For my,...,m, € N and a nonnegative integer A, con-

sider the tensor product of irreducible s/, modules L = L(m;)® --- ® L(m,) and
the KZ equation with values in SingZ;. Throughout the remainder of the paper we
assume that the parameter « of the KZ equation is not a rational number.

For any n-tree T and a permutation w € S, we will construct a fundamental
system of solutions, Yr ,, to the KZ equation.

Namely, consider the basis %7, , of L. Then.

Br 5, = Br s N SIngL;

is a basis of SingL;. Vectors of By, ; have the form v(c,0,7,0), see (2.1), where
¢ is an admissible coloring of the tree 7 with tops marked by mis(1),..., M)
and the coloring ¢ has weight A, see (1.2.8). Denote the set of such colorings by
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Adm(T,0,4). A vector v(c,0,7,0) is an eigenvector of the operators {Q,, 7, ¢ }wein,
with eigenvalues denoted by {u(c, T, 0,w)}, resp., see (1.4.5).

For every such a vector there exists a unique solution, Y, 7, 4, to the KZ equation
restricted to D, such that

Ve 7.0 = C(c,T,K)( I1 (uw,T,a)“(C’T’J’W)/K> -« (1(e,0,T,6) + O(ur, 5, k))

welnT
(23.1)

where C(c, T, k) is the normalizing constant of the colored tree 7" with tops marked
by mg1y, ..., Mgy, O(ur, 5, %) is a SingL;-valued function which is regular function
of ur , at ur , = 0 and which tends to zero as all coordinates ur , tend to zero,
univalued branches of the functions {u#} are chosen by the rule: arg(u,, r.,) =0
for all w € Inr.

The collection of these solutions form a fundamental system of solutions. It will
be called the asymptotic solution corresponding to the asymptotic zone ur, 5, and
will be denoted by Yr .

The asymptotic solution can be analytically continued to a system of multivalued
solutions over %,.

(2.4). Transition Functions Between Asymptotic Solutions. The first main result of
this paper describes transition functions between asymptotic solutions.

To compare two asymptotic solutions Y7, , and Yy ,» we have to distinguish a
curve from D, to D., lying in %,, then analytically continue . , along the curve
and express the analytic continuation in terms of Y ..

Let T and T’ be n-trees. Let w; and w, be internal vertices of 7 and w| and
w}h internal vertices of 7’. Assume that 7 and 7’ are adjacent at wy,wy, wj, w),
see (1.2).

For any o € §,, the asymptotic solutions Y7, and Y+ , are defined over the
same D,.

(2.4.1). Theorem. For any ¢ € Adm(T,0,1) we have

Voo = > { me(wy) m'(w) m'(wy) } J

s 4,0 T /T, .

one =c C(W[ ) C(WZ) C/(Wﬁ ) 4(%) ¢ 7
o eAd(T’, a, /)

Here { }4(«) are the 6;-symbols for g(x) = exp(27i/k). For the definition of the
arguments of the 6j-symbols, see (1.2).

The theorem is proved in Sect. 4.

For j € {1,...,n— 1}, let T be the transposition of j and j+ 1. Let T be an
n-tree adjacent to t, see (1.2), and w the internal vertex of T such that the j tops
of T (resp. the (j + 1)) forms the left (resp. right) branch of w.

For any ¢ € S,, the curve yr, 4, ;, defined in (2.2), connects D, and D,,. Continue
Yr, - along the curve and express the continuation in terms of Y 4.

(2.4.2). Proposition. For any ¢ € Adm(T, 0, ) we have
lpc, T,oc = R(ma(j)s Me(j+1)5 C(W))q(h')lpc, T, 01 >
where R is defined in (1.2.3).

The proposition easily follows from the definition of the normalizing constant.
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Statements (2.4.1) and (2.4.2) allow us to compare two arbitrary asymptotic
solutions.

By (2.4.1) and (2.4.2), the transition functions between asymptotic solutions to
the KZ equation are exactly the same as the transition functions between the bases
in tensor products of irreducible modules over the quantum group U,—g4), Where
Uy—q(x) is the C-algebra obtained from U, by specializing the indeterminate g'/*
to g(x/4). Namely, for natural my,...,m,, let L(m;),...,L(m,) be the irreducible
slh-modules with highest weights m;,...,m,, resp. For a nonrational ¥ € € and
an integer 4, consider the KZ equation with the parameter x and the values in
SingL;. For an n-tree 7' and a permutation ¢ € S,, consider the asymptotic solution
Y1, o(k) = {Ye 1,0}

Let L(mi,q = q(x)),...,L(m,,q = q(x)) be irreducible U,—y,) modules with

highest weight m,...,m,, resp. For a permutation ¢ € S,, consider the tensor
product

L7 = L(mg(1),q = q(K)) ® - @ L(Mo(ny.q = (k) (243)
and the subspace

SingL%(q = q(x)) = {v € L?|¢"v = q(k)'v, ev = 0} . (2.4.4)

Let 871 +(q = g(k)) = {v(c,0,T)} be the basis in SingL°(g = ¢(x)); corresponding
to an n-tree T, see (1.2).
Define a map

nr,6(K) 1 Br.o(q = 4(K)) = Yr. (k)  v(c,0,T) = Ye 16 - (24.5)

(2.4.6). Corollary of (1.2.12) and (2.4.1). For every o € S, the maps {nr, ,(x)}
induce a well defined isomorphism m,(x) of SingL’(q = q(x)), and the space of
solutions to the KZ equation over D, with parameters k and values in SingL;.

(2.4.7). Corollary of (1.2.13) and (2.4.2). Under the isomorphisms described in
(2.4.6), the R-matrix action on {SingL?(q = q(x)); }ses, given by (1.2.13) is iso-
morphic to the monodromy of the KZ equation with the parameter k and with
values in SingL;.

Kohno [Ko] and Drinfeld [D] proved existence of an isomorphism between the
R-matrix action and the monodromy representation of the KZ equation for generic k.
The case k = 1// for a natural / is described in [V, Sects. 13—14]. In Sect. 3 we
will construct isomorphisms (2.4.6) and (2.4.7) geometrically in terms of integral
representations for solutions to the KZ equation, see [SV, V]

(2.5). Quasiclassical Asymptotics. Let D be a ball, 7: €V ® D — D projection. Let
Vi=Krd —w
be a holomorphic connection in © depending on the parameter k. Here
w=Hdz +---+Hydz, ,

where {H;} are matrix valued functions. Assume that for every x the connection is
integrable, xdw + w A w =0, or

0H; 0H
— ==L, [H,H]=0 (25.1)
) ) 0z; 0z,
for all i and ;.
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An asymptotically flat section is a section of the form
F =exp(S/K)(fo+xfi+---) fork—0. (2.5.2)

Here S(zy,...,z,) is a function, {fj(zl,...,z,,)} are sections of n, and F must be a
formal solution of the equation V,F =0

We call exp(S/k)fo an asymptotically flat section of the first order if there
exists a power series (2.5.2) which provides an asymptotic solution to the equation
V.F = 0 modulo terms of order x2.

Assume that the linear operators {H,} are simultaneously diagonalizable for each

z € D: there exists a basis {v;(z)} in € such that
H (z)v)(z) = Aj(z) - vi(z) (25.3)

for all j,/. Assume that the spectrum of {H;} separates elements of the basis: for
every z and every /,m, there exists j such that 4;,(z) # Ajm(2).

Let F = exp(S/k) fo be an asymptotically flat section of the first order, then fj
is an eigenvector of the operators {H;},

H/(z)fo(z) = A,(2) fo(2), j=1,....,n, (2.5.4)

see [RV].

Let exp(S/x) fo and exp(T/x)go be asymptotically flat sections of the first order
corresponding to the same eigenvector of {H;}, then

exp(S/x) fo = const - exp(T/k)go , (2.5.5)

moreover, 4, = Ozj ,

see [RV].

Assume that there exists a symmetric bilinear form B : €C" ® €" — C and the
operators Hy,...,H, are symmetric with respect to B : B(H;x, y) = B(x,H,y) for all
x, y,i. Assume that exp(S/x)(fo + ---) and exp(T/x)(go + - --) are two asymptoti-
cally flat sections.

(2.5.6). Lemma [RV]. If S — T %=const, then B(fy,go) =0, if S— T = const then
B(fo,90) = const.

The KZ equation gives an example of a family of flat connections. The KZ
operators {H;} are symmetric with respect to the Shapovalov form.

For natural m,,...,m,, let L(m,),...,L(m,) be the irreducible s/, modules with
highest weights my,...,m,. For a nonrational number x and an integer A, consider
the KZ equation with parameter x and with values in SingL;: For an n-tree T and a
permutation ¢ € S, consider the asymptotic solution Y1, = {1 s}. Consider the
coordinates {uy, 7,4 }wem,. These coordinates take positive values on Ds.

For ¢ > 0, let

D 1. ={p € Dsluy.1+(p) <e foral welnr}.

Our second main result is the following theorem.

(2.5.7). Theorem. Assume that k = is and s — +0. Then there exists ¢ > 0 such
that any solution . r o € Yr 4, restricted to Dg 1 ., has an asymptotic expansion

Vet 0~ ] (uw, 1o) HET oW sexp(—iS/s) Z 5, (2.5.8)

wEInT
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where {u} are the numbers described in (2.3.1) and (1.4.5);
S:SC’T’UZDJYTYB—%]R, ﬁzf,,c,T,J:Da,T,e—»SingL,;

are suitable real analytic functions, all the functions {S, f;} depend only on
{tw, 7,6 }wem; and can be analytically continued to real analytic functions in a
neighborhood of the set {u,, 1, = Olw € Inr}.

The asymptotic expansion can be differentiated an arbitrary number of times.

The asymptotic expansion means that for any N,

Voo T ()" exp(iS)s) — 3 fis7| = 0¥
=0

we&lng

uniformly in Dq, 7 .
The theorem has the following appendix.

(2.5.9). Appendix.

(1) For any p € D, 1, the first terms { fo,c.1.s(p)} of the above asymptotic
expansions form a basis in SingL; orthogonal with respect to the Shapovalov
form.

(2) For any c, fo,. 1.(p) tends to

—1/2
=1 (mle(w) + m'(w) — 2¢(w) + j +2)°
—1)fk! - 1}
b (Wgn,(c(m " TG — o =) >
- v(c,0,T,0)

as uy 1.6(p) — 0 for all weInr. Here T is an n-tree with vertices marked
by meqy,...,Mguy. The numbers c(w),m'(w), and m’(w) for an n-tree with
marked tops are defined in (1.2). The vector v(c,0,T,0) is defined by (2.3.1),
k=0m+-+m,—21)2

The theorem and the appendix are proved in Sect. 4.

(2.6). Quasiclassical Asymptotics and Crystal Base. For natural my,...,m,, let
L(mi,q),...,L(m,,q) be irreducible U, modules with highest weights m,...,m,,
resp. For any permutation ¢ € S, let

L°(q) = L(my1),q) ® - -+ @ L(Mo(n), q) -

Statements (2.4.6) and (2.5.7) allow us to give a construction of a crystal base in
L?(g) purely in terms of quasiclassical asymptotics of solutions to the KZ equation.

This “quasiclassical” crystal base coincides with the distinguished crystal base
of the tensor product defined in (1.3). This statement can be considered as a quasi-
classical characterization of the distinguished crystal base.

We will give a construction for ¢ = id, since for an arbitrary permutation the
construction is the same.

To construct a crystal base in L(g) = L(m;,q)® --- ® L(m,,q) it suffices to
construct a crystal base in

SingL(g); = {v € L(g)|¢"v = ¢"v, ev = 0}
for every A.
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Let u: (Q(q%) - "—‘Z be the valuation map which assigns to a function g(q‘lT) the
order of its pole at ¢ = oc.
Using the KZ equation, we will construct a map

1
p:SingL(g), — ZZ
such that

uw)y=0 iffo=0,
w( +w) = max(u(v), u(w)) ,
wgv) = 1(g) + pu(v) (2.6.1)

for all v,w € SingL(q);, g € Q(ffl‘ ).
Let v € SingL(q);,

v = Z akalvl®"'®fk"Un,
kyyews kn

where v, is the generating vector of L(m;,q), j = 1,...,n, and the coefficients {ax}

are rational functions in q%‘

For k € €, let SingL(g = g(k)); be the space defined by (2.4.4). For any
such that ¢ = ¢(x) is not a pole of the functions {ax }, let v(qg = q(x)) € SingL(q =
q(x)) be the specialization of v at g = q(x).

Consider the KZ equation with parameter x and values in Singl;, see (2.3).
Let Sol(k), be the space of its solutions over Dj4, and let n(x): SingL(g = q(x)) —
Sol(k); be the isomorphism defined in (2.4.6). Then y(x) = n(x)(v(q = q(x))) €
Sol(k); is a solution over Dj4 to the KZ equation with parameter k.

For any n-tree T, let Yr,a(x) = {We. 7.1a} be the asymptotic solution, then

¥() = Y belq()3) - Y105

| . .
where {b.(q%)} are some rational functions.

(2.6.2). Proposition.

1. Let || ||: SingL;, — R be any norm on SingL,. Let x =1is, s € R, and
s — +0. For any n-tree T, let Diy 1. C Dy be the domain described in (2.5.7).
Then for every p € Digr . there exists a limit of s - In||y(is)(p)||. This limit is an
element of }‘Z, and does not depend on p and T. Denote this limit by u(v).

2. The map u, defined by this rule, has properties (2.8.1).

Proof. The proposition easily follows from (2.5.7), (2.5.9), (2.4.1), and (1.3.12).
Let 4 C Q(q%) be the subalgebra of functions regular at ¢ = co. Let
£ = {v € SingL(¢);|u(v) < 0}.

(2.6.3). Corollary. %Y is an A-submodule of SingL(q);.

Let (&,%) be the distinguished crystal base in L(gq) defined in (1.3). Let
(&;,9;) be the crystal base in SingL(q), induced by (&, %).

(2.6.4). Proposition. ¥ = ;.
The proposition easily follows from (2.5.7) and (2.5.9).
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For any n-tree T, let Yriq = {Y. ria} be the asymptotic solution considered in
(2.5.7) and (2.5.9), let

{H(uw, 7,ia) e T W sexp(—iS, 1.1/s) + fo,c.T, id}
"

be the collection of its first terms of asymptotics.
Denote by Asymy the @-module of @Q-linear combinations of the first terms of
asymptotics.

(2.6.5). Proposition. The above construction induces the canonical isomorphism of
the @ modules gg/q_%cf? and Asymy.

The module Asymr has a canonical basis generated by the first terms of asymp-
totics. This basis is uniquely determined by the fact that each element of the basis
is the first term of an asymptotic expansion of the form (2.5.8) of a solution to
the KZ equation and by the normalizing condition (2.5.9.2). The canonical basis

in Asymy induces a basis in gg/q“%gg. This induced basis coincides with the
basis 4.

3. Integral Representations for Solutions to the KZ Equation and
the Bethe Vectors

(3.1). Local System. Let my,...,m, € C, k € C*, let k be a nonnegative integer.
Set

k n
o(tz)= [I (z—z)"m> T (—t)* - [11Iz — o)™ (3.1.1)
I=1j=1

1<i<j<n 1sl<y=k
@ is a multivalued holomorphic function on
02/k+l1 = {(I,Z) € ‘Ek+"|t1=‘:tm7 t/ :’:Zm’ Z] :#Zm’ fOr all l’ m} .

Univalued branches of @ over open subsets of %, generate a complex one-
dimensional local system over %y, denoted by ().
Let %, = {z € €"|z;%z; for all /, j}, and let

prk,n:%lH—n _)OZlm (t,Z)HZ,

be a projection. Denote its fiber pr=!(z) by %y, ,(z). Denote by #; (k) the complex
vector bundle over %, with fiber Hy(% .(z), ¥ (x)) over z € U,. The bundle has
a canonical flat connection called the Gauss—Manin connection.

The symmetric group S; acts on %, by permutations of coordinates #,..., 1
preserving fibers of the projection. The function @ is symmetric with respect to this
action. Therefore, Sy naturally acts on the singular chains in % ,(z) with coefficients
in (k). This action induces an action of S on Hy(% 1(z), ¥ (x)). This action on
fibers of #; (k) commutes with the Gauss—Manin connection.

Denote by Hy(%k, n(2), #(x))— the skew symmetric part of this action:

Hi(Uy n(2), (€)= {v € Hyov = (—1)Ilv for all o € S;}.
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(3.2). Integral Representations. For my,...,m, € N and a nonnegative integer 1,
consider the tensor product of irreducible s/, modules, L = L(m;) ® - -- @ L(m,),
and the KZ equation with parameter x and values in Singl;. We will describe
integral representations for solutions to the KZ equation.

Set k = (m; + - - - + m, — A)/2. The number £ is a nonnegative integer. A mono-
mial of weight A is an element of L, of the form

fi = ffo@--© ff,, (3.2.1)

where K = (ky,...,k,), ki + -+ + k, = k. For a monomial fx define a differential
k-form in ¢ and z:

n(fx) = Ax(t,z2)dty A -+~ Adty ,

= Y (322)

The sum is over the set S(k; ki, ...,k,) of maps ¢ from {1,...,k} to {1,...,n} such
that for all m the cardinality of o~'(m) is k.
Consider the L;-valued form

N= > &tz) - n(fx)® fx, (32.3)

/g €L,

where @ is the function defined by (3.1.1). N is a multi-valued holomorphic k-form
on Ujyn.

In [SV] it is proved that:

For every j, the form

Q.
<xi -3 —f’—) N (32.4)
0z [z -z

is a sum of the differential of a suitable (kK — 1)-form and a form which has zero
restriction to fibers of the projection pry ,.

The form eN =Y @ - n(fx) ® efx is a sum of the differential of a suitable
(k — 1)-form and a form which has zero restriction to fibers of pry ,. (3.2.5)

The forms mentioned in (3.2.4) and (3.2.5) have the shape > Pw(M)® M,
where the sum is over monomials in L, and {w(M )} are suitable rational forms,
regular on % y. (3.2.6)

Assume that y(z) € H(Uy, o(z), S(x)). Assume that the map z — p(z) forms a
flat section of the bundle ) ,(x) when z runs through an open subset of %,. Then
the function ‘

Y(z)= [ N 3.2.7)
22)
takes values in SingL; and satisfies the KZ equation with parameter x [SV, V].

(3.2.8). Remark. The group S; naturally acts on the space of differential forms
on %Uj,, by permutations of ¢,...,%. The differential form N is skew symmetric
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with respect to this action. Let v : Hy(%k, n(2), L (k) — Hi(#Ui.n(2), F(k))— be the
canonical projection, then for any flat section z — y(z) of 5 ,(x) we have

[N= [ N.
(z) v((2))

(3.3). Quasiclassical Aysmptotic Solutions to the KZ Equation. Let k — 0. We
use the form N defined in (3.2.3) to construct quasiclassical asymptotic solutions
to the KZ equation.

The function @ can be written in the form

D(t,z) = exp(S(t,z)/k),

where
Sty= 5 e -z)+ S 2y —t)
1<l<y=n I=I<jsn
k n
— mjln(zj - t[). (331)
I=1j=1
Set ,
S
H —S)=det{ ——— | . 332
ess;(—S) = de ( 8t1ﬁtj) ( )
For a fixed z € %,, consider the equation of critical points of S in % ,(z):
oS
— =0, j=1,...,k. 333
o J (3.3.3)

Let 1 = t(z) be a nondegenerate solution of (3.3.3) holomorphically depending
on z in a neighborhood of a point z° € %,
Let B(z) C % ,(z) be a small ball with center at (#(z),z). Set

B_(z) = {(t,2) € Uy /() Im(S(1,2)) < Im(S(t(z),z))} - (334)

It is known that Hi(B(z),B_(z),¥(k)) is one-dimensional, see Sect.11 in
[AGV]. The Gauss—-Manin connection identifies these groups for neighboring z’s.

A generator of the homology group (for all x simultaneously) can be chosen
as follows. Fix a branch of arguments of all functions ¢; — ¢, t; —z;, z; — z,, for
all 1, m in a neighborhood of the point (#(z°),z). This choice determines a branch,
B(x), of @ and a branch of S in a neighborhood of (#(z°),z°). The branch f(x)
gives a section of (k) for all «.

There exist local coordinates u),...,u; in % ,(z) centered at #(z) such that the
coordinates holomorphically depend on z in a neighborhood of z° and

S(t(u),z) = =i + - - + ) + g(z)

for some function g(z). For these coordinates and a small ¢ > 0, denote by d(z)
the disc {(u, z) € Uy o(2)|ur,...,ux € R, 3 + -+ +u} < &}
The homology class of the cycle

0(z, k) = (d(2), B(1)]ac)) (3.3.5)
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gives a generator of Hy(B(z),B_(z), ¥ (x)). The classes [d(z, k)] form a flat section
of the Gauss-Manin connection of the vector bundle over a neighborhood of z°
with fiber H,(B(z),B_(z), ¥(k)).

Set

Y(z,k)=Q2mx)": [ N. (3.3.6)
(z,K)

(3.3.7). Theorem [RV]. Let k =is, s € R, and s — +0.

1. Then the function ¥(z) has an asymptotic expansion

Y(z,is) ~ exp(—iS(t(z),z)/s)igj(z)s’ s
j=0

where {g;} are SingL;-valued holomorphic functions defined in a neighborhood
of 2°.

2. The function ¥ (z,x) gives a quasiclassical asymptotic solution to the KZ
equation in the sense of (2.5).

3. 9o(2) = Hess,(=S(t(z),2)) 2 S Ax(t(2),2) fx -

fKEL;

(3.3.8). Remark. Let §°(z,k) be a singular chain in B(z) with coefficients in
F(x) such that the boundary of &'(z,k) lies in B_(z) and the class of §(z, k)
in Hy(B(z),B_(z), %(x)) coincides with [0(z, x)]. Then the function

P(z,k)=(2nk)"2 [ N
30z, x)

has the same asymptotic expansion as the function ¥(z, ).
The vector
g(1(z),2) = > Ax((z),2)f« (3.3.9)
JKEL;
is called the Bethe vector, see [B,Ba, BF,FFR, G,R, TV].
It is shown in [V2], that

B(g(#(2),z), g(t(2),z)) = Hess,(S(¢(z),z)), (3.3.10)

where B is the Shapovalov form on SingZ;.

The group of permutations of coordinates #,...,% acts on the set of ¢-critical
points of S. The Bethe vectors corresponding to z-critical points of the same orbit
are identical. If two critical points ¢ = ¢'(z) and ¢ = £2(z) lie in different orbits,
then the corresponding Bethe vectors are orthogonal with respect to the Shapovalov
form,

B(g(1'(2),2),9(£*(2),2)) = 0. (3.3.11)

Moreover, for generic z € %,, there are exactly dim SingL; different orbits of non-
degenerate ¢-critical points, and, consequently, the corresponding Bethe vectors form
a basis in SingL;, see [RV].
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(3.4). Homology Class Sitting on a Critical Point. Under the assumptions of
Sect. (3.3), assume that for almost all k a homology class [y(x)] € Hy(% 1(2°),
F(x)) is given. Assume that a chain

M
(k) = Zl(cj,ocj(x)) (34.1)
=

is given, such fhat:
For every j, ¢; C WUy, o(z°) is a singular cell. (34.2)
For every j, a,(k) is a section of .%(x) over ¢; which has the following form:

Fix a branch of arguments of all functions ¢; — 1, t; — z;, z; — z,, for all [, m
in a neighborhood of c,. This choice determines a branch f;(x) of @ over c,.
Then a;(x) = ¢;(k)B,(k), where ¢;(x) is a rational function of q(K)%. (3.4.3)

If k € € is such that ¢;(k),...,en(x) are defined, then the chain y(x) is a cycle
representing [y(x)]. 3.4.4)

In this case we will say that the class [y(k)] is flat with respect to k, and y(x) is
a flat chain representative.

Assume that [y(x)] is flat. Assume that [y(x)] has a representing chain y(x) of
the form (3.4.1)—(3.4.4) and such that

(¢1,21(x)) has the form (d(zo),sl(rc)ﬁ(rc)ld(zo)), where (d(z°), B()|40)) 1s de-
scribed in (3.3.5) and ¢;(x) is a rational function of q(K)% . (34.5)

For k =is, s € Ry, and for every j = 2,...,M, we have

lim sup Jog )]/ e1 ()BGNE("), 2)] = 0. (34.6)

In this case we will say that the class [y(x)] sits on the t-critical point
(t(z"), 2%).

Assume that [p(x)] sits on (#(z°), 2°). Let [y(k)] € Hy(U n(z), ¥ (x)) be the
class such that for a fixed x the map z — [y(x)] forms a flat section of the Gauss—
Manin connection over a neighborhood of z° and [y(z°, k)] = [y(x)].

(3.4.7). Theorem. Under the above conditions consider the SingL;-valued function

Y(z,k) = f N,
[7(z, ¥)]

which for a fixed x gives a solution to the KZ equation with parameter k. Assume
that k = is, s € R, and s — +0. Then

1. The function ¥ has an asymptotic expansion
V(z,is) ~ F(i)exp(—iS(t(z),2)/s) 3 9;(2)s’ ,
j=0

where {g;} are SingL;-valued holomorphic functions defined in a neighborhood

of 2°.
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2. The function ¥ gives a quasiclassical aysmptotic solution to the KZ equation
in the sense of (2.5).
3. go(z) is given by (3.3.7.3).

The theorem is a corollary of (3.3.7).

Consider the natural action of S; on singular chains and homology classes. Let
[y(z, k)] be as above. Define a new skew symmetric class [y(z,x)]- € H(%k x(2),
S(k))- by

Dzl = 3 (=Dlely(z0)]. (3.4.8)
O'GSk
We have
N =k! f N . (3.49)

[2(z, )]~ [y(z, ©)]

(3.4.10). Corollary. The intergral in (3.4.9) has an asymptotic expansion as Kk = is,
s € R, and s — +0. The asymptotic expansion is equal to the asymptotic expan-
sion in (3.4.7.1) multiplied by k!.

We will say that [y(z, k)] sits on the Sy orbit of the t-critical point (1(z),z).
(3.5). Example of a Bethe Vector. Let

k _m _m _
Pp oy () = [[(~t)"F (A —t)"% - [I (-6,
7=1

1sj<I<k
S(t) = Sk, my, my(t, k) = K In®(2) . (3.5.1)
(3.5.2). Theorem, [V2], cf. [Sz, Sect. 6.7].
1L If = (t,...,t) is a critical point of ®, then the symmetric functions
M=th+-+t, =2t ..., k=t - -k

are given by

; _(k> ! (mi+j—k)
TN S A my 1 2k)

Sfor all 1.
2. The Bethe vector is Sing(L(m) ® L(12))m,+my—2x corresponding to the crit-
ical point {° is given by

fro @ fF P,

k K\ T om4+my =2k +j+2)
—1)» 2
) (,,) 175 o = DTG (ma = )

ony gy = my +my =2k + 7 +2)
N Hess(S(1°)) = k! ,E[o (m1 — j)(mz — j)

(3.6). Asymptotics of Critical Points and Bethe Vectors. In (2.2) we have con-
structed asymptotic zones. In this section we will describe asymptotics of ¢-critical
points and Bethe vectors in an asymptotic zone, cf. [RV].
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Asymptotic zones are numerated by n-trees and elements of the symmetric group
Sz We will consider the case of the identity permutation. The case of an arbitrary
permutation is treated similarly.

For an n-tree T consider the asymptotic zone

uria = {21+ -+ + 2y {thw, i fwemy }: Dia — R X (R5)" " (3.6.1)

Consider the function @(¢,z) defined by (3.1.1).
Mark the tops of 7' by my,...,m,. Let the set Adm be the set of all admissible
colorings of T having weight A =m; + --- + m, — 2k, see (1.2).

(3.6.2). Theorem. Assume that z € Diq and u,, 1..4(z) < 1 for all w € Iny. Then
we have the following three statements.

1. The number of Sy orbits of nondegenerate t-critical points of ®¥(t,z) is equal
to dim SingL;, see [RV].

2. The Sy orbits of nondegenerate t-critical points can be numerated by el-
ements of Adm in such a way that the Sy-orbit corresponding to a coloring
¢ € Adm has a t-critical point (t°(2),z) of the following form:

Let {M,}ywew, be an arbitrary partition of {1,...,k} into a union of disjoint
subsets such that #M,, = c(w). For each M,, fix its arbitrary ordering M, =
{1w), .., jeowyW)}. For any w € Iny define a number I(w) as follows. The tops
of the tree T are numerated by 1,...,n from left to right. The number I(w) is
the maximum of the indices of the tops lying on the left branch of the tree T
at w. Let m'(w) and m"(w) be the numbers defined in (1.2) for a vertex w of a
colored tree T with marked tops. Consider the function S, yieiw), mr(w) defined by
(35.1). Let (ai(w),...,acw)(w)) be coordinates of a critical point of the function
Se(wy, mleewy, mr(w)- Lhen the critical point (t°(z),z) has the form:

C!

1,on(2) = Ziwy = (ap(w) + O(ur, (@) Juy, 7,14 -
y

The product is over all internal vertices y lying on the shortest path in T connecting
w and the root of T (the vertex w is included). The function O is a function of
Uy 1.ids X € lng, holomorphic in a neighborhood of the set {uy 1.4 =0, x € Inr},
and such that O(u =0) = 0.

3. The Bethe vector corresponding to (t°(z),z) has the following form:

g(t°(2),2) = (v(c, 0, T, id) + O(u(2))) 1 (tw, 7,10) =207,

w€lnr

where b(w) =3_ c(y), the sum is over y € Inr such that y lies on the right or

on the left branch of T at w. The function O(u) has the same structure as in
(3.6.2.2).

To prove the theorem we consider new variables {x,p(w),un «d} defined by
Lipw) = Ziwy = X0 [T 4y, 7,ia -
y

Zm = Zm(uT, id) 5 (363)
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where the product is the same as in (3.6.2.2), and the second formula is determined
by (3.6.1). It is easy to see that

D(t(x, u), z(u)) = (=1 [T (i, 7301 51 wIx

wé€lny

. (Q @c(w),ml(w),mr(w),K({xjp(w)})+@(u)) , (3.64)
welny

where A4 is some constant, {u(c,T,id,w)} are the eigenvalues of the vector
v(c,0,T,id) with respect to the operators {Q, 7.4}, see (2.3.1), ¢ is a function
of x,u holomorphic in a neighborhood of the set

X = {xj,00) = ap(w),thy, 1,0 =0 for all w, p}, (3.6.5)

and which is zero on X. This statement implies (3.6.2.2) and (3.6.2.3). Statement
(3.6.2.1) is proved in [RV].

(3.6.6) Remark. There are integral representations for solutions to the KZ equation
with values in a tensor product of modules over an arbitrary Kac—-Moody Lie algebra
g, see [SV, V1]. There are obvious g analogs of (3.3.7), (3.4.4) and (3.6.2), cf.
[RV].

4. Integral Representations for Solutions to the KZ Equation and
the Quantum Group U,

(4.1). Complex [V1, Sect. 5]. For k € €, consider the C-algebra U,—y(). For k > 0,
let

(U goo)k = CfF C Upegy and U = k@o Cr*.
The map : U~ - U~ U™,
k=1 [k
w3 fte ! (4.1.1)
! q(x)

I=1

defines a coalgebra structure on U™, here

(k) B!
l q(x) (l)q(K)!(k—l)q(K)!

is the g-binomial coefficient.
For a Uy—q(-module M with highest weights, the map v:M — U__ ., ®M,

N
vu 3 et (4.12)
>0 [ge)!
defines a Uq_:q(K)—comodule structure on M.

For k = 0, set
CKM) = (U_y,)* @M.
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Define d: CF — C**1 by

diap @ - Qa1 Qui— —a; Q- Qay v(u)

k
+3Y g @ ewa)® - ®a @u.
I=1
(4.1.3)
For any / and %, set

CiMy= @ (U ), ® U™ ), @My —..cy, - (4.14)
11 ,,,,, I/{

Then C* = ; Cf.f . The differential d preserves the grading. For any 4 we have a
complex (C3(M), d) and

H(CS, d) = kere N\ M; (4.1.5)

for a nonrational k. Assume that k is not a rational number.

For an integer m, let V(m,q = q(x)) (resp. L(m,q = q(x)) be the U;—y() Verma
module (resp. irreducible module) with highest weight m.

For any ¢ € S, 4 € Z, and natural my,...,m,, set

V(g = q(k)) = V(me).g = (k) ® - @ V(mem),q = q(x)),
Sing V°(q = q(x)); = (V°); Ukere. (4.1.6)

Let L7(g = ¢(x)) and SingL’(gq = g(x)), be the corresponding objects constructed
from the irreducible modules, Denote by

pr:Sing V(g = q(x)); — SingL’(q = 4(x)); (4.1.7)

the natural epimorphism.
For any j = 1,...,n — 1, we have an isomorphism

R (U)*eV’ - (U ) eV, (4.1.8)

where © € S, is the transposition of j and (j + 1). R; ;41 commutes with the dif-
ferential and induces an isomorphism of cohomology groups of the corresponding
complexes.

(4.2). The Main Result. Assume that xk € C is not a rational number. Consider
the function @(z,z) defined by (3.1.1) and the objects associated with the function
&(t,z) in (3.1) and (3.2).

Forz € U, let €o(Ur n(z), L (x)) be the complex of singular chains in % ,(z)
with coefficients in &(x). The group S; of permutations of corrdinates ¢y, ...,
acts on %,. Denote by Go(% n(z), ¥ (x))—- the skew symmetric part of the
action.

(4.2.1). Theorem. For any o € S, and any z € D, there exists a monomorphism
of complexes

Wz, 1): C7(V°(q = q(1))) = Cu—a( Wi, n(2), L ())— ,
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where A =m + --- 4+ m, — 2k. Denote the image of v by

Colli n(2), F(K))— C Gl U n(2), S (1)) .
The monomorphism has the following six properties:

1. Wz, k) is a quasiisomorphism. Denote by the same symbol v(z, k) the induced
isomorphism of homology groups: H*(C3(V°(q = q(k))), d) = Hi_ (U, n(2),
SL(Kk))-.

2. W(z, k) is flat with respect to the Gauss—Manin connection. Namely, if

P(z ., 2%): Ho(Uy, n(2"), S(K))— — Ho(Ui, n(2*), F(x))-

is the isomorphism of the Gauss—Manin connection along a curve in D, from a
point z' € D, to a point z* € D, then v(z*,k) = P(z',2%) - v(z', k).

3. Let t be the transposition of j and j + 1 for j = 1,...,n — 1. Connect the do-
mains D, and Dy, by a curve y:[0,1] — U, of the following form. Let (z},...,29) €
Dy, 201y < -+ < 20, Assume that z,( ;) and z,( 11y are very close. Set zi()(s)) =

2] for 140(j + 1), set zo(;11)(7(5)) = exp(mis) 20 ;1) = Zo( jy) + 2oy Let
Py Ho(Ui n(7(0)), S (k)= — Ho(Ui, n(7(1)), S (k) -

be the isomorphism of the Gauss—Manin connection along 7. Let
Ry HU(C}(V(q = q(x)),d)) — H*(C; (V' (g = ¢(x)), d))

be the R-matrix isomorphism. Then P, - v(y(0),k) = v(y(1),k) * Rj j+1.

4. Consider the KZ equation with parameter k and with values in SingL;, see
(3.2). Let Sol(k), s be the space of solutions to the KZ equation over D,. By
(4.2.1.1) and (4.2.1.2), for any v € SingV(q = q(k));, the function

Y:D, — SingL;, z+— [ N (42.2)

V(z, K)v

is a solution to the KZ equation. Here N is defined by (3.2.3). Hence, by (4.2.1.1)
and (4.2.1.2), we have a homomorphism

¥4(x): Sing V(g = q(x)); — Sol(x),., . (4.23)

Let pr: SingV°(q = q(x)); — SingL°(q = q(x)); be the canonical epimorphism.
We claim that ker pr C ker ¥;(x). Hence we have a homomorphism

ns(x): SingL° (g = g(x)); — Sol(k);, ;. (4.2.4)

5. For an n-tree T, let B, -(k) = {v(c,0,T,0,K)} be the basis in SingL°(q =
q(x)), corresponding to the tree T with tops marked by my(1),...,ms(n), see
(1.2). Then for any vector v € Br, ;(k) we have

TEU(K)(U(C9 09 T, a, K)) = lpC, T,0 -
Here Y. 1, is the asymptotic solution defined by (2.3.1).
Corollary. n,(x) is an isomorphism.

6. Let ur,; be the asymptotic zone constructed in (22). If z € D, and
{tw, 7,6(2)}wem, are small enough, then for any v(c,0,T,0,k) € Br,; the class
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Wz, 1)0(c,0,T,0,K) sits on the Sy-orbit of the t-critical point (t°(z),z) corre-
sponding to the coloring c, see (3.6.2). Moreover, the asymptotic expansion
(3.4.10), (3.4.7.1), and (3.3.7.1) of ns(x)v(c,0,T,0,Kx) has the form (2.5.8) and
properties described in (2.5.7) and (2.5.9).

Theorem (4.2.1) implies (2.4.1), (2.5.7), and (2.5.9). Theorem (4.2.1) is proved
in (4.4)-(4.6).

(4.3). Another Form of Ugsl,. Define the Q(q%)-algebra ﬁq as the algebra gener-
ated by the symbols E, F, H with the relations

[H,E] =2E,
[H,F]=-2F,
[E,F]=q"* —q7 7. (43.1)

U ¢ has a Hopf algebra structure with the comultiplication 4 defined by
AH)=H®1+10H,
MEY=E®q¢"*+q " QE,
AFYy=Foq"* +¢q 1 oF. (432)

Let ﬁq:q(K) be the C-algebra obtained from U ¢ by specializing the indeterminate
g to qU/4). ) -
Fork > 0,set (U ) =CFtand U =@,., CFF. Themap U — U ®

U given by (4.1.1), in which f is replaced by F, defines a coalgebra structure.
For a U 4=q(x)-module M with highest weights, the map

Viurs SSF @ EDy (43.3)
>0

defines a U -comodule structure on M. For any A define a complex (5;(1\7[ ),d) as
in (4.1).

The Hopf algebras U, and qu are isomorphic, an isomorphism n: U, — ﬁq
is given by n(h) = H, n(e) = ¢"*E, n(f) = Fg~!/*. In particular, these formulae
give an isomorphism of Uj—y(.) and ﬁq:q(K).

Assume that x is not a rational number.

For an integral m, let V(m,q = q(x)) be the U,—qy Verma module with the
highest weight m, the generating vector vy, and the basis f Do, 1= 0. Let
V(m q = q(x)), Bm, FOF, be the corresponding objects over U g=q(r)- Let

—H/4\l
i Vg = 4(06)) = Plmag = g0, (e 05
[l]q(x)!
Then for any a € Uy—q) and u € V(m,q = g(x)) we have n,(au) = n(a)m,(u).
For natural my,...,m, and o € S, let

V(g = q(x)) = V(me1y,q = q(k)) ® - - @ V(mg(n),q = q(x))
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and
V(g = q(x) = V(ms),q = q(k)) © - - - @ Vimg(u), g = q(K)) .
For any k£ and A, define a map

~k ~0o
V. Ci(V(q = q(x))) = C,(V (g = q(x)))., (434)
f11 ®"'®fl" QU ® - Dup, — Fh ®"’®F1" ®7Tm0(1)(141)®"'®7Tm(,(,,)(un)-
Then

¥ defines an isomorphism of C;(V°(q = q(i))) and 5:( 176(q = q(k))).
(43.5)

For a nonnegative integer m denote by L(m,g = q(x)) the irreducible (~]q:q(,\.)-
module with highest weight m. Set

Sing V(g = q(x)); = {v € V(g = q(1))lg" v = ¢"(x)v, Ev =0},
SingL?(g = q(x)); = {v € L(q = q(x))Ig" v = ¢"(x)v, Ev =0}
(4.4). Construction of the Monomorphism v. Assume that i, m,,...,my,, 4,k are the

same as in (4.2).
In [V1] a monomorphism

7(z,1):C: (g = () — G o(Uy n(2), F(K))— (44.1)

is constructed for any ¢ € §, and any z € D,. Denote the image of the monomor-
phism by Ce¢(%. 1(2), S(1¢))— C Co(U, n(z), S (x))—. It is proved in [V1] that the
monomorphism has the following four properties:

¥(z,x) is a quasiisomorphism, cf. (4.2.1.1) and [V1, Sect. 8.2]. Denote by the
same symbol 7(z, k) the induced isomorphism in homology groups. (4.4.2)

¥(z, k) is flat with respect to the Gauss—Manin connection, cf. (4.2.1.2) and [V,
Sect. 8.2]. (4.4.3)

V(z, k) transforms the R-matrix action on c Z(Va(q = ¢(x))) into the monodromy

action on @-.(%k,,,(z), F(k))—, cf. the precise statement in (4.2.1.3) and [V1,
Sect. 8.14]. (4.4.4)

For any v € Sing 170((1 = ¢(x)),, the function

Y:D, — SingL;, z— [ N, (4.4.5)

Wz, K)v
is a solution to the KZ equation. By (4.4.3) we have a homomorphism
¥ o(i): Sing V(g = q(x)); — Sol(x);.5 .

Let pr: Sing I7(q =q(k));, — SingZ(q = q~(K)),1 be the canonical projection. It is
proved in [V1, Sect. 12.2] that ker pr C ker#". Hence, we have a homomorphism

Tyt SingZ"(q = q(x)); — Sol(kx);,, .
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ko~
Let ¥: Cff(V"(q =q(x))) — C;'(Va(q = g(x))) be the isomorphism constructed
in (4.3.4). We set
Wz, k) = (21K) 5 Wz, k)P . (4.4.6)
Obviously, this monomorphism has properties (4.2.1.1)—-(4.2.1.4). We will prove
that the monomorphism has properties (4.2.1.5) and (4.2.1.6).

(4.5). Proof of Theorem (4.2.1) for n =2. For n =2 we have

O(t,z) = (zp —z))"™ ] (41—t )2/"1‘[ H(z, — )M (4.5.1)

181<j<k 1=1j=

There are two permutations in S: the identity permutation id and permutation
(2,1). We will prove properties (4.2.1.5) and (4.2.1.6) for D;y. There is only one
2-tree T, and therefore, there is only one asymptotic zone in Dj4:

UT i = {Zl +2z, u=12p *-Zl}.
Introduce the following new coordinates xi,...,x;:

t—zy=u-x, l=1,...,k,

cf. (3.6.3). Then

D(1(x, 1), 2(u)) = (— 1y ko= DY, (), (4.5.2)

where the function @y, m,, 1S given by (3.5.1).
Let A={x e R¥|0 < x; < --- < x < 1}.
Let vy, € L(m;) be the generating vector of the s/, irreducible module. Let

ﬁ,,,j S Z(m,,q = g(x)) be the generating vector of the ﬁqu(,\.) irreducible module.
Let

p— z":(_l)p(MZ —k+ l)q(,\.)...(mz —k+ p)q(K)
»=0 (ml )q(l\‘) o (ml —Pp + 1)q(1\')
X q(K)—p(m~2k+19+1)/ZF(p)ﬁml ® F(k—p)ﬁm2 (4.5.3)

be the generating vector of SingZ‘f(q =q(x)). Set y(z)=Wz, k)€
Hi (P, 1(2), #(k))- for z € Dy.
According to the explicit construction of v(z,x) [V1], we have
k(k mym
f N(t Z) __q(K)———+ (mz)q('\ ) ~(m2 —k + 1)[](1\) . u(-Jz—z—k(m|+n12)+k(k—l))/n
W(2)

k O - .
RV T ™M —x) ™™ T (o = x5 A()dx; A+ A dxg
as=1"

1<j<i<k

! _
° fvml ®fk Ivmz,

and
k 1
4x)y= > [l (4.5.3)
ceS(k; 1, k—1yi=1%1 — Ya(1)

where y; =0, y; =1, and S(k; [,k — [) is defined in (3.2.2).
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The value of the integral over 4 is considered in the sense of analytic continu-
ation from the domain of parameters where k is positive and my,m, are negative.

This formula is the decisive property of ¥(z,x) which allows us to prove
(4.2.1.5) and (4.2.1.6).

Consider the single basic vector v(c,0,T,id, k) € B, q(x) of the one dimen-
sional space SingLif'(q = q(x)). (4.4.6) implies that

) N = 2mr) " 2q (i) F k=)
vz, K)(c, 0, T, id, k)

% u('—n—lfm—z-—k(ml+mz)+k(k—l))/Kk!Ik(ml,m2; K)

K

k=1
1= —-J K . N 5
><11;10 << m|+m2-—2k+j+2>(m2 Pat )> {01, k 02}
(454)

where the vector {v, ;v2} € Sing(L(m;) ® L(my)); is given by (1.4.1) and
I (my,my; k) is the Selberg integral given by (1.5.1). By (1.5.2) and (1.5.3), we
have

[ N = C(c,T, k) - ul T —Kmam)tkk=1gy, =t (45.5)
v(z, k)v(c, 0, T,1d, )

The right-hand side is exactly the asymptotic solution defined by (2.3.1). This
proves (4.2.1.5).

Now assume that k = is, s € IR, and s — +0. We compute the asymptotic ex-
pansion of the right-hand side of (4.5.4) using (1.5.1) and the Stirling formula. This
shows that the asymptotic expansion of m4(x)v(c,0,T,id, k) has the form (2.5.8)
and the properties described in (2.5.7) and (2.5.9).

According to the construction in [V1], the class v(z, x)v(c, 0, T,id, k) is flat with
respect to x, see (3.4). The function &(¢,z) has exactly one Si-orbit of ¢-critical
points, see (3.5). To show that the class sits on this orbit we need the following
lemma.

(4.5.6). Lemma. Let [y(x)] € Hi(%,2(z), S (x)) be a class flat with respect to k.
Then [y(x)] sits on the orbit of t-critical points of ®(t,z) or for any P > O there
exist a chain

M
N(K) = Zl(cj,oc,'(K))
j:

representing [y(x)], flat with respect to k, and such that, for every j=1,...,m,
we have
lim g()” sup|a, ()| = 0. (45.7)

s—+0 <

(4.5.8). Corollary. If [y(k)] does not sit on the S orbit then
lim g(x)" [ N=0

540 ()]

for all P.

Proof. First, remark that @* is a rational function on % »(z).
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Now consider the compactification of %; 5(z) in (CP')*. Let X C (CP')" be the
divisor of singularities of @. A resolution of singularities of X C (CP')* is a proper
analytic map F:(4 C B) — (X C (CP")*) such that 4 is a divisor with normal
crossings in a nonsingular B and F|z_4:B — A — (CP')* — X is a biholomorphism.
The condition k£ < min(m;,m;) implies that there exists a resolution having the
following property:

For any point a € A4, there exists local coordinates uy,...,u; on B centered at a
and such that 4 is defined by equation

up - - .ur_——__O
for some » € {1,...,k} and
P oF(u)y=ul -+ - Ul (4.5.9)

where /; + --- « [, 0.

Let S = kIn®. Then § = 2;:1 lj(In |u;| + iargu;). Introduce the new real co-
ordinates v; = In |u;| and w; = argu;. Let H,...,H, be arbitrary real numbers such
that 1y + -+ H.l, = —1.Set Y = Z/‘ H,j The vector field Y decreases ImS

in a neighborhood of the point a.

To prove the lemma we start with an arbitrary representing chain y(x), flat with
respect to x. Then we deform (k) into the direction of decrease of ImS. To deform
the chain we use local fields {¥} constructed above in a neighborhood of X and we
use the field grad(ImS) in the “finite” part of the (CP!')*\X. This procedure will
push the chain onto the orbit of z-critical points or will create a new representing
chain with property (4.5.7).

The lemma and Theorem (4.2.1) for n = 2 are proved.

(4.6). Proof of Theorem (4.2.1). To simplify notation we will prove the theorem
for the case n =3, o0 =id € S3, and for the 3-tree shown in (4.6.1). The general
case is completely similar.

@ @ ®

W (4.6.1)

W,

In this case the asymptotic zone has the form u = ur g = {z; + 2z + z3,u1, U2},
where z3 — z; = up, zp —z; = ujup. If u; and u, are small, then z, — z; < z3 — 2.

Let the tops of 7 be marked by nonnegative integers m;,m,,m3 and let ¢ be an
admissible coloring of T having level 1 = m; + my + m3 — 2k. Set ¢; = c(wy), ¢z =
c(wy), then ¢; + ¢y =k

Let v,, be the generating vector of the s/, module L(m). Let 7,, be the generating
vector of the U,—y) module L(m,q = q(x)).

Set v = {{Um> ¢, Umy }» ¢ Umy }» 0= ((Omy5 ¢, Omy)s ¢, Umy )> S€C NOtations in (1.2.1)
and (1.4.1)

Consider the solution to the KZ equation given by

Yz [ N, (4.6.2)

v(z, K)U
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where z = (21,22,23), 2| < z; < z3. Our problem is to show the following state-
ments (4.6.3) and (4.6.4):

W(z(u)) = C(e, T, k) - " b (v + O(u)),

k!
Cle,T,k) = ——— « Jo,(mi,mp; ) - Jo,(m' ,m3; 1), (4.6.3)
ciley!
where m' = m; + m, — 2¢;, see (1.5.3), and the real numbers puy, i, are defined in
(2.3.1).

(4.6.4). Theorem. Assume that k =is, s — -+0. Then for small u\,u, the class
Wz, k)0 sits on the orbit of the t-critical point (t°(z),z) such that

t;(z)—zl =(a, +OW))mu,, p=1,...,c;,
e, (2) — 22 = (b1 + O(u))ua, p=1..,¢c,

where (ay,...,ac) (resp. (by,...,b.,)) is a critical point of Pc my, my x (resp.

ey mb, my, 1)> S€€ (3.6.2). Moreover, the asymptotic expansion of y(z(u)) as s —
+0 has the form described in (2.5.6) and the properties described in (2.5.7) and
(2.5.9).

Proof. To prove these statements we will choose a special chain representation for
the class v(z,k)0. We will use the construction of iterated cycles described in [V1,
Sect. 14].

Consider the space €291 with coordinates z1,22, 1,5 ke Let

2
pri: € — €, (z1,22,) = (21,22)

mymy

¢ 2
O =(@—-z)> [I @t TI TG —u)™"™". (4.6.5)

1Si<y=¢ I=1 =1

By (4.4.6) we have a map
V[(Z1,Zz, K) : Slng(L(mlsq = Q(’C)) ® L(mZ’q = q(K)))ml:ml-)—mz—h']

- Hcl(PVI(Zl,Zz)_],«%(K))—— s

where z1,z0 € R, z; < z, and F(k) is the local system defined by &;.

For z; =0,z =1, fix a chain representative y; for the class [y,(0,1)] =
v1(0,1,6) (Tm,» ¢, Um, ), flat with respect to «, cf. (3.4.1).

For fixed numbers zJ,z9 the map

T: (21,2211, 1)) = (&) — 2Dz + 20,(2) — 2)za + 20, (20 — 20 + 20,..)

sends pr; '(0,1) to p; '(2%,29). Hence, the image of y; under T gives a represen-
tative

M;
1(2),29) = z](c;(z?,zg), o () (4.6.6)
=

of the class v(2%,29, %) (B, » ¢,Um, ) for arbitrary z) < zJ. This representation is flat
with respect to k.
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Similarly, consider the space €22 with coordinates 22,23, ke 415 - -t Let

pri: €2 — €, (22,23,1) = (22,23)

1 . ok 1 )
d)” — (23 _ Zz)m my /2K H (tl _ t/)Z/I\ H (22 _ tl)—-m /7\(23 _ tl)——m3/1\ )

c<I<j<sk I=c;+1

By (4.4.6) we have a map
V(22,23 1) : Sing(L(m',q = G(k)) ® Lm3,q = 0yt s 20,

— Ho,(pr; ' (22,23), Su(K)) -,

where 25,23 € R, z; < z3, and ¥;(k) is defined by @;;. As above, construct a chain
representation

M
Yr(z2zs) = Yo(CH (), (1) 46.7)
of the class v(z2,23) (D1, ¢, Umy ) Which is flat with respect to «.

Using the chains y;,yy, we will construct a chain representing v(z,x)
((Eml ) C]Bmz )’ &) Emg, )

Let uy,u, be small, then z, — z; € z3 — z;.

Identify pr; Yz1,22) with €4 using the coordinates t,...,f,, identify
pry '(22,23) with €2 using the coordinates #., 1,...,#, and identify prs. ,1((21,22,23)
with CF = €< x C.

Using these identifications, for any j = 1,....M;, [ = 1,..., M}, define a k-cell
Cii(z1,22,23) in pr{,‘((zl,zz,@):

Cii(z1,22,23) = Ci(z1,22) X Ci(22,23) .

Using o and of we will define a coefficient of Cj; in the local system .%(x)
defined by the function @ described in (3.1.1) for n = 3.

1. pl

) . . I .
of has the form & - B}, where ¢/ is a rational function of ¢(x)i and f! is

a branch of @; over C/. The coefficient of has the form & - B, where & is

a rational function of q(K)% and B is a branch of @, over C/. We define the
coefficient of Cj; in (k) by

_ 11
% =¢&; - & 'ﬁija

where f;; is the branch of @ over Cj; defined below.

Any branch of @;, @, or @ is defined by determining arguments of all differ-
ences t; — tj, zj — t;, z; — z; in the formulae for @;, ®;;, and @. Therefore, we as-
sume that over C; (resp. C/') the argument of every difference in @; (resp. @) is
fixed. Let us determine the argument of every difference in @ by the following rule:

Choose an argument of z3 —z, 20 —zj, 2z, — t, (for a > ¢y, b=2,3),z, — ¢,
(fora<ciand b=1,2),t,—tp (for ] Sa<b =cjand forc; <a < b = k)
the same as those in 8} and f’. The function z; — 1, for @ > ¢; is approximately
equal to z; — 7, on Cj;. Choose the argument of z; — #, which is close to the argu-
ment of z; — ¢, in B,

The function z3 — ¢, for a < ¢; is approximately equal to z3 — z; on Cj;. Choose

the argument of z3 — 7, which is close to the argument of z3 — z, chosen in B.
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The function ¢, — 1, for @ < ¢ and b > ¢, is approximately equal to z; — #,
on Cj;. Choose the argument of 7, —#, which is close to the argument of z; — 1,
on Cj;.

It is easy to see that

M My
Wz12223) = ) 2 _(Cpy 1)
7T

is a cycle. The group S; acts on the space of chains with coefficients in (k). Set

Y1 22,23) = ,—z( Dy - 2(z1,22,23) -
C]C 7€Sk

According to [V1, Sect. 14] we have

The chain y(zy,z2,23) represents the class W(zy,23,23)0 . (4.6.8)
Now introduce the new coordinates xi,...,x; in pry ,1(21,22,23 ):
tp—zi=xpui, p=1,...,¢
tp — 22 = Xpliy, p=c+1,.. k.
The cells C,; of the chain 7 written in coordinates xi,...,x, do not depend on

uy,uy. The dependence of @ in those coordinates has the form
(D = u"ll]/k‘ uQZ/K(dsC],ml,mz,K(xly‘ . '3-xC] ) ° (pc%ml,m_%x(xc’l'l’l;' . axk) + @(U)) . (469)

Knowing that y,(0, 1) sits on (ai,...,a. ) and yy(0, 1) sits on (by,...,b,), we
may conclude that y sits on the ¢-critical point described in (4.6.4). Knowing that
integrals over y; and y; have the desired asymptotic expansion, see (4.5), we may
conclude that the asymptotic expansion of the function ¥ has the form described in
(2.5.6) and the properties described in (2.5.7). Formula (4.6.9) also shows that the

integral
/] N

"z1,22,23)

is the asymptotic solution Y 1 i4.
Theorem (4.2.1) is proved.

References

[AGV] Amold, V.1, Gusein-Zade, S.M., Varchenko, A.N.: Singularities of Differentiable Maps, 2,
Birkhauser, 1988
[B] Bethe, H.: Z. Phys. 71, 205 (1931)
[Ba] Babujian, HM.: Off-shell Bethe ansatz equation and N-point correlators in the SU(2)
WZNW theory. J. Phys. A: Math. Gen. 26, 6981-6990 (1993)
[BF] Babujian, H.M., Flume, R.: Off shell Bethe ansatz equation for Gaudin magnets and solu-
tions of Knizhnik—Zamolodchikov equations. Preprint Bonn-HE-93-30
[D] Drinfeld, V.: Quasi-Hopf algebras. Leningrad Math. J. 1, no. 6 (1989)
[FFR] Feigin, B., Frenkel, E., Reshetikhin, N.: Gaudin model, Bethe ansatz and correlation func-
tions at the critical level. Preprint, 1994



Asymptotic Solutions to the K~Z Equation and Crystal Base 137

[FT] Faddeev, L., Takhtajan, L.: Uspehi Mat. Nauk 34, no. 5, 13-63 (1979)

[FW] Felder, G., Wieczerkowski, C.. Topological representations of U,(s/). Commun. Math.
Phys. 138, 583-605 (1991)

[G] Gaudin, M.: Diagonalizations d’une classe d’hamiltoniens de spin. Jour. de Physique 37,
no. 10, 1087-1098 (1976)

[K] Kashiwara, M.: Crystallizing the g-Analogue of Universal Enveloping Algebras. Commun.
Math. Phys. 133, 249-260 (1990)

[Ko] Kohno, T.: Monodromy representations of braid groups and Yang-Baxter equations. Ann.
Inst. Fourier 37, 139-160 (1987)

[KR] Kirillov, A., Reshetikhin, N.: Representations of the algebra U,(s/(2)), g-orthogonal poly-
nomials and invariants of links. Preprint, Leningrad, 1988

[KZ] Knizhnik, V., Zamolodchikov, A.: Current algebra and Wess-Zumino models in two di-
mensions. Nucl. Phys. B 247, 83-103 (1984)

[M] Mehta, M.: Random Matrices. New York: Acad. Press, 1991

[R] Reshetikhin, N.: Jackson type integrals, Bethe vectors, and solutions to a difference analog
of the Knizhnik—Zamolodchikov system, Lett. Math. Phys. 26, 153-165 (1992)

[RV] Reshetikhin, N., Varchenko, A.: Quasiclassical Asymptotics of Solutions to the KZ Equa-
tions. Preprint, February, 1994

[Sz] Szego, G.: Orthogonal Polynomials. Providence, RI: AMS, 1939

[TV] Tarasov, V., Varchenko, A.: Jackson integral representations for solutions of the KZ equa-
tion, St. Petersburg Math. J. 6, no. 2 (1994)

[SV] Schechtman, V., Varchenko, A.: Arrangements of hyperplanes and Lie algebra homology.
Invent. Math. 106, 139-191 (1991)

[V1] Varchenko, A.: Multidimensional hypergeometric functions and representation theory of
Lie algebras and quantum groups. Singapore: World Scientific, Advanced Series in Math-
ematical Physics, vol. 21, 1995

[V2] Varchenko, A.: Critical points of the product of powers of linear functions and families
of bases of singular vectors. Compositio Math., to appear

Communicated by G. Felder








