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Abstract: The Knizhnik-Zamolodchikov equation associated with sl2 is consid-
ered. The transition functions between asymptotic solutions to the Knizhnik-
Zamolodchikov equation are described. A connection between asymptotic solutions
and the crystal base in the tensor product of modules over the quantum group
Uqsl2 is established, in particular, a correspondence between the Bethe vectors of
the Gaudin model of an inhomogeneous magnetic chain and the Q-basis of the
crystal base.

Introduction

In this work we describe transition functions between asymptotic solutions to the
Knizhnik-Zamolodchikov (KZ) equation and establish a connection between asymp-
totic solutions and the crystal base in the tensor product of modules over a quantum
group.

We consider the KZ equation associated with sl2 and the quantum group Uqsl2,
general case can be considered similarly.

For a positive integer m, denote by L(m) the sl2 irreducible module with highest
weight m. For positive integers m\,...,mn, set L — L(πi\) <g) ®L(mn).

Let Ω=£λ<g>/i + e<g)/ + /<g)ee slf2 be the Casimir operator. For i+j de-
note by Ωij the linear operator on L which acts as Ω on the zth and / h factors
and as the identity on the other factors. The KZ equation on an L-valued function
ψ(z\,...,zn) is the system of equations

dzj K^JZJ-ZI

where K is a complex parameter. In this paper we assume that K is not a rational
number. The KZ equation is defined over % = {z e Cw|z/=t=zy for i+j}.

The author was supported by NSF Grant DMS-9203929
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For any permutation σ 6 Sn9 define an open convex unbounded polytope

Dσ = {zeTRn\zσ{l) < . . . <zσ{n)}.

One can easily resolve singularities of Dσ and cover Dσ by local charts with
local coordinates u\,...,un such that:

un =zχ + - . + z π , (0.1)

Dσ is defined in this chart by inequalities u\ > 0,.. .,«„_i > 0 , (0.2)

The KZ equation in this chart has the form

dφ dφ I .

where Hj = ΩJ/UJ -f Reg7, Ω/ is a constant operator on L, and Reg7 is an operator
regular at w = 0.

We call such charts asymptotic zones; they are numerated by suitable trees T.
The operators Ω\9...9Ωn-\ commute and have a common eigenbasis. We dis-

tinguish an eigenbasis $ — (V\(K)9...9VN(K)) for nonrational K. For every j the
vector Vj(κ) is proportional to a fixed common eigenvector of Ω\9..., Ωn_i, and the
coefficient of the proportionality appropriately depends on κ9 see (2.3.1).

For each j = \9...9N and a nonrational jc, there exists a unique solution φj to
the KZ equation with parameter K defined in Dσ and such that

ι=\

where μι is the eigenvalue of Ωι at Vj9Θ(u9κ) is a regular function of w at u = 0,
and Θ(09κ) = 0. (Notice that all numbers μ/ are real.)

Thus, for each asymptotic zone (Γ, σ) we construct a fundamental system of
solutions φτ,σ — {Φj}

Our first main result gives explicit transition functions between these fundamen-
tal solutions φτ,σ and φτ',σ< in terms of the g-6/-symbols, where q — q{κ) and
q{κ) — cxp(2πi/κ), see (2.4).

In particular, if K: = w, s G IR, 5 -^ +0, then g(τc) -> oo, and our formulae show
that for every σ, T, T' the transition function between the fundamental systems of

solutions φτ,σ and φτ\σ has the form 1 + Θ{q{κ)~*)9 where 1 is the unit matrix
and the solutions composing φτt σ and φp σ must be suitably enumerated, see (2.4)
and (1.3.12).

Assume that K = is, s G IR and s —> +0. For any asymptotic zone consider the
fundamental system of solutions defined by (0.4). Our second main result, see (2.5),
states that for every j the solution φ} has an asymptotic expansion of the form

n—\ . oo

Ψj = Π κ/~ιμ//ίexp (-«A) Σ fιsl, • (0-5)
/=1 /=0

where *S, // are real-analytic functions of u in our chart regular at u = 0, the function
S is real valued, the functions // are L-valued, and, in particular,

= 1 .
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The first term / 0 is a common eigenvector of the operators H\,...,Hn-\. The
first terms of asymptotics of the solutions xjjj form an eigenbasis of the operators
//i,...,Hn-\. We describe its limit at u —» 0.

If the KZ equation has an asymptotic solution of the form

1=0

one can show that go(u) must be a common eigenvector of H\9...,Hn-\ and the
function go(u) is determined up to multiplication by a constant [RV]. One can
deduce from this remark that a solution having an asymptotic expansion of the
form described in (0.5) is unique up to multiplication by a function of s which has
the form 1 + Θ(s), where 0(0) = 0.

Our two main results have the following quantum group interpretation.

Let Uq be the quantum group corresponding to the s /2 and Uq=q(κ) its special-
ization at q — q(κ). For a positive integer m denote by L{m,q) (resp. L(m,q =
q(κ))) the irreducible Uq (resp. Uq=q(<κ)) module with highest weight m. For
positive integers m\,...9mn and a permutation σ denote by Lσ(q) the product
L(mσ(\),q) ® ®L(mσ(n),q). Denote by Lσ(q = q(κ)) the corresponding product
for Uq=q(κ). Denote by Sol(/c)σ the space of solutions over Dσ to the KZ equation
with parameter K.

Our formulae for transition functions between the constructed fundamental sys-
tem of solutions allows us to construct an isomorphism

πσ(κ) : Lσ{q = q(κ)) ^ Sol(κ)σ

and show, once again, that the monodromy representation of the KZ equation is
isomorphic to the 7?-matrix representation of the braid group, where R is the uni-
versal i?-matrix of Uq=q(K), see [K,Dr, VI,FW]. Under the isomorphism πσ(κ) each
of the constructed fundamental systems of solutions xjjγ σ gives a basis $τ σ(Ό i n

U{q = q{κ)\ see (2.4).
In [Ka] the notion of a crystal base is defined. The module L(m,q) has a standard

crystal base when q —> 00. The tensor product of the standard crystal bases gives
a distinguished crystal base in Lσ(q). Our isomorphism nσ{κ) has the following
property:

For every T, the fundamental system of solutions ψr, σ Hfis to the same distin-
guished crystal base of Lσ(q), see (2.6).

Therefore, we may conclude that the distinguished crystal base is given by (0.4) and
normalized by property (0.5). This gives an "asymptotic" definition of the crystal
base.

The proof of transition formulae between the fundamental solutions and the
proof of property (0.5) are based on integral representations for solutions to the
KZ equation, see [SV, VI]. Any solution in So\(κ)σ can be represented as a linear
combination of solutions of the form

φ(z)= JΦM(t,z), (0.6)
y(z)
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where M is a rational L-valued differential form of z and some variable t —
(t\,...,tk), l(z) is a family of cycles in /-space,

l=\ j=\

In this construction cycles y(z) numerate solutions to the KZ equation. In [VI]
we identified the homology group of such cycles for a fixed k with the subspace
of singular vectors in Lσ(q — q(κ)) of a suitable weight, see precise statements in
[VI]. This construction after suitable renormalization gives us the isomorphism πσ,
see (4.4).

If K — is, s —• +0, then integral (0.6) is localized at critical points of the function
Φ with respect to the variable /, and one can compute asymptotics of the solution
applying the method of steepest descent, see [RV, V2]. One can push the cycle γ(z)
onto /-critical points of Φ. If y(z) "sits" on some of the /-critical points then each
of the points gives its input into the asymptotic expansion of the solution.

The symmetric group Sk of permutations of coordinates t\,...,tk acts on the set
of critical points of Φ.

In each asymptotic zone (Γ, σ), one can describe asymptotics of/-critical points
of Φ. It turns out that the Sk orbits of /-critical points of Φ are in correspondence
with solutions φj composing the fundamental system φτ,σ For any j we distinguish
a cycle yj(z) such that

4(
(2) 7/(z) sits exactly on one Sk orbit of /-critical points,
(3) the asymptotic expansion of the integral at this orbit has property (0.5).

This gives a "topological" definition of the crystal base as the base in the homol-
ogy group of cycles corresponding to a fixed z. This base is formed by the classes
numerated by the orbits of /-critical points and each such a class has a representing
chain sitting on one orbit. In this construction z must be in an asymptotic zone.

The value of the function M at a /-critical point (t(z),z) of the function Φ
gives the first term of asymptotics as k = is and s —» +0. This value M(t(z),z) is
an eigenvector of the commuting operators H\(z),...,Hn-\(z).

The algebraic Bethe Ansatz is a construction of eigenvectors for a system of
commuting operators. One considers a vector valued function of a special form
and determines its arguments in such a way that the value of this function is an
eigenvector. The equations which determine these special values of arguments are
called the Bethe equations. The eigenvector is called a Bethe vector, for more details
see [FT].

One of the systems of commuting operators which can be diagonalized by the
ABA is the Gaudin model of an inhomogeneous magnetic chain [G].

It turns out that the function M(t,z) is exactly the special function which appear
in the ABA for the Gaudin model and the Bethe equations for the Gaudin model
coincide with the equations on /-critical points of the function Φ, see [B,BF,RV].

This relation to the ABA and the above formulated results give us a corre-
spondence between the Q-basis of the distinguished crystal base and the Bethe
vectors of the Gaudin model, see (2.6.5), or, more generally, between the crystal-
lization phenomenon in the theory of quantum groups and the Bethe ansatz con-
struction in statistical mechanics. On the Bethe ansatz and the KZ equation see also
[FFR].
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Section 1 contains preliminary information on bases in L and Lσ(q). In Sect. 2
we state the formulae for transition functions and the theorem about asymptotic
expansion (0.5). In Sect. 3 we review integral representations for solutions and
describe asymptotics of critical points and the corresponding Bethe vectors. Section
4 contains the homological part of the work.

1. Bases in Tensor Products

(7.7). Quantum Group Uqsl2. The (Q(<3rl/4)-algebra Uq = Uqsl2 is the algebra gen-
erated by the symbols e, / , h with the relations

[h9e] = 2e,

[h,f] = -2f,

[eJ] = qh/2-q-h/2. (1.1.1)

Here g1/4 is an indeterminate.

Remark. Usually one considers Uq as an Q(g) algebra. Our choice of # 1 / 4 instead
of q is motivated by topological considerations in Sect. 4.

Uq has a Hopf algebra structure with the comultiplication Δ defined by

Δ(h) = h® 1 + 1 <g>A,

Δ(e) = e ® qhβ + 1 ®e,

f®\+q-h/2®f. (1.1.2)

By Δ, the tensor product of Uq-modules has a structure of Uq-module.
Let

( „ ) = q"12 - q~"β •

[«],!= Πf*]?.

e (0) -i

f(n) = ^ / ( 0 ) = l . (1.1.3)

Let Γi and F2 be ί/^-modules. The modules V\ 0 V2 and V2 0 V\ are isomorphic.
The isomoφhism is given by the formula

V\ 0 V2 -̂> V\ 0 V2 ̂ > V2 0 V\ , (1.1.4)

where P is the transposition of the factors. R G Uq0Uq is the universal 7?-matrix,
and 0 denotes a proper completion of the tensor product. Denote the isomorphism
PR by R.
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Denote by Sn the group of permutations of the set {l,...,w}, by Bn the braid
group on n strings with the standard generators σ\,...,σn-\9 by τ:Bn-+Sn, the
natural epimorphism.

Let V\,...,Vn be Uq -modules. For j = 1,...,«- 1, define an L^-isomorphism.

^y j+i : Ki 0 0 KΛ -> Ki 0 0 F, +i 0 K, 0 0 Kn , (1.1.5)

as the map which acts as R on Vj 0 Fy+i and as the identity on the other factors.
For any braid a G Bn these isomorphisms induce a well defined isomorphism

Rσ: Vx 0 0 Vn -> Vτσ{l) 0 0 Kτσ(w). (1.1.6)

(7.2). Bases in Tensor Products. For m G Z let F(m) be the Verma module with
highest weight m. V(m) is generated by its singular vector υm such that evm = 0 and
#Λtyw — ̂ w /̂w The elements f^J'^vm,j ^ 0, form a basis of V(m). For a nonnega-
tive m the vector f^m+ιhm generates a proper submodule of V{m). The quotient,
L(m), is the (m + 1 )-dimensional irreducible t/^-module with a basis generated by

The tensor product of irreducible modules is the direct sum of irreducible mod-
ules:

- m2\) ΘL(\mι - m2\ + 2 )

and a singular vector of L(m\ + m2 - 2k) has the form

= Vί-n/'-
- p+ \)q

This decomposition gives a basis {/(/)(^wP kVm2)} in the tensor product.
The ί/^-isomorphism

R : L(mγ) ® L(m2)-> L(m2) ® L(mγ) (1-2.2)

is given by

/ ( / ) ( t > m p it v « 2 ) •-> R ( m u m 2 ; k ) q f ι ( v m 2 , k υ m χ ) , (1.2.3)

There are two ways to decompose L{πi\) 0L(m 2 ) 0 1 ( w 3 ) into irreducibles.
These two ways give two bases in the triple tensor product: {f^ι\(vmι,kχvm2),&2^m3)}
and {f{l\vmv kλ{vm2, k2vm3))}.

The matrix elements of the matrix, connecting these bases, are called the 6j-
symbols:

\ k k k ί f (v™^k(vm2,kl+k2-kVm3)). (1.2.4)
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There are numerous formulae for 67-symbols, see, for example, [KR].
The singular vectors {υmχ, kVm2),((υmι, kχ vm2), k2vm3), {vmχ, kχ (vmi, h vm3)), and

the matrix of 6/-symbols can be visualized as follows.

mΛ mΊ m m] ta-

rn, mΊ mλ

= Σ
k

γ in-, tn

x k2 kλ

(1.2.5)

The braid group #3 acts on the triple tensor products. The basis
((vmι,kιυm2\k2vm3) is an eigenbasis for Rl2, and the basis (vmv kl(Vm2> k2

vm2))
is an eigenbasis for 7?2,3

m, m2

Rn : k >R(ml9m2;kι)9

2,m^ k2)9

(1.2.6)

Consider the tensor product of n irreducible modules. We describe its bases, the
connecting matrices, and the i^-matrix action.

An n-tree is a planar tree with n tops, one root, and {n — 1) internal triple
vertices. We numerate the tops by indices 1,...,« from left to right.

See an example in (1.2.7):

Φ (2) ®

(1.2.7)

For an π-tree we denote the set of its internal vertices by In^. We say that an n-tree
has marked tops if a nonnegative integer is assigned to every top. Denote by mj
the number assigned to the / h top.

For an ft-tree T with marked tops, we construct a basis in L(m\) <g) <g) L(mn),
denoted by Mj.

A coloring of T is a map c In^ —>• 2^o Define the weight of a coloring as
the number

m(c) = c(w). (1.2.8)
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Delete an internal vertex w, then the tree is decomposed into three trees: the left
branch, the right branch, and the part containing the root.

Denote by Jle(w) the set of indices of the tops lying in the left branch of w,
denote by Ile(w) the set of the internal vertices lying in the left branch of w. For
a coloring c, define the weight of the left branch as the number

mle(w) =
JEJIe

ij-2ΣΦ).
ueile

Let Jr(w), Ir(w), and mr(w) be the sets and the weight defined for the right branch
analogously.

Say that a coloring c is admissible at a vertex w if c(w) ^ min(mle(w), mr{w)).
Say that a coloring of an n-tree T with marked tops is admissible it is admissible
at every internal vertex.

The elements of the basis £$γ are numerated by the pairs (c, /), where c is an
admissible coloring and / = 0,... ,m(c). The vector corresponding to (c, /) is defined
inductively on n. Namely, let w be the internal vertex of T which is neighboring to
the root of Γ. Let Tle and Tr be the left and right branches of w. The coloring c
induces colorings cle and cr of Tle and T\ respectively. Let 1,...,/ be the indices
of the tops lying in the left branch of w. Let vle be the vector in L(m\) ® • 0
L{πii) corresponding to the pair (c/e,0) and vr the vector in L(mι+\) 0 <S>L(mn)
corresponding to (cΓ,0). If i = 1, then vle = υmv where υmχ is the singular vector
of L{πi\). If / = n — 1, then υr = vmn, where υmn is the singular vector of L{mn).
Define the vector v(c,l,T) by

= f(l= f(l\v'e,c{w)v
r), (1.2.9)

where ( , c^ ) is defined by (1.2.1).
The Uq -action is given by

eυ(c9l9T) = (m(c)- 1+ \)qυ{c9l - 1,Γ) for / > 0,

ei>(c,0,r) = 0,

fv(c9 /, Γ) = [/ + l]9ϋ(c, / -f 1, Γ) for / < m(c) ,

/ϋ(c,m(c),Γ) = 0. (1.2.10)

Let T and Γ7 be w-trees. Let w\ and w2 be internal vertices of T and w[ and
W2 internal vertices of T'. Say that Γ and T' are adjacent at wi,w2,w

/

1,w2, if in
a neighborhood of the vertices the trees have the form shown in (1.2.11), and the
trees are identical outside the neighborhood.

T— (1.2.11)
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Let T and T1 be adjacent. Let c and c' be admissible colorings of T and T'
respectively. Say that the colorings are similar c = c\ if the colorings are equal at
the corresponding internal vertices of T and V different from W\,w2,w'x,w

f

2, and if

The matrix, connecting the bases ^ T and 0Hτι of adjacent trees is given by

mle(w\) mr(w\) m r ( w ? ) ϊ

c{wx) c(w2) c'{w\))q
{

where { }q are 67-symbols.
The matrix connecting the bases 3$τ and $p f° r arbitrary T and T can be

written as a product of the matrices connecting adjacent bases.
For j = 1,..., n — 1, we describe the action of the operator

Rjj+χ\L{m\) 0 ®L(mn) —» L{m\) 0 L{mj+\) ®L(mf) 0L(mn) .

Denote the first tensor product by L and the second by L'.
We say that an «-tree T is adjacent to the transposition of j and j + 1 if there

exists an internal vertex w such that the / h top of T forms the left branch of w,
and the (J + 1 ) th top of T forms the right branch of w. Let T be adjacent to the
transposition of j and j + 1.

Let {v(c,l,T;L)} be the 7-basis of L and {v(c,l,T;L')} the Γ-basis of Z7. Then
for every (c, /) we have

R,j+ιυ(c9l9T'9L) = R(mJ9mJ+ι;c(w)) v{cJJ Lf), (1.2.13)

where i?(m/,my+i;c(w)) is defined by (1.2.3). As an example see (1.2.3) and
(1.2.6).

Formulae (1.2.12) and (1.2.13) describe the action of the braid group Bn on the
tensor product of n irreducible ί/^-modules.

{13). Crystal Base. The tensor product L{πi\) 0 ®L{mn) has the trivial basis
/ ( / l ) v m χ 0 0 f{ln)vmn, lj = 0,..., wi/, y = 1,..., w. It turns out that all the tree
bases, constructed in (1.2), tend (in an appropriate sense) to the trivial basis as
q —> 00. This phenomenon is described in [K] and is called crystallization.

For a finite dimensional Uq-module M and λ £ TL, let M; = {u 6 M\qhu = qλu}
be the weight space of weight λ. We have M = 0;€ ZM;w .

Any element w of M; is uniquely written in the form u = ]Γ f^ui, where

w/ G kerβΠM ̂ +2/ Following [K] define the endomorphisms e and / on M by

Let ^ be the subring of Q(# 1 / 4) consisting of the rational functions of g1/4

regular at q1^4 = 00.
A crystal base of M is a pair (L,£) satisfying the following conditions.

L is a free sub-^-module of M such that M = Q(^1 / 4)(g)L, (1.3.1)
A

B is a base of the Q-vector space L/q~ι/4L , (1.3.2)

I = ® I;. and £ = U 5A, where
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Lλ = LΠMh Bλ=BΠ (Lλ/q~ι/4Lλ), (1.3.3)

eL C L and fL C L. Hence £ and / operate on L/q~XIAL , (1.3.4)

eB c B U {0} and / 5 c 5 U { 0 } , (1.3.5)

For b, bf e £, we have b' = fb if and only if b = ebr. (1.3.6)

For b £ B, set ε(b) = max{k ^ 0\ekb e B} and φ(b) = max{£ ^ 0\fkb e B}.

(1.3.7) Example. For m e Z^o, consider the irreducible module L(m) with the
basis fVhm,I = 09...,m. We have ef^vm = fV~lhm and ff^vm = βM)vm.
Let £?(rn) = φιAfV)vm and ^(m) = {f(l)vm\l = 0,...,m} C L/g~1/4L. Then
(i?(/w), Jf(τw)) is a crystal base of L(m).

(1.3.8) Theorem, [K]. Lei Mi α«d M2 Z?e two finite dimensional Uq-modules and
let (Lj,Bj) be a crystal base ofMj, j = 1,2. *SW Z, = Zj ®^ L2 and B = {b\ ® b2 £

(i) Then (L,B) is a crystal base of M\

(ii) For bj G Bj, j = 1,2, we have

if φ(6i) g 6(62) ,

if
e(bι

v

(1.3.9) Theorem, [K]. Let (L,B) be a crystal base of a finite dimensional Uq-
module M. Then there exists an isomorphism M = 0 , L ( m y ) by which (L,B) is
isomorphic to

Consider the tensor product of n irreducible Uq-modules, L = L(m\)<g> 0
L(mn). Let i f = &(m\)(&A (g^ Se{rnn\ @ = M(mλ) 0 ® ̂ (/wn). By (1.3.8),
(if, J*) is a crystal base of Z. We call (if, J*) the distinguished crystal base of
the tensor product L.

For any 72-tree introduce

(cJ)

@τ = {v(c9 /, T)} C ifr/^~ 1 / 4ifT (1.3.10)

It follows from (1.2.10) that (£?,&) is a crystal base of L.

(1.3.11) Proposition, / w any n-tree T9 we have (^,@)

Proof It suffices to prove the proposition for n — 2. Let (t>Wp & z;m2) be the vector
defined by (1.2.1). Then for any k — 0,...,min(mi,W2) we have

(υmi9kυm2) = i;Wl 0 / ( ^ ^ 2 mod^~ 1 / 4 if . (1.3.12)

This equality easily implies that ^£ — 5£j and then & — $?.
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(1.3.13) Corollary. For kx + k2 S m2,

m\ m2 m3 Ί ( I mod q~ι/4A if k = k\

k\ ki k J ^ O m o d ^ ~ ' i 4 otherwise.

For k\ + k2

m2 m3 Ί _ J 1 mod^~1/4^ \ϊ k~m2-k\

2̂ £ / \θ, ? k v, modg 1/4^4 otherwise .

(1.3.14) Remark. For a finite dimensional Uq-module M, we have kere =

0 A
,4 crystal base of kεre of M is a pair (Lχ,B;) for each A such that kere Π

M;^Φ{0}. A pair (L;,B;) has to satisfy the following conditions.

L) is a free sub-^4-module of kere Π M;w such that

kereΠMλ = Q(g 1 / 4 )®I;. . (1.3.15)
A

B is a base of theQ-vector space L)jqx^Lχ . (1.3.16)

Obviously, a crystal base of kere is uniquely extended to a crystal base of M.
By (1.3.9), any crystal base of M is the extension of a crystal base on kere.

(1.4). Bases in Tensor Products of sl2-Modules. Consider the Lie algebra g = sl2

with the generators e,f,h such that

[e,f] = h, [h,e) = 2e, [h,f] = -2f.

Denote by Ω the Casimir element

-

Let M\,...,Mn be cj modules. For / < j let Ωυ be the linear operator on M\ 0
•• 0 M Λ acting as Ω on M, 0Λfy and as the identity operator on the other factors.

For a g-module M and l e C , let M^ = {u G M|Aw = λu} be the space of weight
λ and SingM;̂  = kerβ ΠMχ the space of singular elements of weight λ.

For a nonnegative integer m, let L(m) be the (m + 1) dimensional irreducible
g-module. The module is generated by its singular element vm such that evm = 0
and hvm — mvm. The elements vm,fvm,...,fmvm form a basis of L(m).

The Shapoυaloυ form on Z(m) is the bilinear form Z?w such that

BT{fkOmJkOm) - *!m!/(m - fc)!, Br{fkυmjιυm) = 0 for * Φ / .

The tensor product of irreducible g modules is the direct sum of irreducible mod-
ules: L(m\) ®L(mn) = L(\m\ — m2\) 0L(\m\ - m2\ -f- 2) 0 <g>L(nt\ + m2), and a
singular vector of L(mi + m2 — 2k) can be chosen of the form

(1.4.1)
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This decomposition gives a basis {fι{vmv k vm2}} m the tensor product. We have

Ωf!{wmι9 kVm2} = μ(mι,m2;k) fι{wmv kVm2} ,

2;k) = -m\m2 — k{m\ + m2) + &(& — 1) . (1.4.2)

For nonnegative integers m\,...,mn, consider the tensor product L —
- - - ®L(mn). For any fl-tree T the tensor product has a distinguished basis $τ =
{v(c, l,T)}. The elements of &τ are numerated by the pairs (c, /), where c is an
admissible coloring of T and / = 0,...,m(c), see (1.3). The vector υ(c,l,T) is
defined inductively on n as in (1.3) but we use the formula

υ(c,l,T) = fι{υle,c{w)v
r} (1.4.3)

instead of formula (1.2.9).
For any «-tree T and a permutation σ e Sn define a basis &τ,σ = {v(c, I, T,σ)}

in L(m\) (g) 0 L(mn). Namely, let P σ : Z(mi) 0 0 L(mn) —•> L(mσ(\)) 0 0
be the permutation of factors. Let J r = {ϋ(c,/, Γ)} be the basis in

0 0 L(rriφ)) corresponding to the tree T with tops marked by mσ(i),...,
/wσ(n). Set t;(c, /, Γ, σ) = P " 1 ^ , /, T) for all c, /.

For any Γ, σ and an internal vertex w of T, define an operator Ωw^ T, σ acting on
L(m\) 0 0 L(mn). Namely, for an internal vertex w, let / be the set of indices
of the tops of T which belong to the right branch or the left branch of w. Set

Ωw,Lσ= Σ β«y (1A4)

For every T,σ,w the basis &τ,σ is an eigenbasis for the operator Ωw,τ,σ'

Ωw, Γf σ v(c, /, T9 σ) = μ(c, T, σ, w) - v(c, /, T,σ) (1.4.5)

for all c, / and suitable numbers μ(c,T,σ,w), cf. (1.4.2).

(7.5). The Selberg Integral and Normalizing Constants. For any colored tree we
define a function called the normalizing constant.

The Selberg integral is the integral

Ik{aM K) = k\ J i W ^ O - tj)-b/κ Π (0 - Ί ) 2 / l c^i A Λ i f t ,

where A = {t E IR^|0 < ίi < < 4 < 1}. The integral can be computed explic-
itly [M]:

(fl,6;ιc)= Π — ^ 7 —^ J V (1.5.1)

Λ ( ^ + f ^ 2 ) ( l )
Set

q(κ) = Qxp(2πi/κ) .
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Define Jk(a,b\κ) by

• fi(l-κ/(a + b-2k+j + 2)) (b-j)qiκ), (1.5.2)

where ^-numbers ( ) q are defined in (1.1.3).
Let T be an /t-tree with tops marked by some nonnegative integers m\,...,mn.

Let c be an admissible coloring of c.
For an internal vertex w G In^ define its normalizing constant C(w,c,T,κ) by

C(w, c, T, k) = Jφ*){mle(w\ rar(w); K) ,

where c(w) is the color of w with respect to c, and mle(w) (resp. mr(w)) is the
weight of the left (resp. right) branch of w, see (1.2).

Define the normalizing constant, C(c,T,κ), of a coloring c by the rule

C(c,T,κ)=ί Σ c(w))l Π C(w,c,T,κ)/c(w)\ . (1.5.3)

2. Asymptotic Solutions to the Knizhnik-Zamolodchikov Equation

(2.1). Knizhnik-Zamolodchikov Equation. Let Mι,...,Mn be Q = sl2 modules,
M = Mi ® ® Mn. The Knizhnik-Zamolodchikov equation (KZ) on an M-valued
function ^(zi,..., zn) is the system of equations

where K is a parameter of the equation and

The KZ equation defines a connection on the trivial bundle M x C" —> <CW with
singularities at diagonal hyperplanes. This connection is flat. Parallel translation
with respect to this connection commutes with the g action on M.

For a solution φ to the KZ equation we have

dzx d

hence ^ depends only on differences zz — zy of variables.
For nonnegative integers nt\,...,mn, let Z, = L(rai) 0 0 L(mn). For any 2 the

KZ equation with values in L preserves SingZ;k. The KZ equation with values in
0 ; Singly determines the KZ equation on L.
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Denote by B the bilinear form Bm* ® <g> Bm" on L, where Bm is the Shapo-
valov form on L(m), see (1.4). The operators H\,...,Hn are ^-symmetric:

for all i and all x,yeL [RV].

(2.2). Asymptotic Zones. For σ £ Sn let

D σ - { z e I R " | z σ ( 1 ) < . . . < zσ(Λ)} .

For σ G Sn and an «-tree Γ, we define a diffeomorphism

called an asymptotic zone.
The first coordinate of wj;σ is z H hzw, the other coordinates are numer-

ated by internal vertices of T. Denote by wω? T, σ the coordinate corresponding to a
vertex ω.

Let σ = id. The coordinate wωj T, id is defined inductively. For an internal vertex
ω, let W be the set of internal vertices of T belonging to the shortest path in T
from ω to the root. W can be empty. Assume that for any y G W the coordinate
"ω, r, id is already defined. Let J / e (resp. J r ) be the set of the tops of T belonging
to the left (resp. right) branch of w. Set j l e = max{y G Jle}, f = min(y G Jr),

ww, r, id = (2>r - z,/e ) / Π ŵ , r, id (2.2.1)

For σ G £„, let

τσ:Dσ-^Did, (zu...,zn) ι-> (zσ (i),...,zσ ( n )) .

Set

Ww, Γ, σ = Ww> r, id ° ^ σ

Let
^ n = {z!,...,zπ G Cjzi+z, for all /,./} .

( 2 . 2 . 2 ) . P r o p o s i t i o n . For every σ , T t h e f u n c t i o n s z \ Λ + z n, {wW; r, σ}weinΓ βfe/ϊ«^

a diffeomorphism uT,σ of Dσ onto R x (R>o)w~ 1. The map uτ,σ is extended to
a bίholomorphίc map of °lln to C x ((C*)*"1. Furthermore, uγι

σ is extended to a
polynominal map of <En to C2.

Now we will construct curves connecting the domains Dσ and lying in %n.
For j G {1,...,«— 1} let τ be the transposition of y and y + 1. Let T be a tree

adjacent to τ, see (1.2), and w the internal vertex of T such that the / h top of T
(resp. the (y + l) t h ) forms the left (resp. right) branch of w.

For any permutation σ, the biholomorphisms uτ,σ and uτ,σχ have the property:

uw, T,σ~ ~UW, T, στ •>

uy, T, σ ~ uy^ T, στ for every internal vertex y different from w .
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Define a curve yτ,σ,τ [0,1] —» Wn by the rule:

uWtT,σ = exp(iί) for * G [0,1],

% τ,σ = 1 for all t G [0, l]and all y G In^ such that yφw .

We have y(0) G Z>σ and y(l) G Z)τσ. The curve yτ,σ,τ forms a half circle connecting
Dσ and Dστ. The complementary half circle is formed by the curve y^ στ, τ.

For every Γ, σ the biholomoφhism wy; σ resolves singularities of the union of
hyperplanes in the following sense. Let

Then for every σ, Γ we have

f°«τ\= Π Kr,t)""
wElnj

for suitable positive integers {aw}.
Consider the KZ equation with values in K =

(2.2.3). Proposition. For α«y σ, Γ, rΛe KZ equation with respect to variables z\
• + zn and {ww? τ,σ} n a s the form

where Reg is an End( V)-υalued function holomorphic at uτ, σ = 0, <2«<i ΩW5 75 σ is
the constant operator defined in (1.4.4).

Example. For the tree in (1.2.7) and the identity permutation, the coordinates
are z\ -f zi + z^, u\ = z^ ~ Z2, t/2 = (Z2 — z\ )/(z^ — zi), and the KZ equation has the
form

K \ U2

(2.3). Asymptotic Solutions. For m\,...,mn G N and a nonnegative integer A, con-
sider the tensor product of irreducible sh modules L = L(m\) 0 0L(m n ) and
the KZ equation with values in Singly. Throughout the remainder of the paper we
assume that the parameter K of the KZ equation is not a rational number.

For any rc-tree T and a permutation w G Sn we will construct a fundamental
system of solutions, ψr, σ, to the KZ equation.

Namely, consider the basis &τ, σ of L. Then.

is a basis of Singly. Vectors of Bτ,σ,λ have the form ι;(c,0, Γ,σ), see (2.1), where
c is an admissible coloring of the tree T with tops marked by /wσ(i),...,/wσ(Π)
and the coloring c has weight /I, see (1.2.8). Denote the set of such colorings by
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Adm(Γ, σ,λ). A vector u(c,0, Γ, σ) is an eigenvector of the operators {ΩW5 τ,σ}weinτ

with eigenvalues denoted by {μ(c,T,σ,w)}9 resp., see (1.4.5).
For every such a vector there exists a unique solution, i//̂  T, σ> to the KZ equation

restricted to Z)σ such that

( >) {v(c,0,Γ,σ) + Θ(uτ,σ, K)) ,

(2.3.1)

where C(c,T,κ) is the normalizing constant of the colored tree T with tops marked
by /wσ(i),...,mσ(n), ®(uτ,σiK) is a SingZ;v-valued function which is regular function
of uγ, σ at UT, σ — 0 and which tends to zero as all coordinates uτ,σ tend to zero,
univalued branches of the functions {uμ} are chosen by the rule: arg(uWiτ,σ) = 0
for all w E In^.

The collection of these solutions form a fundamental system of solutions. It will
be called the asymptotic solution corresponding to the asymptotic zone uγ, σ, and
will be denoted by φτ,σ.

The asymptotic solution can be analytically continued to a system of multivalued
solutions over <%„.

(2.4). Transition Functions Between Asymptotic Solutions. The first main result of
this paper describes transition functions between asymptotic solutions.

To compare two asymptotic solutions φτ,σ and ψτ',σ

f w e have to distinguish a
curve from Dσ to Df

σ, lying in ^ίn, then analytically continue φτ,σ along the curve
and express the analytic continuation in terms of ψτ',σ'

Let T and Tf be ft-trees. Let w\ and w2 be internal vertices of T and w[ and
w'2 internal vertices of T'. Assume that T and T' are adjacent at wi9W2,w[,w'2,
see (1.2).

For any σ e Sn, the asymptotic solutions φτ,σ and φτ>,σ

 a r e defined over the
same Dσ.

(2.4.1). Theorem. For any c e Adm(Γ,σ,/l) we have

c'=c
c'eAdmiT' σ, λ)

f m/e(w
I c(wι

Ί )
)

ni(wλ)

c(w2)

Here { }q^ are the 67-symbols for q(κ) = exp(2π//κ;). For the definition of the
arguments of the 67-symbols, see (1.2).

The theorem is proved in Sect. 4.
For j € {l,...,n— 1}, let τ be the transposition of j and j + 1. Let Γ be an

«-tree adjacent to τ, see (1.2), and w the internal vertex of T such that the / h tops
of Γ (resp. the (j: + 1)) forms the left (resp. right) branch of w.

For any σ G 5Λ, the curve 7r, σ, τ, defined in (2.2), connects D σ and Z)στ. Continue
^ σ along the curve and express the continuation in terms of φτ,στ

(2.4.2). Proposition. For any c e Adm(Γ, σ,λ) we have

Φc,T,σ =R(mσ(Jhmσ(j+\hC(w))q(κ)Φc,T,στ ,

where R is defined in (1.2.3).

The proposition easily follows from the definition of the normalizing constant.
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Statements (2.4.1) and (2.4.2) allow us to compare two arbitrary asymptotic
solutions.

By (2.4.1) and (2.4.2), the transition functions between asymptotic solutions to
the KZ equation are exactly the same as the transition functions between the bases
in tensor products of irreducible modules over the quantum group Uq=q(K), where
Uq=q(κ) is the C-algebra obtained from Uq by specializing the indeterminate g1/4

to q(κ/4). Namely, for natural m\,...,mn, let L(m\),...,L(mn) be the irreducible
sl2-modules with highest weights m\,...,mn, resp. For a nonrational K G C and
an integer λ, consider the KZ equation with the parameter K and the values in
SingL;. For an n-tΐQQ T and a permutation σ G Sn, consider the asymptotic solution

Ψτ,σ(κ) = {Φc,T,σ}
Let L{πi\,q — q(κ)\.. .,L(mn,q = q(κ)) be irreducible Uq=q^h) modules with

highest weight mu...,mn, resp. For a permutation σ G £„, consider the tensor
product

Lσ = L(mσ0),q = q(κ)) 0 0 L(mφ),q = q(κ)) , (2.4.3)

and the subspace

S'mgLσ(q = q{κ)) = {v G Lσ\qhv = q(κ)λv, eυ = 0} . (2.4.4)

Let 3$τ,σ{q = q(κ)) = {v(c,0, T)} be the basis in SingLσ(g = q{κ))λ corresponding
to an w-tree T, see (1.2).

Define a map

πτ,σ(κ) : @τ,σ(q = q(κ)) -+ ψτ,σ(κ), υ(c,0,T) *-> ψCtT,σ (2.4.5)

(2.4.6). Corollary of (1.2.12) and (2.4.1). For every σ G Sn the maps {πτ,σ(κ)}
induce a well defined isomorphism πσ(κ) of SingLσ(^ = q(κ))χ and the space of
solutions to the KZ equation over Dσ with parameters K and values in SingZ;v.

(2.4.7). Corollary of (1.2.13) and (2.4.2). Under the isomorphisms described in
(2.4.6), the R-matrix action on {Sing£σ(g = q(κ))λ}σesn given by (1.2.13) is iso-
morphic to the monodromy of the KZ equation with the parameter K and with
values in SingL;.

Kohno [Ko] and Drinfeld [D] proved existence of an isomorphism between the
.R-matrix action and the monodromy representation of the KZ equation for generic K.
The case K; = 1/7 for a natural / is described in [V, Sects. 13-14]. In Sect. 3 we
will construct isomorphisms (2.4.6) and (2.4.7) geometrically in terms of integral
representations for solutions to the KZ equation, see [SV, V]

(2.5). Quasίclassical Asymptotics. Let D be a ball, π: (LN 0 D —> D projection. Let

Vκ = Kd — ω

be a holomorphic connection in π depending on the parameter K. Here

ω = H\dz\ -f + Hndzn ,

where {Hf\ are matrix valued functions. Assume that for every K the connection is
integrable, κdoo -f- ω Λ ω = 0, or

for all i and j .
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An asymptotically flat section is a section of the form

F = exp(S/κ:)(/o + κfx + •) for K -> 0 . (2.5.2)

Here S(z\,...,zn) is a function, {/^(zi,...,z«)} are sections of π, and F must be a
formal solution of the equation V K F = 0.

We call exp(iS/κ;)/o an asymptotically flat section of the first order if there
exists a power series (2.5.2) which provides an asymptotic solution to the equation
VKF = 0 modulo terms of order κ2.

Assume that the linear operators {Hj} are simultaneously diagonalizable for each
z e D: there exists a basis {u/(z)} in <CN such that

HJ(Z)ΌI{Z) = λβ(z) ϋ/(z) (2.5.3)

for all y,/. Assume that the spectrum of {Hj} separates elements of the basis: for
every z and every /,m, there exists j such that λjΊ(z) + λjm(z).

Let F = Qxp(S/κ)fo be an asymptotically flat section of the first order, then /o
is an eigenvector of the operators {Hi},

Hj(z)Mz) = λ,(z)/o(z), j = l,...,/i , (2.5.4)

moreover, Λ,7 = J^ , see [RV].

Let exp(S/κ)fo and exp(Γ//c)gfo be asymptotically flat sections of the first order
corresponding to the same eigenvector of {Hi}, then

exp(^/κ:)/o = const - exp(Γ/κ:)#o , (2.5.5)

see [RV].
Assume that there exists a symmetric bilinear form B : CΠ 0 (Cw —* (C and the

operators H\,...,Hn are symmetric with respect to 5 : B(HιX,y) — B(x,Hty) for all
x,7,/. Assume that exp(5/κ:)(/o + •) and exp(T/κ)(go -+- •) are two asymptoti-
cally flat sections.

(2.5.6). Lemma [RV]. if S - ΓΦconst, ί/zβπ B(fo,go) = 0, if S - T = const

o) = c o n s t

The KZ equation gives an example of a family of flat connections. The KZ
operators {Hi} are symmetric with respect to the Shapovalov form.

For natural m\,...,mn, let L(m\),...,L(rnn) be the irreducible sl2 modules with
highest weights nt\,...,mn. For a nonrational number K and an integer λ, consider
the KZ equation with parameter K and with values in SingL;. For an rc-tree T and a
permutation σ e Sn consider the asymptotic solution φTjσ = {φc,τ,σ}- Consider the
coordinates {ww, r, σ}w6inΓ These coordinates take positive values on Dσ.

For ε > 0, let

AT, T, ε = {p £ A J K , T, σ(p) < s for all w e InΓ} .

Our second main result is the following theorem.

(2.5.7). Theorem. Assume that K — is and s —* +0. Then there exists ε > 0 such
that any solution φCi τ,σ £ ΦT, σ, restricted to Dσ, τ, ε? has an asymptotic expansion

oo

ΦcT,σ~ Π (Ww Γ, σ)~ίμ{C> L *' W)/sQXp(-ΐS/s) Σ fa* , (2.5.8)
7=0
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where {μ} are the numbers described in (2.3.1) and (1.4.5);

S = SCi T, σ : Ar, r, fi -> 1R, fj= //, c, T, σ ' E>σ, T, ε

are suitable real analytic functions, all the functions {S,fj} depend only on
{uw, T, σ}wβinτ and can be analytically continued to real analytic functions in a
neighborhood of the set {uw^τ,σ — 0|w G In7-}.

The asymptotic expansion can be differentiated an arbitrary number of times.

The asymptotic expansion means that for any N,

Φcτ,σ Π (uwyκ(w)/sexp(iS/s) -
1=0

= &(sN+1)

uniformly in Z)σ? Tt ε.
The theorem has the following appendix.

(2.5.9). Appendix.
(1) For any p e Dσ^^ε the first terms {fo,c,τ,σ(p)} of the above asymptotic

expansions form a basis in Singly orthogonal with respect to the Shapovaloυ
form.

(2) For any c, fo,c,τ,σ(p) tends to

• υ(c,0,T9σ)

as uWiτ,σ(p) —> 0 far all welnτ. Here T is an n-tree with vertices marked
by mσ(\),...,mσ(ny The numbers c(w),mle(w), and mr(w) for an n-tree with
marked tops are defined in (1.2). The vector v(c, 0, T, σ) is defined by (2.3.1),
k = (mi + + mn - λ)/2.

The theorem and the appendix are proved in Sect. 4.

(2.6). Quasiclassical Asymptotics and Crystal Base. For natural m\,...,mn, let
L(muq),...,L(mn,q) be irreducible Uq modules with highest weights m\,...,mn,
resp. For any permutation σ e Sn, let

Lσ(q) = L(mσ(i),q) <g> ®L(mσ{n),q) .

Statements (2.4.6) and (2.5.7) allow us to give a construction of a crystal base in
Lσ(q) purely in terms of quasiclassical asymptotics of solutions to the KZ equation.

This "quasiclassical" crystal base coincides with the distinguished crystal base
of the tensor product defined in (1.3). This statement can be considered as a quasi-
classical characterization of the distinguished crystal base.

We will give a construction for σ — id, since for an arbitrary permutation the
construction is the same.

To construct a crystal base in L(q) = L(m\,q) 0 0L(m n ,q) it suffices to
construct a crystal base in

); = {υ e L(q)\qhv = qλv, ev = 0}

for every λ.
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Let μ: Q(g4) —» |2£ be the valuation map which assigns to a function g(q*) the
order of its pole at q = oo.

Using the KZ equation, we will construct a map

μ:SingL(q)λ -> - Z

such that

μ(y) = 0 iffy = 0 ,

μ(υ + w) ^ max(μ(t;),μ(w)) ,

μ(gv) = μ(g) + μ(v) (2.6.1)

for all v,w G SingL(^r);, g G Q(#4).
Let t; G Sing/,(g);,

where ϋy is the generating vector of L(m^q\ j = \,...,n, and the coefficients {aκ}

are rational functions in q*.
For K G C, let SingL(^ = q(κ))χ be the space defined by (2.4.4). For any /c

such that q = q(κ) is not a pole of the functions {aκ}, let ι>(# = q(κ)) G SingZ(^ =
^(K:)) be the specialization of v at q = q(κ).

Consider the KZ equation with parameter K and values in Sing/,;, see (2.3).
Let Sol(κ);. be the space of its solutions over Ad, and let π(κ): SingZ,(g = q(κ)) -^
Sol(κ:)/ be the isomoφhism defined in (2.4.6). Then y(κ) — π(κ)(v(q = q(κ))) G

κ)χ is a solution over D\& to the KZ equation with parameter K.
For any «-tree T, let ψτ,\ά(κ) = {φc, T, id} be the asymptotic solution, then

where {bc(qΐ)} are some rational functions.

(2.6.2). Proposition.
1. Let || ||: SingZ;, —> R^o ^ ^ ^ worm o« SingZ/. Lei K = w, 5 G 1R,

Λ1 -^ +0. For any n-tree Γ, let Ad, r,ε C Ad ^ the domain described in (2.5.7).
Then for every p G Ad,r,ε ίAere exists a limit of s ln||j(w)(/?)||. TΆẑ 1 //mzϊ is an
element of \TL, and does not depend on p and T. Denote this limit by μ(v).

2. The map μ, defined by this rule, has properties (2.8.1).

Proof The proposition easily follows from (2.5.7), (2.5.9), (2.4.1), and (1.3.12).

Let A C Q(#4) be the subalgebra of functions regular at q = 00. Let

(2.6.3). Corollary. S£\ is an A-submodule of SingL(q)χ.

Let (j£?,^) be the distinguished crystal base in L(q) defined in (1.3). Let
(jSf;.,̂ ?;.) be the crystal base in SingL(^)^ induced by (if, &).

(2.6.4). Proposition. S£\ = if;.

The proposition easily follows from (2.5.7) and (2.5.9).
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For any 77-tree T, let ψτ,id — {Φc, T,id} be the asymptotic solution considered in
(2.5.7) and (2.5.9), let

iSc,τ,ιά/s) /ofC,r,id

be the collection of its first terms of asymptotics.
Denote by Asymj the Q-module of Q-linear combinations of the first terms of

asymptotics.

(2.6.5). Proposition. The above construction induces the canonical isomorphism of

the Q modules &]Jq-*<e\ and AsymΓ.

The module Asym^ has a canonical basis generated by the first terms of asymp-
totics. This basis is uniquely determined by the fact that each element of the basis
is the first term of an asymptotic expansion of the form (2.5.8) of a solution to
the KZ equation and by the normalizing condition (2.5.9.2). The canonical basis

in Asymr induces a basis in ^}jq~^^}. This induced basis coincides with the
basis J>;.

3. Integral Representations for Solutions to the KZ Equation and
the Bethe Vectors

(3.1). Local System. Let mi,...,mM £ (C, K G <C*, let k be a nonnegative integer.
Set

Φ(t,z) = Π (*, - z/Γ'w ' / 2 l c Π ('/ - tj)2/κ Π Π(*/ - tιrmj/κ • (3.1-1)

Φ is a multivalued holomorphic function on

Wk+n = {(t,z) e C*+Λ|ί/ + ίm, //φzm, z/φzm, for all /, m} .

Univalued branches of Φ over open subsets of ^u+n generate a complex one-
dimensional local system over %k+n denoted by £f(κ).

Let %n = {z e C'lz/Φz,- for all /, j}, and let

be a projection. Denote its fiber pr~ι(z) by °U^n(z). Denote by J^k,n(κ) m e complex
vector bundle over %n with fiber Hk(Wk,n(z),£f(κ)) over z £ ^ Λ . The bundle has
a canonical flat connection called the Gauss-Manin connection.

The symmetric group Sk acts on %k+n by permutations of coordinates t\9...,tk
preserving fibers of the projection. The function Φ is symmetric with respect to this
action. Therefore, Sk naturally acts on the singular chains in °Uk,n(z) with coefficients
in Sf(κ). This action induces an action of Sk on Hk(

ΰlί^n(z),^(κ)). This action on
fibers of ^ j W ( κ ; ) commutes with the Gauss-Manin connection.

Denote by Hk(?Uk,n(z\ ^(κ))- the skew symmetric part of this action:

(z\^(κ)). = {ve Hk\σv = (-\pv for all σ e Sk] .
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{3.2). Integral Representations. For m\,...,mn G N and a nonnegative integer 2,
consider the tensor product of irreducible s/2 modules, L — L{πi\) 0 (g> L(mn),
and the KZ equation with parameter K: and values in Singly. We will describe
integral representations for solutions to the KZ equation.

Set k = (m\ + • - - + mn — λ)/2. The number A: is a nonnegative integer. A mono-
mial of weight λ is an element of Lχ of the form

Λ-/ î̂  ®/\, (3.2.1)

where K — (k\,...,kn), k\ + + kn — k. For a monomial fjζ define a differential
&-form in / and z:

η(fκ)=Aκ(t,z)dtι Λ ΛΛjt,

^*= Σ Π T T - V - ^ ( 3 2 2 )

U l Z ( 0 )

The sum is over the set S(k; k\,..., kn) of maps σ from {1, . . . , k} to {1,...,«} such
that for all m the cardinality of σ~ι(m) is km.

Consider the Z;-valued form

N= Σ Φ(t,z).η(fκ)®fκ, (3.2.3)

where Φ is the function defined by (3.1.1). Λ̂  is a multi-valued holomorphic &-form
o n <%k+n.

In [SV] it is proved that:
For every j \ the form

( 4 Σ -%A N (3.2.4)
Z Z

is a sum of the differential of a suitable (k — 1 )-form and a form which has zero
restriction to fibers of the projection pr^n

The form eN = J2& * *?(Λ0 ̂  e Λ i s a s u m °f m e differential of a suitable
(& — l)-form and a form which has zero restriction to fibers of pr^n> (3.2.5)

The forms mentioned in (3.2.4) and (3.2.5) have the shape
where the sum is over monomials in L, and {w(M)} are suitable rational forms,
regular on ^ + n . (3.2.6)

Assume that γ(z) G Hk(^k,n(z),^(κ)). Assume that the map z ̂  y(z) forms a
flat section of the bundle Jfk,n(κ) when z runs through an open subset of %n. Then
the function

Ψ(z) = J N (3.2.7)

takes values in Singly and satisfies the KZ equation with parameter κ[SV,V].

(3.2.8). Remark. The group *S* naturally acts on the space of differential forms
on ^k+n by permutations of t\,..., ί#. The differential form N is skew symmetric
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with respect to this action. Let v : Hk(βίk,n(,z\^(κ)) ~* Hki^kniz), ^(K))- be the
canonical projection, then for any flat section z ι-» γ(z) of ̂ k^n(κ) we have

JN= J N.
y(z) v(v(z))

(3.3). Quasiclassical Aysmptotic Solutions to the KZ Equation. Let K —> 0. We
use the form N defined in (3.2.3) to construct quasiclassical asymptotic solutions
to the KZ equation.

The function Φ can be written in the form

where

S(t,z)= Σ ^ l φ , -z,)+ Σ 2ln(t,-tj)

-Σ.Σ.mjtn.izj-t,). (3.3.1)

Set

(^Λ (3.3.2)

For a fixed z G ^ , consider the equation of critical points of S in °U^n{z)\

| £ = 0 , 7 = 1,...,/:. (3.3.3)

Let ί = ί(z) be a nondegenerate solution of (3.3.3) holomorphically depending
on z in a neighborhood of a point z° e ^n.

Let B(z) C ^*,Λ(z) be a small ball with center at (f(z),z). Set

5_(z) = {(ί,z) G «* | Λ(z)|Im(S(ί,z)) < Im(S(ί(z),z))} . (3.3.4)

It is known that Hk(B{z\B-(z\£f{κ)) is one-dimensional, see Sect. 11 in
[AGV]. The Gauss-Manin connection identifies these groups for neighboring z's.

A generator of the homology group (for all K simultaneously) can be chosen
as follows. Fix a branch of arguments of all functions tj - tu tj — z\, z\ - zm for
all /, m in a neighborhood of the point (ί(z°),z). This choice determines a branch,
β(κ), of Φ and a branch of S in a neighborhood of (ί(z°),z°). The branch β(κ)
gives a section of £f{κ) for all K.

There exist local coordinates u\,...,uk in ̂ j Π ( z ) centered at t(z) such that the
coordinates holomoφhically depend on z in a neighborhood of z° and

for some function g(z). For these coordinates and a small ε > 0, denote by d(z)
the disc{(w, z) e ϋiίKniz)\uu...,uk G R, u\ + + u\ S s}.

The homology class of the cycle

δ(z9κ) = (d(z)9β(κ)\d{2)) (3.3.5)
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gives a generator of //yt(/?(z),i?_(z), y (κ )). The classes [<5(z, K)] form a flat section
of the Gauss-Manin connection of the vector bundle over a neighborhood of z°
with fiber Hk(B(z)9B-(z)9S?(κ)).

Set

Ψ(z,κ) = (2πκyk2 f N. (3.3.6)

(3.3.7). Theorem [RV]. Let K = w, j e R, W s -• +0.
1. 77ze« the function Ψ(z) has an asymptotic expansion

Ψ(zjs) ~ exp(-ίS(f(z),z)/s)f>(z>' ,
7=0

where {gj} are SingL;-valued holomorphic functions defined in a neighborhood
ofz°.

2. The function Ψ(z,κ) gives a quasiclassical asymptotic solution to the KZ
equation in the sense of (2.5).

3. 0o(z) ί

(5.3.<S). Remark. Let 5°(z, K) be a singular chain in B(z) with coefficients in
Sf{κ) such that the boundary of δ'(z,κ) lies in 5_(z) and the class of (5x(z, K)
in Hk{B{z\B-{z\ί/?(κ)) coincides with [δ(z,κ)]. Then the function

^0(z,κ:) = (2πκ:)-5 / N
δ°(z,κ)

has the same asymptotic expansion as the function Ψ(z, K).
The vector

g(t(z\z)= Σ Aκ(t(z),z)fk (3.3.9)

is called the Bethe vector, see [B,Ba,BF,FFR,G,R,TV].
It is shown in [V2], that

B(g{t(z\z\ g{t{z\z)) = HesSί(S(ί(z),z)), (3.3.10)

where B is the Shapovalov form on Singly.
The group of permutations of coordinates t\,...,tk acts on the set of ^-critical

points of S. The Bethe vectors corresponding to ί-critical points of the same orbit
are identical. If two critical points t — tx(z) and t = t2(z) lie in different orbits,
then the corresponding Bethe vectors are orthogonal with respect to the Shapovalov
form,

1 z),z)^( ί 2 (z) ,z)) = 0. (3.3.11)

Moreover, for generic z e%n, there are exactly dim Singly different orbits of non-
degenerate ί-critical points, and, consequently, the corresponding Bethe vectors form
a basis in Singly, see [RV].
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(3.4). Homology Class Sitting on a Critical Point. Under the assumptions of
Sect. (3.3), assume that for almost all K a homology class [y(κ)] G / 4 ( ^ M ( Z ° ) ,
^(K)) is given. Assume that a chain

M

yOO = Σ(<7 ,α, 0 0 ) (3A1)

is given, such that:

For every j , cy c %k,n(z°) is a singular cell. (3.4.2)

For every j , ocj(κ) is a section of £f(κ) over Cj which has the following form:

Fix a branch of arguments of all functions tj - tι, tj — z\,z\ — zm for all /, m
in a neighborhood of c}. This choice determines a branch βj(κ) of Φ over c7.

Then ocj(κ) = 8j(κ)βj(κ), where 8j(κ) is a rational function of q(κ)*. (3.4.3)

If K G (C is such that εi(κ),.. .,εm(κ) are defined, then the chain y(κ) is a cycle
representing [y(κ)]. (3.4.4)

In this case we will say that the class [y(κ)] is flat with respect to K, and y(κ) is
aflat chain representative.

Assume that [y(κ)] is flat. Assume that [y(κ)] has a representing chain y(κ) of
the form (3.4.1 )-(3.4.4) and such that

(ci,αi(ιc)) has the form (d(z°),ει(κ)β(κ)\d{zo)), where (d(z°), β(κ)\d{z0)) is de-

scribed in (3.3.5) and c\(κ) is a rational function of q(κ)* . (3.4.5)

For K = is, s G IR>o? and for every j = 2,... ,M, we have

lim sup \θLj(κ)\/\zλ(κ)β(κ)(t(z*), z°)\ = 0 . (3.4.6)
s~^ CJ

In this case we will say that the class [y(κ)] sits on the t-critical point

Assume that [y(κ)] sits on (t(z°), z°). Let [y(κ)] G Hk(qίKn(z),6f(κ)) be the
class such that for a fixed K the map z ι—> [y(κ)] forms a flat section of the Gauss-
Manin connection over a neighborhood of z° and [y(z°,κ)] = [y(κ)].

(3.4.7). Theorem. Under the above conditions consider the SingZ;-valued function

Ψ(z,κ)= J N,

which for a fixed K gives a solution to the KZ equation with parameter K. Assume
that K — is, s G IR, and s —•> +0. Then

1. The function Ψ has an asymptotic expansion

oo

Ψ(z,is) - F(κ)exp(-iS(/(z),z)/ϊ) Σ GjW ,

where {gj} are SingL;-valued holomorphic functions defined in a neighborhood

of z°.
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2. The function Ψ gives a quasielassical aysmptotic solution to the KZ equation
in the sense of {2.5).

3. go(z) is given by (3.3.7.3).

The theorem is a corollary of (3.3.7).
Consider the natural action of Sk on singular chains and homology classes. Let

[y(z, K)] be as above. Define a new skew symmetric class [y(z, κ)]_ G Hki^k Λ(z),

Sf{κΐ>- by
[y(z,κ)]_= Σ(- l )H σ [ 7 (z , ,c)] . (3.4.8)

σesk

We have

/ N = k\ J N. (3.4.9)
[y(z, κ)]_ [7(2, K)]

(3.4.10). Corollary. 7%e intergral in (3.4.9) has an asymptotic expansion as K = is,
s G 1R, α«ί/ s —> +0. 77ίβ asymptotic expansion is equal to the asymptotic expan-
sion in (3.4.7.1) multiplied by k\.

We will say that [y(z,κ)]- sits on the Sk orbit of the t-critical point (ί(z),z).

(3.5). Example of a Bethe Vector. Let

ΦκmUm2At) = m-tjr^^-tjT^ π {tj-ufi*,
7=1

S(t) = Sk,mitm2(t,κ) = κ \nΦ(t). (3.5.1)

(3.5.2). Theorem, [V2], cf. [Sz, Sect. 6.7].

1. If t° = (tu...Jk) is a critical point of Φ, then the symmetric functions

are given by

λ ι = [ l ) Π {mχJJ22Vj~+ \-2k)
for all I.

2. The Bethe vector is Sing(L(mi) ® L(rn2))mι+m2-2k corresponding to the crit-
ical point t° is given by

k /IT

( ( Λ ) V f
/=o <jnλ - j)(m2 - j)

(3.6). Asymptotίcs of Critical Points and Bethe Vectors. In (2.2) we have con-
structed asymptotic zones. In this section we will describe asymptotics of ί-critical
points and Bethe vectors in an asymptotic zone, cf. [RV].
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Asymptotic zones are numerated by n-trees and elements of the symmetric group
Sn. We will consider the case of the identity permutation. The case of an arbitrary
permutation is treated similarly.

For an ft-tree T consider the asymptotic zone

UTM = {Z\ +-"+^,{ww,r,id}WGin r}:Ad -> IR x ORx))""1 . (3.6.1)

Consider the function Φ(t,z) defined by (3.1.1).
Mark the tops of T by m\,... ,mn. Let the set Adm be the set of all admissible

colorings of T having weight λ = m\ + + mn — 2k, see (1.2).

(3.6.2). Theorem. Assume that z £ Ad cmd ww, T, ιd(^) <C 1 for all w £ In^. Then
we have the following three statements.

1. The number of Sk orbits of nondegenerate t-critical points of Φ(t,z) is equal
to dim SingL/, see [RV].

2. The Sk orbits of nondegenerate t-critical points can be numerated by el-
ements of Adm in such a way that the Sk-orbit corresponding to a coloring
c £ Adm has a t-critical point (tc(z),z) of the following form:

Let {Mw}W£inτ be an arbitrary partition of {l,...,k} into a union of disjoint
subsets such that #MW = c(w). For each Mw, fix its arbitrary ordering Mw =
{jι(w),... ,jc(w)(w)}. For any w £ Inj define a number l(w) as follows. The tops
of the tree T are numerated by \,...,n from left to right. The number l(w) is
the maximum of the indices of the tops lying on the left branch of the tree T
at w. Let mle(w) and mr(w) be the numbers defined in (1.2) for a vertex w of a
colored tree T with marked tops. Consider the function Sc^w^m/e^w^mr^w) defined by
(3.5.1). Let (a\(w),..., aC(W)(w)) be coordinates of a critical point of the function
sc(w),mie(w),m>-(wy τ h e n t h e critical point (tc(z\z) has the form:

tc

Jp(w)(z) - zί(w) = (ap(w) 4- Θ(uτ, id(^)))ΓK, T, id
y

The product is over all internal vertices y lying on the shortest path in T connecting
w and the root of T (the vertex w is included). The function Θ is a function of
ux, T, id5 x £ ln^, holomorphic in a neighborhood of the set {ux^ T, id — 0, x £ In^},
and such that Θ(u = 0) = 0.

3. The Bethe vector corresponding to (tc(z),z) has the following form:

g(f(z\z) = (ι;(c, 0, T, id) + Θ(u(z))) \\ K , Tt i d)-*">-**>,

where b(w) — Σyc(y), the sum is over y £ lnτ such that y lies on the right or
on the left branch of T at w. The function Θ(u) has the same structure as in
(3.6.2.2).

To prove the theorem we consider new variables {xjp(w),uτ,ιd} defined by

tjp(w) - zi(w) = Xjp(w) Π uy, T, id
y

zm = z m ( u τ , i d ) , (3.6.3)
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where the product is the same as in (3.6.2.2), and the second formula is determined
by (3.6.1). It is easy to see that

Φ(t(x, «), z(«)) = (-1 γ'κ Π («*, r, id Y(c'τ'ld'w)lκ

* ( Π Φc(w),m/(w),^(w),,({^(w)}) + ̂ ) ) , (3-6.4)
\we\nτ )

where A is some constant, {μ(c, T,id,w)} are the eigenvalues of the vector
v(c,0,T,id) with respect to the operators {ΩWiτ,ιd}, see (2.3.1), Θ is a function
of x, w holomorphic in a neighborhood of the set

X = {xjp(w) = ap(w%uw,r.id = 0 for all w, p} , (3.6.5)

and which is zero on X. This statement implies (3.6.2.2) and (3.6.2.3). Statement
(3.6.2.1) is proved in [RV].

(3.6.6) Remark. There are integral representations for solutions to the KZ equation
with values in a tensor product of modules over an arbitrary Kac-Moody Lie algebra
9, see [SV, VI]. There are obvious g analogs of (3.3.7), (3.4.4) and (3.6.2), cf.
[RV].

4. Integral Representations for Solutions to the KZ Equation and
the Quantum Group Uq

(4.1). Complex [VI, Sect. 5]. For K G C , consider the C-algebra Uq=q(κ). For k > 0,
let

The map μ: U~ —> U~ (8) U~9

fl®fk~l (4.1.1)

defines a coalgebra structure on U , here

is the ̂ -binomial coefficient.
For a Uq=q(K)-moάvλQ M with highest weights, the map v:M —> U~

(4.1.2)

defines a [/ ^x-comodule structure on

For k ^ 0, set
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Define d:Ck -> Ck+X by

d:ak 0 (8> a\ 0 u ι-> — ak (8> •

(4.1.3)

For any 2 and &, set

C;(M) = φ (ί/~)/ 1® 0 ( ( / ~ ) ^ 0 M ; ι _ / 1 ιk . (4.1.4)

Then C* = φ ; C^. The differential d preserves the grading. For any λ we have a
complex (CJ(M), d) and

//°(C , d) = kere ΠMλ (4.1.5)

for a nonrational K. Assume that K is not a rational number.
For an integer m, let V(m,q = q(κ)) (resp. L(m,g = q(κ)) be the Uq=q(K) Verma

module (resp. irreducible module) with highest weight m.
For any σ G Sm λ G 7L, and natural wj,...,wrt, set

Fσ(^ = ^(/c)) = V{mσ(\^q — q(κ))) 0 (8) V{mσ^q = q(κ)) ,

g = g(jc));w = (Kσ);, Ukerβ. (4.1.6)

Let Lσ(q = q{κ)) and SingZσ(g = q(κ))χ be the corresponding objects constructed
from the irreducible modules, Denote by

pr: Sing Vσ(q = ^(fc));. -> SingLσ(^ - ^(fc))λ (4.1.7)

the natural epimoφhism.
For any j = 1,...,«— 1, we have an isomorphism

(4.1.8)

where τ G Sn is the transposition of j and (y + 1). Rjj+\ commutes with the dif-
ferential and induces an isomorphism of cohomology groups of the corresponding
complexes.

(4.2). The Main Result. Assume that K G C is not a rational number. Consider
the function Φ(t,z) defined by (3.1.1) and the objects associated with the function
Φ(t,z) in (3.1) and (3.2).

For z G <%„, let # (^ Λ (z) ,«^(κ)) be the complex of singular chains in ^,«(z)
with coefficients in ίf{κ). The group Sk of permutations of corrdinates t\,...,tk
acts on c€%. Denote by ^ # ( ^ n ( z ) , £ f { κ ) ) - the skew symmetric part of the
action.

(4.2.1). Theorem. For any σ G Sn and any z G Dσ there exists a monomorphism
of complexes

v(z,κ): C\{V\q = q(κ))) -y Q
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where λ — πi\ + + mn — Ik. Denote the image of v by

C.{«llKn{z\y(κ))- C

The monomorphism has the following six properties:

1. v(z, K) w α quasiisomorphism. Denote by the same symbol v(z,κ) the induced
isomorphism of homology groups: H%(C*(Vσ(q = q(κ))\ d) = Hk-.(Wk n(z),

2. v(z,κ) is flat with respect to the Gauss-Manin connection. Namely, if

is the isomorphism of the Gauss-Manin connection along a curve in Dσ from a
point z1 e Dσ to a point z2 G Dσ, then v(z2,κ) = P(z\z2) v(z\κ).

3. Let τ be the transposition of j and j + 1 for j = 1,...,«— 1. Connect the do-
mains Dσ and Dστ by a curve y: [0,1] —» °Un of the following form. Let (zj,... ,zj) G
D σ , z°(1) < < zj ( n ). Assume that zσ{j) andzσ^ +\) are very close. Set zι(y{s)) =
z] for lφσ(j + 1), * * z σ ( i + 1 )(7(^)) = exp(πw)(z^o + 1 ) - z°σ{j)) + zo

σ(j). Let

be the isomorphism of the Gauss-Manin connection along y. Let

{C {Vσ{q = q{κ)\d)) - H\Cl{V*\q = q(κ)\ d))

be the R-matrix isomorphism. Then Py v(y(Q),κ) = v(y(l),K) Rjj+\.
4. Consider the KZ equation with parameter K and with values in SingL;ι, see

(3.2). Let So\(κ)χσ be the space of solutions to the KZ equation over Dσ. By
(4.2.1.1) and (4.2.1.2), for any v e SingFσ(^ = q(κ))λ, the function

ψv:Dσ->SingLh z^ J N (4.2.2)
v(z, κ)v

is a solution to the KZ equation. Here N is defined by (3.2.3). Hence, by (4.2.1.1)
and (4.2.1.2), we have a homomorphism

rσ(κ): Sing V\q = q(κ))λ -+ Sol(ιc)^ . (4.2.3)

Let pr: SingFσ(^ = q(κ))χ —> SingZ,σ(# = q(κ))χ be the canonical epimorphism.
We claim that ker/?r C kQxi^σ(κ). Hence we have a homomorphism

πσ(κ): SingLσ(q = q(κ))λ -> Sol(ιc)^ σ . (4.2.4)

5. For an n-tree T, let &τ,σ(κ) — {v(c, 0, T, σ, K)} be the basis in SingLσ(q =
q(κ))χ corresponding to the tree T with tops marked by mσ{\),...,mσ{n), see
(1.2). Then for any vector v G $τ,σ(κ) we have

Here ψc,τ,σ is the asymptotic solution defined by (2.3.1).

Corollary. πσ(κ) is an isomorphism.

6. Let uτ,σ be the asymptotic zone constructed in (2.2). If z G Dσ and
{uw, T, σ{z)}we\nτ ore small enough, then for any v(c,0, Γ, σ, K) G &T, σ the class
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v(z,κ)v(c,Q,T,σ,κ) sits on the Sk-orbit of the t-critical point (f(z),z) corre-
sponding to the coloring c, see (3.6.2). Moreover, the asymptotic expansion
(3.4.10), (3.4.7.1), and (3.3.7.1) of πσ(κ)v(c,0,T,σ,κ) has the form (2.5.8) and
properties described in (2.5.7) and (2.5.9).

Theorem (4.2.1) implies (2.4.1), (2.5.7), and (2.5.9). Theorem (4.2.1) is proved
in (4.4)-(4.6).

(4.3). Another Form of Uqsl2 Define the Q(#4 )-algebra Uq as the algebra gener-
ated by the symbols E,F,H with the relations

[H,E] = 2E,

[H9F] = -2F,

[E,F] = qH/2 -q~HI1 . (4.3.1)

Uq has a Hopf algebra structure with the comultiplication A defined by

Δ(E) = E <g> qH/4 + q~H/4 ® E ,

Δ{F) = F® qH/4 + q-H/4 <g> F . (4.3.2)

Let Uq=q(K) be the (C-algebra obtained from Uq by specializing the indeterminate

qxj4 to q(κ/4).

For k > 0, set φ~)k = <£Fk and U~~ = 0 ^ > o <£Fk. The map μ: U~ -> U~ 0

U given by (4.1.1), in which / is replaced by F, defines a coalgebra structure.

For a Uq=q(κ)-module M with highest weights, the map

v.uv-ϊ ΣFι ®Eil)u (4.3.3)
/>o

defines a U -comodule structure on M. For any λ define a complex (C;(M),d) as
in (4.1).

The Hopf algebras Uq and Uq are isomorphic, an isomorphism π:Uq—>Uq

is given by π(h) — H, π(e) = qH/4E, π(f) = Fq~H/4. In particular, these formulae

give an isomorphism of Uq=q^κ) and Uq=q(K).
Assume that K is not a rational number.
For an integral m, let V(m,q = q(κ)) be the Uq=q(K) Verma module with the

highest weight m, the generating vector vm, and the basis f^vm, / ^ 0. Let

V(m,q = q(κ)\ ϋm, F^vm be the corresponding objects over Uq=qi<κy Let

πm: V(m9q = q(κ)) -+ V(m9q = q(κ)\ fl)vm ^

Then for any a G Uq=q(K) and u G V(m,q — q(κ)) we have πm(au) = π(a)πm(u).
For natural m\,...,mn and σ G /Ŝ , let

V\q = q(κ)) = V(mσ{l),q = q(κ)) (8) 0 F(mσ ( / ί ),^ = $(*))
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and
),q = q(κ)) 0 0 V(mσ{n),q = q(κ)) .

For any k and 2, define a map

Ψ: C\{V\q = q(κ))) - C ( F σ ( ^ = ?(*) ) ) , (4.3.4)

/'> ® ® / ; * <g> MI ® ® «„ H-* F ' 1 <g> ® F'* ® πm<j(1) («,) (8) ® πm<τ(n) («„).

Then

Ψ defines an isomorphism of C*(V(q = q{κ))) and Cλ(V (q = q(κ))).
J4.3.5)

For a nonnegative integer m denote by L{m,q = q(κ)) the irreducible Uq=q^κy
module with highest weight m. Set

Sing V(q = q{κ))λ = {υ G v\q = q{κ))\qHυ = q\κ)v, Ev = 0} ,

= q(κ))λ = {v e Lσ(q = q(κ))\qHυ = qλ(κ)v, Ev = 0} .

(4.4). Construction of the Monomorphism v. Assume that κ,mι,...,mn,λ,k are the
same as in (4.2).

In [VI] a monomorphism

v(z,κ): C\ (V\q = q(κ))) -* % _ . ( % , Λ (z) ,^(κ))_ (4.4.1)

is constructed for any σ G Sn and any z G Dσ. Denote the image of the monomor-
phism by C.(%Kn(z\^(κ))_ c #•(<%,Π(z)>^0O)- J t i s proved in [VI] that the
monomorphism has the following four properties:

v(z, K) is a quasiisomoφhism, cf. (4.2.1.1) and [VI, Sect. 8.2]. Denote by the
same symbol v(z,κ) the induced isomorphism in homology groups. (4.4.2)

v(z,κ) is flat with respect to the Gauss-Manin connection, cf. (4.2.1.2) and [VI,
Sect. 8.2]. (4.4.3)

v(z,κ) transforms the 7^-matrix action on Cλ(V (q = q{κ))) into the monodromy
action on Q ^ (%,w(z),y(κ:))_, cf. the precise statement in (4.2.1.3) and [VI,
Sect. 8.14]. ' (4.4.4)

—σ

For any υ G SingF (q = q(κ))λ, the function

φ:Dσ -> SingL;., z ^ / N, (4.4.5)
v(z, κ)v

is a solution to the KZ equation. By (4.4.3) we have a homomorphism

rσ(κ)\ Sing F(g = q(κ))λ -> Sol(κ)^, σ .

Let pr\ SingF(^ = q(κ))χ —> SingZ(^ = ^(/c))/ be the canonical projection. It is

proved in [VI, Sect. 12.2] that kerpr c k e r ^ . Hence, we have a homomorphism
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Let Ψ:C^(Vσ(
in (4.3.4). We set

Let Ψ: C\(Vσ(q = q(κ))) -> Cλ(Vσ(q = q(κ))) be the isomorphism constructed

v(z, K) = (2πκ)~2 v(z, κ)Ψ . (4.4.6)

Obviously, this monomorphism has properties (4.2.1.1 )-(4.2.1.4). We will prove
that the monomorphism has properties (4.2.1.5) and (4.2.1.6).

(4.5). Proof of Theorem (4.2.1) for n — 2. For n = 2 we have

Φ(ί,z) = (z2-z,Γ" l2/κ Π (tι-tj)2/htlή(zj-tιΓ'"j/κ- (4-5.1)
/ = 1 y = 1

There are two permutations in S2'- the identity permutation id and permutation
(2,1). We will prove properties (4.2.1.5) and (4.2.1.6) for Ad There is only one
2-tree T, and therefore, there is only one asymptotic zone in Dιά:
UT,ιd = {Z\ +^2, U=Z2 -Z{}.

Introduce the following new coordinates xi,...,x/:

// — z\ — u xι, I = 1,..., k ,

cf. (3.6.3). Then

Φ(t(x,u\z(u)) = ( - l Γ ^ ^ ^ ^ - ^ i ^ ^ + ^ - υ V K φ ^ ^ ^ ^ ^ ) 9 ( 4 . 5 2 )

where the function Φk,mum2,κ is given by (3.5.1).
Let Δ = {x G IR*|0 < xx < < xk < 1}.
Let υmj eL(rrij) be the generating vector of the sl2 irreducible module. Let

Vnij ^ L(nij,q = ^(K:)) be the generating vector of the Uq=q(K) irreducible module.
Let

v = jr( ιy(m2 ~ k + l^W • • 'ί™2 ~ k

P=o (m\ )q(κ) (m\ - p + 1 ) q ( κ )

x q(κ)-p{m2-2k+p+l)/2F{p)vmι 0 Fί'-riΰ^ (4.5.3)

be the generating vector of SingLf(q = q(κ)). Set y(z) = v(z, κ)v G

( % , ^ ω , ^ W ) - forzGAd
According to the explicit construction of v(z,κ) [VI], we have

χk\ftix;"^(i-xj)-»»'κ π

J vmx yy J vm2 ,

and

Σ Π . (4-5.3)
σeS(k; l,k-l)i=\xι ~ 7σ(/)

where yx = 0 , y2 = 1, and S(k; l,k - I) is defined in (3.2.2).
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The value of the integral over A is considered in the sense of analytic continu-
ation from the domain of parameters where K is positive and rn\,m2 are negative.

This formula is the decisive property of v(z, K) which allows us to prove
(4.2.1.5) and (4.2.1.6).

Consider the single basic vector v(c,0, T,id, K) e &τ,id(Ό of the one dimen-
sional space SingLf(q = q(κ)). (4.4.6) implies that

v(z, κ)v(c, 0, T, id, K)

(4.5.4)

where the vector {v\, k v2} G Sing(I(mi) ®L{m2))χ is given by (1.4.1) and
Ik(m\,m2',κ) is the Selberg integral given by (1.5.1). By (1.5.2) and (1.5.3), we
have

/ N = C{c,T,κ) • u{^-k{m^m^+k(k-X))lK{vx, kv2} . (4.5.5)
v(z, κ)v(c, 0, T, id, K)

The right-hand side is exactly the asymptotic solution defined by (2.3.1). This
proves (4.2.1.5).

Now assume that K = is, s G 1R, and s —* +0. We compute the asymptotic ex-
pansion of the right-hand side of (4.5.4) using (1.5.1) and the Stirling formula. This
shows that the asymptotic expansion of πlti(κ)ί;(c,0, T,id, K) has the form (2.5.8)
and the properties described in (2.5.7) and (2.5.9).

According to the construction in [VI], the class v(z,κ)v(c,0,T,id,κ) is flat with
respect to K, see (3.4). The function Φ{t,z) has exactly one ^-orbit of ^-critical
points, see (3.5). To show that the class sits on this orbit we need the following
lemma.

(4.5.6). Lemma. Let [y(κ)] e Hk(^2(zX^(κ)) be a class flat with respect to K.
Then [y(κ )] sits on the orbit of t-critical points of Φ{t,z) or for any P > 0 there
exist a chain

M

representing [y(κ)], flat with respect to K, and such that, for every j — l , . . . , m ,

we have

lim q(κf sup|α7(/c)| = 0 . (4.5.7)
κ~ιs c,

(4.5.8). Corollary. If [y(κ)] does not sit on the % orbit then

lim q(κf J N = 0
κ=ιs

for all P.

Proof First, remark that Φκ is a rational function on tflk,
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Now consider the compactification of%t2(z) in (CP 1)*. L e t Z C (CP 1)* be the
divisor of singularities of Φ. A resolution of singularities of X C (<£Pι)k is a proper
analytic map F: (A c B) —» (X C (CP 1)*) such that ^ is a divisor with normal
crossings in a nonsingular i? and F\B-A'-B — A -^ (<£Pι)k — X is a biholomorphism.
The condition & ^ min(mi,m2) implies that there exists a resolution having the
following property:

For any point a £ A, there exists local coordinates u\,...,Uk on B centered at a
and such that A is defined by equation

u\ ur = 0

for some r £ {1 ,...,&} and

Φ K O F ( M ) = MJ1 ^ , (4.5.9)

where l\ / r φ 0 .

Let S — κlnΦ. Then S = ]Cy=i //(In |M/| 4- / argM/). Introduce the new real co-

ordinates ty = In I My I and w7 = argM7 . Let H\9...,Hr be arbitrary real numbers such

that ^i/i + + #r/r = - 1 . Set 7 = £ \ // ; ^-. The vector field 7 decreases Im5

in a neighborhood of the point a.
To prove the lemma we start with an arbitrary representing chain y(κ), flat with

respect to K. Then we deform y(κ) into the direction of decrease of imS. To deform
the chain we use local fields {7} constructed above in a neighborhood of X and we
use the field grad(ImS) in the "finite" part of the (<CPιf\X. This procedure will
push the chain onto the orbit of ί-critical points or will create a new representing
chain with property (4.5.7).

The lemma and Theorem (4.2.1) for n = 2 are proved.

(4.6). Proof of Theorem (4.2.1). To simplify notation we will prove the theorem
for the case rc = 3, σ = id £ £3, and for the 3-tree shown in (4.6.1). The general
case is completely similar.

(4.6.1)

In this case the asymptotic zone has the form u = uγ, id = {z\ +^2 +^3,^1,1*2},
w h e r e ZT, — 22 = U2, Z2 — z\ — u\U2 If u\ and U2 are small, then 22 — z\ <C 23 — Z2.

Let the tops of T be marked by nonnegative integers m\,m2,m^ and let c be an
admissible coloring of T having level λ = πi\ + m2 H- m^ — 2k. Set c\ = c(wi), c2 =
c(w2), then ci + cι = L

Let vm be the generating vector of the sl2 module L(m). Let vm be the generating
vector of the Uq=q(κ) module L(m,q = q(κ)).

Set υ = {{υmι, C] vm2}, C2 vm3}, v = ((ϋmv Cχ ϋm2), C2 vm3), see notations in (1.2.1)
and (1.4.1)

Consider the solution to the KZ equation given by

φ:z^ J N, (4.6.2)
v(z, κ)v
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where z = (zi,Z2,Z3), z\ < z2 < Z3. Our problem is to show the following state-

ments (4.6.3) and (4.6.4):

φ(z(u)) = C(c9 Γ, K) uμ

x

ι/h uψκ{v + (9(u)) ,

k\

Cχ\c2\
JCλ(rnum2\κ) JC2{m\m^κ) , (4.6.3)

where m1 = mi + #22 — 2ci, see (1.5.3), and the real numbers μi,μ2 are defined in

(2.3.1).

(4.6.4). Theorem. Assume that K = is, s —» + 0 . Then for small u\,U2 the class

v(z,κ)v sits on the orbit of the t-critical point (f(z),z) such that

tc

p(z)-zι =(ap + Θ(u))uιU2, / > = l , . . . , c i ,

tc

p+cι(z)-z2 = (61 + <9(u))u2, p=l9...9c2,

where (au...,aC{) (resp. (b\,...9bC2)) is a critical point of ΦChmhm2,κ (resp.

ΦC2 m\ W 3 / c ), see (3.6.2). Moreover, the asymptotic expansion of φ(z(u)) as s —>

+ 0 has the form described in (2.5.6) and the properties described in (2.5.7) and

(2.5.9).

Proof To prove these statements we will choose a special chain representation for

the class v(z,κ)v. We will use the construction of iterated cycles described in [VI,

Sect. 14].

Consider the space C 2 + C l with coordinates z\,Z2,t\,...,tCv Let

pr,:<C2+c> ^<C2,(zuz2,t)^(zuZ2),

m 1 Mi l

Φ, = (z2 - z , ) " Π (ί/ - ' , ) 2 / κ Π Π ( Z ; - ^ ) " m y / l t • (4-6.5)

By (4.4.6) we have a map

vI(zuz2,κ) : Smg(L(muq = q(κ)) ® L(rn2,q =

where zuz2 e 1R, z\ < z2, and 9Ί(κ) is the local system defined by Φj.

For zi = 0, Z2 = 1, fix a chain representative y/ for the class [7/(0,1)] =

V/(0, l,κ)(ϋmr Cιvmi), flat with respect to κ9 cf. (3.4.1).

For fixed numbers z\9z\ the map

sends pr]~l(0,1) to /^(zpzί j) . Hence, the image of yj under Γ gives a represen-

tative
Λ//

7/(z?,z2°) - Σ(C/(^z5),α}(κ)) (4.6.6)
7 = 1

of the class V/(ZJ,Z2,K:)(UWI, C]Vm2) f° r arbitrary zj < z^. This representation is flat
with respect to K.
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Simi lar ly , c o n s i d e r t h e s p a c e C 2 + C 2 w i t h c o o r d i n a t e s Z2>z3>'ci+i> >f* L e t

pr,, . <C 2 + C 2 -» <C2, (z2,z3,t) ^ (z2,zi),

Φ// = (z3-z2r'm3/2κ π (ίz-ί/)2^ π {z2-t,rm^\z,-t,rm^.
c\<l<jtkk l

By (4.4.6) we have a map

v//(z2,Z3,κ) : Sing(L(m\q = q(κ))

where Z2,z3 G R, Z2 < Z3, and ^π{κ) is defined by Φ//. As above, construct a chain
representation

Mu

y//(z2,z3) = £(C7/(z2,z3),α7V)) (4.6.7)
7 = 1

of the class v//(z2,z3)(ϊ;wi, C 2 ^ m 3 ) which is flat with respect to K.
Using the chains 7/, 7//, we will construct a chain representing v(z,κ)

((vmι, Cιvm2), c2vm3)

Let u\,U2 be small, then Z2 — z\ <C Z3 — z 2 .

Identify /?r /~
1(zi,Z2) wi th <CCl us ing the coordinates ί i , . . . , ί C l , identify

/ 7 r / 7 I ( z 2 , z 3 ) with (CC2 us ing the coordinates f C l + i , . . . , ^ , a n d identify prγι

k(z\,z2,Z3)

with C * - C c i x (CC2.

Us ing these identifications, for any j = 1 , . . . ,M/, / = 1,...,M//, define a A -cell

^ 7 ( ^ ^ 2 , 2 3 ) in /?r 3~}(z 1,Z2,z 3):

Cμ(zuz2,z3) = Cj(z\9z2) x Cι(z2,z3).

Using αj7 and αf we will define a coefficient of Cμ in the local system Sf{κ)
defined by the function Φ described in (3.1.1) for n = 3.

a?! has the form ε7 β1^ where ε7 is a rational function of q(κ)* and β^ is

a branch of Φj over Cj. The coefficient αf has the form εf β1/, where εf is

a rational function of #(κ;)* and ^f is a branch of Φ/j over C7/. We define the
coefficient of C/Ί in ^(K) by

α7/ = ή εf /% ,

where j8/y is the branch of Φ over Cβ defined below.
Any branch of Φj, ΦJJ, or Φ is defined by determining arguments of all differ-

ences t\ — tj, Zj — tι, zι — Zj in the formulae for Φj, ΦJJ9 and Φ. Therefore, we as-
sume that over Cj (resp. C1/) the argument of every difference in Φj (resp. ΦJJ) is
fixed. Let us determine the argument of every difference in Φ by the following rule:

Choose an argument of z3 - z2, z2 — z\, zb - ta (for a > c\, b = 2,3), zb - ta

(for a < c\ and b — 1, 2),ta — % (for 1 ^ a < b ^ c\ and for ci < a < b ^ k)
the same as those in βj and βf. The function z\ - ta for α > c\ is approximately
equal to Z2 — ta on C//. Choose the argument of z\ — ta which is close to the argu-
ment of Z2 — ta in βf.

The function z3 — ta for a ^ ci is approximately equal to z3 — Z2 on Cβ. Choose
the argument of z3 - ta which is close to the argument of z3 - z2 chosen in βf.
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The function ta — tb for a ^ c\ and b > c\ is approximately equal to z2 — h
on C//. Choose the argument of ta — tb which is close to the argument of z2 — tb
on Cji.

It is easy to see that

Mi Mn

τ(zιz2z3) = ΣΣ(Cji><xj0
j i

is a cycle. The group Sk acts on the space of chains with coefficients in £f(κ). Set

According to [VI, Sect. 14] we have

The chain γ(zι,z2,z3) represents the class v{z\,z2,z^)v. (4.6.8)

Now introduce the new coordinates x\,...,xk in pr^\{z\,z2,z^)\

tp -z\ =xpuιu2, p= l , . . . , c i ,

tp - z 2 =xpu2, p = cχ + 1 , . . . , * .

The cells Cy/ of the chain τ written in coordinates x i , . . . , x ^ do not depend on
u\,u2. The dependence of Φ in those coordinates has the form

Knowing that 7/(0, 1) sits on (αi, . . . ,α C l ) and y//(0, 1) sits on (b\,...,bC2), we
may conclude that γ sits on the ί-critical point described in (4.6.4). Knowing that
integrals over yj and yπ have the desired asymptotic expansion, see (4.5), we may
conclude that the asymptotic expansion of the function φ has the form described in
(2.5.6) and the properties described in (2.5.7). Formula (4.6.9) also shows that the
integral

y(zuz2,z3)

is the asymptotic solution ψc,τ,iά
Theorem (4.2.1) is proved.
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