
Commun. Math. Phys. 170, 249 - 281 (1995) Communications JΓI

Mathematical
Physics

© Springer-Verlag 1995

Dynamical Approximation Entropies and Topological
Entropy in Operator Algebras

Dan Voiculescu*
Department of Mathematics, University of California Berkeley, California 94720, USA

Received: 25 April 1994/in revised form 24 August 1994

Abstract: Dynamical entropy invariants, based on a general approximation approach
are introduced for C*- and W*-algebra automorphisms. This includes a noncommu-
tative extension of topological entropy.

The Connes-Stόrmer entropy [4] and its generalization by Connes-Narnhofer-
Thirring [3] (see [9] for a recent alternative approach) extend the entropy invariant
of Kolmogorov to the context of JF*-algebra automorphisms. These entropies may
be viewed as "observable"-entropies, i.e. they are based on the physics point of
view of observing the quantum dynamical system via abelian models. Here we ex-
plore another route to entropy based on approximation (we also briefly discussed the
approximation idea in [14]). One may think of approximation entropies as "growth"-
entropies, reflecting the mathematical idea of the growth of the algebra produced
by the automorphism. The invariants we obtain are ^ the usual ones and we show
equality for non-commutative Bernoulli shifts and in the commutative cases. Note
also that "observable" entropy is essential in getting lower bounds for approximation
entropies, while approximation entropies give useful upper bounds for "observable"
entropy. Let us also mention from the beginning that the natural framework for
Connes-Stδrmer. Connes-Narnhofer-Thirring and approximation entropies is that
of algebras satisfying hyperfiniteness or nuclearity assumptions.

There are several reasons for studying approximation entropies. One motiva-
tion is the search for a non-commutative analogue to McMillan's theorem for the
Connes-Stόrmer entropy. Proving equality of the Connes-Stδrmer entropy and of
the approximation entropy for a given automorphism can be viewed as a kind of
weak McMillan-type of theorem.

For approximation entropies, the entropy of a tensor product of two automor-
phisms is bounded by the sum of the entropies of the automorphisms. Powers'
shifts, which are very far from asymptotically abelian have been shown recently by
Narnhofer-Stόrmer-Thirring [15] to provide a counterexample to this tensor prod-
uct property for the Connes-Stόrmer entropy. For these Powers' shifts the Connes-

* Supported in part by Grant No. DMS 9204174 from the National Science Foundation.



250 D. Voiculescu

Stormer entropy and the approximation entropies are different. More generally, the
lack of asymptotic abelianness appears to get in the way of observing the system via
abelian models (a point of view held by H. Narnhofer for some time) and therefore
one should also expect McMillan-type results for the Connes-Stδrmer entropy only
when asymptotic abelianness is satisfied.

Another reason for the approximation approach is that it provides a suitable
definition of topological entropy in the non-commutative context. The definitions
previously proposed ([5, 13]), based on the covering idea, have the drawback of
not being invariants of the C*-algebra automorphism, i.e. they require additional
structure in order to function. To define topological entropy in the approximation
approach, it suffices to replace the 2-norm defined by the invariant state by the
uniform norm and one obtains a definition with adequate features.

We also think approximation is consistent with the spirit of [10] and [6].
We consider two kinds of approximation by finite-dimensional subalgebras and

via completely positive maps. Multiplying these two possibilities by the two cases,
that of an invariant state and the C*-case (i.e. "measurable" amd "topological"), we
get four approximation entropies. For McMillan-type results the stronger statements
correspond to approximation by subalgebras. Our topological entropy is based on
completely positive approximation in the C*-case.

For automorphisms of non-commutative tori we show that their topological en-
tropy is of the same order as the entropy of the corresponding classical system.

Another example where we compute the topological entropy is the inner au-
tomorphism for the implementing unitary of a topological Bernoulli shift in the
crossed product. This also solves in the affirmative in the case of Bernoulli shifts
with equal weights a question of E. Stormer in [11]. In an Appendix using the
completely positive approximation entropy we solve the problem in [11] for gen-
eral ergodic transformations.

Note that the approximation idea used here can be applied as well for automor-
phisms of other topological algebraic structures. As an example we briefly look at
the Hubert space case. The result is that the approximation entropy of a unitary op-
erator coincides with the Connes-Stormer entropy of the Bogoliubov automorphism
it defines.

Also more generally we define the entropy of a unitary representation for a
certain class of amenable discrete groups. In the case of an i.c.c. group for a
representation quasiequivalent with the regular representation we prove the entropy
equals the von Neumann dimension.

The paper has nine sections (except the introduction). The first four sections deal
with the four approximation entropies for operator algebras: first the two correspond-
ing to subalgebra approximation (W*- and C*-case) and then the two cases (W*
and C*) of completely positive approximation. Section 5 deals with the topological
entropy of automorphisms of non-commutative tori. Section 6 is about the topologi-
cal entropy of the inner automorphism implementing the topological Bernoulli shift
in the crossed product. Section 7 and 8 deal with Hubert space entropy, first the
case of a unitary operator, then the case of a group representation. Section 9 com-
putes the entropy of the inner automorphism implementing the topological Bernoulli
shift in the crossed product. The last section entitled "Further Remarks" discusses
variants of definitions and some of the open problems. There is also an Appendix
about the solution to Stormer's problem in general.
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1. Subalgebra Approximation the JF*-Case

Let M be a separable hyperfinite, finite von Neumann algebra with a faithful normal
trace state τ and let |JĈ  | = (τ(x*x))1/2 be the associated 2-norm. By 3?f(M) we
denote the finite subsets of M. If ω G &f(M) and i c M w e shall write ω <Zδ %
if for every a G ω there is x G ̂  such that |α — x\ι < δ. Let further J* (M) denote
the unital finite-dimensional C*-subalgebras of M. If Λ G 3F(M) we denote by dim
4̂ its dimension and by rank A its rank, i.e. the dimension of a maximal abelian
self-adjoint subalgebra of A.

1.1. Definition. If ω G ̂ / ( M ) and δ > 0 we define

r τ(ω; (5) = inf {rank A\A G ̂ (Af ),ω C^ ^}

the δ-rank of ω.

1.2. Definition. If α w αw automorphism of M such that τ o <χ = τ,δ > 0 and
ω G &f(M) we define

haτ(ιχ,ω;δ) = lim sup n~ι\og rτ(ω U α(ω) U ... U ^ " ^ ω ) ; ^ ) ,
n—>^oo

haτ(oc,ω) = sup haτ(oc,ω;δ),
<5>0

Aατ(α) = sup {/zατ(α,ω)|ω G ̂ / ( M ) } .

haτ(oc) will be called the approximation entropy of α.

1.3. Proposition. If k eΈ then

haτ(ock)=\k\haτ(a).

Proof We first show ha(oc) = ha((x~ι). We have

= rτ

and hence
haτ(a,ω\δ) — haτ(oc~\ω;δ),

haτ(cc,ω) = /zατ(α~1,ω),

haτ(cc) = haτ(a~ι) .

Thus we may assume A: > 0. We have

haτ(otk,ω;δ) = lim sup rc^log r τ ί (J oikj(ω);δ j

^ sup ^"Mogr

^ khaτ(ot,ω;δ) ,
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which implies haτ(ock) ^ khaτ(ω).
For the reverse inequality, remark that if ω G ̂ f(M) and

then

Hence

khaτ(oc,ω;δ) ^ haτ(ock,ω\;δ),

khaτ(oc,ω) ^ haτ(ock,ω\),

khaτ(oc) S haτ(ak).

D

1.4. Proposition. Le/ ω y G &>f(λf)J G N , ω i C α>2 C . . . te
α"(ω7 ) generates M as a von Neumann algebra. Then

haτ(oί) = sup haτ(cc,(Dj).

/ It suffices to show that given ω G 0>f(M) and <S > 0 there is ^i > 0 and
cύj such that

haτ(cc,ω;δ) ^ Aατ(α,ω/;δi).

In view of the assumptions there is N G N so that

ωCδ/2N co(τ({l}U
V V

where ω* = {α*|α G ω7},T = {z G C| |z| = 1} and co denotes the convex hull. If

C = max {||β|| \a G ωy } we easily see that if for some unital B G !F(M) we have

I

then

where δ2 =N2(2C)N-χδx. Thus choosing δx = 2-χN-2(2Cf-Nδ2 we see that

implies ω Cδ B. In particular

rτ( U

so that
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haτ(oc, ω; δ) ^ haτ(oc, oί~N(ωj); δ\) = haτ(oc, ω ; ; δ\).

D

The notations H(AU...,An\H(A\B\H(A,a),H(oi) are those of [4] for the en-
tropy quantities defined by A. Connes and E. Stόrmer.

1.5. Proposition. If A G #"(M) and ω G &f(M) generates A as a C*-algebra,
then

H(A,OL) g haτ(oc,ω)

and
H(oί) <> haτ(oc).

Proof. It is clearly sufficient to prove the first assertion.
For the given A G #"(M) and a given ε > 0 by [4] there is δ > 0 such that if

B e #"(M) and if for every a £ A, \\a\\ S 1 there is b e B such that \a - b\2 < δ,
then H(A\B) < ε. It is easily seen that in view of our assumptions there is δ\ > 0
such that

ωc^ B^H{A\B) < ε.

This also implies
n{)BH(n{A)\B) ε .

Thus, if
rτ{ω U U α " " 1 ^ ) ; δ\) = r(n),

there is Bn G &(M\ rank Bn = r(«) so that (iJ(ω) Cδ{ Bn for 0 ^ j ^ n - 1. This
implies

S log r(n) + nε ,

so that
H(A, α) ^ haτ(oc, ω; δ\) -f ε ,

and hence the desired conclusion. D

1.6 Remark. It is obvious that the preceding proposition can be refined by replac-
ing the lim sup in the definition of haτ(a,ω ,δ) by a lim inf. This defines lower
approximation entropy quantities:

lhaτ(oc,ω;δ) = lim inf n~ι\og r τ (ωU U α"

lhaτ(ot,ω) = sup lhaτ(oc,ω;δ),

lhaτ(oc) = sup {lhaτ(oc,ω)\ω G

We have
,α) ^ lhaτ(oc,ω)

when ω generates v4 and
7/(α) ^ /Aατ(α).

We don't know whether lhaτ((x,ω),lhaτ(a) are not actually equal to haτ(θί,ω),
haτ(a).
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1.7. Proposition. Assume M = L°°(X,έ%,μ) is separable and α is induced by an
ergodic measure-preserving automorphism T of the probability measure space
(X,&,μ) and τ is the trace defined by μ. Then

h(T) = haτ(a),

where h(T) is the Kolmogorov entropy of T.

Proof Since h(T) = H(oc) we have h(T) ^ haτ(oc) by 1.5. In view of 1.4 to prove
the converse it suffiices to show that if Ω = (Ω\,...9Ωm) is a measurable partition
of X and ω = {χΩj\ ^ j S m}> where XQ is the indicator function of Ωj, then
haτ((x,ω) ^ h(T). In view of McMillan's theorem, given ε > 0 there is N such
that, if n ^ N, then in

except for the atoms contained in the set Z with μ(Z) < ε, the other atoms have
measure in the internal [exp(—n(h(T) + ε)), exp(—n(h(T) — ε))). We then define An

to be the linear span of the χ^, where A ranges over the atoms of O(w) which do
not intersect Z, plus the set Z itself. Thus An E J^(M) and

dim An S 1 + exp(n(h(T) + ε)) .

Since \χz\2 < e1/2 we easily infer

^'(ω) Cei/2 Λ

for 0 ^ 7 S n - 1. This gives

rτ(ωU-- U(xn-\ω);ει/2) ^ 1 + exp(/i(A(Γ) + ε)),

and hence
haτ(ot,ω;ει/2) ^ h{T) + ε.

Since ε > 0 is arbitrary, this gives the desired conclusion. D

1.8. Proposition. Let Mk be the algebra of k x k matrices with its unique trace-
state M = Mfz^ τ = τfz and let α be the non-commutative Bernoulli shift on M.
Then

haτ{a) = //(α) = log k .

Proof Since haτ(ot) ^ //(α) by 1.5 we need only prove haτ(μ) ^ H(oc). Let 4̂ G
J^(M) be one of the copies of Jtk in the tensor-product defining M, and let ω be
a system of matrix units for A. By 1.4 haτ(a,ω) = haτ(oc). On the other hand

r ^ ω U U α " " 1 ^ ) ^ ) ^ £n,

so that haτ(a,ω) g log A: = //(α). D

1.9. Proposition. Lei M = Mi 0 M2, τ = τi 0 t2, α = αi (8) α2.

AΛτ,®τ2(αi ^ α 2 ) ^ haτι(<x\) + haΊ2(oc2)
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Proof. Remark that if a G M,B,G &(M\b G B are such that \a - b\2 < δ, then b
may be chosen so that ||fe|| rg | |α|| (take b = EBa,EB the conditional expectation).
If CUJ G 3F(Mj) are such that x G cθj• => \\x\\ < 1, it is easily seen that

(J

- l

U
It follows that

haτ((X\ 0α2,ωi (8)ω2;^i -f δ 2) ^ Aβ τ i(αi,ωi;δi) -f haτ2(oi2, ω2; δ2) ,

and to get the desired conclusion it suffices to use 1.4. D

2. Subalgebra Approximation the C*-Case

This section runs parallel to the preceding, with hyperfmite W*-algebras replaced by
AF C*-algebras (no state specified). Notations used here do not always have the
same meaning as in Sect. 1, being adapted to the AF-case. Thus, M will denote
an AF C*-algebra with unity. ^f(M) and Ψ(M) have the same meaning as in
Sect. 1. If ω G 0>f{M) and I c M w e write ω Q l if for every a G ω there is
x G l such that \\a — x\\ < δ. The definition of the <5-rank r(ω δ) is a repetition
word for word of Definition 1.1, the difference being that M and C^ no longer have
the same meaning as in Sect. 1.

2.1. Definition. If en is an automorphism of M,ω G έ?f(M) and δ > 0, we define

hat(a,ω;δ) = lim sup n~ι\og r ί (J ocJ(ω);δ ) ,

hat(ot, ω) = sup to(α, ω; δ) ,
<5>0

totf(α) = sup {Λα/(α,ω)|α G &f(M)} .

hat(oί) will be called the topological approximation entropy of α.

Clearly the difference between Definition 1.2 and Definition 2.1 is that now M
is an ^F-algebra and C^ is with respect to the uniform norm.

Propositions 1.3 and 1.4 and their proofs immediately adapt to the context of
this section to yield the next two propositions, the proofs of which will be omitted.

2.2 Proposition. IfkeZ then hat(ock) = \k\hat{a).

2.3. Proposition. Let ωy G ̂ / ( M ) , ω i C ω 2 C ... be such that

ocn(c0j) generates M as a C*-algebra. Then

hat(oc) = sup hat(oc,a)j).
N
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2.4. Proposition. Let τ be a trace-state of the AF-algebra M such that τ o α = τ.
Let M be the von Neumann algebra completion of M with respect to τ, a the
automorphism and τ the trace obtained from a and τ. Then

haτ~(oi) S hat(oc) .

Proof Let π : M —> M be the canonical homomorphism. Clearly if ω G 0>f{Ms),A e
J^(M), ω Cδ A, then π(ω) C^ n(A) which also implies the <5-inclusion of π(ω) into
n(A) with respect to the 2-norm defined by τ. It follows that if ω £ 0*f(M\

r(ωU U α ^ H ω ) ; δ) ^ r f(π(ω) U • U π ί α ^ ^ ω ) ) ; (5)

= r f(π(ω) U U ά ^ ^ ^ c o ) ) ; (5).

Hence hat(oc,ω;δ) ^ Λβf(π(α));(5) and so hat(oc,ω) ^ haf(ά,π(ω)). Using 1.4 and
2.1 we infer hat(a) ^ haf(ά). D

2.5. Proposition. L ^ Γ : X —+ X /?e α homeomorphίsm of a totally disconnected
metric space. Let M — C(X) be the AF C*-algebra of continuous functions on X
and let α be the automorphism induced by T. Then we have

htoP(T) = hat(oc),

where htop(T) is the topological entropy of T.

Proof The topological entropy of T is the supremum of the entropies of T with
respect to all ergodic invariant Borel probability measures μ on X (see [8], p. 273).
By 1.7, the entropy of T acting on (X,μ) coincides with haμ for the automorphism
of L°°(X,μ) induced by T. Since by 2.4 hat(a) majorizes haμ of the automorphism
of L°°(X,μl we infer hat(ot) ^ htop(T).

Let Ω = (Ωu...,Ωm) be the partition of X into closed open sets and let ω —
{χ^ll ^ j ^ m}, where XQJ is the indicator function of Ωj. In view of 2.3 it will
suffice to prove that

hat(0L,ω) S ht0V(T).

With 7VX ) denoting the least number of elements of an open subcover of a given
open cover of X, we have

φ U U ocn~ι(ω); δ) ^ N(Ω V V Tn~ιΩ).

Hence
hatfaω δ) £ h(Ω,T) £ htop(T)

(for the definition of h(ωj) see [8], p. 264). This implies Λ(α,ω) ^ hXop(T). Π

2.6. Proposition. Let Mk be the C -algebra ofkxk matrices, let M = JίfΈ be
the AF-algebra and let α be the non-commutative topological Bernoulli shift. Then

hat(a) — log k .

Proof Applying 2.4 and 1.8 to the von Neumann algebra completion of M with
respect to the unique trace state of M we get hat (a) ^ log k.
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On the other hand let A G J^(M) be one of the copies of Jίk in the tensor
product defining M. Then if ω is a set of matrix units for A, by 2.3 we have
hat(oc, ω) — hat(μ). On the other hand, since the C*-algebra generated by ω U U
α " " 1 ^ ) has rank kn, we infer

r(ωU ..Uαπ~1(ω);<5) ^ kn ,

and hence

hat(ot, ω) ^ log k .

D

The proof of the next proposition is entirely analogous to the proof of Proposi-
tion 1.9 and will be omitted.

2.7. Proposition. Let M , M 2 be AF-algebras, M — M\ (g>M2,α = αi (g> α2. Then

hat(μ\ <g> α 2 ) ^ hat(oc\)

3. Completely Positive Approximation the W

In this section we will work with a weaker type of approximation based on com-
pletely positive maps instead of subalgebras. We shall examine only the fF*-case
here and leave the C*-case for the next section.

Throughout this section (M, σ) is a hyperfinite von Neumann algebra M with a
normal faithful state σ. We assume α : M —» M is a automorphism so that σ o α = σ.
Also we shall use the notation |(α||σ = (σ(α*α))1//2, where a G M.

By CPA(M,σ) we denote the set of triples (φ,\j/,B), where B is a finite-
dimensional C*-algebra, φ : M -+ B and ^ : 5 —> M are unital completely positive
maps so that σ o ψ o φ = σ. If (φ.ψ,B) G CPA(M,σ), then (φ o a"n,an oψ,B) £
CPA(M,σ).

3.1. Definition. If ω £ &f(M) and δ > 0 /Ae completely positive δ-rank is defined
by

rcpσ(ω;δ) = infjrank B\(φ,φ,B) £ CPA(M9σ), \\(ψ o φ)(a) - a\\σ < δ for a £ ω} .

Remark that rcpσ(ocn(ω); δ) — rcpσ(ω; δ).

3.2. Definition. We define for ω £ &f(M) and δ > 0,

hcpaσ(oc, ω; 5) = lim sup ft"1 log rcpσ{ω U α(ω) U U (

hcpaσ(a,ω) — sup hcpaσ(oc, ω; δ),

hcpaσ(oc) = sup hcpaσ((x,ω).
ωe&f(M)

hcpaσ(μ) will be called the completely positive approximation entropy.
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3.3. Proposition.
hcpaσ(ak) = \k\hcpaσ(oc).

The proof is along the same lines as the proof of 1.3.

3.4. Proposition. Let ωy £ 0>f{M\ωx c ω 2 C ... be such that the linear span of

(JyeN ock(ωj) is ultrastrongly dense in M. Then

sup hcpaσ((x,ω;) — hcpaσ(oc).
yen

Proof Let ω £ &f{M\ω = {a\,...,am}. In view of the assumptions there is ωN

and p £ N so that if \J^pύkύp^{ωN) = {xu...9xn}9 then

ij — 2_j λjkXk < δ

for some scalars λjk. With C = maXŷ lA Î it is easily seen that

rcpσ(ωU -Uoid(ω);2δ) £ rcpσ( (J as(ωN);C~

= rcpσ{ωN U U ocd+2p(ωN); C~ιδ).

This in turn implies

hcpaσ(a,ω;2δ) ^ hcpaσ(a,ωN;C~~ιδ)

^ sup hcpaσ(oί,ωN),
N

and hence
hcpaσ(oc) <Ξ sup hcpaσ(σ,ωN).

The opposite inequality is obvious. D

3.5. Proposition. Let N C M,\ £ N be a von Neumann subalgebra. Assume OL(N)
= N and the existence of a projection of norm one E : M —> N such that (σ\N)o
E = σ. Then

hcpaσ((x\N) ^ hcpaσ(oc).

Proof The proposition follows immediately from the fact that rcpσ(ω;δ) for a
subset ω C &f(N) is the same w.r.t. (M,σ) or (N,σ\N). This in turn follows from
the fact that if (φ,ψ9B) £ CPA(M,σ\ then (φ\N,E o ψ,B) £ CPA(N,σ\N) and if
a £ N, then

| | ( ^ o φ ) ( f l ) - α | | σ ^ \\E((φ o φ)(a) - a)\\σ

= \\(Eoψ)(φ\N)(a)-a\\σ.

Here we used for x £ M

σ(x*jc) = σ{E{x*x)) ^ σ(E(x*)E(x)) .

D
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The next proposition related hcpaσ(a) with the Connes-Namhofer-Thirring en-
tropy hσ(tx) [3]. In the proof we will frequently use results and notations from
[3].

3.6. Proposition. Ify:A-^Misa completely positive map, A a finite-dimensional
C*-algebra and ω c 0*f(M\ so that y(A) is contained in the linear span of ω.
Then

hσ,a(y) ύ hcpaσ(oc,ω)

and hσ(a) ^ hcpaσ(a).

Proof Let C > 0 be such that

C-ιγ({aeA\ \\a\\ ^
xEω

Σ W*)l ̂
xEω

Let (φ,ψ9B) G CPA(M,σ) be such that

\\(φ o φ)(a) - a\\σ < δ

for a e ω U α(ω) U U α ^ ^ ω ) . Then

\\((φ o φ) o aJ o γ)(a) - (aJ o y)(a)\\σ < Cδ

if a e A, \\a\\ ^ 1 and O g j ^ / i - l . Given ε > 0 by theorem VI.3 in [3] there
is a corresponding δ > 0 such that this implies (for all n)\

Hσ(ψoφoy,...,\l/oφo(χn-1 o y)\ < nε .

Using Proposition III.6 and the observation following Definition III.4 in [3] we have

Hσ((ψ o φ o aJ' o y)oύjύn-\) ^ Hσ(φ) ^ S(σ o φ) ^ log rank B .

Since we may choose

rank B = rcpσ(ω U U α ^ ^ ω ) ; δ),

we infer

hσAy) ^ hcpaσ(oc,ω;δ) + ε
S hcpaσ(a, ω) + ε .

Since ε > 0 is arbitrary we get hσ^(y) ^ hcpaσ(ot,ω). The inequality /2σ(α) ^
hcpaσ{μ) is an obvious consequence. D

3.7. Proposition. Assume σ — τ is a faithful normal trace-state. Then

hcpaτ(a) ^ haτ(a).

Proof. The proposition follows easily from the following remark. If B 6 £F(M) is
unital, let ίB : B -> M be the inclusion and EB : M -^ B the conditional expectation
given by the projection in L2(M, τ). Then

(EB,iB,B)eCPA(M9τ).

D
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Combining 1.7, 3.6 and 3.7 we obtain the following corollary.

3.8. Corollary. If M is commutative and separable and α is ergodic then

h(a) = hcpaτ{a).

3.9. Proposition. Let σ> be a faithful state on Jίk Let σ = σfz on M =
and let α be the non-commutative Bernoulli shift. Then

hσ(ot) = hcpaσ(a).

Proof Let Dk C Jίk be a m.a.s.a. such that σk = Tr( X) for some X G Dk and
let D = Z)fz C M. By the results of [3] we have

hσ(θi) = hσlD(a\D) .

Let further ¥ W - j f ° ' " ] c M and Z><n> = M<n) Π D. By McMillan's theorem
there are self-adjoint projections Pn E D^ such that σ(Pn) —• 1 as « —> oo and
w-!log rank (PΠD(/I>) - hσ(oc) -+ 0. Let Bn = (/ - P π ) + PnM^Pn. Choose finite
subsets ωw c M(λ2) which span M ( w ) such that y < A: =Φ ω7 C ω^. By 3.4 hcpaσ(μ) —
supnhcpaσ(cc, ωn). Let ^ Λ be the conditional expectation onto M^ given by (id®) '"

®σf ( Z \ [ M ) , and let

φn(a) = PnEn(a)Pn + σ((I - Pn)a{I - Pn)) (σ(I - Pn)Γ\l - Pn) .

It is easily seen that σ o φn — σ and

lim ( sup \ \\φn+p(a) - a\\σ\a G | J φ p ) > ) = 0

(note that Pn+pφn+p{a) = Pn+paPn+p, for α as in the last formula). This implies

hcpaσ(ot,ωp) ^ lim sup « - 1log rank £„ = Λσ(α),
n—>-oo

which gives
hcpaσ(a) ^ Aσ(α).

The opposite inequality was already obtained in general in 3.6. D

3.10. Proposition. Let M — M\® M2, σ = σ\ 0 σ2, α = αi 0 α2

^σ2(ocι Θ α2) ^ hcpaσ\{μ\) + hcpaσl{oL2),

®σi(ax (g)α2) ^

Proof If α7 E Mj,{q>j,\fo\Bj) G CPA(Mhθj), then

Thus if coy G ̂ f(Mj) are such that x G ωy => ||x|| < 1, we have
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rep % I U (αi ^α 2 y '(ωi ®ω2)\δx+δ2) ^rcpσ ( | J

( U

This in turn gives

hcpaσιΘσ2(cc\ 0 α 2 , ω i 0 ω 2 ; ^ i + <52) ^ hcpaσχ(μx,ω\\δ\) + hcpaσ2(cc2,co2;δ2),

and using 3.4 we get the desired conclusion.

The second inequality follows immediately from Proposition 3.5. D

3.11. Let α be a Power's shift, i.e. assume M is generated by e7 (j £ Z), e ; =

e*,ej = l,epeq = (—l)y^p~q^eqep for some function y : IN —>• {0,1} and σ = τ is

a faithful trace-state so that τ(ey) = 0 and α(β7) = eJ+\.

Proposition. If a is a Power's shift on (M,τ), ί/zê

2- !log 2 S hcpτ(θί) ^ haτ(oc) ^ log 2 .

Proof. Since the algebra generated by ^0,^i ? , ^ - i has dimension 2n we easily
get haτ(oc) ^ log 2.

On the other hand let N C M be the subalgebra generated by βj <£) βj.
Then (oί®(x)\N is a classical Bernoulli shift and h((oc 0 OL)\N)) = log 2. Thus

Ac/?τ(α) ^ 2-ιhcpτ(oc 0 α) ^ 2-ιhcpτ((oc 0 α)|7V) = 2- !log 2. D

In [15] the existence of Power's shifts for which h(a) — 0 is proved and there-
fore h((x) + hcpz((x).

4. Topological Entropy (Completely Positive Approximation the C*-Case)

This section is the C*-parallel to Sect. 3. The dynamical invariant we obtain will
be the topological entropy.

Here M will be a nuclear C* -algebra with unity and α an automorphism. By
CPA(M) we denote triples (φ,φ,B), where B is a finite-dimensional C*-algebra
and φ : M —> B,φ : B —> M are unital completely positive maps. The completely
positive (5-rank is then defined by

rcp(ω; δ) =inf{rank B\(φ,ψ9B) G CPA(M\ \\{φ o φ)(α) - a\\

< δ for a G ω} .

4.1. Definition.

ht((χ,ω;δ) — limsup w^log rc/7(ω U α(ω) U U afl~ι(ω);δ) ,w l o g rc/7(ω U α(ω) U U afl~ι(

ht(u, ω) = sup ht(a, ω;

ht(a) = sup ht(a,ω) .

(α) w called the topological entropy of a.
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The following two propositions and their proofs are the obvious analogues of
Propositions 3.3 and 3.4, the proofs are left to the reader.

4.2. Proposition.
ht((xk) = \k\ht(oc).

4.3. Proposition. Let COJ G &>f(M),ω\ C ωι c ... be such that the linear span of

otk(ω;) is dense on M. Then

sup ht(oc,cθj) = ht(oc).

We also have the analogue of Proposition 3.5.

4.4 Proposition. Let I £ N C M be a C*-subalgebra and assume there is a pro-
jection of norm one E of M onto N. Then

ht(a\N) S ht(oc).

The proof is along the same lines as that of 3.5 and will be omitted. As a
biproduct one has that for ω E 0>f(N),rcp(ω;δ) is the same w.r.t. N or M.

4.5. Proposition. Assume M is an AF-algebra. Then

ht(oc) ^ hat((x).

Proof Let ω G &>f(M) and let Bn e J^(M) be such that

ι Cδ Bn

and lim sup^^^rc^log rank Bn ^ hat a.
Since Bn is a finite-dimensional C*-subalgebra, there is a projection of norm

one En : M —• Bn. Denoting by /„ : Bn —> M the inclusion, we have

\\(inoEn)(a)-a\\ <2δ,

if a G ω U U ocn~ι(ω) and hence ht(oc, ω; 25) ^ teί α.
Since <5 > 0 is arbitrary we get

ht(a,ω) ^ hat(oc),

and hence /zί(α) g hat(a). D

4.6. Proposition. Lei σ 6e α/ί oc-invariant state on M. Then

/ The proof is similar to that of Proposition 3.6. Let γ : A —• M be a unital
completely positive map and let ω e 0>f(M) be such that y({α E A\ \\a\\ ^ 1}) is
contained in the convex hull of ω. Let (φ,ψ,B) G CPA{M) be such that

- α | | <δ
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f o r α G ω U α(ω) U U α * " 1 ^ ) . Then if a e A, \\a\\ ^ 1 and 0 ^ j < n - 1,

\\((φ o φ) o α7' o y)(α) - (α7' o y)(a)\\ < δ .

By Proposition IV.3 in [3], given ε > 0, there is a corresponding δ > 0, such that
the previous inequality implies (for all n)

Using Proposition III.6 a) and c) and the observation after Definition III.4 in [3],
we have

Hσ((ψ o φ o ocj o y)o^j^n-ι ^ #σ(*A)

^ 5(σ o φ) ^ log rank £ .

Like in the proof of Proposition 3.6 this then leads to

hσ,a(y) ^ ht(oc,ω)

and hσ(oc) ^ Aί(α). D

4.7. Proposition. Le/ M = Jί®% and let oc be the non-commutative topological
Bernoulli shift. Then

ht(a) = log k .

Proof By 4.5 and 2.6
ht(oc) ^ /zαί(α) = log k .

On the other hand let τ be the unique trace-state on M, then by 4.6,

ht(a) ^ Ar(α) = log it.

D

4.8. Proposition. Lei T : X —> X be a homeomorphism of a compact metric space.
Let M — C(X) be the C*-algebra of continuous functions on X and let α be the
automorphism induced by T. Then

Atop(Γ) = Aί(α).

Proof By 4.6 ht(oc) is ^ the supremum of /zσ(α), where σ runs over the α-invariant

states of C(X) and thus ht(oc) ^ htop(T). For the converse we shall use the notations

and definitions on 264 and 265 of [8]. Let ω G 0>f(C(X)) and % = {C/i,...,t/w}

be an open cover of X such that x j G £/, => |/(x) — f(y)\ < δ for all / e ω, 1 ^

j ^ n. Let f be a subcover of %~ι = Vo^y^«-i r y ^ w i t h m i n i r n a l number
1 of elements. Then if / e Uo^y^«-i α 7 ( ω ) a n d F G ^ w e h a v e x>y e

(5. Let r - {F 7 jΓ^ y ^ i V ^ " 1 ) } and let jc, <Ξ Vj9Xn =

)} a n d %i € C(X), 1 g y g ^ ( Φ J " 1 ) ^ ^ χy g l,supp χy c

= 1 a partition of unity subordinate to TΓ. We define
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by
C(X) 9 / -> f\Xn e C(Xn)

and φn : Bn —> M by

i^ Σ ^(xjhjecix).

, then

I/O) - ( (^ o φπ)(/))(*)| g ΣZ7(X)I/(X) ~ f(xj)\
j

Thus

rcp\ \j θίJ(ω);d I s rank .§„ = Yv(°U§ ) ,

and hence
ht(a,ω;δ) ^ h(%,T) ^ htop(T) .

This in turn implies Aί(α) ^ htop(T). D

The proof of the next proposition is similar to the proof of Proposition 3.10 and
will be omitted.

4.9. Proposition. Let M = M\ 0 M2, α = αi Θ α2.

Dα2) ^

) α 2 ) ^

5. Automorphisms of Non-commutative Tori

This section deals with automorphisms of non-commutative tori, the main result be-
ing that the topological entropy is rg the entropy of the corresponding automorphism
of the commutative torus.

Let Ap,p = (pιj)\^ij^n be a ^-dimensional non-commutative torus, i.e. Ap is a
C*-algebra generated by unitaries u\,...,un such that utuj — pijUjUi, where |p^| = 1
and there is an action β : T" -> Aut(Ap) such that β(eiθ^...,eiθn)(uj) = eiθJuj. Let
T e GL{n,7L) be an integral matrix with det T = ±1 and assume there is an auto-
morphism a oϊ A such that α(wy) = ux

 Xj'... u™nj. Let further τ denote the ^-invariant
trace-state on A given by τ(u\ι ...uk

n

n) = δo^ ...δojcn The representation π asso-
ciated by the GNS construction with τ is realized in l2(Έn), where we identify
e(k\k = (ku...,kn)eΈn with the vector π(uk)ζ = π(u\ι ...uk

n

n)ζ (ζ the cyclic vec-
tor). Let / be the canonical antiunitary involution fn{x)ζ = π(jc*χ.

Given linearly independent vectors v\,...,υn in 1RW, consider the parallelipiped
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and
Q(R)=P(R)ΠZn.

5.1. Lemma. Given ε > 0 there is λ > 0, such that if

P(R) D A = {h e Rπ | \hf\ S 1,1 S j S n} ,

ί/z£?2 ί/zere are unital completely positive maps

φ:Ap-^ B{l\Q{λR))) ,

ψ : B(l\Q(λR)))-+Ap ,

so that
\\(φoφ)(uk)-uk\\ <ε

ifkeQ(R).

Proof. Let F be the orthogonal projection of l2(Zn) onto l2(Q(λR)). We define
φ(a) = Fπ(a)F\l2(Q(λR)). We identify B(l2(Q(λR))) with FB(l2(Zn))F and we
define

by
= w- lϊm\Q(λR)\-1 Σ fπ(uk)fX(fπ(uk)f)\

where ω is a non-trivial ultrafilter on N. Clearly φ and ψ are completely positive.
Let Eki(k,l eZn) be the system of matrix units in B{l2(7Ln)) and consider also
Vkl = π{uk-ι)Eu so that Vkl - yklEkh \ykι\ = 1. If a,b,k e Zn, then

fπ(uk)fVab(fπ(uk)fTeq = δb_KqVa-Kb-keq .

Hence, if a,b e Q(λR), we have

Σ / π ( ^ ) / F f l , ( / π ( / ) / ) * e , = \{b - q] Π *

We infer

Since the F a i with a,b G β(AΛ) span S(/2(β(/l/?))), it follows that φ = πoφ, where
ι/>: B(!2(Q(λR))) -> Ap is a completely positive map and ^(Fβ ί >) = 1 *
This gives

φ(ψ(uc)) = φ(Fπ(uc)F)

Σ

= \Q(λRTl\Q(λR) Π (Q(λR) - c)\uc .

ψ is clearly unital and the last formula (for c — 0) inplies φ is unital. We also get
that if c e Q(R):
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It is easy to see that if A C P(R) and λ ^ 3 then

\Q(λR)\ ̂  yo\(P((λ+\)R))

and
\Q((λ-l)R)\ ^ vo\(P((λ-2)R)).

Then choosing λ large enough, we will have

\Q((λ-\)R)\ ίλ-l
\Q(λR)\ = l

D

5.2. Lemma. Let TEGL(Π,R) and let λ\9...,λn be its eigenvalues and μj—
max(l,|Λ7 |). Then there is a basis v\,...,vn ofW1 such that if ε > 0 and σ C 1R"
is a finite subset, then there is no 6 3N, so that if N ^ no, then

Σ fμfυj\\sj\ S 1,1 £ j ^ n) D {T h\h e σ,0 £ m £ N} .

Proof For each real eignevalue λ of Γ choose a basis in the spectral subspace for
{λ} of ̂  and for each pair of conjugate complex eigenvalues λ,λ of A choose a
basis for the spectral subspace of A corresponding to {λ,λ} (in R w ) . Putting these
together we get the basis v\,...,vn with the required property. The factor (1 + ε) is
necessary because Jordan cells may be present. •

p

5.3. Proposition. Let α be an automorphism of the non-commutative torus Ap

corresponding to a matrix T £ GL(n,Z). Then ht(oc) ^ log(μiμ2 -. μ«), where
μj = max(l,|Ay|) and λ\,...,λn are the eigenvalues of T {each repeated according
to its spectral multiplicity).

Proof Given δ > 0 and ε > 0 it will sufice to show that for ω = {uk\k £ σ}σ a
finite subset of Έn, we have

rcp(ω U α(ω) U U aN~\ω); δ) g C( l + εfn(μx... μn)
N

for N ^ no (some no € N). Indeed choose vectors ϋi,...,ι;w as provided by 5.2.
Let fV(l) be the parallelipiped

Σ

spanned by the vectors (1 + εψμ^Vj, 1 Sj ύ n- Enlarging the set σ so that it
contains {k E Έn\ \kj\ ̂  1,1 rg j ^ «} we have that PN(1) satisfies the condition
PN(l) D A in Lemma 5.1. Hence there is λ > 0 and there are unital completely
positive maps

φ N :Ap —> BN

\fa :BN ̂  Ap

with rank BN — \Qχ(X)\ satisfying

)-/|| <δ
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if * € QN(\ )• (Here QN(R) = PN(R) n TLn and BN = B{l2{QN{λ))).) Since \£l£ Tm

<* C QN(R), we get

\\(ψN o φN)(x) - x\\ < 8

if x e ω U U oίN~ι(ω). We have

rank BN = \QN(λ)\ ^ vol(/Mλ + 1)) = C(l + εf"(μi . . .μ«f

for some constant C > 0. D

5.4. Corollary. Let α be an automorphism of the non-commutative torus Ap cor-
responding to a matrix T € GL(n,Z). If v is an ^-invariant state on Ap and
μj = max(l,|A/ |),Ai,...,λn being the eigenvalues of T, then

Av(α) ^

Proof This follows from 4.6 and 5.3. D

5.5. Remark. For the particular case of the irrational rotation algebra (i.e. n = 2)
endowed with the trace state τ, a proof of //(α) ^ log μiμ2 is given in [7]. If
valid, that proof would imply haτ(oc) ^ log μiμ2 Unfortunately important details
are missing, which we were unable to fill in (perhaps it may be necessary to assume
the irrational number has special diophantine properties).

6. The Crossed Product of the Bernoulli Shift

With essentially the same argument used for automoφhisms of non-commutative tori
we compute here the topological entropy of the inner automorphism implementing
the topological Bernoulli shift in its covariance algebra. In particular, this answers
in the affirmative for measurable Bernoulli shifts of entropy log n a question of
Stόrmer [11].

Let X — {1,...,«}Z and consider the crossed product C(X)xβ Z, where β is
the Bernoulli-shift action. We will show ht(Aά u), u the implementing unitary
of β(l), coincides with the topological entropy of the Bernoulli shift, i.e. log n.
This is equivalent to computing the topological entropy of a certain inner group
automorphiism.

We begin with a construction similar to the one in Lemma 5.1.

6.1. Lemma. Let G be a discrete group, C*(G) its reduced C*-algebra, Q C G a
finite subset. For g £ G let λ(g) be the left regular representation and let F be the
orthogonal projection of 12(G) onto 12(Q) C 12(G) and Eab(a,b G G) the matrix
units in B(12(G)). Then there are unital completely positive maps φ : C*(G) —*
B(12(Q)) and φ : B{l\Q)) - Q ( G ) so that φ(T) = FTF\l\Q) and φ(Eab) =
\Q\-χλ(ab-1). Moreover
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Proof. We only sketch the proof since this is the same argument as in Lemma 5.1.
By p(g) let us denote the right regular representation. Let K\ c Kι c . . . ,(J p K p =
G be finite sets (there is no loss of generality if we assume G countable). Then we
define

Ψ(T)=\Q\-lw~ lim l \

for T G B(l2(Q))=FB(l2(G))F. We then find ψ(Eab) = \Q\~ιλ(ab-{) and φ(φ(λ
(g))) = I β l " 1 ! ^ Π #2W#) which show in particular φ is unital and takes values
actually in C?(G) C B(12(G)). D

Let Γ = (Z/nZ){Z) and G = Γ x α Z, where α is the shift action on Γ. Let g G G
be the generator of TL c G, i.e. the inner automorphism of g implements the shift au-
tomorphism of Γ. There are obvious isomorphisms C(X) ~ C*(Γ\C(X)xβΈ ~
C*(G) under which w corresponds to λ(g) and our problem will be to compute
ht(Aά λ(g)). We identify Γm,?W2 = (Z/nZ)[m2^] in the obvious way with a sub-
group of Γ C G.

6.2. Proposition. We have ht(Ad w) = log « /or £/*e unitary u implementing the
topological Benoulli shift in C(X) Xβ TL.

Proof. It suffices to show ht(Aά u) ^ log n the opposite inequality being a con-
sequence of 4.4 and 4.8 applied to the restriction of Ad u to C(X). For the
rest of the proof we pass to the group G, where the problem becomes to show
ht(Aά λ(g)) :g log n. Let \hn,φm,Bm be the maps and the finite-dimensiional C*-
algebra provided by Lemma 6.1 in case

\j\ £

Remark that if 0 < k < m, then Tm_k_kQ(m,k) C Q(m,k) and hence

if A € Q(m - k, p) with 0 < p < k/2. It follows that

- λ(h)\ S P

2k + 1

if h G Q(m - A, p). Note also that gQ{m - A, p)g~ι c Q(m + 1 - A, p). Thus if
ωm = {λ(h)\h G g(m - A,/?)}, we have (Ad λ(g))(ωm) C ω m + i . Using φm,φm,Bm

we have
r φ ( ω m ; ^(2A + I ) " 1 ) ^ \Q(m,k)\ = (2A + l)«w + 2^ .

Hence

Aί(Ad A(g),ωw; p(2A + I ) " 1 ) ^ lim supA^1 log((2A + l)nm+N+2k) = log n .

Increasing k and p the conclusion can now be obtained from 4.3. D

6.3. Corollary. Let μn be the equal weights probability measure on {1,...,^} and
let μ = μfz. Let u be the implementing unitary for the Bernoulli shift action in
M =L°°(X,μ)xβΈ. Then

H(Ad u) = log n .
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Proof. Since //(Ad u) ^ //(Ad u\L°°(x,μ)) = log « it suffices to prove the oppo-
site inequality

The inequality //(Ad u) ^ log n follows from 4.6 which gives //Ad u) ^
/z/(Ad w) (the second Ad u begin in C(X) Xβ Έ) and Proposition 6.2. D

7. Unitary Operators, the Hubert Space Case

We take a look at the approximation entropy of a unitary operator in this section.
By Jf we shall denote a complex separable Hubert space of infinite dimension,

by &f(3tf) the finite subsets of 3/f and by 3F(2tf) the finite-dimensional subspaces
of 3tf. If ω G &f(J4P) and Λ C Jf we shall write ω Cδ A if for every h e ω we
can find hf G A such that ||λ — /ẑ l < (5. C/ will denote a unitary operator acting on

7.1. Definition, / / ω e &f(Jίf) and δ > 0, we define

d(ω δ) = inf{dim χ\χ G ^ ( J f ) , ω C^ χ} .

7.2. Definition. If δ > 0 and ω e &f(3tf\ we define

A(ί/,ω;δ) = lim sup w^dί |J

,ω) = sup h(U,ω;δ),

h{U) = sup{h(U,ω)\ω G

The reader who is by now familiar with the operator-algebra case, will easily
find the proofs of the next two propositions.

7.3. Proposition. If k G Z then

k = \k\h(U).

7.4. Proposition. Let COJ G &f(Jίf)J G N,ωi C ω2 C ... be such that \JjeJr U«G
Un(cύj) spans a dense sub space of 3tf. Then

7.5. Proposition. Let Jf c 2tf be a closed subspace such that JJX = Jf.

Proo/ If ω G ̂ / ( J f ) and P is the orthogonal projection of 2tf onto Jf, then if
χ G #XJf) and

it follows that

ωCδPχ.
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Using this remark we easily infer

h(U\Jίr,ω;δ) S h(U,ω;δ),

which then yields the desired conclusion. D

7.6. Proposition. If J f = jtfx Θ #?2 and U = Uλ θ ί/2, then

h(U) ^

Proof. If (Oj G &f(3tfj) and

ωiθα)2 = {Ai θ h2\hj e ωj9j = 1,2} ,

it is easily seen that

d{ω\ Φω2;δ\ + δ2) ^ d(ωuδ\) + d(ω2,δ2).

This easily yields then

A(£/,ωi Θω2;<5! + δ 2 ) ^ A(ί/i,ωi;δi) -h h(U2,ω2;δ2),

and then the desired conclusion. D

With these preparations we begin proving the formula for h(U) via a sequence
of lemmas. We will extensively use facts from [12].

7.7. Lemma. If the spectral measure of U is singular with respect to Lebesgue
measure then

A(t/) = O.

Proof Lemma 5.1 of [12] says precisely that given ε > 0 and ω G ̂ / (J f 7 ) there
is &o G N so that if k ^ £0, then

d(ωU'-UUk-ιω;ε) ^ fa.

This clearly gives the desired conclusion. D

7.8. Lemma. If ω = {e\,...,en} is an orthonormal system of vectors and ε > 0,
then

d(ω ε) ^ n{\ - ε 2 ) .

Proof Assume ω C ε 3tf\,3tf\ G &(&). Replacing ^ by P J f i, where P is the
orthogonal projection onto <£e\ H h C^π we clearly have ω C ε Pffl\ and dim
P j f i ^ dim ̂ f i. Thus, we may assume 2/t\ c C e H + <Een. Denoting by Q
the orthogonal projection onto 3tf \ we have

n - Tr Q = Tr(P - β )

= Σ ({P

= Σ

Hence dim ̂ f i - Tr β ^ «(1 - ε2). D



Dynamical Approximation Entropies 271

7.9. Lemma. If U is a bilateral shift of multiplicity n then

h(U) = n.

Proof Let ω be an orthonormal basis for a wandering subspace of U. By 7.8 we
have

h(U,ω',δ) ^ n(\ -δ2),

and on the other hand it is obvious that h(U,ω;δ) ^ n. This clearly yields the
desired conclusion. D

7.10. Lemma. Let jf\ c JΓ2 C ... be closed subspaces of 2tf such that UX'j =
Jfj and U y G N Xj is dense in tf. Then

Proof Let ω7 e &*f(X'j),co\ C ω 2 C ... be such that U y G N ω y spans a dense sub-
space in Jίf. By 7.4 and 7.5

sup

y ) is increasing and

which yields the desired conclusion. D

7.11. Proposition. Let T = {z e (C| |z| = 1} anrf w : T -^ N U {0} be the multi-
plicity function of the Lebesgue absolutely continuous part of U. Then

h(U) = fm(z)dλ(z),
τ

where dλ is normalized Haar measure.

Proof We will use the machinery from the case of Bogoliubov automorphisms in

[12].
Remark that if U = Ua Θ Us is the decomposition of U into absolutely contin-

uous and singular parts, then by 7.5, 7.6 and 7.7 and we have

h(Ua) S KU) S KUa) + h(Us) = h(Ua),

so that h(U) = h(Ua). So it will suffice to prove the proposition in case U — Ua.
Clearly h(U) is then a function of m and defines a map μ :: # —> R + , where ^ is the
additive semigroup of functions / : T —> {0} U N which are Lebesgue measurable.
Let 11 be the constant function equal to 1 on T and Tn : ^ —» ^ the map

We shall use Theorem 2.1 in [12] to prove our assertion. For this we check the
following conditions:
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(i) μ{nt) = n. This follows from Lemma 7.9.
(ii) / ^ g => μ(f) rg μ(g). This follows from Proposition 7.5.

(iii) fj I / => μ(fj) T M/) This follows from Lemma 7.10.
(iv) μ(Tnf) = nμ(f). This follows from Proposition 7.3.
(v) μ(/) = μ(g) if/ and g are equal a.e. w.r.t. Lebesgue measure. This is obvious.

Having checked these conditions, Theorem 2.1 of [12] says precisely that μ(f) —

fτf(z)dλ(z). D

7.12. Remark. The preceding proposition shows that up to a proportionality constant
(depending on the choice of basis of logarithms) h(U) coincides with the entropy
hr((Xu) of the induced Bogoliubov automorphism ay with respect to the unique
trace state on the C4i?-algebra (see [12]).

7.13. Proposition. // δ > 0 and ω e &f(3f), then

h(U9ω;δ)= lim rΓλd( U Ujω;δ

Proof. We have

Ujω;δ)+d( [j UJω;δ

= d( U U''ω;δ)+d( U U'ω δ),

which implies that w~ 1 ί / ( | J 0 < . < n _ 1 £/7ω;<5) is convergent. D

8. Representations of Amenable Discrete Groups

Here we generalize the context of the preceding section from representations of Έ
to representations of certain amenable discrete groups. In the case of representations
quasiequivalent to the regular representation of an i.c.c. group, the entropy equals
the von Neumann dimension (Proposition 8.8).

By G we denote an infinite discrete group with a system of generators S and
\\g\\ will denote the minimal length of a word in the generators S representing g.
Let Kn — {g e G\ \\g\\ ^ n}, we shall assume G satisfies l i m ^ o o l ^ l l ^ + i l " 1 = 1
(clearly this implies G is amenable).

By 2tf we shall denote a separable complex Hubert space of infinite dimension,
the unitary operators on Jf and π : G —• U(Jt) a representation.
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8.1. Definition. If δ > 0 and ω e ^f(J^) we define

h(π,ω;δ) = lim sup \Kn\~ιd(π(Kn)ω;δ) ,
n—>oo

lh(π,ω;δ) = lim inf \Kn\'ιd(π(Kn)ω;δ),
n—+oo

h(π,ω) = sup h(π,ω;δ),

/A(π,ω) = sup lh(π,ω;δ),
<5>0

A(π) - sup{A(π,ω)|ω € 0>f(JV)} ,
/A(π) = sup{/A(π,ω)|ω G PfW)} .

A(π) w/// 6e called the entropy of π and lh(π) the lower entropy of π.

The proofs of the next three propositions are quite standard and will be omitted.

8.2. Proposition. Let coj e Φf{3tf)J e N,ωi c ω2 C ... be such that (JyGN
UgGG π(θ)ω/ spans a dense subspace of 3ff. Then

h(π) = sup h(π,cϋj),
yelN

lh(π) — sup lh(π,ωj).

(Note that here our assumption on the growth of G is essential.)

8.3. Proposition. If π = πi θ π2, ̂ f = Jf i θ ^ 2 , ωy € ^/(Jfy), ίAew

A(πi Θπ2,(ωi ΘO)U(Oθω 2);ί) ^ A(πi,ωi;δ) +A(π2,ω2;δ),

Θπ2,(ωi Θ0)U(0θω 2 ) ) ^ h(πuω{) + h(π2,ω2),

A(πi θ π 2 ) g

8.4. Proposition. L r̂ JΓ c J f, JΓy C J^ be π(G) invariant closed subspaces and
assume JfΊ C JΓ2 C ..., UyeN ̂ y = ^ ^ e n

A(π|Jf) ^ A(π),

lh(π\jf) ^ /A(π),

A(π) = sup A(π|jfy),
N

/A(π) = sup lh(π\jfj).
y"GN

8.5. Lemma. Lei j-f = Jf7! 0 ^f2,ωy G ̂ /(Jfy) fee MCA ίAflί ξ G ωy =» 0 <
g ll̂ ll g C2. Let further 0 < δ < Cx. Then

Θ0)U(0θω 2 );5C~ I ) ^

Pr<96>/ Replacing ω7 by
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it is easily seen that the lemma under the more restrictive conditions C\ = C2 = 1
implies the lemma in the general case.

Thus we shall assume ξ e ωj => \\ξ\\ — 1 and 0 < δ < 1.
Let χ e &(J#Ί Θ Jί?2) be such that

( ( o 1 θ 0 ) U ( 0 θ α ) 2 ) Q χ .

Let Q be the projection onto χ, and PuPi the projections onto 2tf\\ Jf^ Let further

ω\ = g ( ω i 0 0),ω2 = 2(0 θ ω 2 ) ,

and ^ = QP\Q\χ. If ξ G ωi θ 0, then

||(7 - Q)ξ\\ < δ .

Denoting Qξ — η, we have

^ 1 - δ2 ,

and
(Aη,η) = W

^(\\ξ\\-\\Pι(I-Q)ξ\\)2

^(l-δ)2.

Hence denoting by E(A; ) the spectral measure of A, we have

-W«Ml)«>*'-i
so that

This means

so that

' ' 2
^ 2(1 - ( 1 -δ)2) = 4δ-2δ2 .

1
ι ' \ 2 '

^ 4(5 - 2δ2 ,

ωί C

Similarly, since QPiQ\χ = I —A we find

ωό C

This in turn gives
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and hence

dim E(A

so that

dim χ ^ d(ω\',y/4δ) + d(ω2; V4δ).

D

8.6. Proposition. Let Jf = tfλ Θ Jf2,ωy e ^f(J^j) be such that ( G ω j ^ 0 <
Ci ^ ||ξ|| ^ C2. Let further 0 < δ < C\. If πj are unitary representations of G
on Jίfj, then

lh{π\ Θπ 2 ,(ωi Θ 0) U (0 Θ ω2);5C2~
1) ^ lh(πuωι;C^V4δ)

π2,(ωi θ 0 ) U ( 0 φ ω 2 ) ) ^ lh{πuωx) + lh(π2iω2),

/A(πi θ π 2) ^ /A(πO H- /A(π2).

Proof The first inequality follows immediately from 8.5. For the second it suffices
to notice that lh(π,ω;δ) is a decreasing function of (5. For the last inequality one
uses 8.2 and the fact that lh(π, ω) is an increasing function of ω. D

8.7. Proposition. Let π be a unitary representation of G on 2tf and ω e

so that \\ζ\\ = 1 for all ξ e ω. If δ > 0 and δn = 2nδ2~\ then denoting π θ θ
π = π (8) lw(w copies of π ) αrcd 6j; ωn the union of the O θ . . . θ 0 ω φ θ . . . θ θ ,
where ω appears in the j t h position (1 ^ j ^ n). Then

nlh(π,ω;δn) ^ lh(π 0 lmωn;δ)

S nlh(π,ω;δ),

nh(π,ω;δn) ^ A(π (8) lΠ,ωΠ;5)

^ nh(π,ω;δ),

nlh(π, ω) = lh(π 0 1,2, ω Λ ) ,

nh{π,ω) = A(π 0 l w ? ω Π ) ,

nlh(π) = /A(π0 l Λ ) ,

wA(π) = A(π0 l n ) .

Proo/ All this follows easily from nd(ω;δn) g c?(ωΛ;δ) ^ nd(ω,δ) which is a
consequence of 8.5. D

8.8. Proposition. Le? AG fee ίAe /e/ί regular representation of G on /2(G).

lh(λG) = h(λG) = \ .
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If G is an ί. c. c. group and π is quasiequίvalent to λg let m be the von Neumann
dimension of π. Then

lh(π) = A(π) = m .

Proof In 12(G) let ξ be the vector so that ξ(g) = δgβ. Then Lemma 7.8 gives

(l-δ2)\Kn\ ^d(π(Kn)ξ;δ)^ \Kn\9

which easily gives lh{λg) — h(λg) = 1 using 8.2.
If m is an integer the second assertion follows from 8.7. Since a rational number

has an integral multiple applying again 8.7 we infer the second assertion if m is
rational.

The general case follows now since lh(π) and h(π) are increasing functions of
m by 8.4. D

9. Further Remarks

This section is a collection of remarks about problems concerning approximation:
restrictions to invariant subalgebras, tensor products and last but not least the di-
mension versus rank question.

9.1. Restrictions.

The problem is, whether
ha(a\N) ^ ha(μ) ,

where N C M is a von Neumann subalgebra of M, so that ot(N) = N. There is an
obvious analogue of this question for hat in the ^.F-algebra context. Progress on
this question may involve developing further the techniques of Christensen [2].

9.2. Tensor Products.

Propositions 1.9, 2.7, 3.10 and 4.9 naturally lead to the question whether for any
of these entropies the entropy of α <g) β actually equals the sum of those of α and

β

9.3. Dimension versus Rank.

In the definitions of ha and hat one may replace the (5-rank by the (5-dimension,
thereby obtaining two invariants had {a) and hadt(oc). In more details, we define

d(ω δ) = inf{dim A\A <G ^(M\ω Cs A} ,

where the ^-inclusion is w.r.t. I2 in the JF*-case and w.r.t || || in the AF-
case. One then defines had(oc,ω;δ),had(oc,ω),had(a) like in Definition 1.2 and
hadt(oc,ω;δ),hadt(oc,ω),hadt(oc) like in Definition 2.1 with r(ω δ) replaced by
d(ω δ).
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Similarly one can modify Definition 3.1,

dcpσ(ω; δ) = inf{dim B\(φ, ψ,B) G CPA(M, σ), \\(φ o φ)(a) - a\\σ < δ for a e ω} ,

and the definition in Sect. 4

dcp(ω\δ) = inf{dim B\(φ,ψ,B) £ CPA(M),\\(ψ o φ)(a) - a\\ < δ for a 6 ω} .

This can then be followed up with definitions of hcpadσ(ot,ω;δ),hcpadσ(oί,ω),
hcpadσ(ot) and respectively htd(oί,ω;δ),htd(ot,ω),htd(tx) by replacing rep with dcp.

Since rank A ^ dim A ^ (rank A )2 and rank A equals dim A if A is commuta-
tive, we infer: ha(oc) ^ had(oc) ^ 2ha(μ),hat{μ) ^ hatd(oc) ^ 2hatd(oc),hcpaσ((x)
^ hcpadσ(a) ^ 2hcpadσ(oc),ht(oc) ^ λfc/(α) ^ 2ht(oc). If ^ is commutative the
lower bounds for had(ot),hadt((x),hcpadσ(oc),htd(oί) are attained. It is a natural
question whether for Bernoulli shifts 2ha(a) — had(cc),2hat((x) ~ hatd(a),2hcpaσ

(α) = hcpadσ(oc),2ht(θί) = htd(oc). It is also natural to ask whether there are ergodic
automorphisms of the hyperfinite IIi-factor for which ha(a) = λhad((x) or hcpaτ

(α) = λhcpadτ(θί) with 1 < λ < 2.

9.4. Miscellaneous.

There are several natural extensions to consider. Most of the facts about entropies of
automorphisms of operator algebras work for endomorphisms. In another direction
the definition of the entropy of a unitary operator easily adapts to a definition of
an entropy for isometric automorphisms of Banach spaces.

Appendix. A Question of Stormer on Implemented Ergodic Transformations

Using the completely positive approximation entropy of Sect. 3 we answer here a
question of Stormer (Problem 4.2 in [11]). The result solving the problem is the
Corollary at the end of this Appendix.

Let (X,μ) be a probability measure space and let α be the automorphism of
L°°(X,μ) induced by an ergodic measure-preserving transformation T of (X, μ). On
Jί = L°°(X,μ) x α TL let τ be the trace-state corresponding to μ. Let $0 C L°°(X,μ)
be a unital finite-dimensional subalgebra (i.e. the functions measurable w.r.t. a finite
measurable partition). We denote by Jfw the subspace of 2

and by Qn the orthogonal projection of l}{Jt, τ) onto 2t?n. Let Pk be the orthogonal
projection of ffln onto uks/(\k\ ^ n) and βki the partial isometry from uιstf to uks0
determined by left multiplication by uk~ι. We also denote by Lx and Rx the left
and right multiplication operators by x e Ji on L2(Jί,τ).

Lemma 1.

QnLumfQn — J2 ek+m,kRE(y~ιf)Pk ,

\k+m\ ^/?
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where f G L°°(x,μ) and E is the conditional expectation of L°°(X,μ) onto stf. In
particular

QnLjtQn C Σ (l2([]) /

Proof This is a quite standard computation, which we shall only sketch.
If g e J / , then

Lumfu
hg = um+ka~k(f)g ,

and hence
PrLumfu

kg = LurP0Lu-ru
m+ku-k(f)g

_ 0 if m+kφr
~ \ um+kE(a-k(f))g if r = m + k ,

so that
p j p _ J θ if

r " m f n ~ \ e k R ^ if m + k = r.

Since Qn = Σ\k\<nPk we easily get the desired result. D

Lemma 2. There is a unital completely positive map

ψn : B(l2([-n,n])) 0 s/ -> Jί ,

Pr<9o/ Since J / C L°°(X,μ), it will suffice to prove there are completely positive
maps

ψn : B(l2([-n,n])) ® L°°(X,μ) -+ Ji ,

so that

Replacing in the construction of Lemma 1, jtf by L°°(X,μ) we get a projection <2rt of
L2(Jί,τ) onto Σ μ ι < n ukL2(X,μ) and partial isometries ^/ from uιL2(x,μ) to w^L2

(Jζμ) via left multiplication by H*""'. Lemma 1 becomes now

QnLumfQn = Σ

where P^ is the projection onto uhL2{X,μ) and

Thus 5(/ 2([-«,«]))0i°°(I,/i) identifies with a subalgebra of B(L2(Jϊ,τ)) and we
define

kei
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Note that RuPekιRu-P = ek+pj+p, since

RupekiRu-pup+ιg = Rupeklu'ocp(g)

= RupuktχP(g) = uk+pg = ek+pJ+pU
p+lg

(however, the analogous formula for ekj doesn't hold!). Hence

Ψnkki ® / ) = (2« + I ) ' 1 ΣRup(ek,Rf)Ru-P

Pez

= {In + I ) " 1 Σ RupekiLa,(f)Ru-p
pez

= (In + I ) " 1 Σ sk+Ptι+pLΛι{f)
pez

Also, clearly φn is completely positive and

Σ eΛ Λ

>)=(2/H-l)(2/i + l Γ 1 I I l o = l .

D

Combining Lemma 1 and 2 we immediately get

Lemma 3. Let

φn : Jί -> 5(/2([-«,«])) ® Λ/

Z?̂  ί/ze M«/ία/ completely positive map defined by

φn(x) = β n L x β n € 2

Let further φn : #(/2([—«,«])) ® s^ -^ Jί be the unital completely positive map in
Lemma 2. We have

τ«ψnoφn)(χ)) = τ(x)

and

0 if |m| > |2w|
=\(2n + 1T1Σ \k\** umock(E(a~k(g))) if jmj ^ |2/ι| .

Proposition. We have

hcpaτ(Ad u) S KT).

Proof. Let Ω = (Ωi,..., Ωm) be a measurable partition of X and χ^ the correspond-
ing indicator functions. It will be sufficient in view of Proposition 3.4 to show that

hcpaτ(Ad u,wN) <Ξ h(T)
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for WM — {ukχQj\ \k\ ^ N, 1 ^ j ^ m}. Like in the proof of Proposition 1.7 we use
McMillan's theorem to construct for large subalgebras As such that

αy(w0) Cei/2 Λ for 0 ^ y < s

and dim 4̂5 ^ 1 -f exp(,s(/ι(Γ) + ε)). To evaluate

rcpτ(wN U U (Ad u)s-\wN);δ)

we use Lemma 3. In the construction of Lemma 3 choose n — CN and si —
0L~n(As+2n). Then an element in wn U U (Ad u)s~ι(wN) is of the form ^ α ^ χ ^ . )
with 0 <, t < s and\tn\ S N. Then the set {k\ \k\ ^ Λ, |* + m\ ^ n} has ^ (2C -

elements. With the notations of Lemma 3

(0 ^ t < s,\k\ ^ n,\k + m\ ^ n),

since

(Indeed 0 ^ ί + (n - ^) ^ 2/ί - s and this implies oct+(n~k\wo) Ceι/i As+3n.)
We infer

< ( 1 _ V ~ } \ _i_ K ~ ; 1/2

~ 2/ι + 1 / 2n + 1

Choosing C sufficiently large and ε sufficiently small we'll have

2 C - 1 + ε ' / 2 <δ.

On the other hand

rank((£(/2([-«,/2])) 0 j ^ ) ) = (2n + l)dim s/

S {In + 1)(1 + exp((^ + 3n)(A(Γ) + ε))) .

Clearly

lim sup 5-1(log((2« + 1)(1 + exp((^ + 3n)(h(T) + ε))))) = A(Γ) + ε ,
5—ί-OO

so that
hcpaτ(Ad u,wN;δ) ^ h(T) + ε .

Since δ > 0 and ε > 0 are arbitrary we infer

hcpaτ(Ad u,wN) ^ λ(Γ) .

The conclusion follows. •

In view of Proposition 3.6 and of the inequality h(T) ^ h(Ad M) we have

Corollary. h(T) = h(Ad ύ).
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