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Abstract: An important property of a Hopf algebra is its quasitriangularity and it is
useful for various applications. This property is investigated for quantum groups s/,
at roots of 1. It is shown that different forms of the quantum group s/, at roots of
1 are either quasitriangular or have similar structure which will be called braiding.
In the most interesting cases this property means that “braiding automorphism” is
a combination of some Poisson transformation and an adjoint transformation with
a certain element of the tensor square of the algebra.

Algebras which here will be called quantum s/, are the simplest examples of quan-
tum groups which have practically all the remarkable properties of this class of
Hopf algebras. One of the most important properties of quantum groups is quasi-
triangularity. Recall the definition from [Dr].

Definition 1. A Hopf algebra A is called quasitriangular if there exists R €
A A (or an element from the appropriate completion of A & A) such that

A(a) = RA(a)R™", (1)
(A @id)(R) = Ri3Rys , (2)
(id @ 4)(R) = Ri3Ry . (3)

Here 4'(a) = ¢ o A(a), where ¢ : A4%% — 492, a@b— b&a and Ri2,R3,Rx €
A% (or to the appropriate completion of it), Ry =R® 1, Ry =1®R, Rj3 =
(0 @id)(Ry) = (id @ 0)(R12).
A remarkable corollary of this definition is that R satisfies the Yang-Baxter
equation in 4%3:
R12R13R23 = R3R13R 5 .

It is known [Dr] that quantum universal enveloping algebras U,q are quasi-
triangular over C[[4]] for any Kac—Moody algebra g. It is also known that the
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corresponding algebraic quantum universal algebra U,(g) introduced by Jimbo [J]
for generic ¢ are not quasitriangular if considered over C[q,¢~']. This fact is es-
sential when ¢ is specialized at roots of 1.

In this paper the quasitriangularity of Hopf algebras U,(g) will be studied for
g = sl,. It is studied over C[g,q~'] for general values of ¢ and when g is a root
of 1.

The main result is that for algebras U,(g) we have a somewhat more general
property than quasitriangularity (1)—(3).

Definition 2. A Hopf algebra A is called braided if there exists an automorphism
R of A® A (or of an appropriate completion of A ® A) distinct from ¢ :a® b +—
b ® a such that

A'(a) = R(A(a)), 4)
(A@id)ORZRBORz}O(A@id), (5)
(1d®A)OR:R13OR120(1d®A) (6)

Here Rj3,Ri3,Ry3 are automorphisms of 4 ® 4 ® 4 such that Rj; = R®id, Ry =
id®R, Ri3=(6®id)o(id®@ R) o (¢ ®id).
It follows from this definition that the automorphism R satisfies the Yang—Baxter
equation in End(4®?) :
Riz0R130R3 =R30Ri30R), . (7)
Let R above be an exterior automorphism of 4 ® 4 and R € A ® 4 be an
invertible element. Consider the automorphism

ars RVaRD™ | G RV e 4. (8)

Definition 3. The element RV is a universal R-matrix of the braided Hopf algebra
(A,R(O),R(l)) if

(i) A'(a) = RORD A@)RD ™) . 9)
(ii) (5) and (6) hold for R.
(iii)

—1
(A®id)RD) =R (RHRY
(id @ AYRM) = Rﬁ‘;) (R‘”)R“% (10)
Now for the universal R-matrix we will have the following relations:
—1
R R ) R RY) - R = KRS RDRS L ()
—1 —
(R oY ORY - R R - RY = RY R R RV ()
We will say that the decomposition
R(a) = RO(RVarD ™) (13)
is a regular splitting of R if
—1 —1
(R R HRY) =R

—1
(R(O) oRY YRS =R (14)
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If R® and R is a regular splitting of R we have the following relation for R():
RYRS (RyRy) = Ry RD(RIIRL (15)

In the first section we recall the definition and the main properties of the for-
mal deformation Uj,s/, of U(sly). This section also contains the description of the
“algebraic” quantum group U,(s/y) and its main properties including braiding. In
the second section the algebra U,(s/») and its relation to U(s/,) are studied further.
The third section contains facts about quantum s/, at roots of 1 and the description
of the braiding of this quantum group.

The sl, case is chosen for simplicity. The corresponding properties of U,(g)
for simple Lie algebras g as well as an explicit description of the center for U,(g)
when ¢ is a root of 1 will be done in a forthcoming publication.

This work was finished during a visit by the author to the School of Mathematics
and School of Theoretical Physics at the Australian National University at Canberra.
I would like to thank R. Baxter and V. Bazhanov for their hospitality. It is also
my pleasure to thank R. Baxter, V. Bazhanov, J. Mattes and I. Frenkel for valuable
discussions and remarks.

1. Quantum sk over C[[A]] and Clg, ¢~ ']

1.1. Here we recall the definition and the main properties of the algebra which is
called quantum s/, and is denoted as Ujsl,. This is a C[[A]]-algebra generated by
elements H,X,Y with the following determining relations:

[HX]=2X, [HY]=-2Y, (L.1.1)

5 (R
X Y] =" ( 2 ) (1.12)

sh(3)

This algebra is a Hopf algebra with the comultiplication

AH=HQ®1+1QH, (1.1.3)
AX =X @M p e Mt g x| (1.1.4)
AY =Y @M e gy (1.1.5)

The algebra Usl, is a formal deformation of Usly:
Uhslz/hUhSlz >~ US]2 . (116)

The algebra Uysl, is quasitriangular with R € U,sl,@QU,sl, (where & is the h-adic
completion of U,sIS?) given as follows:

H®H (¢ —1y* bt
R n(n—3)
exp( 4 )fgo(ehk—1)(eh<k*”~1>...(eh—1)ez
<)o ety (17

The representation theory of the algebra U,s/, is the same as the representation
theory of Us/;[[#]] due to the following fact [Drl,J].
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Proposition 1.1.2. There is an isomorphism of algebras
Upsly = Ush[[A]] -

Any map H — H, X — X,(H,c), Y — Y¢u(H,c), where ¢p(z,c) = Yp(z,c) =1
mod 4 (¢, € Clz, c][[#]]) and
sh(%)

sh(’)

Yz = 2,0)pn(z)(c — H?[2 + H) — di(z + 2, eW(z,¢)(c — H?/2 — H) =2
provides such an isomorphism.

The category Usl,-mod of finite-dimensional Ujsl,-modules is an abelian cat-
egory over C[[A]]. Objects of this category are pairs (¥, ), where V is a finite-
dimensional C[[A]]-vectorspace and 7 : Uy, sl, — End(V) is a homomorphism of
algebras (abusing notations we will say V' is a vectorspace even in the case when
it is a module just over a ring, not a field). Morphisms f : (Vi,7;) — (Va,m2) are
C[[#]]-linear maps from V) to V, which are also Ujs/,-linear: fr,(a) = ny(a)f for
each a € Uy sl,.

The category Ujs/;-mod is a rigid monoidal category with identity object 1 ~
C[[#]] and with the tensor product (Vi,71) ® (Vo,m3) = (V1 ® Va, () Q@ mp) 0 A4).
The object dual to (V,n) is a pair (V*,n* 0 §), where V* is a vectorspace dual to
V over C[[4]] and n*(a) is a dual C[[A]]-linear map to n(a). The category Ujsiz-
mod is a strict monoidal category due to coassociativity of the comultiplication.

The quasitriangularity of the algebra Ujsl, implies that the category of Ujsl,-
mod is a braided category. The braiding is a collection of functorial isomorphisms

cow VoW WV, (1.1.8)

where cyy = Pyw + (nmy @ my )(R). Here Pyyy(x ® y) = y ® x is a permutation op-
erator, R is the universal R-matrix (1.1.7).

The remarkable property of the deformation U,sl, of Usl, is that relations
between exp(i%), X and Y are algebraically closed and the action of the comul-
tiplication on them results in an algebraic combination of these elements. Moreover
relations between these elements and the comultiplication are defined over C[e*"].
This observation is a motivation for the algebra described in the next section.

1.2. Tt turns out that the formal deformation described above also gives a family of
Hopf algebras. The algebra U,(s/,) for an undetermined g as the C[g,q~']-algebra
is generated by k,k~',e and f with the following determining relations:

k7' =k 'k =1, ke=gqek, (12.1)

k—k=!
—1

We will call this algebra polynomial quantum s/,. This is a Hopf algebra [Dr, J,
S1] with the following action of the comultiplication on generators:

kf =q ' fk, ef — fe= (12.2)

Ak =k®k, (123)
de=e@k+1R®e, (1.2.4)
Af = fl+k'®f. (12.5)
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Remark. 1.2.1. We have the isomorphism of algebras:

Uy(sly) ~ U, -i(shy) (12.6)

given by the map
g—q ', k—k7', ew—ek', fi fk. (1.2.7)

Remark. 1.2.2. Since Uy(sly) is defined over C[g,q '] we can specialize ¢ to
any nonzero complex number. Thus U,(s/;) determines a family of Hopf alge-

bras. Monomials e"k” f/ form a linear basis in U,(sly). This allows us to identify
these algebras as vectorspaces for different complex values of g. We assume this
identification in the rest of this paper.

1.2.3. Identify ¢ = " and consider €[[A]] as a module over C[g,¢~']. Then we
have an injective homomorphism of algebras:
¢ Uy(sly) — Upsly @qpuy @C[[h[el, &2 =1, (1.2.8)
hi hid. . _hH
Phy=e7 e, Ple)=edt X ®e, H(f)=e 7Y Re". (1.2.9)

Here the left side is regarded as the module over C[[4]].
The following seems well known.

Proposition 1.2.4. The center of Uy(sly) is generated by the element

(1.2.10)

The central element (1.2.10) was first constructed in [S2]. The fact that it gen-
erates the center of Uy(s/;) can be found in [DK].

1.3. The algebra U,(sl;) is not quasitriangular in a sense of Definition 1. But, as
we will see, it is braided in the sense of Definition 2.

Consider the algebra U,(s/,) over (F[q%,q‘%]. Define the automorphism Ry of
Uy(s1,)®? as follows:

Rok@ 1) =k®1, Ri(l@k)y=1&k, (13.1)
Ro(e®@1)=e®k, R(l®e)=k®e, (1.3.2)
R(f@ly=fok™", ROU®f=k'ef, (13.3)

Consider the following completions of U, (s/>):

Uy(shh)) = {f} e"Pn(ki‘,f)} , (1.34)
n=0

Uq(512)('/) = {i Qn(kilye)f”} . (1.3.5)
n=0

Here P, and O, are polynomials. It is clear that these completions of vectorspaces
are indeed completions of algebras.
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Consider the following completion of U,(sl,)®*:

Uy(s1)®? = { i e"Pn(kil,f)@@Qm(e,ki‘)f'"} : (1.3.6)

nm=0

Again, this is a completion of the algebra U,(s/; )®2 such that

Uy (s12)®* — Uy(s1)© @ Uy(sly)) . (13.7)
Clearly the element \
X (g—1) K1)
Ry =3 g ,) g 7 e fr, (138)
k=0 (k)q-
which is the last factor in the R-matrix belongs to Uq(512)®2. Here (k),! =
k)g ... (1)g, (k) = - . It is also clear that (1.3.8) is invertible in U, (312)@;2

Consider Uq(slz)®2 as a subspace in U,(sl)®2.
Proposition 1.3.1. The Hopf algebra Uy(sly) is braided with
R(a) = Ro(RyaR]"), (1.2.14)

where Ry and Ry are defined above in (1.3.1)-(1.3.3) and (1.3.8). The element R,
is a universal R-matrix for Uy(sly) (in the sense of Definition 3).

Proof. First consider the algebra Uj, sl; from Sect. 1.1. Denote
h
Ry = exp ZH®H , (1.3.10)

h 1 2n ' '
R, = Z (e ) e%n(nﬂ)(e%X)n ® (e—% Y)n . (13.11)

WSo (e —1)...(e"=1)

It is easy to check that

R(X @ 1) =X @eT )Ry, Ry(1®X)=(c'T ®X)Ry,
R(Y® )= ®e )Ry, R(1®Y)=(e"F @Y)Ry. (13.12)

Therefore the automorphism a — RoaR; ! can be extended from the automorphism
of U;,slgg)2 to the automorphism of U,(s/,)®? (it will be an exterior automorphism
of U,(sl, )®?). Comparing with (1.3.1)~(1.3.3) we identify it with Ry.

Clearly Ry satisfies conditions (5) and (6) and the element R, satisfies (10),(11),
(15). Because there is a homomorphism of Hopf algebras U,(sl) — Upsls, an
automorphism (1.3.1)—(1.3.3) is a preimage of RoaR(';1 in U;,sl?2 and the element
(1.3.8) 1s a preimage of (1.3.11). We expect Proposition 1.2.3 to be true since the
homomorphism is injective.

The other way to prove Proposition 1.2.3 is by easy direct computation.

It is easy to see that the splitting on Ry and R; is a regular splitting in the
sense of (15) and therefore R, satisfies the twisted Yang—Baxter equation (16). In
Sect. 1.4 this equation will be written explicitly.
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The algebra U,(sl,) is a deformation of the universal enveloping algebra of s/,
in the following sense.

Consider the algebra Usl(;) ~ Usl, ®¢ C[e], where ¢2 =1 and introduce the
following Hopf algebra structure on it:

AH=H@1l+1QH, A)=c¢®¢,
AX=X@1+exX,
AY =Y Q@1+e®7Y . (13.13)

Proposition 1.3.2. There is an isomorphism of Hopf algebras:

U,(s12)/(q — 1)U, (sly) = UslY (1.3.14)
where
K2 —1
e=kmod(qg—1), H:q_1 mod(qg — 1),
X=klemod(g—1), Y= fmod(qg—1). (1.3.15)

The proof is clear.

1.4. Consider the function of complex z,

(@)oo = [1(1 —24"). (1.4.1)

n=1

We regard it as an element of C[[q]]. This product converges to an analytic function
of z in any finite part of € if ¢ is a complex number, and |g| < 1.
The following identities are well known:

o - 5 CeTT (142)
S = OONTT I T o
GEPL =Y — (143)

o (Mgl =gy~

This implies the following multiplicative presentation for the universal R-matrix R;:

Ri=(e®f)q? —q V¢

=TI~ (gt ~g2)e® fq") . (144)

nz1

Let us write the twisted Yang—Baxter equation explicitly for R; in terms of
generators of U,(s/y).
It is well known that

(u+v;9)00 = (U9 )oo (V3 9 ) oo (1.4.5)
if
uv = quu . (14.6)
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The identities (10) for the universal R-matrix R; follow from (1.4.5) with

U= (q% ——q‘%)ze®k®f, V= (q% —q"%)z(l ®e® f) (1.4.7)
for upper (10) and

W= (gt - D exk™ ®f), vi=(@@i—g R f®l)  (148)
for lower (10).
The proof is an easy computation.

Remark. 1.4.1. As was noted at the end of the previous section, the element R,
satisfies the twisted Yang—Baxter relation (15). In terms of function (z;¢)~ this
means

(F59)0o (K13 0)o0(E59) oo = (B @)oo(K—; @)oo(F5 ¢ )oo » (1.4.9)
where 1 1 | 1
F=(q?—-q Ve f®l, E=(q2-q 2P 1®exf,

Ki=(q? —q 2Veko f, K =(q?—¢ ) e@k '@ f. (14.10)

Notice that these elements satisfy relations similar to Uy(s/,):

K. F=q 'FK,, K.E = qEK, ,
K_F = gqFK_, K E=q 'EK_,
[EF]= Ky —K )1 -q7"),
K,K_=K_K+ . (14.11)

These relations may be regarded as determining relations for C,[GL7]. The ex-
planation of this fact remains a bit mysterious. Notice that functions (z;¢)~ also
appeared in [FK], where they were interpreted as “quantum dilogarithms.”

2. More on Quantum sk Over Clg, ¢~
Let us clarify the relation between U(sl;) and Usl,.

2.1. A representation V of sl, is said to be an integer if H acts as a diagonalizable
element in ¥ and if Spec(H|y) C Z.

Define Usl, as the following completion of Usl, in the category of integer
modules [L]. It is generated by P/, X, Y, / € Z with determining relations

PPy =6imPs, P X=XPsys,

PY =YP,_,,
XY -YX=S¢P, 1=SP,. (2.1.1)
[&<y/4 /€L

As a vectorspace Usl, consists of elements Z/,mel Pra/(X,Y), where 4,(X,Y) is
a polynomial over X,Y.
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~ The algebra _Uslz is a topological Hopf algebra with the comultiplication 4 :
Usly — Usl, ® Usl, acting as:
AX)=X@1+10X,
4AY)=Y®1+1Q7,
APy = @ Py @Pu. (2.12)
m+n=/~

nm€eZ

Define the Hopf algebra Us/{" as the algebra which is equal to Usl, ®¢ Cle2]/e =

1. The comultiplication
AP/: E Pn®Pm7

n+m=/
nmeZ

AX=X®1+:0X,
AY =Y@1+e®Y,
At =e7 @3 (2.13)

provides Usl(;) with the Hopf algebra structure.
Let 4 be the usual diagonal comultiplication:

AX=X®1+10X,

AY=YQR1+1®7Y,
AP, = Y P, ®P,,

n+m=/
nmEZL
Ae? =gl ®e7 (2.1.6)
which also provides a Hopf algebra structure on Usl, ®¢ (E[s%].
Consider the following element in Usl(z'e)@2 :
F=@QsaaP,. (2.1.7)
n€el

Proposition 2.1.1. (1) The comultiplication (2.1.3) is related to the diagonal co-
multiplication by twisting with the element F:

Aa)=F - Aa)-F~'. (2.1.8)
(2) The element F has the following properties:

(A®1d)(F) = Fi3F ,

(dR@ANF) = Fi3F12 . (2.1.9)
The proof is by straightforward computation.

Corollary 2.1.2. The algebra Usl(;) with the comultiplication (2.1.3) is a quasi-
triangular Hopf algebra with

R=o(F)F'= Y ¢ %P, ®¢iP,, (2.1.10)
nmeZ

where a(a @ b) =b® a.
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2.2. Define the algebra U qslgg) as the C[q%,q*%]—algebra generated by e, [ ,8% and
P, with the following determining relations:

P/Py, = 0/mPy, 1= P/,
/ez

Pre=ePry, Pif=fP,,

ef —fe=¢> (Npqg '(g+ 1P/,

/el

£ =1. (2.2.1)

As a vectorspace U qsl(zs) consists of sums > sezPras(e [ ,g% ), where a, are poly-
nomials over (E[q%,q‘%].
The following comultiplication provides U qslgg) with a Hopf algebra structure:

AP/: @ Pn®Pm,

n+m=~
de=5 e®q?P/ +1®e,
A/
Af =f @1+ 3 g %P f,
/€Z
Aed =2 @er . (222)

Theorem 2.2.1. The algebra U qslg_g) is quasitriangular with

nm n m — 1 K k(k—
R= < > qTa‘fP,,,®87Pn) .3 (@ 1) M0 ko rk (22.3)

mneZ k=0 (k)q'

Notice that element &7 — 1 generates a Hopf ideal. Let Uq(slz) be the corre-
sponding quotient algebra [L]

U,(sly) = Uy (slo)/(e? — 1) . (22.4)

Remark. 2.2.2. 1t is clear that quasitriangular Hopf algebra (U;s)(slz),A,R) is a
deformation of Hopf algebra (U¥)(sl,), 4,R) described in the previous section:

Uy (sh)llg — /(g = DU, (st)llg — 11) = Usha)

Proposition 2.2.3. (1) There is an isomorphism of algebras ¢ : U, (sly))=
U,(shy) ®¢ Cle?],

PP)H)=P,®1, ¢Ple)=e®e, d(f)=f®1. (2.2.5)

(2) The map 4 : Uy(sly)® — Uy(s1) O,
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AP, = @ P, ®P,,
n+m=/

de= exq’P/+1®e,
=y

Af =fol+ Y qoq?Piof,
/€Z

~ 1

det =62 @2 (2.2.6)

determines a Hopf algebra structure on U o(s1)® and it is related to the comul-
tiplication (2.2.2) by the twist

A(p(a)) = F~' (¢ ® p)(A@)F , (2.2.7)

where F is the element (2.1.5)
(3) The Hopf algebra (Uq(slz )[8%],5) is quasitriangular with

~ nm __1 k (f—
R= ( > ¢ -Pm®P,,> s UL M g gk (2238)

nmeZ k=0 (k)q'

Proof. Statements (1) and (2) are an easy straightforward exercise. The statement
(3d) follows from general facts about twistings of quasitriangular Hopf algebras
[Dr]. For the twisted R-matrix we have:

R=FyRF™'. (2.2.9)

Formula (2.2.8) follows from relations:

Fu Py, ®PmF~] = Sﬁ%lpn (X)PmS,77 >
Fyeéf @ fFF! = (se) @ f* . (2.2.10)
Remark. 2.2.4. The quasitriangular Hopf algebra U 45l is a deformation of Usl, :

Uy(si2)llg — NI/(g — DU(sh)llg — 1]} = Usl,.

3. Quantum s/, at Roots of 1

3.1. Let ¢ be a primitive root of 1 of degree / and let / be odd.
Let ¢ = ¢’ and consider

Ui(sla) = Uy(sI2)[[A1)/hU,(sL2)I[A]] - (3.1.1)

If 4 is an algebra we denote by Z(A4) its center.

Proposition 3.1.1. (1) Elements e’ ,k’, f* belong to the center of U,(sl,).
(2) The center of U(sly) is generated by ¢’ ,k’, f' and by

k+k~le

c:ef+7(£_l)2

(3.12)

freely modulo relation
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(¢ — 1) & o... ol
1 @] o
det ° =@-D¥e kK +k =2,
é) 0] é
& o--ro 1 e(e—1)
y (3.1.3)

(3) The algebra Uysly) is finite-dimensional over Z(U.(sl3)).

See [DK] for details.

One can introduce the Poisson structure on the center of U.(s/,) according to
the following general construction.

Let 4, be an algebra deformation of associative algebra 4. We assume that
Ay = A[[h]]. We denote the multiplication in A4, by my, : A[[h]]®* — A[[A]] and we
have my, = m mod h, where m is the multiplication in 4.

Proposition 3.1.2. Let a,b € A[[h]] and either a mod h or b mod h belongs to the
center of A. Then the element

I
{a mod h,b mod h} = Z(m,,(a,b) — my(b,a)) mod h (3.1.4)

is defined and {-,-} determines a Poisson structure on the algebra Z(A4), and {-,-}
determines a Poisson action of the Poisson algebra (Z(A),{-,-}) by derivations
of A.

Proof is straightforward (see for example [DP]). Notice that {-,-} may be iden-
tically zero.

In our case 4 is Uy(sly) and 4, is U, i(sly) and the Poisson structure {-,-} can
be computed explicitly between generators of Z(U,(sl2)). The answer is:

(K'Y =7k, (K, [y =~k 1,

2/+1
{e/,f‘/}:< > K — kY,

{c,a} =0 (3.1.5)

for each « € Z(U.(sl3)).
The Poisson action of Z(U,(sly)) on U.(sly) can also be computed explicitly:

1
e—1

(K ey =rek', (K, f}=—~/fK,
sy k—kle
e—1 7
) . ) / k—k='e
{k f'y = ~/tkf!, e f'} = ﬁ"T-_fi'f/Al ’

{c.e} ={ck} ={c,f} =0. (3.1.6)

/
{k,e'} = tkt’, {e, 1} = o
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All these formulas can be easily derived from relations in U,(s/>) and from the
identity

/ (n)q! kqm——/+l _ k——lq-m+/——n

!l
e =
s m‘éo(n“/er)t]! g—1
=1 —m—n
LA G.17)
q-

which can be found in [K].
Denote by Zo(U,(sly)) the central subalgebra in U,(s/,) generated by e, /7, k*".

Remark. 3.1.3. The algebra Z(U,(sl,)) is finite-dimensional over Zy(U,(sl3)).

Proposition 3.1.4. The subalgebra Zo(U(sly)) is a Hopf subalgebra with the
comultiplication

Mk =k @k,
Ae/:e/'@k/—i—l@e/,
Aff = @1l+k" o/ . (3.1.8)

The proof is an elementary corollary of the identities
n

Af” — Z (’;) f.rk—n+s ® fn-s ,
q

5=0

s=0
A" = k" @ k" . (3.1.9)

n & n 0 n—sps
A" =" P ® "k,
q

The following is a general fact about Hopf algebra deformations. Let 4 be a
Hopf algebra with multiplication m and comultiplication 4. Let 4, be a Hopf algebra
deformation of A4 such that 4, = A[[Ah]] as a vectorspace, 4, = 4 mod & and mj, = m
mod A.

Proposition 3.1.5. Let X(A4) C Z(A) be a central subalgebra which is a Hopf
subalgebra and let { + , - } be the Poisson structure (3.1.4) on X(A). Then X(A4)
is a Hopf=Poisson algebra in the sense of [Dr]:

A({a,b, }) = {4(a), A(D)} , (3.1.10)
where {a @ b,c @d} = {a,c} ® bd + ac ® {b,d}.

Proof. Let us compute 4({a,b}):
A({ab}) = 5 AOm(a.b) — my(b.a)) mod h

1
= 5 (@D, b0 ym (@@, 620y = (B0, ymy (b, a'2))) mod

— {a(]),b(l)}m(a(z),b(z)) + m(a“),b(l)){a(z),b(z)}
= {4(a). 4(b)} .

This proves the proposition.
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Corollary 3.1.6. The central subalgebra Zy(U,(sly)) is a Hopf-Poisson algebra
with the comultiplication (3.1.8) and with Poisson structure (3.1.5).

In the case of quantum s/, it is also an easy explicit computation which proves
that (3.1.8) is compatible with Poisson brackets (3.1.5). It is also known that the
coalgebra structure on Uy(sly), g € €* does not depend on g [FRT].

3.2. Let U be a Lie algebra with Lie bracket [ -, - ]. Denote by H(x, y); - , .} its
Campbell-Hausdorff series; so that

exp(x) - exp(y) = exp(H(x,y); - . - 1),
1
H(x,y)[.,.]:x+y+§[x,y]+-~-. (3.2.1)
Here we assumed A — U and the multiplication in the left side is taken in U.

If A is infinite-dimensional U should be properly defined as a topological algebra.
Another important fact is the identity

x 1
exp(x) - y-exp(—x) = > =[xl [xy] ] (3.2.2)
n=01" e~

n

which holds in U (or in appropriate topological algebra).

Suppose (4, {-,-}) is a Poisson algebra and 4, is an associative algebra which
is a formal deformation of (4,{ -, - }). Assume the identification of vectorspaces
Ay = A[[h]]. Denote the multiplication in 4, as my :A,‘?2 — Ay. We have

my(a,b) = ab + g{a, b} + o(h?), (3.2.3)

where (a,b) — ab is the commutative multiplication in A[[A]].
Introduce the following Lie algebra structure on Ax[h~']:

1
bx, y] = 3 (mi(x, ) = ma(y,x)) . (3.2.4)

For x € A[[h]] define xo = x mod A, xo € A. Clearly

[x, ¥Jo = {x0, 30} (3.2.5)

where x, y € A[[h]] — A[h~', A]].
In order to define Campbell-Hausdorff series for the Lie algebra (A, [ -, - ])
we have to consider an appropriate completion of 4 when 4 is infinite-dimensional.

For example we can assume that A4, is a filtered algebra with filtration {AZ")}
and then

[A(n),A(m)] C A("+m_1) . (326)

In this case 4, will be the completion of 4;, with respect to this filtration.
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Lemma 3.2.1. Let x, y € A[[h]] < A[[h~',h]] — A[[h~",h]). Then the product

my, (exp (%) ,exp (%)) = exp <%) 3.2.7)

is deﬁnedAin A[[h~",h]). Here H(x, y) is the Campbell-Hausdorff series for Lie
algebra (Ap,[ <, 1)

Note that (3.2.5) implies
H(x,y) -, -1 mod h = H(xo, Y0){..} » (3.2.8)
where x, y € A[[A]].
Lemma 3.2.2. For x,y € Ay, — A[[h~",h]], the product
mj, (m;, (exp (%) ,y) ,e‘%) =:exp(x) * y (3.2.9)

is defined over A[[h™",h]] and exp(x) % y € A[[h]] — A[[h~", A]].

This lemma follows immediately from (3.2.2) and from the fact that xy — yx =0
mod A.
Notice that

exp(x) * y mod A& = exp(xp)© yo , (3.2.10)
where )
exp(xp)o yo = . - {xo{-- - {x0, 0} ...} . (3.2.11)
n20 M N——

n

3.3. Let SL; be a Lie group dual to SL, in the sense of dual Lie—Poisson groups
[Dr]. This group may be regarded as a group of pairs of triangular matrices:

(6 5)-( %)

with pairwise multiplication (x, y)(x', y") = (xx’, yy').

This group is a Lie—Poisson group [Dr] which means, in particular, that the
algebra of algebraic function C[SL;] is a Hopf-Poisson algebra with the comulti-
plication induced by a group multiplication in SL; and with the following Poisson
brackets between coordinate functions:

{e,fY =k k7", {ke}=ke, {kf}=—kf. (3.3.2)
Remark. 3.3.1. We have an isomorphism of coalgebras (see for example [FRT]):
Uy(s12) g1y ©@) = CISL3 1) - (333)

Proposition 3.3.2. There is an isomorphism of Hopf-Poisson algebras:
¢ : Zo(U(sly)) — C[SL;] , (33.4)
pe)=@E-1)""e, ¢pk')=k ¢(/H=@E-1)"/, (3.3.5)

¢({a,b}) = 2 {p(a), $(b)} . (33.6)
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The proof is clear.
Let C[[SL;]] be the algebra of jets of functions on SL; in the neighbourhood
of 1. As a vectorspace it consists of the formal power series over k — 1, e, f.

Theorem 3.3.3. The algebra C[[SL3]] is braided with the automorphism R of the
Sform:

R(a) = exp(ro) oexp(ri)oa. (3.3.7)
Here |
rn=-zQz, (33.8)
4
— 7 . 7l g(l
r=Lie® ), Lixx)=-[—"dy, (33.9)

0

and we assumed k = exp(3).

Proof. Consider the algebra C,{[SL3]] over C[[A]] generated by é,_?,z (we will
assume that it is completed by formal power series with respect to &, /* and z) with

determining relations: A Y. .
of —fe=(ef —eTi)el —e7),

[z,e] = 2he, [z, f]= —2hf, (3.3.10)
It is a Hopf algebra with the comultiplication

Az=zR1+1®z,
de=e®el +1@¢,
Af=F@l+eiaf. (3.3.11)

Clearly this algebra is a Hopf algebra deformation of Hopf—Poisson algebra C[[S;]],
and we have the isomorphism of vector spaces C,[[SL;]] ~ C[[ C[[k - 1]]®
Cli/11 e C{[A]l.

The map ¢ : U,(sly) — Cy[[SL3]I[A~"]

¢(9)27‘E__—r, d’(/v):'—g—i—_‘,_,—), P(k) = e (3.3.12)

(e2 —e f) (eZ—e 2

is a homomorphism of algebras. Here we assumed that ¢ =" and considered
Uy(sly) over C[[A]].

Consider the image of R; under the extension of ¢ ® ¢ to an appropriate com-
pletion of Uy(sl)®*:

(PR PR =(@® f;¢")o . (33.13)

Here (z;e")o is the asymptotics of the function (z;¢)s, at ¢ — 1 (see the lemma

from Sect. 3.4)
@® f;e") =exp (Mﬁ

- )(1-@@7)% (14 0h)). (33.14)

This asymptotics in the element of (Eh[[SL;‘]]@[[h_']], where the tensor product
completed by power series over e® 1, 1 Qe,....
According to the previous section the element

RY(a)=(d @ ¢)R1) - a- (d® PR, (3.3.15)
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where a € C';,[[SL;‘]]A@’2 exists in C;,[[SL;‘]]@A’2 and determines the algebra automor-
phism of Cj[[SL}]1®%.

We will denote by R the image of the automorphism (1.2.6)—(1.2.8) under
¢ ® ¢

ROF®1)=2¢®ei, ROFol)=F®e i,
ROl @e)=ei®e, ROU®=eixf,
RO¢z®1)=z0le, RYP1®z)=1®z, (3.3.16)
Define _
R(a) = R® o RV(a) . (3.3.17)

From the definition of R and from the braiding of U,(s/,) we deduce that C,[[SL3]]
is braided with R defined in (3.3.17).
Moreover, we can represent R as follows:

RO(a) = exp (Zf}’zz> ca-exp (—Zzz> . (33.18)

As was explained in the previous section this product exists in Ch[[SL;]]®2 —
Cul[SL311¥*[[A~ 1)

Since the Hopf algebra C,[[SL;]] is a deformation of Hopf-Poisson algebra
Cy[[SL3]] the latter is braided with

R(a mod h) = R(a) mod & , (3.3.19)
and since (3.3.14), (3.3.15) and (3.3.18)

R(a) = exp(rg) oexp(ry)oa, (3.3.20)

where exp(a) o b is defined in (3.2.11).
Note that in the proof of Theorem 3.3.3 we have also proven that C,[[SL}]] is
a braided Hopf algebra.

Remark. 3.3.4. The analogue of Theorem 3.3.3 for an arbitrary simple Lie algebra
® with the standard Lie bialgebra structure [Dr] has been given in [R], where linear
terms of ry and r; have been described.

3.4. Let (z;q)oo be the function defined in (1.4.1) for |g| < 1.

Lemma 3.4.1. The function (z;q)e has the following asymptotics when q — ¢,
e =1, (-odd:

!/
) 1 Z.log(1 —¢)
(z;q@)00 — €Xp <—m{it dt) )

(1 —z) ﬁ(l — &)~ 7 (1 + O(h)), (3.4.1)
m=0

where q = ge", h — 0.
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Proof. The function (z; q). satisfies the following difference equation:

(24;9)o0 = (Z;9) > (34.2)

1 —zq

and it is uniquely determined by this property and by the condition (0;¢q)o = 1.
Iterating this equation we have

1
—zq)...(1 —zq")

The function (3.4.1) presents the asymptotics of the solution to Eq. (3.4.3) normal-
ized by (0;¢)00 = 1.

(z4'39) = a (7590 - (3:4.3)

3.5. Let ¢ be a root of 1 of odd degree /.

Definition 3.5.1. The algebra U,(sly) is a complex algebra generated by elements
e, f,w,z (complicated by formal power series over e, f,z) with the following de-
termining relations:

o =1, ef—fe=——" " " (35.1)

and z € center of Uy(sl,).
Clearly U;(sl) is a Hopf algebra with the comultiplication

Je=eQ@uwes +1®e,
Af=Fel+o e iaf,
Az=zQR14+1®z, (3.52)

and the map ¢ : Uy(sly) — Uy (sly),

pk) = wer, ¢le)=¢, ¢(f)=f (3.5.3)

determines a homomorphism of Hopf algebras.
The algebra U,(s/;) has all properties absolutely similar to Ug(sl;):
e The center of U,(s/,) is generated by 2 ,7/, z and by

F4 -1 -2
we? +ew e 2

c=elt Ty

(3.5.4)

o Z(Uy(sly)) is generated by & ,7/, z, ¢ freely modulo the relation (3.1.3) where
we have to replace k — elw.

e U,(sly) is finite-dimensional over Z(U,(sly)).

e The central subalgebra Zy(U(sl,)) is a Hopf subalgebra in U,(sl,) and Pois-
son brackets (3.1.5),(3.1.6) determine the structure of Hopf-Poisson algebra
on Zy(U,(sl)) together with its Poisson action on U,(s/,).

e There is an isomorphism of Hopf-Poisson algebras Zy(U,(sl;)) ~ C[[SL}]].
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1 l 1 . T T~
Let &7 be the 4/"-root of 1, such that ¢4 := (¢3) =i and consider U,(sl,)
1 1
over C[e4,e~4]. Then we have:

Theorem 3.5.2. (1) The algebra U,(sl,) is braided Hopf algebra with

R(a) = RORMarM ™) | (3.5.5)
where
RO(a) = exp(ro) oexp(r))oa , (3.5.6)
1 B 1,
ro = ZZ®Z’ r = ﬁLzz(e Rf), (3.5.7)
and
ar—1 ‘ -
RYV=( Y et 0o | [JO-"ex f)~7 . (3.5.8)
$,t=0 m=0

(2) The element RV satisfies relations (12),(13).

Proof. First, it is easy to check that the automorphism

a-1 -1, !
RO — et @' Jal| Y et @ (3.5.9)

5,t=0 s,t=0

acts as (1.3.1)-(1.3.3) (assuming there k*' = w*let?).
Then notice that when g = e’¢, 7 — 0, the asymptotics of the element (1.2.13)
is given by

exp <hLﬂLi2(E/ ®7/)> (1 —¢ ®7/)%;1:=I;(1 — 8”’?@7)‘?(] +0(h)) . (3.5.10)

This follows from Sect. 3.4.
The theorem now follows from Proposition 1.2.3 and from (3.2.9),(3.2.10).

3.6. Let us discuss the relation of the algebra U,(s/;) described in Theorem 3.5.2
to the finite dimensional quotient algebra

UC(SZZ)I = Uz:(SI2)/<é/37/>Z> B (361)

where (¢/, f/, z) is the ideal generated by these elements.
It is well known that the algebra U,(sl,) is a quasitriangular finite dimensional
Hopf algebra with the universal R-matrix

k=1

_ -1 (=1eg™ k k

R=| Y i’ ®a" | > e (3.6.2)
5,t=0 n=0 (k)é'

For details see for example [RT]. The following proposition explains the relation
between (3.6.2) and (3.5.8)
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Proposition 3.6.1. (1) The automorphism R©® from (3.5.6) induces an identity
automorphism on the quotient algebra U,(sly)'®%. (2) We have the identity:

k(k+1
y (k+1)

=1
[T =e"z") =3

0 ~ (F_—Iz)(k)—,z +0@") . (3.6.3)

Proof. The first statement follows immediately from the fact that point £ = 1,e =0,
f =0 is a symplectic leaf of the Poisson structure (3.3.2) on SL;. The identity
(3.6.3) follows from the comparison of the asymptotics (3.4.1) with the represen-
tation (1.4.2) in the case when g = ge”,h — 0, and z/ = o(h).

Thus, the quasitriangular of the quotient algebra U.(s/;)’ with the universal
R-matrix (3.6.1) is in agreement with the braiding structure of U(sl;) with the
universal R-matrix (3.5.8).

Conclusion

We have shown that in an appropriate sense the algebra U,(sly) is quasitriangular
even when g is a root of 1: it is a braided Hopf algebra in the sense of Definition 1.
This modified notion reproduces known results for appropriate quotients of Ug(sl)
[RT,R].

Notice that functions similar to those which describe the € ® f dependence in
(3.5.8) had already appeared in the literature in the context of the Chiral Potts
model (see [BB] and [FK]).

The generalization of these results for U,(g) for simple Lie algebras g is straight-
forward and will be done in a separate publication.

The following list of problems seems natural to understand now:

(i) The description of the category of modules for algebras U,(g). One has to
understand the category where both associative algebra and Poisson struc-
tures for U,(g) are taken into account.

(ii) The description of algebras U,(g§), where § is a Kac—Moody algebra. It is
especially interesting to do this for affine Lie algebras g.

First steps towards understanding question (i) have already been done in [WX]
for ¢ = 1. Certain results about the quantum affine algebra U,(5/(n)) including the
description of minimal cyclic representations can be found in [DIMM].
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