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Abstract: We compute, by free field techniques, the scalar product of the SU(2)
Chern-Simons states on genus > 1 surfaces. The result is a finite-dimensional inte-
gral over positions of “screening charges” and one complex modular parameter. It
uses an effective description of the CS states closely related to the one worked out
by Bertram [1]. The scalar product formula allows to express the higher genus par-
tition functions of the WZW conformal field theory by finite-dimensional integrals.
It should provide the hermitian metric preserved by the Knizhnik-Zamolodchikov-
Bernard connection describing the variations of the CS states under the change of
the complex structure of the surface.

1. Introduction

As noted in [2], there exists a close relation between the Chern-Simons (CS) topo-
logical gauge theory in 3D and the Wess-Zumino-Witten (WZW) model of con-
formal field theory in 2D. The (fixed time) quantum states of the CS theory on a
Riemann surface 2 without boundary are solutions of the current algebra Ward iden-
tities of the WZW theory. The states of the CS theory are holomorphic functionals
¥ on the space /%! of (smooth) 0,1-forms 4°' with values in the complexified
Lie algebra g€ of a compact Lie group G. The functionals ¥ are required to be
invariant under the complex (chiral) gauge transformations ¥ + *¥, where

hpq0) = e——kS(h,AO')q;(h_:‘lOl) (1.1)

for h: X — GT. In the above formula, S(%,A4°") denotes the action of the WZW
model [3] in the external gauge field 4°!. For a general gauge field, it takes the
form
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The non-negative integer k is called the level of the model. The invariance ¥ ="Y¥
is exactly the chiral gauge symmetry Ward identity for the WZW partition function.
Moreover, adding static Wilson lines in the CS theory, one obtains the chiral Ward
identities for the Green functions of the primary fields of the WZW theory. For
the sake of simplicity, we shall concentrate here on the case of the WZW partition
function and we shall take G = SU(2).

The space of CS states has finite dimension. The CS states ¥ may be viewed as
sections of a complex line bundle over the orbit space .«7°!/%C of the group 4T of
complex gauge transformations. The orbits 4T4°! are in one to one correspondence
with the isomorphism classes of holomorphic vector bundles (h.v.b.) E of rank 2,
with trivial determinant, given by the SL(2, €)-valued holomorphic 1-cocycles (gxp),

Gapdpy = Gy » (13)

where A%' = g;'0g, locally and g,5 = gagl;l. If, for the genus g of £ > 1, one

limits oneself to the open dense (in the C*° topology) subset /%! C .&/%' corre-
sponding to the stable bundles, then the orbit space .«#/%'/%T becomes a complex
variety 45 of dimension 3g — 3 = N. Besides, .#; possesses a natural compactifi-
cation A, the Seshadri moduli space of semi-stable bundles [4, 5]. The CS states
coincide with the holomorphic sections of the k™power of the natural determinant
bundle 2 over A 5. The spaces H(2*) of such sections have dimensions given
by the Verlinde formula [6]. They form a holomorphic vector bundle #} over the
moduli space .# of complex curves. This bundle may be equipped with a projec-
tively flat “heat kernel” connection first described by Bernard [7], see also [2, 8, 9,
10], which generalizes the Knizhnik-Zamolodchikov connection [11] to the higher
genus situation.

The partition function of the WZW model is formally given by the functional
integral

Z(A'0 4 4%y = [SS6A "+ DDy (14)

where Dg stands for the formal product [], ., dg(x) of the Haar measures on G. It
has been argued in [13] that the solution of (1.4) is given by

Z(AY + A) = S (A4 ek [z (15)

for an arbitrary basis (¥,) of the CS states orthonormal with respect to the scalar
product corresponding to the norm

1P = [P etslzra M Dy, (1.6)

The functional integral in (1.6) is over the unitary gauge fields 4 = 4'0 + A" with
A% = —(4°M)!. This way the calculation of the partition functions in the WZW
theory is reduced to that of the scalar product of the CS states.

Formal arguments show that the scalar product (1.6) should supply the bun-
dle #; of CS states with a hermitian structure preserved by the Knizhnik-
Zamolodchikov-Bernard (KZB) connection, see [9]. Proving rigorously the metric-
ity of the KZB connection is an important mathematical problem in conformal field
theory still left open. The purpose of this work is to provide a candidate for its
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(constructive) solution by computing exactly the functional integral at Eq. (1.6).
The result will have a form of an explicit finite-dimensional integral of a positive
measure. Similar work has been done in the case of genus zero with insertions in
[12, 13] for G = SU(2) and in [14] for a general simple G. The integral formulae
for the scalar product are the dual versions of the expressions for conformal blocks
of the WZW theory in terms of the generalized hypergeometric integrals [15, 16,
17], at the core of the relations between the WZW models and the quantum groups
and of the recently discovered relation between the WZW model and the Bethe
ansatz [18, 19, 20, 21]. The extension to higher genera has required a nontrivial
generalization of the low genus arguments and has taken some time.

The paper is organized as follows. In Sect. 2 we describe a slice in the space of
gauge fields, transversal to generic 4C-orbits. It corresponds to realizing generic rank
2 determinant 1 holomorphic vector bundles as extensions of a one-parameter family
of degree g — 1 line bundles. In Sect. 3, we examine the restrictions of CS states to
the slice. They become sections of the k™ power of the determinant bundle of the
family of extensions. This picture of the higher genus CS states is closely related
to the one worked out in [1], see also [22], based on considering the extensions
of fixed degree g line bundle'. The relation between the two presentations is the
subject of Sect. 4. Section 5 describes a projective version of the scalar product
formula, from which surface dependent constants were omitted. It has been extracted
from the full-fledged formula discussed later for the sake of a moderately interested
reader who would not like to dwell into the details of the functional integration
which occupies most of the rest of the paper. And so, in Sect. 6, using the slice of
the space #°!, we decompose the functional integral (1.6) to the one over 4T and
over the orbit space. The Jacobian of the relevant change of variables is computed
in Sect. 6 by free field functional integration. The crucial Sect. 7 performs the
integration over 4C by reducing it to an iterative Gaussian integral. Finally, Sect.
8 assembles the complete formula for the scalar product. In Appendices, besides
treating a number of technical points, we work out the details of the relation of our
description of CS states to that of [1] (Appendix C) and submit the scalar product
formula to simple consistency checks (Appendix F). What remains to be proven,
however, is that the finite-dimensional integrals appearing in the formula actually
always converge resulting in a hermitian metric on the bundle #} of state spaces
which is preserved by the KZB connection. What is also missing is an interpretation
of the formula in terms of modular geometry, providing a counterpart of the analysis
of the KZB connection carried out in [8]. As the first step in this direction one could
try to simplify the formal arguments given below. Numerous cancellations occurring
in intermediate steps of the calculation suggest that such simplification should be
possible.

This is a non-rigorous work in its manipulation of formal functional integrals
which lead, in the end, to a chain of Gaussian integrations. Handling these integrals
required, nevertheless, careful treatment. As a result, the paper employs relatively
sophisticated mathematical tools. It may be viewed as a piece of “theoretical math-
ematics” in the sense of [23]: it uses formal functional integral to extract an inter-
esting mathematical structure which should be submitted now to rigorous analysis.
Care was taken to clearly mark the non-rigorous steps in the discussion. The main
result of the calculation performed here was announced in the note [24]. The case
with insertion points will be treated in a separate publication.

! We thank B. Feigin and S. Ramanan for attracting our attention to 1] and [22].
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2. Space of Orbits

We shall need below an effective description of generic orbits ¥€4°%'. It will be
based on the fact that every h.v.b. E has a line subbundle L=! C E or, equivalently,
that the cocycle (g.p) of E may be always chosen in the triangular form

-1

a b

gaﬁ:( 6/? aﬁ) , (2.1)
(v4

where (aqp) is a l-cocycle of a holomorphic line bundle (h.lb.) L s.t. the dual
bundle L™ C E. (byp) satisfy the twisted cocycle condition

a;ﬂlbﬁy + bapa,gy = by (2.2)

which means that they define a holomorphic 1-cocycle with values in the h.Lb.
L2 (this may be better seen by rewriting Eq. (2.2) as a;ﬁzb;jy + b 5= b;y, where
b;,, = aojﬁlba,;). The corresponding cohomology class [(bes)] in H 1(L™?) describes
E as an extension

0—-L'"S5E—-L—0 (23)

of the line bundle L by L~'. Proportional [(b,s)] give rise to isomorphic bundles
(but the converse may be not true). By the Riemann-Roch Theorem,

dim(H'(L™%)) =g —1+2deg(L) for deg(L) > 0. (2.4)

Let L(£x) denote the h.l.b. LO(+x) (omitting the sign of the tensor product
between the bundles), where (O(%x) is the degree 31 h.L.b. with divisor +x. We
shall fix for the rest of the paper a h.l.b. L of degree g. For later convenience, we
shall assume that this is done so that L(—x)? never coincides® with the canonical
line bundle K of X. For any rank 2 h.v.b. bundle E with trivial determinant, there
exists x € X and a non-trivial homomorphism

¢:L(—x)"' = E, (2.5)

see [5], Lemma 5.4. If ¢ has zeros (counted with multiplicities) at xy,...,x,, then ¢
induces an embedding of L(—x —x;--- —x,)”! into E or, in other words, E is an
extension of L(—x — x; - -- — x,). Notice that deg(L(—x —x;---—x,))=g—1—r.
If E is stable then it can have only negative degree subbundles so that, necessarily,
r < g — 1 and, moreover, the extension has to be nontrivial.

The above discussion gives rise to the following description of the orbits €4,
related to the picture of the moduli space 4" discussed in the papers [1, 22]. For
0 =r < g—1, consider a holomorphic family (L(—x —x;--- —x,)) of line bun-
dles. By definition, it is a holomorphic line bundle #, over’ X'*! x X whose
restriction to the fiber pri I({x,xl, ...,x,}) of the projection on the first factor gives
L(—x —x1---—x,) = L(—X,). %, is not unique: for each h.Lb. M over X"t
we may take pri*(M)%, instead of &#,. Let W, denote the first direct image
R pri(L7%) of £72 by pri (W, is a h.v.b. of dimension N — 2r (N = 3g — 3)
over X'+ with fibers H!(L(—X,)™2)). Let PW, denote the corresponding holo-
morphic bundle of projective spaces PH!(L(—X,)™2). The total dimension of the

2 as opposed to the choice of L employed in [24]
3 We denote by X" the symmetrized n-fold Cartesian product of X.
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compact complex manifold IPW, is N — r. Now, each element w € IPW,, with the
base point {x,xi,...,x,} =X,, defines (uniquely up to isomorphisms) a holomor-
phic bundle E of rank 2 and trivial determinant which is an extension of L(—X,).
(Many w’s may define the same E.) The dimensions imply that, generically, » = 0
(recall that dim (A7) = N). From this and the analysis of [1] and [22], the following
picture of the orbit space emerges:

an open dense subset of P, corresponding to stable bundles is a ramified
(2g-fold) cover of a dense subset of the stable moduli space A4;. The rest of
A5 1s in the image of subsets of IP/,. In particular, the union of the 4T orbits
corresponding to h.v.b.’s E obtained from W, is dense in 2/°!.

Other details of that geometry may be found in [I, 22].

We shall construct gauge fields corresponding to points in IPW, (a slice
7 PWy — /). Let us start by an explicit construction of a family (L(—x)) of
line bundles on 2 and of the corresponding bundle W,. A more natural but less
explicit construction will be discussed in the next section and, a somewhat pedantic,
distinction between different realizations of the family (L(—x)) will later play an
important role. In order to describe the first construction, fix a point xo € X and de-
note Ly = L(—xg). The family (L(—x)) will be obtained by twisting the J-operator
in Lo. Let (»'){_, be the basis of holomorphic 0,1-forms on X adapted to a mark-
ing of X, i.e. to a choice of a standard homology basis (a;,b;). fa, ®’ =Y and

J, @’ =19, where 7 is the period matrix. Define a 0, 1-form

- (fw)( > @fanw)(Imr)*la‘). (2.6)
i,j= 1 X0 ij X0

Notice, that @ = a, depends on the lift x of the point x to the covering space %
of X (with the base point xy). Denote by Ly the line bundle Ly with d replaced
by 5Lx = 0+ ay. It is a standard fact that all Ly corresponding to the same x are
isomorphic to L(—x). Consider the holomorphic bundle £ x Ly over £ x X with the
antiholomorphic derivative 6 + 0, where § differentiates in the trivial direction of
2. We shall twist £ x Lg by replacmg its antlholomorphxc derivative by b+0+a
Denote the resulting h.Lb. over £ x ¥ by . It gives a specific realization of a
holomorphlc family (Lx ): The action of the fundamental group I1,(2,x0) = I1; on
3 lifts to an action on %, preserving the structure of the h.Lb. The lifted action of
pEllis

(x%,1,) = (px,cp(»)7'1) 2.7

for /, in the fiber of Ly over y € X, where

cp(y) = QZritmi(f o) (me) "' ([ @) (2.8)
Note that ¢, is a function on X (it does not depend on the integration path from
xo to y). Dividing P, by the action of II;, we obtain a h.lL.b. ¥, over X x X, the
first explicit realization of the holomorphic family (L(—x)).

For a line bundle M, we shall denote by I'(M) the space of smooth sections
of L and by A% (M) the space of smooth 0, I-forms with values in M. The bundle

Wy = R! prl*(.,f’o_ 2) (the first direct image of 37(; 2 under pri) may be viewed as the
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quotient of the infinite-dimensional trivial bundle £ x /\OI(LO_ 2) by the subbundle
whose fiber over x is the image by 0, = 0 — 2ax of I'(L; 2). Indeed,

AU LG )0, 2(P(Lg ) = N0, (ML) = HIL),  (29)

which is the Dolbeault realization of H'(L;?). Division by the action of IT; gives
an explicit construction of the fiber bundle W;.

Let us construct now a gauge field 4°' whose %C-orbit corresponds to a given
point w € W,. To this end, we shall choose a smooth isomorphism U of rank 2
vector bundles over X with trivial determinants,

U:Ly'@Ly— X x €. (2.10)

Let us twist the holomorphic structure of the vector bundle Ey = L, '@ Ly by re-
placing its 0-operator by

5 —ax b -3 01
a—l-( 0 ax>_a+Bx’b, (2.11)

where b € /\OI(LO_ 2). We shall denote the twisted bundle by E. Note that E is an

extension of the line bundle Ly by L;'. We may use the smooth isomorphism U
of (2.10) to_transport the holomorphic structure from E to the trivial bundle where
we get the 0-operator

O+ UBY U + U™ =0+ 4%,. (2.12)

Let ¢ be a constant #0 or ¢ = ¢, see Eq. (2.8), and let v € F(Lo"z).

-1
Geo = (CO CC”) (2.13)

is a smooth section of the bundle Aut(L, Y& Ly) of automorphisms of L, U'® Ly. The

gauge transformation BY), — ge B, = g7 B g + 97, 0gc,r preserves the form of
the gauge field BY), shifting

ay — ay +c'oc and b c*(b+ (0 — 2ax)v). (2.14)

In particular, for ¢ =c,, ax — ax+ c;lécl, = a,x. The corresponding fields A)O(,lb
are gauge-related by
hep = Uge, U™ € 99, (2.15)

so that they lie in the same %T-orbit. Taking constant c+0, we see that b leading
to the same class in the projective space

(A (Lg?)/0,2(P(Ly?))) = PH(Lg?) (2.16)

give gauge fields 4Y), in the same ¥®-orbit. The class of b in PH'(Lg?) is exactly
the one describing the rank 2 h.v.b. E, an extension of Ly, associated to the orbit
%%4%,. Choosing x in a fundamental domain in X and one b in each class of
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PH'(L;?), we obtain a slice & : PW, — /°! which cuts a generic orbit a finite
number (= 2g) of times. One may take % to be piecewise holomorphic.

3. Determinant Bundle

Let us fix a hermitian structure on the h.Lb. Ly. It induces a metric connection
on Ly whose covariant derivative in the antiholomorphic direction coincides with
the 0 operator. Let Fyy denote the curvature form of this connection (normalized so
that | 5 5-Fo = deg(Lo) = g — 1). The hermitian metric on Ly induces a hermitian
structure and a connection on L; ! and, putting both together, a hermitian structure
and a connection on L, '@ Ly. Let us denote by V the holomorphic covariant

derivative in L '@ Ly. The complete covariant derivative is V + 0. Clearly, its
curvature form

curv(V + 0) = (—g‘o 1%) . (3.1)

Let us assume that the smooth isomorphism U : L '® Ly — X x €2 maps the her-
mitian metric of Ly '@ L, into the one coming from the standard scalar product of
€2. Using U, we may transport the connection on Lj '@ Ly to the trivial bundle
I x €2

UNV+HU ' =d+UVU '+ UU ' =d+ 40 + 4y =d+ 4. (32)

The right-hand side gives a unitary connection, so that 4)° = —(43")". The curvature
forms are related by

urv(U(Y + HUY) = F(dy) = dAo + Ag A dg = U (‘g" 130) Ut (33)

We shall represent the CS states by holomorphic sections of a line bundle over
PW,. To this end, let us define, for a CS state ¥, a holomorphic function

ik
Y(x,b) = exp [EE ftr4g® A Agfb] P(4Y, (34)
z

of xe Zand b e /\O‘(LO_ 2). As is shown in Appendix F, only the normalization of
¥ depends on the choice of the hermitian structure on Ly and of the isomorphism
U. Since the %C-orbits of the chiral gauge fields A , form a dense subset of &/,

¥ is uniquely determined by the function . The gauge relations between the forms
A% x» induce constraints for functions y, due to the gauge invariance of CS states V.

In ‘particular,

WX, b+ (0 — 2ax)v) = exp[kS(hy, 4y’ + A34)] Y(x,b), (3.5)
Y(x,¢*b) = explkS(he, 4y’ + Agy)] Y(x,b), (36)
W(px, c3b) = explkS(he,, Ay + AR,)] Y(x,0), G

where A, is given by Eq. (2.15) with ¢ = 1, A, by the same formula with v =0
and ¢ € € = C\{0} and A, by setting v = 0 and ¢ = ¢, see (2.8).
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Let us study these transformation properties in greater detail. The first two equa-
tions become much more transparent if we rewrite them in the infinitesimal form.
Since 2 |,_, S(h,4) = £F(4), we obtain

s .
2 SOy AN + A = — tr ot U F(AY + 42U
0| ,= ; 2n /

= —21; tr o (curv(V + 0) + V(BZ,))

_ i (01 —F, 0
=270 \o o 0 F,

; (“f)“x V(”))> —o, (3.8)

Oday

where we have used the identity: curv(V 40+ BY}) = curv(V + 9) + V(BY,).

Above, V(b) stands for the holomorphic covariant derivative of the Lj 2_valued
0,1-form b. Similarly,

5 10 01y 1 1 0 —F() 0 —(9ax V(b)
%czls(}’c’AO +Ax’b)‘ﬁ!“ 0 -1 0 F )t 0 oa
= Z[Fy=2(g—1). (3.9)
Ty

As for the relation (3.7), first notice that we may reduce the calculation to the case
b = 0 since for h = h,,

S(h,AY + A%) =S(h, 43 + A2L)

+ 5’7; [te[(hoh~" + haLh~" — 410 A UstbU "]
pA

=S(h, Ay’ + A%) + éftr [0'30'+c;16cp A b]
b
=S(h, 4" + A%0).

We shall show in Appendix A that for ¢ a non-vanishing function on 2, for g. =

-1
(CO g) and for A, = Ug U},

explS(he, AN + A%L)] = ezl ze GenE de2a)y (3.10)

Note that, except for the last factor, the expression on the right-hand side is

eS6e=o'ax) where g, is viewed as a standard SL(2,C)-valued field. The correc-
tion term is ] . 1
—%fb,c ch;’[-'falc dc

v(c) = e%f}:Folnclg[] (Waj bj ) R 3.11)
j:

where W,,(W),) stand for the holonomy of the metric connection on Lo along the
aj(b;) cycle. Inc(x) = Inc(xo) + fx); ¢~ ldc, where the integration path is taken inside
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a fundamental domain of X obtained by cutting the surface along the cycles a;,b,
starting at xo. Altogether,

exp[S(he,, A10 4 Aﬂ,’b)] — U p@)tme) ([ oy t2n( ] ,,a'»)amr)"(f,tow)v(cp)
= u(p,x)v(cp). (3.12)
Gathering Eqgs. (3.5) and (3.8), (3.6) and (3.9), (3.7) and (3.12), we obtain

Proposition. Holomorphic functions  possess the following transformation prop-
erties:

W(X, Ab + (0 — 2ay )v) = O=Dy(x,b), (3.13)

(X, b) = u(p, X W(ep) wix,b). (3.14)

In particular, for fixed x, ¥/(x, - ) is a homogeneous polynomial of degree k(g —
1) on H'(Lg?). Note that the factor u( p,x) appears in the transformation property
for the square of Riemann’s theta function:

Px pX pX 2 X X X 2
U U w)19<fw]r> — u(px) en(how)m‘,;(fxow)lg<fw|r) . (3.15)

X0 X0

The map x — 9¥( f;‘owlr)z defines a holomorphic section of the bundle K(2x,). The
map II; 5 p+— v(c,) is a character of the fundamental group II;. We show in
Appendix A that it defines the flat bundle L(—gxy)?. Hence a holomorphic function
P(x) s.t.

d(px) = p(p,x) v(cp) P(x) (3.16)

— X
defines (upon multiplication by ¢ Ur@)m ™' w®) a section of the line bundle
L?>K((2 — 2g)xo). The transformation properties (3.13) and (3.14) may be rephrased
by saying that Y is a holomorphic section of the k™ power of a h.Lb., which we
shall denote DET, over the total space of the fiber bundle IP#,. Explicitly,

DET = @w*(L*K((2 — 29)x)) Hf(Wo)1—9, (3.17)

where w is the bundle projection of IPW, and Hf(W)) is the tautological bundle over
IPW,. In particular, the restriction of the h.l.b. DET to the fiber PH'(L(—x)"?2) of
IPWO over x€X is the (1 —g)" power of the tautological bundle over
IPH'(L(—x)"%). As we shall see in the next section, the h.L.Lb. L2ZK((2 — 2g)x0) is
isomorphic to (the IT ) quotient of) the determinant bundle of the family (d — o3ay)
of o- -operators in Lj '@ Ly. In turn, the line bundle DET is isomorphic to (the
II, quotient of) the determinant bundle for the family (d + x’b) of J-operators
in Ly '@ L. Note the simple way by which the addition of the upper-diagonal
gauge field b in the d-operator manifests itself in the determinant bundle. The map
¥ — y embeds the space of CS states onto a subspace # C H'(DET¥). The space
HY(DET*) of the holomorphic sections of a line bundle over the compact space W,
is finite dimensional so that the finite-dimensionality of the space of CS states fol-
lows. Given y € HY(DET¥), the question whether it comes from a CS state should
be determined by its behavior at the codimension one subvariety defined by IPW,;
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in the moduli space .4 of stable bundles. We shall return below to this question
which requires some refinement of the analysis of [1, 22].

For the later use, it will be convenient to write the homogeneous polynomial
Y(x, + ) on H'(Lg?) in an integral form following from the Serre duality:

Y(x,b) = [ x(Xx1,...,Xkg-1)) b(x1)...B(xk(g-1)) (3.18)
Tk(g—1)

for b € A% (Ly) and x(x; - ) € H'(S*9~1D(L2K)), where, for a h.lLb. M over %X,
S"M stands for the n-fold (symmetrized) tensor product with the base space 2",
the n-fold symmetric Cartesian product of X. The x-dependence of y again gives rise
to a section of L2K((2 — 2g)xo) so that we may view x( - ; - ) as a holomorphic,
pra-horizontal k(g — 1),0-form on ¥ x 2¥9=D with values in the h.Lb.

pri*(LK((2 — 29)x0))f SKO=D(2y%) = By . (3.19)

4. Relation to Bertram’s Picture

Paper [1], see also [22], describes a somewhat different, simpler, construction of the
space of CS states. It is based on the realization of a generic rank 2 determinant 0
bundle as an extension of a fixed degree g line bundle L. Taking

/
B’b9‘.:_<8 %) , (4.1)

where b € A% (L~2), we shall put
A =40 U+ u'ou! (42)
where U’ : L™' @ L — X x €? is a fixed smooth isometric isomorphism. Defining
Wb = exp[% L[trAf)w /\A;‘)‘] P, (4.3)
we infer in the same way as above that
Y0+ 00) = 2@ (44)

compare (3.13). Hence each y/ is a degree kg homogeneous polynomial on
H'(L™?). The latter space has dimension 3g — 1 and the number of independent

homogeneous polynomials of degree kg on it is (kg;j_g;z ). By the Serre duality, we
may write
YO )= [ X1 xug) b (1) b () (45)

sky
where y' € HO(SH¥(L2K)).
Theorem 2a of [1]*. The CS states correspond exactly to the polynomials /'
s. t. x € HY(SM(L*K)) vanish whenever k + 1 of their arguments x, coincide.

4 We have learned this reformulation of the result of [1] from B. Feigin who discussed in [25]
its generalization to the case with insertions and with arbitrary simple groups.
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The dimension of the space of such polynomials was shown in [22] to be

k+2)\¢" Cm2j+1D)\¥
(—2 ) ) Z.-.,§<Sln By ) , (4.6)

=0,

op—

in agreement with the Verlinde formula [6] for the dimensions of the spaces of CS
states. Let us set

A X155 Xk (g—1) = X (X5 XK X155 Xk(g—1)) - 4.7
times
Note that
0
XX x,%2,. . Xkg-1)) =0 and — XX X1, Xkg=1)) =0, (4.8)
Bxl xp=x

where the second equality is obtained by differentiating the first one over x. In
particular, for fixed x, x(x; - ) € (L2K)¥|, ® HY(S*9~D(L2K(—2x))). We may also
interpret y(x; - ) as a holomorphic k(g — 1),0-form on Z¥¥~D with values in the
line bundle (L2K )|, ® SK9=D(12(-2x)).

We shall show that giving y is equivalent to giving i in the description of the CS
states of the previous section. For this purpose, let us consider a line bundle ¢(—4)
over X x X, where 4 denotes the diagonal. £ = pri(L)0(—4) = pry*(L)(—4) is
another realization of a family (L(—x)) of the h.Lb.’s, a different one from ¥,
described before. It is not difficult to see that

&L= pri(O(=xo) &0 . (4.9)
An explicit isomorphism is given in Appendix B. If W§ = R' pry,.(Z} %), then
W= 0Qx)Wo, PW.=PW, and HEW.) = w*(0(2x0)) HE(Wy) . (4.10)

Now y, with its x-dependence taken into account, may be viewed as a holomorphic
(pra-horizontal) k(g — 1), 0-form on X x X*¢~1) with the values in the h.Lb.

B} = pri *(L*K)F s¥6=D(22)y . 4.11)

Since the h.Lb.’s B} of Eq. (4.11) and By of (3.19) are isomorphic due to (4.9), y
introduced by formula (4.7) is the same type of object as y considered in Sect. 3,
see Eq. (3.18). Indeed, in Appendix C we show that the two y’s coincide completely
under an explicit isomorphism. This will establish the precise relation between the
two descriptions of the CS states: by functions y which we shall employ in this
work and by polynomials . Let us briefly sketch here the geometric picture due
to [1, 22] which is at the core of the detailed analysis of Appendix C. One may
embed the curve X into PH'(L™2) by

Yoxe [ble PHY(L7?), (4.12)

where, for ' € H%(L?K), [yn'b. = #'(x) in some trivialization of L?K around x. We
shall see in Appendix C that [b}] corresponds to an extension of L which, as a rank
two bundle, is isomorphic to the split bundle L(—x)~! & L(—x). The condition of
Theorem 2a of [1] means® that /' vanishes to order k(g — 1) — 1 on (the image of)

> this was the original formulation of Theorem 2a of [1]
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2. In this description, the CS states are thus realized as homogeneous polynomials
Y’ on (3g — 1)-dimensional vector space which vanish to some order on the explicit
embedding of X into the space. y/’s are given by the k(g — 1) Taylor coefficients
(the first non-trivial order) of ¥’ on X.

Similarly, one may embed X into IPH'(L(—x)~%) by mapping y to [b,] s.t.
Jsnby, = n(y) for each n € H%(L(—x)*K). [b,] defines an extension of L(—x) which,
as a h.v.b., is isomorphic to L(—x — y)~! @ L(—x — y). Changing also x, we get
an embedding of X? into the bundle IPW; considered in Sect. 2. Replacement of
the image of X% in PW, by IPW, is the second blow-up step of [1,22]. Their
analysis shows that, again, y(x; yi,..., Vk(g—1)) vanishes whenever k + 1 of y,’s
coincide. We may then equate & of y,’s and continue the process including higher
and higher P#,’s into the game. It is interesting to know whether the vanishing of
X(X;X1,...,%kq—1)) at k + 1 coincident points characterizes completely the sections
¥ € HY(DET*) coming from the CS states.

Let us remark, in the end, that the h.l.b.’s isomorphisms detR pry.(£}) = L™}
and detRpri, (L5 ") = (LK)~! following from the exact sequence

0 — pra"(L)(=4) — pra"(L) — pra"(L)|s — 0

and the relation (4 9) imply that the determlnant bundle det™'R prl*(,? e Zy)
of the family (0 — o°ay) of d-operators in Ly '@ Ly is isomorphic to the h.Lb.

L?K((2 — 2g)xo). This provides an mterpretatlon of the first factor on the right-
hand side of Eq. (3.17).

5. Projective Formula

The outcome of the calculation performed in this paper is much simpler than the
calculation itself. We shall start by describing a softened version of its result. It
will give the scalar product of CS states up to a X-dependent constant. Such data
are enough to generate a projective connection on the bundle #7 of state spaces.
This should coincide with the projective class of the KZB connection and hence
be flat. Section 9 contains a more detailed scalar product formula with the normal-
ization fixed, up to an overall constant depending only on the level & and genus
g (which could be traced through the calculation). The detailed formula gives also
the dependence of the scalar product on the metric of the surface (i.e., in particular,
on its complex structure).

In the simplified formula, we shall use, as the geometric input, the represen-
tation of the CS states by the holomorphic k(g — 1),0-forms y with values in the
line bundle By, see (4.11), as well as hermitian structures on these bundles. It will
be convenient to choose the latter in a specific way. Following [31], we shall call
a hermitian metric on a h.Lb. M on X2 admissible, if the curvature form of the
induced connection is proportional to the 2-form o = ﬁw(lm )7L A @. Admissi-
ble hermitian structures exist and are unique up to normalization. We shall call
a Riemannian metric on X admissible if it induces an admissible hermitian struc-
ture on the holomorphic tangent bundle of X. Let G(x, y) denote the Green function
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of the scalar Laplacian 4 on X chosen so that [G( - ,y)a(y) =0. G(x,y) has a
logarithmic singularity at coinciding points. Define

: G(x,x) := lim (G(x,x’) _ 1 In 8) , (5.1)
e—0 2n

with the distance d(x,x’) = ¢. Choose an admissible Riemannian metric on X nor-
malized so that : G(x,x) := 0, called the Arakelov metric [32]. It will also be conve-
nient to fix the dependence of the hermitian structures on the parameter for families
of h.lb.’s on X. In particular, the line bundle ((4) over X x X may be provided
with a hermitian metric by setting

[1(x, y)? = &t 0e» (5.2)

for its canonical section 1. Fixing also an admissible hermitian structure on the
h.lb. L, we obtain this way a hermitian metric on ¥’ = pry*(L)(—4) which may
be viewed as a family of admissible hermitian structures on the family (L(—x))
of h.lb.’s realized as #j. The above choices determine a hermitian metric on the
h.Lb. B of (4.11) in which forms y of Eq. (4.7) take values.

Another geometric input in the scalar product formula comes from the linear
map

1(xp")

HYK)>v = v[b" € H'(L(—x) 72 K) = HO(L(—x)*)* (5.3)

defined for each b” € A%!(L(—x)?) and depending only on the class of 5" in
H'(L(—x)7?). As we shall see in Sect. 6.3, the rank of this map controls the (local)
regularity of the projection from .o7%! into the orbit space .#°!/%C. I(x,b") may be
viewed as an element of the vector space H(K)* ® HO(L(—x)?)*. Since

NTTHYKY = HYK)® det™'HY(K), (5.4)

AIY( - ,b") induces a holomorphic 1,0-form on ¥ with values in the bun-
dle det™'HO(K) @ det™ 'R pri, £}, Since it depends homogeneously on [b"] €
HY(L(—x)7?), we may write

N Y = [ plexn,.xg—1) B (x1) . B (xg—1) s (5.5)
>y—1

where ¢ is a holomorphic g,0-form on X x X9~ with values in
det "HY(K) ® pri,(det 'R0 pry, £4%) S971(&L5?) . (5.6)

Note that the choices of the metric on 2 and of the hermitian structure on %
described above induce a hermitian metric on the h.Lb. (5.6).

The functional integral calculation which we describe in this paper implies the
following scalar product formula for the CS states:

| P> = const. i~ '"M [ det’(éz(_x)zéu_x)z)

4n "
. IQS”M(dB(x;x;,,..,xg_l))((x;x(,...,xM))]/\2 II e Frz G0y Xmy) (5.7)
myEmy

Above, M = (k + 1)(g — 1), L stands for the symmetrizer of (x,)_,,| - |"? de-

m=1>

notes the (1 + M), (1 + M )-form obtained by pairing a (1 + M), 0-form with values
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in a h.Lb. with itself using the hermitian structures described above. The prefactor

i~1=M assures the positivity of the integrated form. The determinant of the operator

5;(_”2 5L(_x)z restricted to the subspace orthogonal to the zero modes should be zeta-
function regularized. Notice that the product on the right-hand side of Eq. (5.7) has
a form of the Boltzmann factor for a gas of two-dimensional particles interacting
with attractive Coulomb forces. Appearance of such “Coulomb (or, more properly,
Newton) gas representation” was a characteristic feature of the genus zero scalar
product formulae, see [13, 14]. As mentioned above, we have not proven that the
above equation defines the scalar product of CS states which induces (projectivized)
KZB connection. The first thing which remains to be shown is that the integral on
the right-hand side of (5.7) (over the modular parameter x and over M positions of
“screening charges” at points x,,) converges for y corresponding to the CS states.
Although not proven in general, the convergence seems very plausible in view of
the analysis of Sect. 9 below. In particular, it is evident for genus 2. Appendix F
discusses other consistency checks of the complete scalar product formula worked
out in Sect. 9.

6. Change of Variables

As we have mentioned, the main idea of this work is a brute-force calculation of
the functional integral (1.6) giving the formal scalar product of the CS states. This
will be a long process in which the first step is the change of variables

A = B0y 6.1

where n +— A% (n) parametrizes holomorphically a (3g — 3) = N-dimensional slice
of /% (generically) transversal to the chiral gauge orbits. The reparametrization
(6.1) permits to transform the formal scalar product formula into

. - - 401 2
122 = [0 e s Rt | SC AN | ey,
0(h,n) a
(6.2)
where Dh =[], dh(x) is a formal local product of the Haar measures on SL(2, T).

ron
We have to compute the Jacobian |%§"—)2|2

that under an infinitesimal variation of 4 and n,

of the change of variables. Notice

104%(n)

3" A% (n)) = ¥ Du(h k) + b~
ony

Sna b, (6.3)

where D, = 3 + [4%(n), - ] and * D, = Ad,_1D, Ad;. Assume that 4% (ng) de-
fines a stable vector bundle. Then, for n close to ny one may choose a basis
(w*(n))_, of 1,0-forms with values in s/(2,C) such that D,o*(n) = 0 and w*(n)
depends holomorphically on n. Notice that the relation D,w*(n) = 0 holds if and
only if
Jtr o*(n) AD,A =0 (6.4)
z
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for all (smooth) s/(2,C)-valued function A so that w*(n) may be viewed as co-
vectors tangent to the orbit space 2/°' /%% since they vanish on the variations D, A
tangent to the orbit of ¥C through 4% (n). The space /%' has a natural scalar
product corresponding to the norm

4% = i ftr (4%)F A 40 (6.5)
z

Using this scalar product, we may decompose
% =im("" D,) ® (im(" D,))* . (6.6)

Notice that the subspace (im(*~ D, ))* orthogonal to the image of *~ D, is spanned
by the forms (A~ 'w*(n)h)!. The (holomorphic) derivative of the change of variables
(6.1) is
5" 4%mny) _ (* D, ("D, 67)
d(hmy \ 0 A d@p [T g grrilmpL )

Ony

where

04% (n)

1
(h“ Mh) = i(h '’ (m)h)' (QhAT,n)1Y,p [tr 0P (n) A =
z o

o (6.8)

with Q(hht,n)?" = ifstr A wP(n)h A (K~ w?(n)h)!. 1t follows that the Jacobian of
the change of variables (6.1) is

2

-1
OC AN} et (') "'y det (@(hk!, m))

da(h,n)

2

(69)

det (ftr oP(n) A @(n_))
Z‘ a

o

Of course, det ((*_'D,)' #'D,) has to be regularized, e.g. by the zeta-function pre-
scription. The chiral anomaly permits to compute the A-dependence of the regular-
ized Jacobian:

det (""" D)t 'D,) det (Q(hAt,n))!
= 4 SHRTAM) det (B P,) det (Q(1,n))"" (6.10)

where A(n) = (4% (n))" + A% (n). Also a short calculation using the transforma-
tion properties (1.1) shows that

X —1 -1
['P("_IAOI(n))IZe”%fZ w (" A ) TAT A0 () = 'I’(Am(n))lze"%ff tr (4% ()T AL®! ()

. ekS(hhT, () (6.11)
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Inserting Eqgs. (6.9),(6.10) and (6.11) into the functional integral (6.2), we obtain
1212 =[P (n)]* e~ £ Sy w@ )AL (n) kST, A goy (D D)

. det (Q(1,n))"!

det (f raf(m) A 24 ;1(”)) ' D(hhT)HdZna (6.12)

where we have used the fact that the integrand depends on 4 only through hht,
related to the gauge invariance of the original integral (1.6), to reduce the h-
integration to that over the kh' fields effectively taking values in the hyperbolic
space SL(2,€)/SU(2). D(hh') should then be interpreted as the local formal pro-
duct de(hhT)(x) of SL(2, C)-invariant measures on SL(2, C)/SU(2).

Formula (6.12) decomposes the original functional integral (1.6) over .2/°! into
the one along the orbits of the chiral gauge transformations, which has the form of
the partition function of an SL(2,C)/SU(2)-valued WZW model [26, 27]

fe(k+4)S(hhT,A(n)) D(hhT) , (6.13)

and the integral along a slice n +— 4% (n) of /%' which we shall parametrize by
the complex bundle IPW,. More exactly, as discussed in Sect. 2, we shall consider
the map

(x,b) —— A%, (6.14)

with X running through a fundamental domain of IT; in X and one b in each class
of PH'(Lg?). Such a map gives a multiply parametrized slice of .2/°! (as we have
seen in Sect. 2, the induced map from PW} is essentially a multiple covering of
% /4%; one may show that multiplicity is equal of 2g). Let (n% 2':1 be a basis
of HY(L2K). n% may be chosen locally as depending holomorphically on x. The
integrals

2= i Ab (6.15)
z

provide coordinates on H'(L;?) (homogeneous coordinates on IPH'(L;?)) and a
local (holomorphic) trivialization of W,. We shall have to find explicit expressions
for various terms under the integral (6.12).

6.1. Term |P(A% (n)|? e~ 3w @Aty
Using Eq. (3.4), we obtain

(AL )P e E TRy, )P

o B L5 (g A DAY 4R )~ 4 [ e Al (6.16)

Recall that A1, = UBYL U~ + UGU~!, ) = UVU~! = ~(UGU~)t = —(43))!
with By, = (_gx ai)’ Hence —Ag' +43!, = UBY,U™' and 4% + (41 =
UBY,)TU, where (BY,) = (7 %) with the L5*-valued 1,0-form b being

the conjugate of b with respect to the hermitian metric { -, - ) of Ly?. It follows
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that [y tr(4§° + (A1) A (—4J' + 4Y,) = 2/58x A ax + [5(b, Ab). Consequently,

A0, )P e R A ot Ak D= oy o by
(6.17)

6.2. Term ek+HST, a0,

Consider the field U~ '4hTU. It is a smooth section of the bundle End Ly Yo Ly)
taking values in the positive endomorphisms. It is easy to see that, necessarily,

_ _ _ _ 1
1 e’ +e ?,0) e % e?2 e 2y \[e?? e 9%\ _
U hhTU = ( e_(plﬂ{ > e“‘P = 0 e_(P/z 0 e_q’/z = ggT

(6.18)
for unique real function ¢ on 2 and v € I'(Lj %). We shall prove that
t ‘ 5
S(hh', Axp) = 2—f¢(aa¢ — 2Fy)
Ty
-5 e (8 — 2ax o), A(b + (& — 2ax)0)
El-f(b Ab) . (6.19)

Using the formula (A.2) of Appendix A, we see that
i _ =1
OS(hHT, Axp) = 7 [ tr (WRTYTIO(RT) (=)' + ) ALy)

i -
= 5-[tr(99") ' o(gg") curv(V - (BY,)"
z

+(99") 710 + B Xgg")) . (6.20)

By a straightforward computation, under holomorphic variations of v
5S(hh', AY,) = —5% !51: (0+ 2ax) (€72¢(b+ (0 — 2ax)u))T , (6.21)
and under antiholomorphic ones
SS(hht, AY) = — f(w (V +2a5) (€72°(b + (0 — 2ax)v)) (6.22)

which coincides with the v-variations of the right-hand side of (6.19). Thus we may
assume that v = 0. Then the variation of S with respect to ¢ becomes

3S(hht, 4%%,) = % [8¢ (08¢ — Fo + e 25" A b) (6.23)
X

(recall that day = 0) which is also the variation of the rlght-hand side of Eq. (6.19)
for v = 0. This ends the proof of (6.19) since S(hh',4Y,) =0 for At = 1.



346 K. Gawedzki

2
6.3. Term det(Q(1,n))"" ‘det (fz trof(n) A -@%)\ 1, d%n,.

We have to look for s/(2, C)-valued 1,0-forms w(x,b) = w such that dw + Aﬂ}bw +

A%, = 0. Such forms represent vectors cotangent to the orbit space .2/°! /4. Writ-

ing

cu:U(—.“ }-)U—IEUPU—I ’ (6.24)
/A

where n € A1°(L2), u € A1 and 1 € A'%(L;?), the condition for w becomes dp +
BY,p + pBY', = 0 or, in components,

(0+2ax)n =0, du=-nAb, (0—2ax)l=2uNb. (6.25)

The first of these equations requires that # € H°(L2K) which has dimension N. The
second one has a solution if and only if [s# A b = 0 which, for b corresponding to
a non-zero element in H'(L;?), defines a N — 1 dimensional subspace in H(L2K).
For # in this subspace,

p=20[G( -, ) AbYY)+v=p"()+V, (6.26)

where G(x,y) is a Green function of the Laplacian on X and v is an arbitrary
holomorphic 1,0-form on X. Finally, let (x”)?_ be a basis of H°(L2). k" may be
chosen locally depending holomorphically on x. The third of the equations (6.25)
has a solution for 4 if and only if

Junb= [’ Ab+ [K'yAb=0 (6.27)
b ¥ b

for each r. Then the solution for A is unique since H(L2K) = {0}, since we have
chosen L so that L2 is never isomorphic to K. Let us consider more carefully the
condition (6.27). Notice that the exterior multiplication by b induces a linear map

I(x,b) : HY(K) — H'(L{*K) . (6.28)

I(x,b) depends only on the class [b] of b in H'(L;?). The dimensions of the spaces
are dim(H%(K)) = g and dim(H'(Lg%K)) = dim(H°(L2)) = g — 1. If I(x,b) maps
onto then, for fixed u’(n), there exists v solving (6.27) and it is unique up to the
addition of v from the one-dimensional kernel of I/(x,b). Altogether, the space of
solutions of Egs. (6.25) is then N-dimensional: N — 1 dimensions of the freedom
to choose # and 1 dimension in the choice of v. Let us examine the condition
of surjectivity of /(x,b) which guarantees that the space tangent to the %T-orbit
through Ay, is of maximal codimension (= N). Taking the standard basis (');_,
of H(K), this condition means that the matrix

< [ A b) (6.29)
b

has rank = g — 1. The [b]’s in H'(L;?) for which this fails are common zeros of g
homogeneous polynomials giving the (g — 1) X (¢ — 1) minors of the matrix (6.29).

If these equations are non-trivial, it follows that I(x,b) is surjective except for a
subvariety of positive codimension. To see their non-triviality notice® that /(x,b)

® We thank J.-B. Bost for this argument.
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fails to be surjective if and only if for some 0+x € HO(L2),

(bl €Be={[b]| [kvAb=0 forall ve H'(K) }.
X

But U,B, is at most 3g — 5 dimensional (dim(B,) = 2g — 3 and B, depends only
on the class of x in the (g — 2)-dimensional projective space IPH °(L2 ).

For given b € A%Y(L; 2) corresponding to a non-trivial element in H!(Ly 2) we
may choose the basis (%)Y, of H°(L2K) so that z!(= fyn! Ab)+0 and z* =0
for & > 1. Suppose also that the non-zero (g — 1) X (g — 1) minor of the matrix
(6.29) corresponds to i < g. Then, we may take

=0, p'=o—o'M, (frc’wg A b>, A =23"w Aby, (6.30)
b
where (M,.) is the matrix inverse to (fzk" @' A b)i<4, and, for a > 1,
o o — i r o _ 371
', 1 =’ — o M, (frc ' ))/\b>, =20 (uAb)  (631)
z

as giving a basis of solutions of Egs. (6.25) and, consequently, a basis (w*(X, b))
of the s/(2,C)-valued 1,0-forms representing covectors tangent to the orbit space

/% /% at the orbit passing through A3',. Above il= (5L;2K)_‘. With this
choice,

det (Q(1,n)) = det (Q(1,x,5)) = det (f%(zﬁi AP+ (%, APy + w,/\aﬁ)))
z
(632)

(1" should be replaced by zero). Moreover, since [str w#(x,5)54%, = [s(2uPday +
n?b),
401
.det <ftrwﬂ(n)/\ (n)) Hdzna

- 8__;wg(x) w'(x) My, (fx w? /\b)IAZHdz « (6.33)

=2

where, for a form w, |w|"? denotes the form @ A w. A simple algebra shows that

-1

@9(x) — '(x) M, ( K@ A b) =det ( [ A b) f(—l)g"f
P X

i<g j=1

x det (fx’cu’/\b) wl/(x).  (6.34)
X

1£j

It will be convenient to represent det(£(1,x,b)) as a finite dimensional integral.
To this end, consider a linear map B : H(L2K) ® H%(K) — @€ given by

B(n,v) = ( !’7 A b, }{K’(uo(r/) +V)A b> (6.35)
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and another linear map C : ker(B) — A°(End(L; ' @ L)) s.t.

=1
o) = (—uo(n)—v 24 ((uo(n)+V)/\b)> ’ 030)

n 1) +v

(with 5_1 = (5L;2 K)‘l). A straightforward calculation shows that with V = (n,v)

and DV standing for the volume element of H(L2K)® H°(K) coming from the
scalar product induced by the hermitian metric of Ly and the metric of Z,

-2

[5(BV) e NI Dy =|z!|72|det ( Ko’ A b) det (Ho)
z i<g
- det(Imt) det(Q(1,x,5))"", (6.37)
where
b Lo np
(Hoy? = = [{n", ") . (638)
z

Putting together Eqgs. (6.33), (6.34) and (6.37), we obtain

0A l(n))

det(Q(1,n))"" |det (ftrwﬁ(n)/\ -

Hdzna

= const. i Vdet(Hp)™! det(Im7)~! (fé(BV)e*IICVIIZDV>

A2
Newy oy 2712 AL N A2V |2

.....

(6.39)

i(—l)jdet <f1c’a)i /\b) ’(x)
z i*j

j=1

(with a numerical, easy to trace, g-dependent positive constant in front; the power
of i makes the right-hand side a positive measure). We have given the term |z!dz? A
..Adz"|* a form independent of the assumed relations z!#0, z* = 0 for « > 1.

7. Calculation of det (l'):'ll-),,)
Let A be an s{(2,C) valued function on ~. Writing
-X Y 1
A= U(Z X)U , (7.1)
where X is a function, Y € I'(L; Yand Ze T (L3), we obtain

(72)

= OX +Zb (0—2a)Y +2Xb\ |
D"A"U<(a+2ax)z X —7b )U '

It follows that

(A,D}D,A) =i [tr(DyA)' A DA =i [(28X — Zb) A (3X — Zb)
pA x

+ (0Y + 2Xb, N(OY + 2XD)) + (0Z,NOZ)) , (7.3)
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where in the last line J = EL_Z(éLi ) when acting on Y(Z). Formally,
X

i o
det(DID,,)“‘ = [e= AP 4

= Je J QX —Zo)NEX ~2b)+(FY 4220, NGY+2X0)+GZNZ) pyy 1y v 17 (7.4)
and we shall compute the latter Gaussian integral iteratively, first integrating over

Y then over X and in the end over Z. As we shall see, this procedure requires a
correction if we want to assure that the final result gives the zeta-function regularized

determinant of DiDn. It would be more natural to consider A as anticommuting

ghost field rather than the commuting one. Indeed, this is det (ﬁiD-,,) and not its
inverse which appears in the expression for the scalar product of the CS states. The
choice of commuting fields A in this calculation is purely a matter of convenience.

7.1. Integral over Y.
— [a~if s (Y +2XBA@GY+2XD)) Yy st 5 \—1.—4if s (b)) (xm) L)
Iy = [e DY = det(3] 20, 2) e . (15)
where (Xb)! is the component of Xb orthogonal to d(I'(L72)) C A%(L7?). Recall

that the scalar product in the spaces of sections is induced by the fixed hermitian
structure of Ly and the metric on 2. Explicitly,

Xo)* = i) (Hy g [0 A XD, (7.6)
b
where (Hy)* is given by Eq. (6.38). We have

i!((Xb)l,(Xb)L) - {na /\Xb(Ho_l)/gagnﬁ ANXb . (7.7)

It will be convenient to express e~ 4/ (") a5 3 6(g — 1)-dimensional Gaus-
sian integral. Namely

e~ 3O COY) =N et (B ) [ exl s A2 Gl T AXD—Co(Ho) ey

‘I &, . (7.8)
7.2. Integral over X.
We have to calculate
IX = j‘e-—ifZZ(éX—Zb)/\(éX—Zb)+2i szzni AXb+2i c_yfzr["/\Xb DX . (79)

We have to fix the constant mode Xo = ([ X vol)/(area)"/? which corresponds to
the flat direction in the above Gaussian integral. vol is the Riemannian volume form
of ¥ and area = [y vol. Let us multiply Iy by 1 = area - [6(Xy — a(area)?)d%a.
Changing the order of integration and shifting X to X + a, we obtain

Iy = area - [3(Xo — a(area)?) d%a Iy

= area - fe_'fzz(ﬁ)/\(a—X—Zb)

. eZzcyfzr]"/\Xb+ZzEafzn”/\Xb+2iac,fzn"/\b+2id51fzt1’_/\3 8(Xo) DX d’a . (7.10)
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Performing the a-integral first, we obtain
n o
Ix = - area - O cufn* ND
z
. fe—szZ(a_X-—-Zb)/\(éX—Zb)+2icx st AXb+2i &y [ 507 AXD 8(Xo) DX
=T . area - 6(caf11“ A b> e 2/sZbAZb
b

. f e~ S5 X (= AX yvol+2i [5X (cxn® Ab+3(Zb))+2i [ X (cxn® Nb—d(Zb)) 8(Xo) DX d’a

I

arca

. 5(%}{'1“/\5)

’ -1 _ o
const. (M> e~ 2J2ZbAZb—4[5 [5(2Zb)) () G(x.y) (A(Zb))(y)
arca

det' -\ o7 — 7
const. (L(—_)) o~ 2JsZbAZb Af5 [£ (@M Rb—(Zb) () Gxy) (exn” Nb+3(ZB)) ()

Il

e—2ifzu°(czrr“)/\Zb~2ifzu°(cm’)/\Zb+2ifzﬂ°(cwl“)/\uo(cw“) 5<Ca f’?“ A b) . (1.11)
T

where det’ denotes the determinant of the operator restricted to the subspace or-

thogonal to its kernel, G(x, y) is a Green function of the Laplacian 4 on X and
W) = 2i0 [ G( - ,y)n Ab)y), as in Eq. (6.26). It is easy to see that

o2 [sZbAZb—4[5 [5(3(Zb)) (x) G(x,y) (A(ZB))(») _ e~ [s(Zb)L A(zb)* , (7.12)

where (Zb)* is the component of Zb orthogonal to the image of d acting on func-
tions on 2. Explicitly,

(Zb)t = %a‘;’(i> Jw! AZb,

ImT iz

2i[(Zb)L A (Zb)* = (fw’ /\Zb) (L> (fw/ /\Zb) . (7.13)
z Im<z i

z z

We shall rewrite the exponential of the latter expression as a 2g-dimensional Gaus-
sian integral:

e 2s@EAET _p=0det (Im)

. fe—4e', (Imr)’/ej-2ie,f);w’/\Zb—21e',fzwaZbHdzel‘ (7.14)

1
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Gathering Egs. (7.11), (7.12) and (7.14), we obtain

det'(—4)

-1
e—2if;,u°(c,n"' YAZb—2i 5 uO(cyn*)AZb
area

Iy = const. det(Im7) <

. e2if)_~u0(c,r7“)/\uo(cyr1")fe—4e', (Im1)/e,—2ie, [y’ AZb—2i e',fzw'/\an d2e;

1

. 5<caf11“/\b> . (7.15)
x

7.3. Integral over Z.
The integral to calculate is

I = fe_’ S 5(0Z,N0Z)—2i f}__ Z(W0(eon™)+e, 0 Y)Ab=2i [ 5 Z(10(cyn” )+e, 0 )AD D7 (7.16)

Let us decompose Z into the part Z, in the kernel of 0 (i.e. in H°(L2)) and the part
7' orthogonal to HO(L2). Writing Zy = f,x", where (x")?_/ is a basis of H(L2),
we obtain

I, = fe—zf (32" A3z =2 52! (W ean™Vrero yNb—2f s Z' (10(ean” V+e, 0 )N 1y 71

- const. det(Ky) [~ /=¥ (e’ yrei0 YNb=27, [ 5R (10(cxn? ey WOTTd>f.
S

= const. det(Kj) det'(ézi _Li )~ ' ( K (10can™) + e,') A b>
r P
o 420 et e )ABLTT (e e NB)) (7.17)
where

(Ko)* = [(K',k")vol, (7.18)
T

and, in the last line of (7.17), 5—1 stands for the inverse of 5L
collect Egs. (7.5), (7.8), (7.9), (7.15), (7.16) and (7.17):

o fz(Z(éX—Zb)/\(éX—Zb)+(6—Y+2Xb, A(Y +2Xb))+(IZ,NOZ)

—2,. We may finally
X

Ixyz )DY DX DZ

I det' (=) '
= const. det(Hp) det (Im7) det (Ko)det(az—zaL—z)_l (W)

x det' (3] 02)"!

- [é (fcan“ A b) [16 (fx’(uo(can“) +ew') A b)
z r X
X C—C-/(Ho)dliclg+2ifzuo(£‘x'17)/\#O(CMI)

. o—dam 1) e, 141 3 (7 (e’ e )AL (1 (can” Y re @ )AB)) [[d2c.[Jd%,

—1 / -1
= const. det (Kj) det (51_2@_2) <%> det'(a—ziéLﬁ)_l

. (fé(BV)e—”CV”ZDV) , (7.19)
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where the last integral is the same as the one introduced in Sect. 4.3. Notice that,
with the use of Eq. (6.37), one obtains then

-2

Ixyz det(Q(1,n)) = const. |z!| > det(Hp) det(Im<) det(Kp)

det(fxrwi A b)
b

i<g
det'(—4)
area

-1
x det((_?z;zéL;z)—l ( ) det'(3]35,2)7", (7.20)

i.e. the V-integrals cancel. This ends the formal calculation of det(l-)ID-,,).
Clearly, the determinants appearing on the right-hand side of the expression
(7.19) need regularization. If we use the zeta-function procedure to give sense to

them, it is not guaranteed that the result will coincide with det(D)D,) regularized
by the zeta-function prescription. Indeed, the latter should satisfy the chiral anomaly

relation (6.10) but for h=U(, !)U~!, we obtain

det((""' D)t "' D,) det (Q(hkT,n))" = det (DID,) det ((1,n))~1,  (721)

if we use for det(l—)iD-,,)_1 the expression on the right-hand side of Eq. (7.19),
instead of

det((""' D) "' D,y) det (Q(hhT,n)) !
= ¢~ 7 2 (brinnGrIN 2[5 (0AB) gey DT P, ) det(Q(1,n)) !, (7.22)

given by (6.10) (and Egs. (6.18, (6.19)). It is easy to guess that we should correct
the formal result for det(D.D,) by taking

det St =
det(D! D) =const. det(Ko)™ ‘det(a 2d,2) (e—(ea—)> det (3} 3,2)
) -1
. e~ 7z (D) ( f 5(BV)e‘”CV”2DV) . (7.23)
Indeed, Eq. (7.20) is replaced then by the relation

det(D D,) det(Q(1,n))~" = const.|z e~ #xbd)

1 det(fx’wi A b)
x

- det(Hy) " det(Im 7)™ 'det(Ko)~ 1det(a 20 _2)<d—ei{'—)> dct'(ézii-)&), (7.24)

i<g

and (7.22) follows. We shall show in Appendix D that formula (7.23) is, indeed,
the right expression for the zeta-function regularized determinant. Putting it together
with the Eq. (6.39) from the end of Sect. 4.3, we obtain the following explicit
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expression :

2

det(D! D, det(Q(1,n))~" [Td%n, = const.i™

01
det (fztr oP(n) A 6_%%}1_))

det'(—4)
arca

- det(Ho)~'det(Im) ™ det(Ko )~ det( 51;2 éL;Z ) ( ) dd(é}i 5}3‘ )

2
. e‘Tff(b’/\w|60(]Mm}\,z”"dz"CZ A...N\Ndz™ |Az

-l]i(—l)’det(fx’wiAb> ’(x)
l j=1 5 .

1]

N2

(725)

8. Functional Integral over hh'

We shall attempt now a direct calculation of the functional integral (6.12). Only the

e+ S Ax)) term under it depends on k! and, as noticed before, its Ah!-integral
should give the partition function of the SL(2,C)/SU(2)-valued WZW model. Be-
low, we shall find its form somewhat surprising. The action S(kh',4xp) is explicitly
given by Eq. (6.19) in the parametrization (6.18) of hh by real functions ¢ and
vel'(Ly 2). 1t will be more convenient to use w = e~ ?v instead of v. The formal
measure D(kh!) becomes then the product of the formal Lebesgue measures Dw
and D¢ determined by the L? scalar products [, (w,w)vol and [ |p|*vol. Thus we
have:

fe(k+4)S(hh’f,Ax)b) D( hhf) _ e—"ﬁ‘ fz<b,/\b>
. fe"ﬁfz[—w(aa'co—zFo>+<e"“’b+<5+(5¢)>w,A<e"*’b+(a'+(5w))w)>]Dw Do, (8.1)

where J = 5L_2 when acting on w and Fy is the curvature form of the holomorphic
X

connection of Ly preserving the fixed hermitian metric. Note that the field w enters
quadratically in the action so that the w-integral is Gaussian and may be easily
performed:

fe%;‘f (™ PbHHEP)wA[E T bHE+I9)D)) Py
= T [Pl AP D et (5 + (B[ (G + (B9)) . (82)
where P, denotes the orthogonal projector on the kernel of 0+ (8_<p))T. Explicitly,

Po(e™"b) = ie?(n*) (Hy ) [ 1P A B,
z

i g(Pq,(e_“’b), AP,(e™?b)) = ( ! A b) (H, "o ( 1{ A b) =(H, g2’
(8.3)

with the matrix of the modified scalar products of the vectors of the basis (#*) of
HO(L:K)

1
(Hy )" = [0 Al (8:4)



354 K. Gawedzki

compare Eq. (6.38). For convenience, we shall rewrite the exponential on the right-
hand side of Eq. (8.2) as a finite-dimensional Gaussian integral:

e“z—j[jl S5 (Poe™ ?B)APG(e™ 7)) _ o— AL“z’( D

2 N — 28 & (Hp)Y P ey ticyz +ic, 7
= (k——|-4> det(Hw)fC FraCuHy) Ve ticsz +ie l}dzca.
(8.5)
The ¢@-dependence of the product of determinants det(H, ) det ((5+(5<p))T(5+

(éq))))—1 with the second one regularized by the zeta-function prescription (or any
other gauge invariant procedure) is given by the chiral anomaly:

- - = = - 2 5
8In (det(Hy) det((3,2 + (30)) (5,2 +(3,))) ') == [o)230 ~ Fo)

1
+ ﬁg(éq))R ,  (8.6)

where R is the metric curvature form of (the holomorphic tangent bundle of) X
normalized so that sz =4mi(g — 1). The global form of the formula (8.6) is

det(H,,) det ((5 2+ (39))(9, —2+ (5(,0)))-1

= om/£000=2P0)4 3 [0k et (Hy) det (3! 20, )7 (8.7)

Gathering Eq. (8.2), (8.5) and (8.7), we obtain

[em B [ 5(e™ Pb+(0+Gp)mwn(e ™ ?b+(@+3(0)w) Py
=t - 1
= const. det(H,) det (6L_z 0,2 )~ lew s0(@00—2F0)+ 57/ soR
X X

. fe—%51(H¢)7/jcﬂ+tc,z7+tc'xz"HdZCa . (88)
o
Here appears a new difficulty in the calculation of the scalar product of CS states,
as compared to the genus zero and one cases studied in [13, 14] and [27], respec-
tively. There, the hh' integral for the partition function of the SL(2, €)/SU(2)-valued
WZW theory led, after parametrization of #h' by ¢ and w, to an iterative Gaussian
integral: after calculation of the Gaussian w integral, the remaining ¢ integral was,
miraculously, also becoming Gaussian. This does not seem to be the case here. The
right-hand side of Eq. (8.8) includes the term

o~ oo ey — o Fgl s (eur nepnl) (8.9)

with the Liouville type terms containing e>¢ in the exponential. So the ¢-integral
obtained after integrating out w seems to be of a non-Gaussian type, in contrast to
the low genera situation.

We shall show however, that this difficulty may be solved by a trick used in
the Liouville theory [28, 29]. The functional integral over ¢ which we are left with
has the form:

I, = [e= 5 z0@00=2F0y i [zoR—ggetoy ey (8.10)
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We shall integrate first over the zero mode of ¢o = (f; ¢vol)/(area)'/?. For this
purpose, let us multiply 7, by 1=(area)'/? - [ 8(¢po — a(area)/*)da. Changing the
order of integration, shifting ¢ to ¢ + a and setting M = (k + 1)(g — 1), we obtain

(area)_’/zl =

fe—zaMe—%"ffwwaw 2ot g s oR= e oY ey 44 5(p0) Do

21 M)<k+4> Je~ 5 T zolo 2055 x ok (g, (H, P ey M 5(0) Dep
(8.11)

where we have used the relations 5~ [, Fo = deg(Lo) = g— 1 and 5 [, R = deg(K~")
=2(1 — g). As we see, the integration over the zero mode of ¢ diverges but may
be easily (multiplicatively) regularized by removing the overall divergent factor
(=DMTI'(—M). Now, the c-integral is easy to perform:

f(—éa(Hq))aﬁCﬁ)Mei cyz+i 5yz“znd20a — (27.[)(2N)((H¢)(Xﬁaz.’ az” )MH&(ZDt) ) (8]2)

Gathering the above results, we obtain the following “Coulomb gas representation”
for the higher genus partition function of the SL(2, C)/SU(2)-valued WZW model:

fe(k“)s(”hf’/”x’b)D(th’) = const. (area)? det(H,) det (8 _26 ‘2) e~ S [z 0n0)

- (Jom i zettdo 2o s o (H, P50, )M5(<P0)D‘P) [To¢")

= const. (area)'’? det(H,) det (5L—25L_2)_ — 55 [ (b.b) (Ha_xa s [10(z* )
X X

m Iﬂ

. f (fe 2," fZ(P(Oa(P 2F0)+2m fZ‘PR+22n1(P(xlri)5((po)D(p) Hl(nam, Anﬁm)(xm) )
1

m

(8.13)

where m runs from 1 to M. Observe, that the integrand in the functional integral
over ¢ is now invariant under constant shifts of ¢, except for the term d(¢pg) (the
neutrality of the Coulomb gas). The ¢@-integral is of the Gaussian form

fe%ffa‘?’\é‘/’_’ff""’é((po)D(p — const, det'(—4)~ e/ x/ze®GEN0) (g 14)

where G( -, - ) is a Green function of the Laplacian on X and ¢ = "THFO + ﬁR +

2iy,,0x,- Since G(x,y) ~ 5 lnd(x y), where d( -, - ) is the metric distance, the

terms e~ £+ on the nght—hand side of (8.14) are divergent. They may be eas-

ily multlpllcatlvely renormalized by replacing them by their normal ordered version

¢ Tz Glmn): , see Eq. (5.1) for the definition. This way, choosing for simplicity

the Green function satisfying [sG( -, y)((k + 2)Fo(y) + %R(y)) = 0, we obtain

feA;Trsza‘P’\é‘/’_"ff"’”5(<Po)D§0 = const. det'(—A)_l/z( ] e FeaCem x"’2)>

my +my

. (He 775G, >) (8.15)

m
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The substitution of this result into Eq. (8.13) results in the relation
I QUkA+4)S(hT Ay ) D(hht

1o —1/2
= const. - det(Hp) det (51;20;‘2)_1 <M)
X

arca

xe™ T [x(6.A8) (Haz"’ oy11o6" )>

mo“moy

. f< I e—k‘%G(me,XmZ)> (He—;%:G(x,,,,xm):i(r’am’/\nﬁ,,,>(xm)) . (8.16)
my Emy m L
which is the final formula for the higher genus partition function of the SL(2,T)/
SU(2)-valued WZW model.
Equation (8.16) reduces the functional integral over hh! to a finite dimen-
sional integral over M copies of X. The integrand is a smooth function except for

O(d(xm,,xm,)” ¥7) singularities at coinciding points. Power counting shows that
the integral converges for g =2 but for higher genera it diverges unless special
combinations

P ba) LT AP ) G ) (8.17)
m

of forms are integrated. We shall return to this issue below. Another feature of
the right-hand side of Eq. (8.16) may look even more surprising in a candidate
for the partition function: its dependence of the external field A4y, is not func-
tional but distributional! The entire dependence on b € A% (L) resides in the term
[1,,0:;0 5 I1, 6(z*) (recall that z* = Jsn* A'b). This is not so astonishing in view
of the fact that the partition function of the SL(2,C)/SU(2) WZW may be expected,
by formal arguments similar to the ones used in [30], to be the hermitian square of
a holomorphic section of a negative power of the determinant bundle. But there are
no such sections. There exist, however distributional solutions of the corresponding
Ward identities and the right-hand side of (8.16) is one of them.

9. Assembling the Final Formula

The main results (7.25) and (8.16) of the calculations of the last two sections
permit to reduce the formal scalar product formula (6.12) to the following finite-
dimensional integral:

det'(—4)

2o
) e s lrr a0 A 49!
arca

1®||* = const.i ™V det(Im 7)~! (

-1
p stz —ank(JE o)Im o)y (X w)
. /det ({(K,Ks)vd) det'(aLiaLi)e S 0
A2

(Haz',i, o [Té¢" ))

g

(=1 det( K" 0' A b)l*jwf(x)l//(x,b)
1 x

j=

_ An_
- |€q,,.., aNZa‘dzaz/\.../\dzaNi/Q( IT e k+2G(""11”""2)>

my$£mp

. 1
. He_ ;%~G(xrn>xn1)- - <’,I<Xm, Anﬂm)(xm) X (91 )
1

m
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The integral is, for fixed x, over the (N — 1) = (3g — 4)-dimensional projective
space with homogeneous coordinates (z*), over the Cartesian product of M =
(k+1)g—1) copies of X (variables x,) and, finally, over the projection x of
x € 2 to X. Let us discuss first the z* integral. It has the form

]Z = f ]P(Z)l2 (Haz'yazlj H5(Z )léal ’’’’ oy 0f]dZ‘XZ A .../\dZaNl/\Z , (92)

PH(Lg?)

P(z) = z( l)fdet(frc’w’/\b) ;07 () (%, b) 9.3)

j=1
is a homogeneous polynomial in (z*) of degree M (with values in K|,). The inte-

grand is a distributional 2(N — 1)-form on H'(L;?) invariant under complex rescal-
ings of z . Note that formally

J |P(Z)|2(Hﬁz.’zézgﬂé(z“))dz’/\ NdZVP =

HI(LZ?)

1 1
=y A

(9.4)

where the divergent integral on the right-hand side is over the fibers of the projection
of H'(L;?) onto PH'(L;?). Of course, the left-hand side is perfectly well defined
and we shall take it as a definition of the right-hand side. One may expect to
reabsorb this way the infinite constant (—1)™I'(—M ) produced by the integration of
the zero mode of the field ¢, see Eq. (8.11). This is more than formal gymnastics. In
Appendix E, we show that changing the order of integration in the above arguments
by computing the integral over IPH'(L;?) modular degrees of freedom just after
the w functional integration and the one over the scalar field ¢ only afterwards, one
obtains the same final result but no infinite constants, apart from those of the Wick
ordering, appear in the intermediate steps. This way, it is rather the convergent
integration over the (part of) the modular degrees of freedom than the divergent
Gupta—Trivedi-Wise—Goulian-Li trick which removes the cumbersome Liouville-
type terms from the effective action for ¢ and renders the ¢ integral calculable. It
is an interesting question whether similar arguments may be used to substantiate
the Goulian-Li trick in the gravity case.

With the above interpretation of I, we obtain the following expression for the
scalar product of genus g CS states:

) 12
|| ¥||* =const. det(Im 7)™ det (AN ™ - s straaay
area

-1 T X - —1, X
. /det<f<K;,K;>VOl> det/(aziaLi)e—an(f\—Ow)(Imr) (f\oo))

)

)

. < H e—-lﬁ}—gG(x:nl,xmz)) <He—ki_‘_ﬂ—2:G(Xm,Xm): 1< Um /fm>(_xm)> 5 (95)

my Fmy m

. Haz_.l,,, az,j,,,IbZO(%li(_U/det(!K;wl /\b) o’ (x) Y(x,b)
m X X )=

1$j

with the (M + 1)-fold integration over X (over the projection x of x to X and over
the positions x,, of M “screening charges”). We have restored the x subscript to
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stress the x dependence of various entries in the integrated function. In fact, it is
easy to see that the latter depends only on x. In Appendix F, we submit formula
(9.5) to few consistency checks showing that ||¥||> does not depend on the choices
of the bases (k%) of H°(L2) and (n*) of H°(L2K), and of the choice of a hermitian
structure of Ly. We also show that upon multiplication of the Riemannian metric
of X by a function e°, ||¥||? picks up the factor
i 3k 1 =
cxp[ 24nk+2£<260/\00+aR>] (9.6)

which guarantees the right value ¢ = kifi of the Virasoro central charge of the

theory with partition function given by Eq. (1.5).
We shall rewrite the scalar product formula putting it into a form both more
geometric and closer to the spirit of discussion of Sect. 4. To this end consider

k(g—1) ”
KK X1, -5 Xk (g—1)) = (Z) H] (nx”’(xm)éz;m) Y(x,b) . (9.7)
Oy ) m=

Clearly, the relation (3.18) holds so that y is the holomorphic k(g — 1), O-form on
X x X¥9=1 with values in the h.lb. B, of Eq. (3.19) discussed at the end of Sect.
3. It is essentially the same object as y introduced by Eq. (4.7) in Sect. 4, directly
related to Bertram’s picture [1] of CS states. The precise relation between the two
x’s is given by Eq. (C.18) of Appendix C. With its use, one obtains from Eq. (9.5)
a fully normalized formula for the scalar product which uses the description of CS
states by polynomials ¥/ discussed in Sect. 4.
The expression
e_znk(ffoa-))(lmf)_l(ffow)I¢(X)I2 (9.8)

with @ as in Eq. (3.16) defines an admissible hermitian structure on L?K((2 —
2g)xy), see the beginning of Sect. 5: it induces a connection with the curvature
27w (Im7)~! A @ = —4miga. In order to find the geometric interpretation, of the
other terms in the scalar product formula (9.5), let us return to the linear map

(6.28),
HYK) > v " y[b] € H'(L72K) = HO(L2)* . (9.9)

Recall from Sect. 6.3 that surjectivity of /(x,b) assured the local regularity of the
projection from .&/%' into the orbit space .#°!/%C. We may view AY~!I(-,b) as a
holomorphic 1,0-form on X with values in the bundle det™'H°(K) ® det™'R® pr, &3
with the representation

-1 -1
NTI(x,b) = i(—l)f' det <fx;w" A b) ' (x)® </_\ w") (/\ x;> ,
f— > l#' 1 ¥

Jj=1 i+
(9.10)
compare the discussion after (5.3) in Sect. 5. Setting

g—1
B(Xix1,. s Xg—1) = Y Hnﬁ‘[(x,)az;, A1 I(x,b)

(op)r=1

—(g- 1)%_@1(_1)1

-1 -1
Xdet(Ki(xr)wi(xr))i*jwj(x))®<A w") (/r\ K;> , (9.11)
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with &,_; symmetrizing the variables x,, we obtain a holomorphic g,0-form on
2 x 297! with values in

C =det 'HY(K) ® pri.(det™ ' R® pri, #2)$971(£?)
= det ' HY(K) ® pri.(det™ 'R pri, 23)s " (2¢) = C', (9.12)

where the isomorphism of the h.lb.’s on X x 297! C’ and C is induced by the
isomorphism (4.9). In the right-hand realization, ¢ coincides with the one introduced
by Eq. (5.5) in Sect. 5. Now, notice that

M
> L1 Gon)dm) A" 1%, bYW(X; b

(o) m=1

= (MDD X1, X1 A5 Xgs -5 X01)) - (9.13)

Clearly, the right-hand side is a holomorphic (1 + M),0-form on X x XM with val-
ues in the h.Lb.

det™"H(K) ® pri*((det™'R° pr. Z5)NLK((2 — 29)x0) ) SY(£5)
=det 'HY(K) ® pri*((det 'R0 pri, ZH(LPK)Y SM(£4E) . (9.14)

It is easy to see that

— X -~y 1 (X
det(Im ‘L')_ lC an(fxow) Im r(f\'ow)

iFj

M
I (ni"’(xm)az;(,,,) i(—leet (Z{K;w’ A b)
j:

(o )m=1

M

2
.- 1) |0 (D651, 5y LT )| (9.15)

F )Y b)| = (
where, if we interpret % y(¢y) as a (1 + M),0-form on X x XM with values in the
bundle on the left-hand side of (9.14), we should use on the latter the hermitian
metric induced by the Riemannian metric of X, the hermitian structure of Ly and
an admissible hermitian structure of L2K((2 — 2g)x). It will then be simpler to
work only with the admissible hermitian metrics on all occurring line bundles,
including the holomorphic tangent bundle whose hermitian structure is given by the
Riemannian metric. With such choices, we may rewrite

12 =const. i~ [det' (3 28y _op2) | aa(d(E 31,0 %g-1)

'X(x;xg;-’-,xM))lAz H e_Z:-_HZG(X’”]’x”'Z)He~I—\%:G(X’"’X"’):’ (916)
my Fmy m

including the prefactors into the normalization of the hermitian metric and replac-
ing X by x in accordance with the interpretation of the x-dependence as giving
rise to geometric objects on X. The Green function G(x,y) in (9.16) should be

orthogonal to the 2-form o = ﬁa)(lm )" A @. We have rewritten det’ (5,%( 6-L§ ) as
det’ (51(_,()2 5L(_x)z) using the fact that the latter determinant is independent of the

normalization of the hermitian structure on L(—x) so that it takes the same value
for any admissible metric on L(—x). When specified to the case of Arakelov metric
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on X, this is exactly the expression (5.7) of Sect. 5, if we reinterpret & /(¢py) ac-
cording to the right-hand side of (9.14) and use the relation between the hermitian
structures induced by isomorphism (4.9), see the discussion in Appendix B.

Similarly as for the lower genus case, see [13], the natural conjecture is that the
integral on the right-hand side of Eq. (9.16) converges if and only if the function
¥ defines a globally non-singular CS state ¥. The singularities under the integral
in Eq. (9.16) come from the product

1—[ e_k“%G(X’"I’x’”Z)N H d(xml’xmz)—kzﬂ . (9]7)

my£my my +my

The power counting when Q + 1 of x,, converge shows that

L D)3,y + Vi s ¥V + Y0 X025 XM) (9.18)

has to have the vanishing Taylor expansion at zero in yj,...,yp up to order <
Q(%%l — 1). This also gives a set of sufficient conditions for the convergence of
the integral in (9.16). Notice that for g =2 when M =k + 1 these conditions are
always satisfied. For g > 2, taking O = k + 1, we infer that if the integral converges
then Sy (dx)(x;x1,-..,x ) has to vanish whenever £ + 2 of x,,’s coincide. Let us
see that this condition is, indeed, satisfied for ¢ corresponding to CS states. As we
have explained at the end of Sect. 4, such states give sections y(x;x,,...,xp ) which
vanish whenever k& + 1 of x,,’s coincide. On the other hand,

ey (i)oo' (x1)

g , )
Do (=1 det(re(x, Yo' (x,))i 0/ (x) = —det - (9.19)
=1 1 (g )0 (xg-1)
w'(x)
vanishes whenever two x,’s coincide. Hence & 3/(¢px)(x;x1,...,xp ) vanishes when-

ever k + 2 of x,,’s are equal. It is clear that a complete analysis of the convergence
of the integral in Eq. (9.16) and of the related “fusion rule conditions” should be
based on the geometry studied in [1, 22] and we shall postpone it to a future work.

4. Appendix A

Let us show that, for ¢ a non-vanishing function on X, for g. = (C;l g) and for
he = Uch—la

exp[S(he, A} + A%y] = ezalze dente a0y ) (A1)

where v is given by Eq. (3.11). Recall that U is a smooth isomorphism of rank 2
vector bundles with trivial determinant, U : L, Y@Ly — X x €. The gauge field

AL + %)) represents the image under U of the diagonal connection V + 0 — o3ay.

First note that, by the gauge invariance of the WZW action, S(k, 4}’ +Ag}0) is
independent of the choice of U. Moreover, since under an infinitesimal change of
the field A,

5S(hA) = iftr Rk F(A4" + 7740y (A2)
P
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which transforms covariantly, one infers that under small changes of the func-
tion c¢,

8S(he, AY + AYy = = fc—lac(a(c-léc) + day + Fy) , (A.3)
US>

which is the variation of the right-hand side of Eq. (A.1). We may then assume
that ¢ = 1 on a small disc D. Using a trivialization of the bundle Ly over D and
over X\D with the transition function f defined around the boundary of D, we may
take the isomorphism U equal to the identity on Z\D and interpolating smoothly

1o\ . =
<f0 ¢ ) inside D. In any case, A, = (CO

1-form representing on X\D the metric connection of Ly. It follows easily, that

2 ) = g. everywhere. Let ag be the

S(he, A + A%) = S(ge) — = fc lde A (ag + ax) (A4)
Ts\D

from which Eq. (A.1) follows by integration by parts on the cut surface.

Let us identify the flat bundle corresponding to the character IT; 3 p — v(cp) €
S! of the fundamental group IT; of X. First note that v(c p) is independent of
the choice of the metric on the h.l.b. L. Suppose that Ly = L(—x¢) has divisor
D= ZS+‘1’ Ym — E,?:O Xn, 50 that Ly = (D). Let us choose a hermitian metric on
O(D) so that |1(x)|* = exp[4n(}_,, G(x, ym) — I, G(x,x,))], where 1 is the canoni-
cal section of O(D) with zeros at y,, and poles at x, and G(x, y) is a Green function
of the Laplacian on X. 1 trivializes O(D) on XZ\{ym,x,} and the 1,0-form

Q+yg
az4n6<ZG( s VYm) — ZG( »Xn) ) (A5)
m=1 n=0
represents there the metric connection of ¢(D) = Ly. In particular, its curvature

Fy is equal to doa. Cutting e-balls around the points y, and x, (region B¢) and
integrating by parts, we obtain

—1
fb cp dCPW'Efa]Cp dcp)

b

v(cp) = e#d sFolnep ﬁ (

g f cp Yde v,';fa e lde
_exp[— 11m S (6a)lncp]H(WaJ b Pij P p>

e=05\p,
= exp[— lim [ (adlnc,— falncp)] ) (A.6)
T 8——>OZ\B£ B
Since 0G(x, y) = m-l— a smooth function, the boundary term contributes

O+tg , L _2
l:[lcp(ym) Uocp(xn) > (A7)

whereas the volume term lim,_, fZ\BE adlnc, may be shown to vanish by using

Eq. (A.5) and integrating once more by parts (c, is harmonic). It is easy to see
that the flat bundle corresponding to the character (A.7) of II; is equivalent to the
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trivial bundle with the d-operator

0—2n (Z}fma) - }:Ta)) (Im 7)~'®

m xq nxy

and is isomorphic to O(D — (g — 1)xg)> = L(—gxo ).

Appendix B

Consider a function f;, on 3 x X given by

Zﬂi(ffow) (Im T)_l(f,{o Im o) H—a+ f;z(l)lf) Ha + f;; wlr)
WHa+ [{ o|t) ’

fo(Xy)=e (B.1)

where a is an odd characteristic. One has

Fo(pX,3) = ¢,(1) 7! (X, ¥), <5 + ﬂ(fxw> (Im T)"ld)(y)) Jo(%,3)=0.

X0

Besides, f, has first order zeros at x =xo and y = xp and a first order pole at
x = y. It follows that multiplication by f;, establishes an isomorphism between the
hlb.’s Zf and pri*(O(—x0))Lo over Z x X.

Note that the hermitian structure on the h.l.b. £y coming from an admissible
hermitian metric on the bundle Ly (see the beginning of Sect. 5 for the definition
of admissibility) induces the connection with curvature

1 pri*(@)(Im 7)™ pr*(@) — m pri*(@) (Im 7)™ pry* (@) + (g — ) pra*ar.

Taking also an admissible hermitian structure on the bundle ()(—x;) we obtain a
hermitian metric on the h.Lb. pr;*(O(—x¢))#° corresponding to the curvature form

— pri*e+ mpri*(@)(Im )™ pr* ()
— npri*(@)(Im7)~ pr(0) + (¢ — Dprye, (B2)

the same as the curvature induced by the hermitian structure of .#{, described around
Eq. (5.2) in Sect. 5. Hence multiplication by f,; must carry one hermitian structure
into the other one, up to a constant factor.

Appendix C

Let us discuss in more detail the relation between the two descriptions of the CS
states: the one discussed in Sect. 3 using functions y(x,b) with x € £, b € A\°(L;?)
and the one of [1], discussed in Sect. 4, employing polynomials ¥/'(d'), b’ €
AY(L7?). Let us fix x with x+xy and b. Viewing b as an element of A°(Lg?),
we may define a form " € AO(L(—x)"?) by setting

b = fi(x, - )b, (C.1)
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since the multiplication by f; (x, - ) given by Eq. (B.1) establishes an isomorphism
between L(—x) and Ly. We shall choose k € H(L?(—x))\H(L(—x)?) s.t.

JrvAb' =0 for ve HYK(—x)). (C2)
2

Except on a subset of b”’s of codimension at least 2 in H!(L(—x)"?), such « exists
and is unique up to normalization (compare the discussion around (6.28) in Sect.
6.3). Equation (C.2) guarantees that there exists a function f; € I'(O(x)) s.t.

0fi = bk . (C3)
Let i=1+41tf; € I'(O(x)) for ¢t € C. Since, by our assumptions, x(x)+0 as an

element of L*(—x) and, for small ¢, f; may have zeros only close to x, it follows
that, for such ¢, the map

L™V s 1w (If,,Ik) € L(—x)"' @ L(—x) (C.4)

is an embedding which, moreover, is holomorphic if we modify the J operator of
L(—x)"!' @ L(—x) by replacing it by 0 + (g ﬂ;”) . Choose now { € I'(()(—x)) and
s € T(L72(x)) s.t.

{—sx=1. (C.5)

Note that s(x) has to be a non-vanishing element of L=2(x) because otherwise Eq.
(C.5) could not be satisfied as {, viewed as a function on X, vanishes at x. Now,
we shall perturb { and s by taking {, € I'(O(x)) and s, € I'(L™2(x)) s.t.

Cfe — sk =1 (C.6)
and {; ={+1t{; +0(¢), s, =s+ts; +o(¢) are analytic in (small) ¢. This may be
easily achieved by solving Eq. (C.6) for {; with s, =5 outside a small ball B.(x)

around x and for s, with {; = { on By(x) and by interpolating between the two
solutions in B,;(x)\B:(x). Consider now the smooth isomorphism

Vi L' L - L(—x)"'® L(—x), V,= ({:’ Z) (C.7)

depending analytically on (small) ¢. A straightforward computation shows that

1 - 2411 ) A
Vt-—l(g t?) )Vt_{_Vt—-lthz (8 ;b +Ct(?st—st61:t> ) (C8)

Notice that #(2b" + (,;0s, — 5,0{, = b, = by + tb} + o(t) € A% (L™?). In particular,

by = {ds — s8¢ = (1 + sx)ds — s0(sx’) = Js , (C9)

By = (b + (0s) + {105 — 500, — 5100 = b" — d(fis) + s, ,  (C.10)



364 K. Gawedzki

where we have used the relations { = 1 + sk and {; = —{f| + 51k following from
Egs. (C.5) and (C.6). Let us define two gauge fields

Ax,b—U<g té’) Ul UdUt,
01 _ g/ 0 b; 1—1 1A771—1
Ay =U' (o g)ut+uaut, (C.11)

where U : Lj' @ Ly — 2 x € and U’ : L' @ L — X x €2 are smooth isometric
1somorph1sms see Sects. 3 and 4. 4%, and A’91 are gauge related:

= ;' AQ e + b7 Oy (C.12)
where 1
_ fx (X, * )_ 0 1—1
h = U( 0 0 Fuls +) v, u—. (C.13)

Expressing the same CS state ¥ in two descriptions corresponding to Eq. (4.3)
and Eq. (3.4) and comparing them using the gauge invariance of ¥, we obtain the
relation

W'(b}) = exp[kS(h;, AQ‘,b)+— f tr (A0 A AR — A3 A AR Y(x,th) . (C.14)

Now, due to the homogeneity of y(x, - ),

Y(x,th) = F9=Dy(x,b) . (C.15)
On the other side, it is easy to see with the use of Eq. (C.9) that, for 5’ € H(L*K),
fﬂ /\bo—fn /\as—hm I 11/\8s—11m Ik ns:2ni%,
OB =008, x) d(s=1)(x)/dx
(C.16)

where 57! is differentiated as a section of L? vanishing at x. Hence the class of b}
in PH (Lz) coincides with the image of x € 2 under the embedding (4.12) of Z
into IPH'(L?). Specifying Eq. (C.8) to ¢ = 0, we infer that the corresponding rank
2 holomorphic bundle is isomorphic by V¥ with the split bundle L(—x)~! @ L(—x).
Using the integral presentation (4.5) of /' and Theorem 2a of [1], see Sect. 4, we
obtain the relation

w(b/)_(zﬂl) k(g-—l) <d(S )(x)) f Xl(x,...,X;Xk-H,-waxkg)
sk(g—1)

dx k times
o Bi(xky1) ... by (xkg) F (KO (C.17)

Besides, using Eq. (C.10), we may replace b] by b” = f; (X, - )*b on the right-hand
side. Hence the relations (C.14), (C.15) and (C.17) imply that

Xl(x PR )x;xk"'l" .. ,xkg) :%XO(X) X(Xa xk“rl,- .. axky)

k times
! ﬁco(x’xk+l)_2 "'f;to(xaxkg)—z ’ (C18)
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where

o) = k! (d(s—l)(x)

k .
01 ik 10 01 01 01
Qi) e ) explkS(ho, Ayp) + %!tr(A{, /\A;(,) — Ay Nyl -
(C.19)

Ux,(x) takes values in (L?K)*. Tt must be independent of the choice of «, { and
s since the other terms in Eq. (C.18) are. It gives an explicit realization of the
isomorphism between functions @(x) on 2 transforming by Eq. (3.16) and behaving
like (x —x9)~%~D around x, and sections of (L?K)¥, see Appendix A. Such
isomorphism is unique up to normalization and Eq. (C.19) fixes this normalization
completely (in a way dependent on the isometric isomorphisms U and U’). Equation
(C.18) establishes the precise relation between functions ¥ used to represent the CS
states in this paper and polynomials /' introduced in Sect. 4 and corresponding to
the description of [1, 22].

Appendix D

We shall prove here the formula (7.23) for the zeta-function regularized determinant
of the operator [)I D,. Let us consider the determinant line bundle # of the O-family
0+ (42, - 1= D,,) of operators acting in the trivial bundle X x s/(2,C). It is a
holomorphic line bundle over the space of pairs (x,b) with the fibers

det (ker(D,,)) " det (coker(D,)) .
Generically, ker(D,) =0 and the dual space to the coker(D,) is spanned by

the sl(2,C)-valued 1,0-forms w*(x,b) =U —”’:a j; U~! constructed in Sect.

5.3, see formulae (6.30) and (6.31). The complex gauge transformations 4., =
Uge,U —1 with gep as in Eq. (2.13), ¢ a non-zero constant or ¢ = ¢, act on .
Division by their action gives the 4" power (4 = 2x the dual Coxeter number of
SU(2)) of the h.l.b. DET over the compact space IPW, discussed in Sect. 3. The
formula )

defines Quillen’s hermitian metric [33] on . Its curvature is easily calculable (from
the Riemann-Roch-Grothendick Theorem, see e.g. [34]) to be

2
= det(DID,) det(Q(1,n))~"! (D.1)

1 ® Ao*(x,b)

3, J1r (849t A 643, = 3 [ (28ax A dax + (3b, ASB)) . (D.2)
Ty ’ Ty

The change of the Quillen metric on & under the complex gauge transformations
hc, may be inferred from the chiral anomaly formula (6.10) with S(hc,vhl,v,A(n))
given by Egs. (6.18) and (6.19). It is then easy to see that the modified metric

-2 = - [P eR/z0rn (D.3)

is invariant under the k., transformations and descends to DET*. Its curvature is
% [5 0ax A dax. On the other hand, the right-hand side of Eq. (7.24) multiplied
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by exp[%f [5(b,Ab)] also defines a hermitian structure on the h.LLb. DET* and the
Riemann-Roch-Grothendick Theorem shows that the curvatures agree. Hence, the
two metrics are proportional with the proportionality constant which might a priory
depend on the metric (i.e. also on the complex structure) of 2.

In order to see that Eq. (7.23) for det (DID-,,) represents properly also the depen-
dence on the metric of X, it is enough to show that it produces the right behavior of
the determinant in the limit when b is replaced by b and ¢t — 0. This limit may be
studied by the 2" order perturbation theory. For ¢ = 0, D_iD_,, has the g-dimensional
kernel U(H°(L2)o~ + Ca3)U . For ¢+0, the operator is modified by a relatively
compact perturbation [35]. If the rank of the matrix ([5 k"@' Ab) is g — 1, all the

zero eigenvalues of DI,D_,, move up and their product is easily calculated to be
Rt* =279 area™" det (Ko) ' |2'|* (H; i
x det ((fkrw" A b> (Im 1), (f;csa)’ A b)) (D.4)
b b

in the leading nontrivial order (we have assumed that z*(b) =0 for a > 1). It
follows that, when ¢+ — 0 (and with the zeta-functions regularized determinants),

det (D! D,) = R1% det'(DLD,)|i—o + o(£) . (D.5)
On the other hand,
2 .
tﬁf% det (2(1,x,1b)) = 7 (fﬁ1 A Hl) detype1 (Hy') (D.6)
- x

in the notation of Eq. (6.30). Using also the relation (6.34), we obtain

det (flc’wi A b) I
z

i<g

(Im 7)y 7 det ( [t A b)
il z

-2

tlin(l) det(Q(1,x,th)) =4

det(Ho)(Hy D
j*j

- S(- )"+ det <f1c’a)" A b)
vy z

i+

= 4det (Im t) det (Ho) (Hy ")

det (f;c’a)’ /\b)
X i<g
. det((fx’wW\b) (Inﬂ:);1 (flcsa)’ /\b)) , (D.7)
z z

where the last equality is a consequence of the identity det(> y AT ATy =
Zj |det(A4""),4+;|* for (47) a (g — 1) x g matrix which may be easily verified by
taking (4”7) with first (¢ — 1) columns forming a unit matrix. It follows now from

Eq. (6.37) that
2 -1 1
lim 1% ( [8(BVyelcvI DV) = 42" P(Hy Yy,

. det((gm) (Imt); ! ({mﬂm))

(D.8)
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and, consequently, the right-hand side of Eq. (7.23) behaves when # — 0 in accor-
dance with (D.5). This ends the proof of formula (7.23).

Appendix E

Let us denote

_ kg gy b N
P(o) = det(Hy) '[P [ PGP e 5T ! [T 2
CcN-1 a=2
2 N 112 2 -2 Ex(Hq,)“ﬁC/;-Hc;{zx-!-ic"yz" 2 N
ol lz'° [ |P@)( [e 7 [Td%c, | [T d°2*,
+ CcN-! o =2
(E.1)

where P(z) is a homogeneous polynomial in variables (z*) of degree M =
(k+1)(g—-1):

P(z)= > — (H 0 me(z)> H 2% =37 Pl Hz“”’ . (E2)
(oam) M (otm)

P(¢p) with P(z) given by Eq. (9.3) is the z-integral to be computed after the w-

integration in Sect. 7 if we postpone the ¢ integral till after the one over z*’s, see

Eq. (8.8). The integrals in (E.1) clearly converge. We shall show that the zero-mode

integral

M+N
—2a 2 . M .
fe 2 Mﬂ((p-ka)da_. _n—M l<k+4) Z P(O(m)P(ﬂm)HH(pmﬂm . (E3)
(n)(Bim) m=1

Consequently, integrating in our calculation of the right-hand side of (6.12) first
over w then over z*,a > 1 and at the end over ¢ one obtains the expression (9.5)
without encountering other infinities than the standard ones removed by the zeta-
function regularization of the determinants and the Wick ordering of the ¢-field
exponentials. In order to prove formula (E.3), let us rewrite

1
[e 2™ P(p +a)da= — [|t| M VP(p — In|t])d*t
R 2ng

1 —1,12 AM+N—1) 2~k 2w, N s
= E—det(Hq,) lz'° [ el |P(z)| e 2= o b T d%z* . (E4)
T cN a=2
The integral clearly converges. By the change of variables
=, P=¢,..., =", (E.5)
one obtains
_ 1 _ —kag 5
[e2M p(¢ + a)da = 5. det(Hy) PR e Ty it H d2(* . (E.6)
R cN

a=1

Now Eq. (E.3) follows by simple Gaussian integration.



368 K. Gawedzki

Appendix F

We shall check the consistency of the formula (9.5) for the scalar product of
the CS states. First of all, the integrand on the right-hand side is independent
of the choice of the bases (k) of H%(L2) and (%) of H°(LZK). Indeed, a
change of (x}) in | 3°7_,(—1)/det([; ©’ A b)i4; @/ (x)|"* is compensated by that
in det( [ ( o (1 %) vol)~! and 524, z is independent of the choice of (1%). Another con-
sistency check is the 1ndependence -of the integrand under change of the hermitian
structure of Ly. Recall, that the Green function G(x, y) of the Laplacian was chosen
so that fz G( -, »)((k +2)Fo(y) + 1R(y)) = 0, where F, is the curvature form of
Ly. The multiplication of the hermitian metric of Ly by a positive function e?/*+2)

leads to the replacement Fy — Fy + fi‘g and

G(5y) = G 1)+ 521 (0) + 9(»)

& 2M2f(6(p/\5<p+<p(2(k+2)F0+R)) (F.1)

Since (7%, ApPm)(x,) picks up the factor e2¢¢m)/(*+2) the last line of Eq. (9.5) is
multiplied by

[mf(aq; A dp + o(2(k + 2)Fy + R))]

By the chiral anomaly formula, det([s(x",x*) vol)™! det’ (5; 2 5Lz) changes by the
X
factor

] = 1
exp[— mg"(aq)/\ago+(k+2)(p(2Fo+ §R>)] .

Finally, we shall show that exp[— £ [ tr4}% A 43']|y(x,b)]%, wh1ch depends on the
metric of Ly through the smooth isometric isomorphism U : Ly 'oLy— 2 x €2,
yields upon the multiplication of the metric by e?/**2) the factor

T )
exp [ - 27I(—kl+2—)22[(6q) A0 +2(k + 2)(pF0)]

cancelling the previous ones. First note that, by Eq. (6.17),

e 2nfztl'A /\A0 Iw(x b)IZ — C(X)IYI(A '26 an;_-tr(A )T/\AO]b-I-Z" [5(b,A\b) (F2)

with ¢(x) independent of the choice of the metric on Ly. As follows from the
transformation properties of ¥ and of the WZW action S,

—1 ik = Loit i Lot
I.I,(h AOI)IZS Efsw® AHTA" 4

ol i 0 ol
= SOt DT+ 012 o= FJp DA (F.3)
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In particular, the expression does not change if h takes values in the compact group.
It follows that, for a fixed metric on Lo, exp[—%& [, trA}* A AOI] [(x,b)|? is inde-

pendent of the choice of the isometric isomorphism U : LO ® Ly — X x €2 since

Ag‘b for two different choices are related by an SU(2)-valued gauge transformation.
After the multiplication of the hermitian structure on Ly by ¢?, we may take

Ue™9""2 as the new isometric isomorphism from Ly ' @ Lo to £ ® €2. As a result
of the change of U, 43, changes to _lAmb with h = Ue?” 2U~". By virtue of
Egs. (F.2) and (F.3), e"—fft”‘o My |y(x,b)|? is then multiplied by

ST =3 T+ )~ e (€727 1)), (F4)

We are left with the calculation of S(hh',—(43})1 + 4%,). By Eq. (A.2), under the
infinitesimal charge of ¢,

SS(hh', — (AT + 4%,)

= o [tr Uspa® U F(—(a%)! + D748 )
z

j _ [ax—ax+9d e %b
:21—nftr(5(po3curv<v+6+( xR - ))
z

bt —ax +ax — 0@
: [tr dgc’ —Fo+ 00 — e 22(b,Ab) V(e 2?b) +2e 2%y A b
= — T (pO' _ - -
2ny (0 + 2ax — 0g)bt Fo — 80¢ + ¢~22(b, Ab)

=5 <—Lf(6<p A 0@ +20F; — (e72% — 1)(b, Ab))) (E.5)
2y

so that the factor (F.4) becomes e~ 5 Iz @pAdo+29F o), as required.
As for the change of Y(x,b) itself, a straightforward calculation shows that if
h:2— SL2,C) then

: t s
o A A°‘ v A°1 — FSCRT AL+ AL ) —kShhT )+ ()~ [ 5 tr 4g” Aht) ! GhT

1k 10 01
»ede [x A My 0Ly (F.6)

It follows that if U — U’ = h“lU with SU(2)-valued 4 then Y(x,b) changes
only by a constant factor e - S"W =5 [swAAGN T3 o4 the other hand, if the metric
of Lo is multiplied by e” and U +— U’ = Ue=?""/2 = 1='U, then y(x,b) picks up
the factor

kS(hhT A +4Y ) —kS(hhT ) +kS(h)— 1 [ 5 e al" A(HT) ™! G
_ ekS(hhT,AO)—kS(hhT)+kS(h)—% Jrteal®aty=1ant | (F.7)
where the last inequality may be checked by differentiating S(hht, A + ASY) with

respect to ¢ with the use of Eq. (A.2). Again ¥(x,b) is multiplied by a constant
independent of x and b.
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In the next check, let us find the dependence of the right-hand side of Eq. (9.5)

on the conformal factor of the Riemannian metric of 2. If the metric is multiplied
by a positive function e°, then

Glx,y) — G(X,y)+ S (0O + o)

2M2 f(aa A 06 + 26(2(k + 2)Fy + R)) ,

T 3
1 G(xx) i G(x,x) ~ A (o(x)—l—a(y))
" Mz 575/ (00 Ao+ 20(2(k +2)Fs+R)),  (F8)

and the last line of Eq. (9.5) is multiplied by

1 _
exp[4n(—kl+—2—)£ <§6a A do + a2k + 2)F, +R)>] .

By virtue of the conformal anomaly formula, det (/5 (x",x*) vol)~! det'(éii 5L§ ) and

(%‘—‘2)1/2 change, respectively, by the factors

area

i 1 = i 1 =
exp[— IT <§60A60+0(6Fo —|—R)>] and exp[— E‘Gz <§8a/\aa+aR>} .

Altogether, Eq. (9.5) picks the factor

i 3k 1 =
ep[ 24nk+2f<§60/\00+6R>] (F.9)

when the Riemannian metric is multiplied by e°. This guarantees the right value

c= k—i% of the Virasoro central charge of the theory with partition function given

by the formula (1.5).

Another easy check of formula (9.5) shows that its right-hand side does not
depend on the choice of xy used to fix the bundle Ly = L(—xp). We leave it to the
reader. A more involved problem which we have not addressed is the independence
of the scalar product expression of the choice of the h.Lb. L of degree g.
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