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Abstract: We investigate the seven-sphere as a group-like manifold and its exten-
sion to a Kac-Moody-like algebra. Covariance properties and tensorial composi-
tion of spinors under SΊ are defined. The relation to Malcev algebras is established.
The consequences for octonionic projective spaces are examined. Current algebras
are formulated and their anomalies are derived, and shown to be unique (even
regarding numerical coefficients) up to redefinitions of the currents. Nilpotency of
the BRST operator is consistent with one particular expression in the class of
(field-dependent) anomalies. A Sugawara construction is given.

1. Preliminaries

This paper is devoted to an investigation of the seven-sphere as a manifold
equipped with group-like multiplication, and to its extension to a Kac-Moody-like
algebra. As is well known, the seven-sphere is not a group manifold, but shares
a great number of properties with the group manifolds. It is the parallelizability
property that enables us to consider transformations generated by vectors tangent
to the seven-sphere. There are essentially two routes to take when trying to
generalize the Lie algebra concept. One, which has been extensively explored in the
mathematical literature, is based on abandoning the Jacobi identities in favour of
a weaker structure, which leads to Malcev algebras. The other is to maintain the
Jacobi identities and give up the invariance of the structure constants. It is this
latter option that will be pursued in this paper, for the simple reason that the
multiplication rules defined by Poisson brackets and commutators used in physics
automatically obey Jacobi identities. We will also comment on the exact relation to
Malcev algebras.

The paper is organized as follows. Section 1 gives a brief summary of division
algebras, specifically aiming at octonions, which are an almost indispensable tool
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for investigating the structure of the seven-sphere. Here we also deal with the
parallelizability properties of unit spheres related to the division algebras. Section
2 uses the parallelizability to define seven-sphere transformations and defines
covariance properties under these transformations. The current algebra is for-
mulated and its relation to Malcev algebras is established. We discuss the implica-
tions for octonionic projective spaces, which are naturally defined in our
framework, and give a set of homogeneous coordinates for (DP2. Applications are
exemplified by ten-dimensional twistor theory. In Sect. 3 we consider the Kac-
Moody-like structure arising from the map S1 -• S7. We calculate the Schwinger
terms, derive conditions for quantum-mechanical nilpotency of the BRST operator
and give a Sugawara construction for an energy-momentum tensor. Sections 2 and
3 contain the results of this paper. Section 4, finally, is devoted to a brief discussion
of the results.

1.1. Division Algebras. The class of algebras of interest in this paper are the
alternative division algebras, especially the algebra Θ of octonions or Cayley
numbers [Cay, Zorn]. As we will see, the properties of these algebras are directly
related to the corresponding algebras of transformations as (properly defined)
multiplication by an element of unit norm.

An algebra 2t (not necessarily associative) is called a division algebra (see e.g.
[Scha, Po], which together with [Zorn] are the main sources of this section) if left
and right multiplication

Lax = ax, Rax = xa (1.1)

have inverses (for 0 + α e 21). We will only consider division algebras over the field
R of real numbers. The existence of inverses implies that there are no divisors of
zero: x φ O and y Φ 0 in 21 gives xy Φ 0.

An alternative algebra is algebra where the associator

\_a,b,c]^{ab)c-a{bc) (1.2)

obeys the relation

[α,α,6] = 0 . (1.3)

This implies (consider [α + b, a + b, c]) that the associator alternates, i.e. changes
sign under any odd permutation of the entries. The alternativity implies a number
of useful relations, among which are the Moufang identities [Zorn]

(axa)y = a(x(ay)),

(ax)(ya) = a(xy)a . (1.4)

The first of these equations is equivalent to

[α, xa, y]= — a[_x, a, y] . (1.5)

One can prove that any alternative algebra 21 with a unit element 1 where any
nonzero element x has an inverse x~ι (xx~ι = 1 = x~1x) is a division algebra.
Namely, it follows from the Moufang identity (1.5) that

[ α " 1 , α , x ] = 0 , (1.6)
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which means that left multiplication is invertible (cf. (1.1)), and analogously for
right multiplication.

Conjugation of an element in 91 is defined as an anti-automorphism x -» x
(x*)* = x, (xy)* = y*χ*, with

*:

. (1.7)

For convenience, we introduce the notation

[X]=i(χ + X*), (χ}Ξl(χ-χ*), | χ |= ( χ* χ ) l/2

If xx* Φ 0 we can obviously express the inverse in terms of the conjugate element
as x " 1 = (xx*)"1;*;*. Thus, if there are no zero divisors, an alternative 91 with
conjugation as above is a division algebra.

The class of finite-dimensional real division algebras is quite restricted, they can
be of dimensions 1, 2, 4 or 8 only [Hur, BoMi, Ker, Ad]. If one also demands that
they be alternative, there are only four algebras left: IR, the reals (dimension 1), (C,
the complex numbers (dimension 2), H, the quaternions (dimension 4) and Θ, the
octonions or Cayley numbers (dimension 8). The algebra of octonions is unique in
that it is the only non-associative alternative division algebra. We will refer to the
above algebras as DCV, where v is the dimension.

There is a number of equivalent ways to represent the multiplication table of
the octonions. The simplest one, in our opinion, is given as follows. We chose an
orthonormal basis

Θax = Σ *«*« = M + Σ Wi (eo = 1) (1.9)
a = 0 £ = 1

and state the multiplication rule

(1.10)

where the structure constants σ are completely antisymmetric and equal to one for
the combinations

(ijk) = (124), (235), (346), (457), (561), 672) and (713), (1.11)

i.e. we have

βiβi+x =ei+3, (1.12)

where ei+Ί = e{. Is is then easy to verify that the structure constants for commuta-
tors and associators are given by

leh erf = 2σijkek, [eh ej9 ek~] = 2pijkleh

Pijkl= -(*σ)ijhl= -iZijhlmnpVmnp' (1.13)

1.2. The Seven-Sphere. Parallelizability. The seven-sphere can be trivially repre-
sented as the set of unit octonions:

SΊ = {Xe<D\X*X=l} . (1.14)
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It is the unique compact and simply connected non-group manifold1 to share with
the group manifolds the property of global parallelizability [CaSch, BoMi, Ker,
Wolf, Hus]. Of the spheres, only 5 V " 1 , where v is the dimension of one of the
alternative division algebras, are globally parallelizable. The lower-dimensional
spheres are constructed analogously to above. There one has the isomorphisms
S1 « U1 and S3 « SO(3), which leaves SΊ as the only non-group example.

Global parallelizability of a manifold 9K (in the following referred to as just
"parallelizability") means that there exist m linearly independent globally defined
and nowhere vanishing vectorfields on 9Jί, where m is the dimension of 9JI. Then the
m vectorfields can be linearly combined to constitute an orthonormal basis of the
tangent space Jί(X) at any point X in SOI. Letting the orientation of this basis
define parallel transport on $R, one immediately obtains, since parallel transport is
independent of path,

0 = \ββ9 9Λ = Rμv, (1.15)

where 3) and R are the covariant derivative and the curvature tensor defined with
respect to this parallel transport. If we write

§ = d + f = @-T, (1.16)

where 2 = d + Γ, Γ being the metric connection, we have the parallelizing connec-
tion Γ = Γ — T. T is the parallelizing torsion. If one considers the covariant
derivative of the vielbein ea

μ (roman letters a,b,. . ., denote tangent space indices),
one finds, since <3)μ e% = 0,

or equivalently

®μe
Va = T;a9 (1.18)

which can be taken as the definition of torsion.

2. The Seven-Sphere as a Transformational Manifold

2.1. From Parallelizability to Algebra. Suppose we have a manifold 9DΪ of paralleliz-
able type [Wolf], i.e. a direct product of group manifolds and seven-spheres
(including the complexified and non-compact versions). Then define infinitesimal
"translations" generated by the tangent space covariant derivatives. The parallel-
lizability property assures that the translations form a closed algebra:

19a, ®Λ = leί®μ, el®Λ = 2ei;[@μ, el]9v = 2e*T;b = 2Tah9c, (2.1)

where we have utilized (1.15) and the antisymmetry of the torsion tensor [Wolf].
The cases of group manifolds are trivial; there are parallelizing torsion contains

simply the structure constants, and is independent of the location in 501. The Lie

xThe non-compact spaces SO (4,4)/S0(3,4) (topology S 3χ]R 4), obtained from the split
octonions [Jac] and 50(8; €)/5O(7; C) (topology SΊ x R 7 ) also alrise in the classification [Wolf].
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algebra of the group SOϊ is obtained. The only "non-trivial" case is the seven-sphere,
and it is the only case where the torsion tensor varies over the manifold. This
statement contains exactly the same amount of information as the statement that
Θ is the only non-associative alternative division algebra. We shall soon see the
connection.

2.2. Infinitesimal Transformations. SΊ Spinors. Let ξ e © and let the seven-sphere
be parametrized by direction of ξ: SΊ = {^ = X e <D}. The tangent space at X is
spanned by the units {Xei}ί

7=i Considering the tangent space basis at two
infinitesimally separated points, we see that the parallel transport of this basis is
defined by an infinitesimal transformation

δaξ = ξκ, [α] = 0. (2.2)

The commutator of two such transformations can be calculated explicitly:

ίδ., δβl ξ s δ.{δtξ) - δβ{δxξ) = (ξa)β - (ξβ)a

= ξ(X*((Xa)β) - X*((Xβ)a)) = <W«)/i)-**(W)«)£ (2-3)

Here alternativity in the form (1.6) has been used. The parameter X*{{Xa)β) — X*
((Xβ)oc) of the transformation on the right-hand side is twice the parallelizing
torsion [GuTze, Roo]. In component notation,

Tijk(X) = l(erx*)(Xej)ek ] , (2.4)

which is completely antisymmetric in the three indices, and (2.3) can be written as

(2.5)

The variation δ is indeed the parallelizing covariant derivative of (2.1). It should be
mentioned that the specific parallelizing torsion used here is only one in a big
family, parametrized by the choice of left or right multiplication in (2.2) and by the
choice of the north pole [Roo]2. To our knowledge, the algebra (2.5) was first
considered in reference [ESTPS].

Now the question arises how to transform other fields than ξ. One can not
simultaneously interpret two fields as parametrizing the seven-sphere. We want to
introduce another boson η, ̂  = Y with some SΊ transformation rule, maintaining
(2.5). This excludes the simplest candidate δaY = Yoc. The two fields are bound to
transform differently. The correct transformation rule turns out to be

δxη = X*((Xn)a) = (ηX*)(X*) = (η(*X*))X = »y o α , (2.6)

where the equalities are derived from (1.5). By comparing with the tangent space
basis introduced above, one sees that the product (2.6) indeed can be interpreted as
multiplication in the basis (X, {Xe{}) at the point X e S7. This multiplication fulfills
the same conditions as the ordinary multiplication at the northpole X — 1, and
differs from it only by an associator. We see that it is the non-associativity of Θ that

2 Here we have deduced the parallelizing torsion in an indirect way, using (2.3) and (2.1). In
reference [LuMi], it is shown how the torsionless and "flat" seven-spheres arise naturally as
quotient spaces.



378 M. Cederwall, C.R. Preitschopf

is responsible for the non-constancy of the torsion tensor (while the non-com-
mutativity accounts for its non-vanishing) and for the necessity of utilizing
inequivalent products associated with different points X e S7. We call this field-
dependent multiplication the X-product.

One should note that the transformation (2.6) relies on the transformation of
the parameter field X (2.2), while for group manifolds (and thus for the lower-
dimensional spheres S1 and S3 associated with C and M) ξ and η transform
independently. A consequence is that fermions cannot transform without the
presence of a parameter field, since a fermionic octonion is not invertible.

We call a field (bosonic or fermionic) transforming according to (2.6) a spinor
under S7. Note that also the transformation of X can be written δaX = X o α, and
that the commutator of variations is

[5.,ί] = ί j α - α o j , (2.7)

where δ is thought of as an imaginary octonion: δa = [α*δ].

2.3. S7 Tensor Algebra. In order to examine covariance properties and tensorial
composition of spinors we will first examine the X-product a little closer. We
introduce the related commutators and associators:

[α, b, c\χ = (a%b)oC - a°(6 ° c) . (2.8)

Ordinary * conjugation is still an anti-automorphism with respect to the
X-product. One also has

[α o fc] = labl la(b o c)] = l(a o b)c] . (2.9)

The Moufang identities (1.4) or (1.5) may be used to express the X-associator in
a number of ways. The inverse a"* is also the inverse with respect to the X-product,
and alternativity, and thus also (1.6) holds.

Let r, s,. . . be SΊ spinors, i.e. δax = x jα, etc. The generators δ should be
thought of as transforming in an adjoint representation according to (2.7). Can this
representation be formed as a tensor product of spinor representations? Due to the
non-linearity, the answer is no. The current 3 (se^ the following section) is the
unique object to transform this way. The only reasonable candidate for a spinor
bilinear in the adjoint {r*£*} which does not have good transformation
properties.3

On the other hand, consider a bilinear

£ = r o 6 * . (2.10)

Had one used the ordinary multiplication (X = 1), K would not have sensible
transformation properties, but now also the product itself transforms. We obtain

δaK = (r o α) o δ * - [r, α, * * ] * - r ° (α ° s *) = 0 , (2.11)

3 See also Sect. 3.2 on BRST analysis. We want to emphasize that we do not yet have a full
representation theory.
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where the middle term comes from transformation of the product, which effectively
cancels the non-associativity. Let K be scalar. The same cancellation of non-
associativity occurs in

t' = K o r : ί β t ' = r ' o α , (2.12)

so that r' is a spinor. As a consequence, we can form spinors as trilinears of spinors
as

u = ( r o S * ) o ί ? (2.13)

and in this way only.

2.4. Current Algebra. As mentioned in Sect. 1, one of the main motivations for the
introduction of the field-dependent transformation rules is that the Jacobi identi-
ties are fulfilled. Either this can be proven explicitly by calculation, or it suffices to
find a current that generates the transformations (2.2), (2.6) by commutators or
Poisson brackets.

Let π ( ^ and π(/ι) be the conjugate momenta of ξ and η, i.e.

{ξa,π[ξ)}=δab = {ηa,π
(

b

η)}, (2.14)

the curly brackets denoting Poisson brackets or commutators. The transforma-
tions of ξ (2.2) is then easily derived from a generator 3(<^ — {π(ξ)*ξ} and that of
η (2.6) from 3 ( ί 7 ) = {πiη)* ° η}. 3 f ΞΞ [α*3 ( ξ ) ] fulfills the algebra (2.3) with respect
to the {. , . } product, but 3 ^ does so only when X transforms, i.e. only in
combination with with 3 ^ \ The generator of the simultaneous transformations
(2.2), (2.6) is thus

3 = {π«> {} + {πω o , } . (2.15)

In this expression, ξ is necessarily a boson, and η may be bosonic or fermionic. Any
number of fields can be introduced in 3 i n the same way as η. Self-conjugated
fermions ({Sa, Sb} = δah) give a contribution \ S* %S to 3

The transformation of any field φ is given by

δ.φ = {X,φ}. (2.16)

Using (2.8), the torsion tensor can be written as

Taβ(X) = n*,βlx, (2.17)

and the SΊ algebra (2.5) becomes

{3 β ,3*}=3[../π,. (2.18)

Note the exact analogy to S3 « 5 0 ( 3 ) obtained from H, where one has

\3α> 3)3/ = 3[α,)3]

2.5. Finite Transformations. This section might be trivial, but the form of
finite transformations may not be so obvious when field dependence is involved.
A finite transformation is obtained by the limit procedure

φ-+φ' = lim φN ,
N-+oo

Φo = Φ, Φ,+ 1=^{X,φκ} + φκ, (2-19)
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where θ e 1R. A straightforward calculation shows that

= ξΩ, (2.20)

where Ω e S7. The corresponding calculation for a spinor r other than ξ is a little
more involved, but a careful analysis shows that all associators between X, oc and
r cancel, and the finite transformation is

r - > r ' = r ° ί 2 , (2.21)

and likewise for the current,

3 - 3' = 0 * * 3 * 0 • (2.22)

We will use this last equation later when looking at changes of parameter fields in
connection to projective spaces.

2.6. Transformation of an Arbitrary Number of Fields. The characterization of
spinors under SΊ made above is not complete. There are other ways for fields to
transform than (2.6) that in a general treatment must be called spinorial. Suppose
that at least two bosonic fields transform under 3> and call two of them ξ and η as
before. The choice of ξ as parameter field is arbitrary, one could as well have chosen
η9 and there is a way to move between the two forms of the current. Namely, if we
define

5 = ((3X*)(XY*)) Y = (3 * y •) y = ( 3 * * ) ? * , (2.23)

we see that the roles of ζ and η have interchanged. We have

5={π(l»> ιy} + {π«> oξ} + . . . . (2.24)

Using only (2.23) and not its explicit form (2.24), one can show that 3 fulfills the
same algebra as 3, but with the torsion tensor taken at the point Y instead of X:

{3α> 3/3 } — 3[α,j8]y (2.25)

Now, let there be yet another field ζ present, transforming the same way as η under
3, and let Z = j | . The term 3 ( 0 = {π ( 0* j £}in 3 does not change into {π(ζ)* ° ζ}
under the transformation (2.23). Instead we obtain

3 = {π(i)*η} + {π<0* oξ) + ( ( π « » * ( U * ) ) ( * y * ) ) y . (2.26)

Note that the objects ZX* and XY* occurring in this formula are SΊ scalars,
according to (2.11), but that the remaining combination, YZ* is not a scalar. We
can visualize this in a linear diagram, where ξ is connected with η and ζ, but not
η with ζ (Fig. 2, first diagram). The transformation rule of ζ derived from (2.26) is

δaζ = (ζX*)((XY*)(Ya)). (2.27)

Then the more complicated product in (2.27) is thought of as a product defined by
going from ζ to the (new) parameter field η along the connections in this diagram.
This principle is completely generalizable to any connected "tree diagram" with
arbitrary number of points (fields) and arbitrary number of branches. Closed loops
are forbidden; due to non-associativity they lead to inconsistencies.
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The path φ [rM] from any field xn to the parameter field r0 is then uniquely
determined, and letting it be the sequence

φ[r w ] = {rM- 1,rM- 2,...,r 1,r 0} (2.28)

(we enumerate the points in a tree diagram by the label n, which is not an ordinary
integer, but a set where subtraction by 1, i.e. stepping towards the parameter point
is well-defined for n + 0, but addition is not, due to possible branching), we define
the path-dependent product by

A^χΔ B = (AΓΛ)((*n-i VΛX ((xiX^MxiX^KxoB))). . .)), (2.29)

or by induction as

which is easily seen to reduce to the product defined in (2.6) for the case of
a one-step and (2.27) for a two-step path. The generator of SΊ transformations is
then

Σfe^α)], (2.31)

and it fulfills (2.18) with X = ro/|ro | . Transformations are given as

a.r t = l i φ o j α . (2.32)

One can also choose to view this as an ordinary multiplication by another
(X-dependent) unit octonion ak. In that case one uses the properties of the path
product to rewrite (2.31) as

3 . = - [πjr o α] - Σ [(**rΛ r * K ] , (2-33)
fcO

where ak — 1 _° _ a, and obtains

δzXk-i =Xk-i*k (2.34)

Fermions, due to non-invertibility, can be assigned to endpoints of the diagram
only; no path may pass via a fermion.
Define the path from r to s as the composition

Φ[r,s] = * W * " 1 [ s ] (2.35)

of the path of r followed by the reverse path of s. The invariance principle
generalizing (2.10), (2.11) is

which contains the irreducible amount of information that (5α(rs*) = 0 whenever
r and s are connected by a link in the diagram.

We conclude by the remark that change of parameter field along a link in the
diagram is a finite S7 transformation, however not with constant parameter.
Consider %' = X^X*, which has the property of generating left multiplication on
X. One can prove that changing the parameter field from X to the neighboring
Y amounts to a finite ^'-transformation with (constant) parameter Ω' = YX*. By
using a modified form of (2.22), generated by 3', we obtain exactly (2.23).
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2.7. Octonionic Projective Spaces. This section will deal with the description of
octonionic projective spaces [Po, Mou, Jol,Fr, Bor, Jo2, JNW, GPR, Alb] in
terms of sets of homogeneous coordinates modulo octonionic transformations with
<D\{0} « SΊ x JR + , and to establish relations with known coordinatizations. There
is a number of "different" realizations of projective spaces: from homogeneous
coordinates [Po], from explicit sewing together coordinate patches [Po, Mou],
from Jordan algebras [Jol, Fr], or as quotient spaces [Bor].

An important feature is that KVPM can be described topologically as the disjoint
union of IK" and the space at infinity K v P

n~1 together with a map from the sphere at
infinity Snv~* of IK? to KvP

n~ι. For the trivial case KVP\ the maps are just constant
maps from S"'1 to IKVP° = {0}, that obviously can be taken as fibrations with the
"group" Sv~ ι in the sense of this paper. One has K v P r = 5V. For K V P 2 , one has the
maps from Sr2v~1 to IKyP1, i.e. the Hopf maps, or Hopf fibrations [Hopf],

s1-

s3-

SΊ-

—>S :

s1

s3

s 7 >

1 = RP\

2 = C P 1 ,

μ = H P 1 ,

8 = <DP1 (2.37)

The map, together with scaling by positive real numbers, can be used to obtain
K V P " ~ 1 from its homogeneous coordinates in K" \{0}. This means that there is an
equivalence between the existence of K V P Π and homogeneous coordinates for
KvP

n~ι. This holds for v φ 8, all n, and for v = 8, n <£ 2.
We will show that the last of the Hopf fibrations (2.37) can be given a formula-

tion as a fibration with fiber SΊ in the sense of this paper, i.e. as identification of
points of S15 modulo infinitesimally generated SΊ orbits without fixed points. In
view of the relation to homogeneous coordinates, the same holds for the map to
(DP1 from its homogeneous coordinates.

We start with (DP1 ( « <S8), whose standard atlas consists of the two charts

(UVi), (*2,1) (2-38)

with the overlap equation x2 = yϊ1 where both charts are valid. The standard
homogeneous coordinates of (DP1 are a pair of octonions (ξ, η) defined modulo
(right) multiplication with the same octonion:

{ξ,η)κ(ξΩ9ηΩ). (2.39)

The consistency with (2.38) is seen by choosing Ω = ξ'1 or Ω = η~1. One has to be
careful, however. The transformations of (2.39) do not close to an algebra (see Sect.
2.2), so repeated use of them does not give an equivalence class of points corres-
ponding to the same point (DP1. A basepoint has to be chosen (preferably in one of
the forms of (2.38)). A more natural way, at least from our point of view, would be
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Fig. 1. Diagram for (DP1

to define the homogeneous coordinates modulo S7 transformations (and a real
scale). We then have the transformations according to Fig. 1:

(ξ9η)κ{ξΩ,ηoΩ), ξ + 0,

(ξ9η)*(ξoΩ',ηΩ')9 η^O. (2.40)

The price being paid for the algebra structure for the variables parametrizing the S7

fiber is that we cannot describe an equivalence class by only one of the transforma-
tions (2.40), since the X-(Y — ) product is undefined at ξ = 0(η = 0). Of course the
transformations are equivalent for ξ, η Φ 0: Ω = y*(7 °Ω' ) , since the associated
currents are related according to (2.23). The mapping from the homogeneous
coordinates (modulo R + ) to (DP1 is a topologically equivalent modification of the
Hopf map S15 -> S8 [Hopf], that now has been turned into identification of points
on infinitesimally generated S7 orbits (see also Sect. (2.8) for a physical motivation).

The reason that the traditional homogeneous coordinates for (DP1 exist, is that
the specific Ω's taking (ξ, η) to (2.38) satisfy [ί2, ξ, η~] = 0. Trying the same proced-
ure for (DP2 is bound to fail - the atlas

(l>)Ί>Zi)> (x2, l,z2), (x3,3^3,1) (2.41)

with the overlap equations

v — i ; " 1 - 7 — 7 v " 1

Λ>2 — yi 5 ^ 2 — ^l yi >
-1 Λ, _ „-!

Λ, ,, v —1 ~ v ~ l (Ί ΛΊ\
y\ — ^3-^3 •> Z\ — X3 . yZ.t+Z)

(consistency is easily checked) can not be reached from (ξ, η, ζ) by uniform right
octonionic multiplication, due to non-associativity. We need the S7 transforma-
tions, fulfilling Jacobi identities and thus effectively associative. Any set of coordi-
nate patches of the generic type (2.41) resulting from identifying points on S7 orbits
in some coordinates within one specific diagram is automatically consistent in the
regions where the overlap equations apply - this follows from the composition
properties of the S7 transformations.

Let us now try to construct homogeneous coordinates. We choose a linear
diagram of the variables (ξ, η, ζ), with ξ as parameter field in the middle (Fig. 2, first
diagram). Points on SΊ xlR+ orbits are identified as

(ξ9η9ζ)*(ξΩ9ηoΩ9ζoΩ) (2.43)

(it is easily checked that (2.41) with (2.42) holds). This map has a problem for ξ = 0.
In the twenty three-sphere | ξ | 2 + |?/|2 + |C|2 = l, approaching the fifteen-sphere
ξ = 0 from the seven-sphere direction X gives the (DP1 charts

( O Λ C ^ ' 1 ) , ( 0 , 1 / j Γ M ) , (2.44)

and the orbits are not well defined on ξ = 0 unless we explictly specify the value of
X there. This choice has to be consistent with the transformations, and we note
that, whatever prescription is used,
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Fig. 2. Diagrams for (DP2

for some directions, where π is the map S22 -> (DP2. We arrive at a discontinuous
fibration as a generalization of the Hopf map. We make the choice of prescription
in (2.43):

fί/lίl, if ξ + 0;

X=lη/\η\, if ξ = 0, η + 0; (2.46)

[ζ/\ζ\ (or any X'eS 7 ), if ξ = ιj = O.

Using the map (2.43) with (2.46) at the infinity of Θ3, a space ΘP 3 may be
defined as Θ 3 u © P 2 . One may show that also higher-dimensional octonionic
spaces may be constructed once the requirement that the map SSn~ * -• (DP"'1 be
continuous fibrations is relaxed.

There is another solution to the problem of finding homogeneous coordinates
(for ΘP 2 only) that lies in the fact that in contrast to the case of (DP1 (two
transforming fields) we now have three inequivalent linear diagrams (Fig. 2) for the
SΊ transformations. We define the associated transformations and hence the
associated partial equivalence classes patchwise, with one patch for each diagram,
and the complete class arises only after identifying points in different patches via
transition functions. The set of homogeneous coordinates for ΘP 2 is defined as
follows:

X =
il

(ξ3,η3,ζ3)*(ξ3°zΩ",η3ozΩ",ζ3Ω"), z = ^ , (2.47)
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Fig. 3. Diagram of diagrams for (DP2

valid for ξ Φ 0, η Φ 0 and ζ Φ 0 respectively (the statements ζn — 0 etc. are indepen-
dent of the subscripts). The overlap relations between the three patches are the
transformations needed to go from one diagram to another, e.g.

& = fi, Άi = riu ζ2 = ((ζιXΪ)(XiYΐ))Yi, (2.48)

applying for ξ Φ 0, η Φ 0 (i.e. in the overlap of the regions where the charts 1 and
2 are valid), creating a link between ζ and η instead of the one between ζ and ζ. In
this way, any of the three diagrams is related to any other in the region were both
apply. Equation (2.48) is defined such that partial equivalence classes are trans-
formed into each other. A consistency check is given by going around the closed
loop in the "diagram of diagrams" (Fig. 3). We come to the same variables modulo
an SΊ transformation, i.e. we stay within a given equivalence class. The transforma-
tions (2.48) between diagrams can be modified to include also an arbitrary SΊ

transformation, since it does not alter the "link invariants" of (2.41). It can be
shown that no such transformtions may be imposed to remove the residual S7

phase obtained from the loop in Fig. 3. This means that (2.48) only gives well-
defined transition functions between partial equivalence classes, and not between
the homogeneous coordinates. (ξi9 ηt, ζt) with \ξi\2 + | ^ | 2 + \ζi\2 = 1 for 1 ̂  i ^ 3
do not define coordinate patches on the twentythree-sphere. This is consistent with
the point of view that the discontinuity of (2.43) seen as a map S23 -> Θ P 2 is of
topological nature and can not be smeared out. An attempt to generalize the
procedure to Θ P 3 fails. There are 16 inequivalent diagrams transforming four fields
(12 linear and 4 star-shaped). Any closed curve in the diagram of diagrams here
leads to an inconsistency. It can be shown that this property, forcing also the
diagram of diagrams to be a tree diagram, excludes some overlaps that would have
been needed in order to define (DP3 in this way.

We hope to find applications to the homogeneous coordinates (2.43), (2.47). It
should be possible to realize E6 « SL(3; Θ) [Fr, Sud] on them in a "spinor-like"
manner, much like 50(10) « SL(2; ©) acts on its 16-dimensional spinor repres-
entations that play the role of homogeneous coordinates for (DP1 (see the following
section). That would open for a twistor transform [Jol, PMcC,
BeCed, Berkl, Cedl, Ced2] for elements in J 3 (Θ) (the exceptional Jordan algebra
of 3 x 3 hermitean octonionic matrices [Jo2, JNW,GPR, Alb]) with zero Freuden-
thal product [Fr] - a known realization of Θ P 2 [Jol,Fr, Po]. Then one would
have a direct analogy to the twistor transform of the masslessness condition in
SL(2; Θ) [Berkl, Cedl] that leads to Θ P 1 as the projective light-cone (see refer-
ence [Ced2]).



386 M. Cederwall, C.R. Preitschopf

2.8. Example: Twistors in Ten Dimensions. In ten-dimensional Minkowski space,
the mass shell-constraint for a bosonic particle is PμP

μ = 0. According to the
isomorphism SO(l, 9) « SL(2; ©) [Sud], P may be viewed as an element in the
Jordan algebra J 2(©) of 2 x 2 hermitian octonionic matrices, and the constraint
becomes that of scale-invariant idempotency [Ced2].

P2 = PtτP. (2.49)

This is a well known realization of (DP1 [Fr, Scha]. The Lorentz group is the
structure group of J 2(Θ) [Scha, Sud]. The two rows (or columns) in P fulfilling
(2.49) contain the two charts (2.38) (up to a real scale). This makes it possible to
perform a twistor transform [PMcC, BeCed, Berkl, Cedl, Ced2], which amounts to
a change of the parametrization of (DP1 from the Jordan algebra one to homogene-
ous coordinates. In SL(2; Θ) language, the correspondence reads (λ = [£, ηΎ)

ς ζ *'f ' (2.50): ] •
where we immediately recognize the homogeneous coordinates and the two charts
(2.38) in the rescaled columns. The similarity transformations on the homogeneous
coordinates are the SΊ transformations (2.40) (and not the traditional transforma-
tions where the components of λ are subject to right multiplication with the same
parameter). The scheme may be described iSΌ(l,9)-covariantly, demanding a two-
component current in a spinor representation [Berkl, Cedl], which provides
a covariant solution replacing (2.40) of the singularity in the current. We expect
something similar to be possible for the case of J 3(Φ) described in the previous
section. The treatment of supersymmetric particles [Fe, Sh, BeCed, Berkl, Cedl]
introduces fermions into 3 along the lines described earlier, but that falls outside
the scope of this paper.

We apologize for not referring to many important papers concerning twistors -
we have limited ourselves to contributions strictly relevant to the division algebra
twistor program.

2.9. Relation to Malceυ Algebras. A Lie algebra 2 with antisymmetric product
[x, y] fulfills the Jacobi identities

J(x, y, z) = [[x, y], z] + [[)>, z], x] + [[z, x], y]=0 (2.51)

for all elements x, y, z e fi. J is by definition alternating, i.e. completely antisymmet-
ric in the arguments. Note the analogy with the associator (1.2) of an alternative
algebra. In the same way as the concept of associative algebras can be weakened to
alternativity, leading to alternative algebras, including the octonionic algebra ©,
the Jacobi identities may be relaxed in favour of a weaker version,

J(x,y,lx,z-]) = lJ(x9y,z),x]. (2.52)

These are the Malcev identities, and an algebra fulfilling them is called a Malceυ
algebra [Ma, Sa, My, Kuz]. In view of the analogy of J to the associator, the
correspondence of the Malcev identities is the Moufang identity (1.5). The analogy
goes further: the only central simple non-Lie Malcev algebra is the commutator
algebra of imaginary octonions [Kuz].
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Malcev algebras have been considered for physical applications in connection
with Malcev-Kac-Moody [Osl, Os2] and related N = 8 superconformal algebras
[ESTPS, DTH]. In this context, they have disadvantage that they cannot be
realized in terms of Poisson brackets or commutators, since then (2.51) automati-
cally is fulfilled.

Consider the S7 algebra in the form (2.5), and evaluate the right-hand side at the
north pole X = 1 (or at any other specific X). The so obtained algebra is then
a Malcev algebra. We see that what distinguishes our SΊ algebra from this Malcev
algebra is the transformation of the parameter field occurring in the X-product, see
(2.11), or more generally, the transformation of the path products. It is exactly this
associator term that cancels the Malcev J. Note that J for the octonionic commuta-
tor algebra is [Zorn]

J{x,y,z) = 6[_x,y,z] . (2.53)

In tensor formalism, the equation responsible for the cancellation is

δiTjuiX) = 2Tmi[j(X)Tkl]m(X) = 2Rijkl(X) (2.54)

(which is equivalent to the zero-curvature condition (1.15)), R being the completely
antisymmetric X-associator that at the north pole reduces to p of (1.13), so that

J(δi, δj9 δk) = 2lTiβ(X)δh δk~] + cycl.

= 4Tiβ(X) Tιkm(X)δm ~ 2(δkTijl)(X)δι + cycl = 0 . (2.55)

Omitting the last term gives the Malcev algebra.

3. Seven-Sphere Kac-Moody Algebra

3.1. Current Algebra and Schwinger Terms. A Lie algebra £ may be lifted to
a Kac-Moody algebra [Moo, GoOl] £ consisting of the mappings S1 -* £ by
applying the Lie product pointwise on the circle. The interesting feature of this
structure is of course that it allows for non-trivial central extensions, or Schwinger
terms [Schw]. The classical version of our " S 7 Kac-Moody algebra," S7, is
therefore trivial - in a conformal field theory language we simply have

: % Λ, (3 1)

ignoring potential normal ordering terms.
Now we have a set of structure functions (the torsion tensor) that varies over SΊ,

so it can be expected that the Schwinger terms can exhibit a similar behaviour (this
is why we in the generic case avoid the notion of "central extensions"). This is easily
demonstrated.

Take the simplest realization, where only the parameter field ξ and its mo-
mentum π transform, and the current is

3 = {π*£} (3.2)
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We use a conformal field theory language, i.e. let the fields be holomorphic in
a complex variable z, and postulate the fundamental correlator

U z ) v ( 0 = ̂  (3.3)

Then the correlator of two currents is easily evaluated as

3(»3(0 | ^ p + 3

In this simplest example, the Schwinger term is obviously a central extension. This
is not so in general. If we stay with the free fields ξ (X = ξ/\ξ\) and π and the
correlator (3.3), but let the current get a "quantum correction" according to

3 = {π*ξ}+σhX*dX, σeR, (3.5)

the algebra acquires a non-central extension:

(8 + 2σ)ft2[α/?] σh2 h
, _ ^ 2 + jZΓf' dX

The currents of Eq. (3.5) for different values of σ carry the same field content and
the algebras (3.6) can therefore be taken as equivalent up to a (quantum) redefini-
tion of the current. The central extension of (3.4) can be taken as a representative of
this class.

Let us now turn to currents constructed from several octonions, as in (2.31), and
for simplicity we first treat the case (2.15) of two transforming fields. It is easily seen
that any double contraction (giving rise to Schwinger terms) must take place
between identical terms in the two currents, since these are linear in momenta. The
Schwinger terms are therefore "additive" - introducing new terms in 3 correspond-
ing to new transforming fields only gives rise to extra Schwinger terms arising from
double contractions of these terms with themselves. The second term of (2.15) gives
a field dependent double contraction, so that the quantum current algebra now
takes the form (from now on, h is suppressed)

h + 3c../* • (3-7)

Here we have a field dependent Schwinger term. Notice that the anomaly is in the
one-parameter class of (3.6) with σ = 4, so that adding a quantum correction
— 4X*dX to 3 gives back (3.4). In fact, the second transforming octonion has not

changed the numerical coefficient of the central extension. This result generalizes to
any number of fields - adding a quantum correction to (2.31) to obtain

3α = - Σ l > * ( * * « ? t / ) ] + 4 l [X,*-1dXk-1αt] , (3.8)

with ak defined as in (2.33), gives back the correlator (3.4). We obtain the surprising
result, contrasting to the situation in (Lie) Kac-Moody algebras, that the
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coefficient of the central extension is unique up to redefinitions of the current. This
statement of course holds given that the field content is that of Sect. 2.6. A more
general uniqueness proof will have to wait for the general representation theory to
be completed.

Any conjugate pair of fermions (at an endpoint of the tree diagram) contributes
to the Schwinger term with the same term as a boson in the same position would
have done, but with opposite sign, just as for Lie Kac-Moody algebras. If the
fermion is self-conjugate, the coefficient is divided by two. The forms of the
quantum corrections needed to render the algebra extension central are completely
analogous.

3.2. BRST Operator. "Anomaly Cancellation" In this section we would like to
address the question of anomaly cancellation: under what circumstances is the
Schwinger term "quantum mechanically consistent," i.e. when is the BRST oper-
ator quantum mechanically nilpotent, and what actual exact form of the Schwinger
term is needed? This question will be of relevance if the algebra is considered as an
algebra of gauge constraints, e.g. in some twistor string model. It will be shown that
quantum mechanical consistency is compatible with one member of the class of
anomalies obtained above.

The first thing to do is to examine how to construct a (classical) BRST operator
for the S7 algebra with field-dependent structure functions. This turns out to be
extremely simple. The BRST operator takes the same form as for a Lie algebra,
namely

5 = c i 3 i - T § ( X ) c V 6 t , (3.9)

where bt and cι are fermionic ghosts with bi(z)cj(ζ) ~ δ{(z — ζ)'1. Higher order
ghost terms are not present since the Jacobi identities hold, due to (2.54). This
makes BRST analysis quite manageable.

Then, turning to S7 and the quantum algebra, a somewhat lengthy calculation
shows that the current must obey (3.6) with σ = 8 in order for Ω (with (3.9) as the
BRST charge density) to be quantum mechanically nilpotent:

Λ3 *x*dX)βh. (3.10)

We have thus demonstrated the non-trivial fact that Ά may be nilpotent, and that
Sη may be used as a gauge algebra. Normally, one would have expected J 2 = 0 to
put a constraint on the number of transforming octonionic fields, but that is not the
case at hand. Instead one is permitted, for any field content, to adjust the numerical
coefficient of X*dX in 3 in order to fulfill that relation.4

One may remark that if one restricts one self to the plain generators of (2.31)
without quantum corrections, the BRST charge is nilpotent for the (linear) diagram
of three bosonic fields, with the parameter field in the middle. We suspect thatit is
more than a coincidence that this is the number of fields transforming under SΊ in
the string twistor model of [Berk2], where one has the pair of octonions making

4 One can however imagine that other covariance properties, for example Lorentz symmetry, puts
a restriction on the quantum corrections, so that (3.10) becomes predictive for the field conten.
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the twistor variable λ (see Sect. 2.8) and the ghosts for the eight supercharges of the
associated superconformal algebra [Berk2, BCP, CedPr]. We have not carried out
the the detailed analysis, however.

In an ordinary algebra with structure constants, one can let £ act on the b field
to obtain a modified, BRST-exact, current 3 containing the ghost fields. If Ά2 = 0,
then the algebra of 3 is non-anomalous. This is not so here. Since the Jacobi
identities hold, it is easy to show that a Poisson bracket of two BRST-exact
operators is BRST-exact, but for the SΊ algebra one obtains

{{&„ <2}, {bj,Ά}} = {2Ttj(X)bk,Ά}*2TΪj(X){bk,Ά} . (3.11)

This specific subset of the BRST-exact operators does not close to an algebra. It
seems that one has to conclude that the S7 or SΊ ghosts do not come in an
SΊ representation. This is also confirmed by an attempt to construct a representa-
tion (other than scalar) for imaginary octonions, which turns out to be impossible.
This was already hinted at when dealing with tensor composition of spinors in
Sect. 2.3.

3.3. Sugawara Construction. The similarity of SΊ to a group manifold and the
results of Osipov [Os2] for Malcev-Kac-Moody algebras let us expect that

a Sugawara construction [Sug] is possible also for SΊ. This is not difficult to
verify for the simplest current 3 = {κ*ζ} and the associated energy-momentum
tensor

= g K* dπ - 3ξ*π] + - K*πeJ K*neJ , (3.12)

where we have normal-ordered the currents in the standard way:

: 3 , (03.(0 : - Hm ^3jW3*(0 ~ ( J Z ^ j s ) (3 13>

In order to generalize this result to currents with arbitrary field content, one has to
be careful about normal ordering. Up to this point we have implicitly assumed
free-field normal ordering on the right-hand side of the current-current commuta-
tion relations. Even though the torsion tensor Tijk(X) commutes with 3*? t f l e

product of those two operators obeys

= :Tijk(X)%k: -STiJk(X)lX*dXek-]

+ Tikι(X)dzTjkl(X), (3.14)

where the left-hand side free-field normal ordered and the first term on the
right-hand side is current normal ordered. It is useful to employ the technology
described by Bais, Bouwknegt, Surridge and Schoutens [BPSS] to show the
following result: for currents that obey

kδij 2
3i(z)3j(Q = -^—^ + j—ζ : Tijk(X)®k - 8[X*3Xefc])(C): , (3.15)
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the Sugawara energy-momentum tensor is given by

and has a central charge of

7/c

in accordance with the known results for Kac-Moody algebras. Equations (3.16)
and (3.17) are identical to Osipov's formulas [Os2]. We note that in contrast to the
Kac-Moody case, the requirement that 3f(z) + a[X*dXei'](z) should transform
like a dimension 1 current under the action of the Sugawara energy-momentum
tensor fixes only the constant α. There is a three-parameter family of candidate
Sugawara tensors which satisfy this condition. The operator product of L(z) with
itself determines the parameters. There are two solutions: (3.16) for any k and
another solution which would require a complex value of k. The Sugawara
construction is therefore unique.

4. Summary and Discussion

We have discussed several aspects of the seven-sphere algebra and some related
topics. We find it somewhat surprising that this algebra has received so little
attention in the mathematical literature (compared to Malcev algebras), in spite of
the fact that the parallelizability property has been known for a long time, and the
simplicity of the argument in Sect. 2.1.

From a physical point of view, the S7 algebra provides a natural generalization
of the Lie algebra concept. We have demonstrated how it can be handled when
arising as a gauge algebra of constraints (BRST procedure) and how it can be used
as a generalized Kac-Moody-Lie algebra. For this last case, some unexpected
features of the Schwinger term occur, distinguishing it from ordinary Kac-
Moody-Lie algebras. The feasibility of a BRST procedure involving field-depen-
dent structure functions and anomalies is not a priori ascertained, but has been
demonstrated. The class of physical models closest in our minds for this kind of
symmetry is string twistor theories. Different versions have been formulated, but at
least one of them posseses an SΊ Kac-Moody gauge symmetry [Berk2]. Super-
string twistors involve a super-extension to an N = 8 superconformal algebra
[Berk2, BCP, CedPr], and we hope that it will be possible to give a similar
treatment of the super-extensions to the one presented for SΊ in the present paper.
Especially the problem of anomaly cancellation may gain some insight from our
results.

A part of the structure of S7 we have treated only fragmentarily is representa-
tion theory. We would like to return to that question later. It is not immediately
clear even how to define a representation. We have quite strong feelings, though,
that the spinorial representations and the adjoint, as described in this paper, in
some sense are the only ones allowed, and that the spinor representation is the only
one to which a variable can be freely assigned.



392 M. Cederwall, C.R. Preitschopf

Most of this paper has been written without specific aim at physical applica-
tions, mostly because we felt that out mathematical understanding of the algebras
we were dealing with in ten-dimensional superstring models was dragging behind.
This means that some sections may be of little interest when studying a specific
physical problem. On the other hand, we find some of our byproducts, e.g. those
concerning infinitesimal generation of the octonionic Hopf map, quite appealing by
themselves.
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