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Abstract: The Newtonian equations of motion, and Newton’s law of gravitation can

be obtained by a limit A = — — 0 of Einstein’s equations. For a sufficiently small
c

constant /A the existence of a set of solutions (0 < A < A) of Einstein’s equations of a

stationary, axisymmetric star is proven. This existence is proven in weighted Sobolev

spaces with the implicit function theorem. Since the value of the causality constant

A depends only on the units used to measure the velocity, the existence of a solution

for any small ) is physically interesting.

1. Introduction

In order to study the properties of a relativistic equilibrium stellar model, we would
like to take the energy-momentum tensor of a bounded ideal fluid body and find the
most general solution of Einstein’s equations. Even in Newtonian fluid mechanics the
ellipsoidal figures with constant density are essentially the only rotating solutions that
are known [5]. In general relativity there exists no analytical solution representing
a rotating star. Although there are known some interior solutions, they could not
be extended to the exterior of the star. Thus, the question arises, under which
circumstances there exists a solution of Einstein’s equations representing a rotating
star. One kind of existence theorem is given in this paper (Theorem 7.1).

In general relativity the spacetime of an isolated and stationary star has a timelike
Killing vector J, that represents the symmetry relative to translations of time, and a
spacelike Killing vector 0, that represents the symmetry relative to the axis of rotation.
The star consists of a rigidly rotating ideal fluid, whose density and pressure are related
by an equation of state. I would like to point to the fact that this stellar model follows
from much more general conditions under the condition “thermodynamic equilibrium”
[13].

In this paper the existence of solutions of Einstein’s equations is proven, that fulfill
the above restrictions. Precisely, we use Einstein’s equations of Ehler’s frame theory
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[7, 8] instead of Einstein’s equations of general relativity. These equations contain

a parameter )\, the causality constant. If A = O, then these equations are equivalent
1

to the Newtonian equations of motion and Newton’s law of gravitation. If A = 2
then Einstein’s equations of the frame theory are equivalent to Einstein’s equations of
general relativity. In Sect. 2 Einstein’s equations of the frame theory are introduced.
We assume that a solution of the equations in Newtonian fluid mechanics is given,
i.e. we assume a given solution of Einstein’s equations with causality constant A = 0.
This solution represents a Newtonian star, rigidly rotating with angular velocity w,
and consisting of ideal fluid. We prove the existence of constants A, {2, such that
for all causality constants 0 < A < A, and all angular velocities |w — w,| < 2
there are solutions of Einstein’s equations of the frame theory. Since any solution of

o . . . 1
Einstein’s equations of the frame theory with causality constant A # 0, A # — can

be considered a solution of Einstein’s equations of general relativity, displayed in a
system of units, in which the gravitational constant has the value G, and the speed

1 . . 1
of light has the value —, these solutions are of physical interest, even if A < ok

This interpretation is discussed at the end of Sect.2. I would like to point to the
fact that there are known various equations of state, such that there exist solutions,
representing a static (w, = 0) Newtonian star. Thus, this existence theorem yields the
existence of slowly rotating stars in general relativity.

To prove this existence theorem, some parts of mathematical theory are reviewed in
Sect. 3. These are the Sobolev spaces, which guarantee some mathematical theorems
(Sect. 3.1), the implicit function theorem, which is used to prove the existence of
solutions in the neighbourhood of a given one (Sect. 3.2), and the properties of the
components of Einstein’s equations (Sect. 3.3).

Einstein’s equations in the form used in this paper can be devided into 3 parts:

1. The equations of motion,
2. The “reduced field equations”,
3. The harmonic conditions.

In Sect. 4 the reduced field equations are solved, if density and pressure of the
fluid are given functions. In the Newtonian case (A = 0), this can be done by
pure integration (Sect. 4.1), and for A > 0, the implicit function theorem yields the
existence of such solutions (Sect. 4.2). If the full Einstein equations for a stationary
and axisymmetric energy-momentum tensor are solved, it holds that the metric also
is stationary and axisymmetric, i.e. has the Killing vectors 9,, and J,,. At the end
of Sect. 4.2 it is shown that if pressure and density are stationary, and axisymmetric
functions, the solution of the reduced field equations also represents a stationary, and
axisymmetric spacetime. This has the consequence that the equations of motion are
equivalent to the single Euler equation.

In Sect. 5 the existence of solutions of Euler’s equation and of the reduced field
equations in the neighbourhood of the Newtonian solution, introduced in Sect. 5.1, is
shown with the implicit function theorem. To use the implicit function theorem, the
differentiability of a function is needed. This causes some limitations for the equation
of state (Sect. 5.2).

In Sect. 6 it is shown that for sufficiently small causality constants the harmonic
conditions are fulfilled automatically, if the reduced field equations and the equations
of motion are fulfilled. Thus, the solutions of the reduced field equations and
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Euler’s equation are solutions of Einstein’s equations. The result is summarized in
Theorem 7.1.

2. Einstein’s Equations

Let (h'7) be a metric of a spacetime, and

(9) = (')

1
V| det(hid)|

the corresponding tensor density. In the case of a flat spacetime, there exists a
coordinate system (t,z,y,2) = (2% z', 22, 2%) such that the metric has the form

(GL” ) = diag ( 2 1,1, 1). In this chart the tensory density has the form

-V 0 0 0

, 0 1/VA 0 0

g=n=1 0 1/VX 0
0 0 0 1/VX

In order to describe the influence of matter on spacetime, we define the functions
1

3

4v/X

According to Lottermoser [14], Einstein’s equations can then be written in the form

U =

g7 —g?).
0

4nGld|TY = gMUY o+ gIUM | = 2U%C g+ AV + BY +CY, (2)

where
39 = Vg = g +4\UY
0
gz] = \/ng] )

d := Mdet(g"),
AY = 2[ gklgmn gnkgml] [giagjb _ %gzggab] Ukl,aUmn,b ,
B = 4)‘gkl [zgn(zU])l’mUkmm _ %gijUkm’nUln’m _ ganzkmejl’n] ,
Y =aN Y UM - U™ o7,

(2.2)

and T is the energy-momentum tensor of matter. Any solution (\, U*?, T*) of these
equations for arbitrary A > 0 is a solution of Ehler’s frame theory [7, 8] with causality
constant \.

If A # 0, the equations of motion, V, 7% = 0, follow from Bianchi’s identities.
However, if A = 0, the frame theory shows that they have to be imposed as an
additional axiom. If we choose harmonic coordinates,

V,Viz! =0, or UY,=0,
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we can divide Einstein’s equations of Ehler’s frame theory into

1. the equations of motions, V,7% =0,

2. the harmonic conditions, U% = 0,

3. the “reduced field equations”, 47G|d|T" = F"/, where (2.3)

FI=gMus  + 4N UMY+ UM - 20 o0
iAij + BY +CY.

Due to the harmonic conditions we could drop the terms U U ,, — 2UkC , Ut
within the reduced field equations. However, if the equations of motlon and the
reduced field equations are fulfilled for certain energy-momentum tensors and suffi-
ciently small causality constants A, the harmonic conditions are satisfied (see Sect. 6).
Thus, we don’t drop the terms UYU* ,, — 2U** | U?! within the reduced field
equations. It should be noted that Emstem s tensor IS

DS VI , S
G =" (F7 + Uk | —2U0% | g7 2.4)
|d| o 0
With
~1.0 0 0 -2 00 0
. o xoo0 o [0 100
@)=109 0o ar 0|l Y2% 0 01 0of"
0 0 0 X 0 0 0 1

and the formula

lim I}, =
A0 IF

K

{Uooyi for j=k=0and i #0
0 otherwise

which can be derived with estimate (6.1), the limit A — O in Einstein’s equations
N
yields the Newtonian equations for the Newtonian potentials U™ and the Newtonian

N
energy-momentum tensor 7°7.
0 for j =0
L 7", = Noo Noo _
—U® 1™ for j#0
N
2. UY,=0
' (2.5)
Nij _ Nij ~ia ~27b | r~35 —ab NOO Noo
3. AUY =4nGTY + ([g Ino (97 1hzg — 3 (37120 (g ])\:o)U ,aU b

N N N | N . .
— 4rGTY + { u® u® . — 3 69|VU||> for i#0 and j #0
0 otherwise

According to [14, Sect. 3.3], Eqs. 1 and 3 are equivalent to the Newtonian equations
of motion, and Newton’s law of gravitation. If we use function spaces, such that the
equations f = 0 and Af = 0 are equivalent, the harmonic coniditions 2 follow from
the equations of motion and the reduced field equations. Thus, Egs. 1, 2, 3 can be
regarded as Newtonian equations.
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In this paper we investigate the existence of a set of solutions of Einstein’s
equations (2.3) for 0 < A < A. We use the energy-momentum tensor of a star,
consisting of ideal fluid, and rotating with angular velocity w. The density and the
pressure of the matter are related by an equation of state. The spacetime of this stellar
model is axisymmetric and stationary, i.e., there exists a timelike and a spacelike
Killing vector, 9, and 9,,, respectively.

The energy- momentum tensor of an ideal fluid, moving with velocity v = 0, +
wd,,,

A ) g9
T = (o + Ap)u“v'v! +p

Nk

where o
Mot =1, wu?= —Ah, 00 = —+/|d| g, ;v (2.6)

In our harmonic coordinate system we use the following ansatz for the Killing vectors:
9, =(1,0,0,0), 9,=(0,—z"z"0).

Since the coordinate lines of z° are integral curves of the Killing vector 4,, all
functions are independent of .

Bepause v is a Killing vector, and v*V,0 = viVip = 0, the equations of motion
V,T* = 0 are equivalent to Euler’s equation

0=p, +(Q+/\p) 6mz(ln(u‘2)) 2.7

At the end of this section we will discuss a possible physical meaning of a solution

1
of Einstein’s equations (2.3) for 0 # A\ # 2 Any solution of Egs. (2.3) can be

considered a solution of Einstein’s equations of general relativity, displayed in a new
system of units in which the gravitational constant has the value G and the speed of
light has the value ﬁ We will denote all quantities in the new system with a prime.

The transformation

new system — SI-system

length: oo =Sy
g PV
time: ' — t:i=at
/ o ’
mass: m — m:= 5 M
VA
withany a > 0 transforms this new system of units into the SI-system. Transformation
k . 1
of pressure ([p] ) density <[,Q] = —“(]3) and angular velocity ([w] = E)’
m
yields
1 1 1
/o /o [
9—52_:97 p"WP? and w‘—aw7

respectively. Thus, this transformation changes the form of the equation of state to

p(o) = a2 \p/ ( )
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If we are interested in solving Einstein’s equations of general relativity for a given
equation of state p(p), we must take a set of equations of state p\(¢’), such that
we can solve Einstein’s equations of frame theory for any A # O with equation of
state p'\ (¢'). Then, we can consider this solution a solution of Einstein’s equations of

general relativity with equation of state p(g) = ac?\p) < %) , displayed in the new

system of units. Thus, we must take such a set p, that for an appropriate choice of
«, the desired equation of state can be achieved.
A physical interesting equation of state with p(0) = 0 can be written in the form

p(e) = 0" f(0),
where f(0) # 0 and v > 1. If we take the set of equations of state

L
PA@) = " F(EN T,
then /{in}) P\(0) = f(0)¢'. It follows that the set of equations of state depends

regularly on the parameter A, and we can expect the limitations to be fulfilled, we have
to impose on the equation of state (Sect. 5.2). Thus, with the existence Theorem 7.1,
we get a set of solutions of Egs. (2.3) for an energy-momentum tensor of a rotating
body, consisting of ideal fluid with p) (o). Since we consider a solution with A # 0
a solution of Einstein’s equations, displayed in the new system of units, this solution
has the following equation of state in the SI-system:

plo) = a2c2A(a—"2) f((czA)ﬁ %) .

1
If we choose o = (c2\)2¥=1), this solution is a solution of Einstein’s equations of

general relativitiy with equation of state
p(o) = 0" f(0)
and angular velocity
w= (62/\)7'/1—_%/ ,

displayed in the new system of units.

3. Weighted Sobolev Spaces and Functional Analysis
3.1. Weighted Sobolev Spaces

Definition 3.1. Let || - ||, be the standard norm of LP(R™), and o(x) := /|z|* + 1.
Then, the Banach space Mﬁh s@R™) is the completion of C§°(R™) with respect to the

norm
— 5
s =D o0,
lal<m
Here o is a multi-index, and C§°(R™) is the set of C*°-functions with compact support.

This definition is due to Cantor [2]. In this paper, Cantor investigated the bijectivity
of the Laplacian on weighted Sobolev spaces. An improvement in the analysis of
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the Laplacian was achieved by McOwen [15]. Theorem 1 of his paper and the
corresponding proof yields

1
Proposition 3.2. For all n > 3 and —% <6< -2+ n( 1 - 1—)) the Laplacian
A:MER™) — ME 5, (R™)

is bijective and continuous. The inverse operator A~ is

—1 f(ilf) In

where A, is the area of the unit sphere in R™.

According to Cantor [3, Theorem 5.6], the following proposition holds:

Proposition3.3. For all 6 < 6, + 6,, m < m;,m, withm < m; +m, —  there
p

exists a constant C, such that for all f € M?, L6 (R™) and all g € M? 26 R™) it holds
that
”fg”m,p,é S C”f”ml,p,é[ ”g”mz,p,éz .
Thus, the pointwise multiplication
M’fl;ll 5|(Rn) X M'II’I)‘Ll 52(Rn) - Mfy)l’é(Rn) ’
f X g - f-g

is bilinear and continuous.

3.2 Differentiability and Analyticity

Definition 3.4. £,(B,, B,) denotes the Banach space of i-linear and continuous maps
from the Banach space B, into the Banach space B, with the norm

Hf”/(Bl,Bz) sup{||f(zy, - .-, $1)||32;SUP{||~’51”BI7 Sy “%”Bl} <}.

Definition 3.5. C*(A, B,) is the set of functions, which map the open subset A of the
Banach space B, into the Banach space B,, and are k times Fréchet differentiable.
The derivative of f at a point z is denoted with D f(x). If f has several arguments,
D, f(zy, ..., z;) denotes the partial derivative with respect to the argument .

A function f: A — B, is said to be of class C*(A, B,), if for each x, € A there is
a radius r > 0 and a sequence f, € %4,(B,, B,) of i-linear symmetric maps, such that

0 .
Z ”fZH ‘4(31732)“ < 00,

=0

and for all x with ||z — x,|| < r it holds that

f(x)szl(x—xo,...,x—xO).

1=0

1 times
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Remarks.
o A derivative D f(z,) of a function f at a point z,, belongs to £ (B,, B,).
e Higher derivatives at z; into directions h,, ..., h; are denoted with

DF f(xg, by, .-y hy).
o If B, =R", B, =R, we have

1
filx =z . x—z)= Y — 0% (@) (@ —xp)®,

|a|=1

and Definition 3.5 reduces to the statement that a function is called analytic if it can
be represented by a uniformly and absolutely convergent power series.

e A function f is of class C“(By(0), B,), if for all x € By(0),

f@ =Y f@ ..oy with Y [fillspm R <o,

=0 1=0

where all f, are i-linear and symmetric. The proof is similar to that of the
corresponding statement in the Banach space R, since for all z, € By(0) and all
h € Br_ |4, (0) it holds that

fao+h)y=>_ fimg+h, ..., xg+h)

i=0
o] [ i
:Z Z (k>fl(a:0, ey Tgy by oy ),
=0 k=0 —
k times i—k times
oo K3 Z
> (k> i, - 2oy s W,
1=0 k=0
k —k
<33 () 1l laalls, Il
i=0 k=0
oo
< Z I fill By, By UIZoll 5, + (1Rl 5)" < o0
i=0
Linear and i-linear continuous maps are of class C“. The derivative of i-linear
functions into direction h at (z;, ..., ;) can be calculated by the product rule
Df(xy,...,z)h=f(hy, 2y, ..., 2)+ ...+ flz), ..., 2,1, D).

e Concatenation of C*, and C“-functions yields a C'*-, and a C“-function, respec-
tively. The derivative can be calculated by the chain rule

D(f o g)(zy) = D f(g(zy)) - Dg(xy) -
e C¥(A, B)) C C®(A, B,).

Proposition 3.6. Let f:R™ — R with f(0) = 0 be analytic on the ball B_(0).
Furthermore, let B be a Banach space with a scalar multiplication and a commutative
multiplication B x B — B, such that for a constant C and all X,, X, € B,

X1 - Xollp < ClXilIp - 1 Xsl 5 -
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Then, the function

=1
fiB" =B, (X, ..., X,) > (X, X)=> = fOX .. X
s ol

is of class C*(B(0) x ... x By(0), B), where R = é
Proof. With respect to the estimates

IXF Xl < ORI ||X ||%” < ClTIR,

<z Z 10 FO)]rle,

a>1

> i8af(0)Xf” ...X;;n
al

a>1

this proposition easily follows from the fact, that for all € B,(0) we can represent
f by the absolutely convergent power series

oo

1
f(x) = Z o~ O F(0)z™ . O

a>1

Major tools, to be used in the remainder of the paper, are the following theorems
[6, 16]:

Theorem 3.7 (Taylor). Let A be an open, convex domain of the Banach space B,. If
the function f is in C*+1(A, B,), then for any xy, h € A it holds that

f(l'o‘l‘h) (350)"‘2 Dl (an 7"'>h)+Rk+17

1
a
Ry :/
0
1
||Rk+1”32 S m Oilzgl ”D’H—lf(xo +th7h7 ey h)||32 .

O ki
D DM f(ay 4 thyh, ..., Byt

Theorem 3.8 (Implicit Function Theorem). Let B|, B,, B; be Banach spaces, and A
an open subset of B, x B,. Furthermore, let

f:A_)BS7 (xay)_)f(x,y)
be a continuous function, whose partial derivative D, f(z,y) is continuous in A.
Assume that for a point (zy,Y,) € A it holds that f(z,yy) = 0 and D, f(z,Yp)

is bijective. Then, there exists an open neighbourhood L C B, of x,, and a continuous
map l: L — B,, such that for all x € L,

[z, l(x)) =0
In addition, it holds that | € C*(L, B,) if f € C*(A, By).
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3.3. Properties of the Tensor Density (U)

3.3.1 The Function Space of the Tensor Density (U")
-1
Definition 3.9. Forp >4 and0<§ < —2+3 ”T
Fy := M s(RY),
F = MPy (R,
Foi= M, R,
are the Banach spaces of 2, 1, 0 times weakly differentable functions, respectively.
For a matrix (U") of functions,
Ef == {(U),U" € F, forall i,j =0,1,2,3},
Ef = {(UY),U" € F, forall i,j =0,1,2,3},
Ef = {(U"),U" € F, forall i,j =0,1,2,3}

are the corresponding Banach spaces of 4 x 4 matrices with the norms

U gy = sup 3||U”||F2,

IUDNps = sup [[UY]|,

2,7=0,...,3

sup “Uij”Fo )
%,7=0,...,3

NS

respectively.

We can easily see that any smooth matter density ¢ with compact support is in
F,, the corresponding Newtonian potential U is in F), and all components of the
corresponding Newtonian gravitational force —U (¢ = 1,2, 3) are in F}.

Properties of F,, I}, and F,:

1. Since all derivatives of o ~! are bounded, and M, ﬁ% s@®R™) C W™P@R™) for § > 0,
we get with Sobolev’s embedding theorem [1, Theorem 5.4], the following continuous

embeddings for 0 <v <1 — §:
p

F, —» CY"®RY, F, — C™"®.

Here, C*¥ denotes the Holder space of i times Holder continuously differentiable
functions.

2. With the Rellich-Kondrachov theorem [1, Theorem 6.2] we see, that for all compact
3
domains TCR¥*and all 0 <v <1 — , the embeddings

FEy s CY(T), F,— C™(T)

are compact. It should be noted that an embedding B, +— B, is called compact, if it
is continuous, and if all sequences that are bounded with respect to the norm || - || ,

have a subsequence that converges with respect to || - || ,.
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3. Due to Proposition 3.2, the operator

AF, — F 3.1
is linear and continuous. The inverse operator A~! is
—1. fx" 3
ARy — B, f—>——/lx_x,| 2

4. With Proposition 3.3 the following pointwise multiplications are bilinear and

continuous:
F,-F, - F,, F,-F, — F,

E,-Fi—F, F -F—=F,
E,-Fy—F,, F-F,—F.
Furthermore, the multiplications
B - F - Fy
Fl* . Fl* _ F]* ,
defined by the usual matrix multiplication, are bilinare and continuous.

5. Definition 3.1 of weighted Sobolev spaces yields the continuity of the differential

Operators
611 :F2 — FI ,

517;1F1 — FO'

3.3.2. Properties of the Components of Einstein’s equations
In this section we investigate the differentiability of some components of Einstein’s
equations.

Proposition 3.10. Ler B4(0) denote the ball with radius ¥, centered at the origin of
F. Furthermore, let B_(0) be the ball of radius €, centered at the origin of F,. Then,
for any ¥ > 0 and any € > 0, there is a A > 0, such that the following functions are
of class C*:

L (g - <g”>]:(—A, A) x By(0) = F, (A, UY)) = (§9) — @,
2. (Ig¥) - (§)): (=4, 4) x By(0) — B, (\UY) > @, - @),
3. [|d] — 1]:(=A4, A) x Byg(0) — B_(0), (N, ({UY)) —|d| -1,

The functions (§¥), (§;;), and d are defined in (2.2). If € is chosen sufficiently small,
then the following functions are also of class C¥:

1. [V]d] — 1]:(=A, A) x By(0) — F,, (AN, (UY) — +/|d| -1,
1 g 1
— — 1| (=4, D) x By(0) = F,, (\,UY)— —= -1,
[ e naon. o g

1 . 1
3. [W] - 1} ((=A, ) x By(0) = Fy, (A (UY) — s 1.
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Furthermore, the partial derivatives with respect to the argument (UV), evaluated at
A = 0, vanish for all these functions.

Proof. Since (%) = (§¥) + 4\>(U¥), where
0

A 0 0 0
3 0 100
iy
@ 0 01 0]
0 0 0 1

the first statement is trivial. '
Let U be an abbreviation for the matrix (U%). With Born’s formula (1 — U)~! =

&)
>~ U*, it holds that

u=0
g ' = (g+4VNU)!
0
= (g[1+ 4V N3¢ 'U]~!
0 0
=[1- (~4\/Fg_1U)]“g—1
0
=Y (A" VAgT'D) g
n=0 0 0
Thus ]
@)=V ' = [Z(—mn(ﬁg*m" Vag™! (3.2)
n=0 0 - 0
Since
1.0 0 0
0 A0 O
—1\ _ /= _
‘/X% )=@D=1 o 0 A o]
0 0 0 X

for any A € F°, and |\| < 1, it holds that
VARG~ Al < 4l

Because the multiplication F;* - F,* — F," is continuous, there exists a constant C,
such that for any A, B € F it holds that
JA- Bllgs < CllAllgs - Bl
These inequalities yield
IV Ag™ A |y < O HIVAGT AN |1
0 0
n—1 n n
<C"TEN “U”Fz*
< e lgaom.
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Thus, the series (3.2) converges absolutely for 4A\JC < 1, i.e., it converges for all

1
< A and all (U" if A< ——.
[A] < A and all (U") € B,(0) 1f/1<4190 Hence,

@,) — (gw) = [Z(—4,\)"(\/Xg—lU)n \/Xg—l

n=1

is of class C“((—A, A) x By(0), "), because it can be represented by an absolutely

convergent power series.
According to [14, Eq. 3.15], it holds that

|d| = =\ det(g*)
=1 —4AU+4)\tr Z - V16Ut Z — WH+ M8t Z — tr Z2)
— 64N (U5 (W Z —w 2D - W2 Z + WZW)

+64X°det Z — 256)\7(U det Z — W adi(Z) W) . (3.3)
Here, we use Lottermoser’s definitions
U:.=u®
W = (UOI U02 U03)
Lfll []12 []13
7 = U12 U22 U23 ,
[[13 []23 l]33

and adj denotes the adjoint matrix. Thus, the continuity of the multiplication F,-F, —
F,, and the fact that |d| — 1 is a finite linear combination of products of the functions
U™, lead to the existence of a A > 0, such that the functions [|d| — 1] is of class

C¥((— A, A) x By(0), B.(0)).
1 1

The functions /1 + x —1, ———— —1, and —— — 1 are analytic in the intervall

Vit 142z y

(=1, 1), and vanish at z = 0. Thus, Proposition 3.6 yields the existence of an ¢, such
that the functions

Wi+z—-1]:B.0) = F, [f@—Vvi+fl@)-1,

1 1
—1]: —F. —- ]
1 1

are of class C*(B_(0), F}). Thus, since concatenation of C*“-functions yields a C*-
function, the functions

V]d| — 11, [—1——1], and [i—l],
Vidl ]
are of class C*((—A, A) x By(0), F,).
The statement that the partial derivatives with respect to the argument (U%),
evaluated at A = 0, vanish, easily follows with the power series representations
of these functions and the chain rule. [J
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Since v = (1, —wx?,wx',0), and the angular velocity w is a constant, the
components of the velocity v are unbounded. However, the velocity v is of interest
only within the star. Thus, it is useful to choose a radius R,, such that all matter of
any body, regarded in this paper, lies within the ball B Ry(0)- Then, we take a function

£ € C§°(R?), depending only on |z|, with £(z) = 1 for |z| < R, and &(z) = O for
|x] > 2R,, and substitute v by
vi= (1, —fwa?, Ewz!,0). 3.4
Using this definition of v, we have

Proposition 3.11. Let B,(0) denote the ball with radius 1, centered at the origin of
Fz*. Furthermore, let Bg(0) be the ball of radius ©, centered at the origin of F,,. Then,
for any ¥ > 0, any © > 0, and any {2 > 0, there is a A > 0, such that the following
Sunctions are of class C*:

Lo w2 =11:(=A,4) x (=2,02) x By(0) = F,, (\w,U?) —[u?-1],
2. [w? = 13:(=4,4) x (=£2,2) x By(0) = F,, (A w,(U")) — [v* — 1],
3. [% ln(u2)} H(=A,A) X (—02,2) x By(0) = Fy, (\w,UY)) — % In(u™?).
The function uw™? is defined in (2.6). Additionally, the function
[(T]:((—A, A) x (—£2,82) x By(0) X Bg(0) x Bg(0)) — Fy
A\ w,(UY),0,p) = (TY),
defined by the energy-momentum tensor

. o atJ
TY = (o + A\p)uv'v? +p \iﬁ . where v=(1,—fwz? twz',0),
is of class C*.

Furthermore, the partial derivatives with respect to the argument (UY), evaluated
at A\ = 0, vanish for all these functions, except

1 . )
Dy | 35 In@™) 0, W) | (6U¥) = U™

Proof. With Eq. (3.4), we have
3,0 = Joo — Go1 26w’ + 2gpéwa’ + &t @y
— 2g12§2w2m1x2 + §22§2w2(x1)2 .
The properties of &, the continuity of the multiplication F,-F, — F,, Proposition 3.10,
and the equality g,, = diag(—1, A, A, A), imply that there exists a /A, such that the
function 0 _
g, v + 1
is of class C¥((—A, A) x (=12, £2) x By4(0), F,). With Proposition 3.10 and the product
rule it follows that

u?-1= —\/mgi]—vlvj -1
= ~(/d - D@, v'v — )~ /] = D= @G o +1)  (3.5)
is of class C“((—A, A) x (=42, £2) x By(0), F).
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Proposition 3.10 and Eg. (3.5) show that the partial derivative of u~? — 1 with
respect to the argument (U*) vanishes at A = 0 for all (U") € By(0). Using Taylor’s
Theorem 3.7, for all (U") € B(0) it holds that

m”—u@ﬂwnzw”—Dwm+/Dwmm4—u@ﬂWmMme

Because [u~2 — 1] and its derivative depend continuously on ), it follows that for
all € > 0, there exists a A, such that for all |A\| < A and all (UY) € Bﬁ(O) we have
[u= = 1|l < e. Thus, for all € > 0 there exists a A such that u=> — 1 is of class
CY((—A A) X (=12, 12) x By(0), B_(0)).

— 1, In(1 4+ z) are analytic in (—1,1) and vanish at

1
Since the functions T2
z = 0, Proposition 3.6 yields the existence of an €, such that the functions
1 1
— —1|:B.(0)C F F. — 1
[1+x ] OCh=5, f@=1Fs b
(In(1+2):B.(0) C F, = F,, f(z) = In(1+ f(z))
are of class C*’(B,(0), F}). Since concatenation of C*’-functions yields a C*’-function,
[u?—1], and [In(u"?)]

are of class C¥((—A, A) x (=12, £2) x B,4(0), F,) for sufficiently small A. A calculation
of the power series of In(u~?2) ylelds

In(u"2) = =AW (2" + @H?) + 22U% (@) + ONY),

where O()\?) represents all elements of the power series, that are at least quadratic
in A. Since there exists a /A, such that this power series converges absolutely for all

1
|A| < A, the power series that represents N In(u~2),

% i) = €% * (@) + @)+ UN) + 00,

1
also converges for these A. Thus {— ln(u‘z)] is of class C¥((—A, A) x (—£2, £2) X
2\
By(0), F3).
With
o gv , , .
T = (0 + Ap) W? — Dv'v! +p < jm - 9”) + (0 + Ap)v*v? + p(g¥)
0 0
and the continuity of the multiplications F, - F, — F,, F, - F{y — F, the product rule
leads to the analyticity of 7%/. Finally, the statements about the derivatives at A = 0
follow by straightforward calculations. [J

Remarks. 1 would like to point out that there are some regions, where the functions
of Propositions 3.10, 3.11 are defined mathematically, but where they are physically
absurd. One example is A < 0. Later, we restrict ourself to those regions, where
A > 0, and to those densities ¢ and pressures p, where T% has the meaning of an
energy-momentum tensor of a bounded body, consisting of ideal fluid, and rotating
uniformly with angular velocity w.
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Without proof, I present the results of the calculation of the first elements of the
power series, representing the functions, used in Propositions 3.10, 3.11:

ld] — 1= -4 U" + 00\ € F,,

V0d] —1==2XU" +00?) € F,,

1
—— —1=2U0"+00? € F,,

V1d]
@,,) — (@,,) = 4N ENUY + O(N) € FfF
0
-2 2 w? 142 2\2 00 2 30
u t—=1=2\-¢ 7(@) + @)+ U +0(0\) € F),

2
u? —1 =2\ [52 “’7 (") + @H?) — UOO] + 00 € Fy,

2
) = €2 @+ @)+ U0+ O € By

4. Solution of the Reduced Field Equations

4.1. Solution of the Newtonian Field Equations

1
For A = 0 and any (U¥) € F,* we have \/ﬁ —1 =0 and > — 1 = 0. Thus, the
Newtonian limit A — 0 in the energy-momentum tensor

g

Vidl

T = (0 + Ap)u’vv’ +p

yields the Newtonian energy-momentum tensor

N
T = ov*v’ +plg" 15—
0

where
0 0 0 O
0100 o
[(.gzj)])\zo = 00 1 0 ’ U= (la _gwx 75"01: 70) .
0 0 0 1

Inserting this equation into the newtonian field equations (2.5) leads to
N N 00,7700
AUY = 4nG(ov*v? + plg¥]_o) + U U™
0
N N
1 r=ij a
-3 [.g J],\:OUOO, UO()’a’

when using the following definition:
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Definition 4.1. For any differentiable function,

. [=1] — aﬂ@if forz’;é()
f .—['g]]/\_()fd_{o fori:()

denotes the partial derivative of f, raised with the matrix [(§”)],_,.
0

Since the Laplacian A:F, — F| is continuous and has the inverse (3.1), these
equations are equivalent to

N
UY(x)
1,5 =1 NOOiNO() i _ =i NO()aNOO
Ly g AmGeul 4 plg ) + UTHUTY — 3G U U,
! 0 0 &z’ (4.1)
4m |x — 2|
R3

We can solve these equations by pure integration, because for ¢ = j = 0 it reads

U = -G / |$9(_5”2,| & (4.2)

R3

Since this is the equation for the Newtonian potential of the density p, we see that
the Newtonian field equations and Newton’s law of gravitation are equivalent.

With the continuity of the operations A™!:Fy — F,, ,.:F, — F|, and the
continuity of the multiplications Iy - F, — F,, F, - F, — F,, we can convince
ourselves that for all © > 0 and all {2 > O there exists a constant C, such that for
any 0,p € Bg(0) C F,, and any w € [—12, {2], the solution of the Newtonian field
equations fulfills

N
I )||ps < C. 4.3)

4.2. The Case A # 0

Because of (3.1), the reduced field equations (2.3) are equivalent to

Wm:j/@ﬁMWWﬂﬁm@%mmeﬂ (4.4)

41
R3
Proposition 4.2 (Solution of the Field Equations). Let Bg(0) and B,(0) denote the
balls, centered at the origin of Fyy with radius © and F;' with radius ¥, respectively.
For all © > 0, {2 > 0, there exist constants A > 0, ¥ > 0, and a differentiable
function

|z — 2’|

[(U)]: (=4, ) x (—£2,92) x Bg(0) x Bg(0) = By(0) C Fy',
such that [(UY)](\,w, 0, p) and the energy-momentum tensor
-

T = (o + Ap)uv'v? +p -~

Vd|

solve Egs. (4.4) and the reduced field equations.
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Proof. Due to estimate (4.3), there exists a constant C, such that for all g, p € By, and
all w € [—{2, §2], the solutions of the Newtonian field equations lie in B(0) C Fy.
Choose ¥ = 2C.

Proposition 3.10, the continuity of the operators

6:61:F2_—>F17 F2.FO_)F07

8_,D1:F1_")F0, FI'F1—>F07
and the product rule lead to the existence of a A, such that
o [(A)): (= A, A) x By(0) — Ff, (A, (U7)) — (A9),
o [(B]:(—=A,A) x By(0) — Fy, (A, (UY)) — (BY),
e [(C)]:(=A, A) x By(0) — Fy, (A, (U9)) — (CV),
e [(D)]:(—=A, A) x By(0) = Fy, (A, (UY)) — (DY)

= AN UK L+ UEUR =200 U,

are of class C¥((—A, A) — By(0), F"), where AY, BY, C" are defined in (2.2).
Furthermore, it holds that

D(U”_)[(Aij)(o? U)] (UY) = sUPIY0 4 sU0 00 _ [?IZj]A:oéUOO’aUOO,a
Dyis[(BY) (0, U*)] (6U) =0,
D iy [(C7) (0, U] (§U) = 0,
Dyyin[(DV) (0, (U] (6UY) = 0.
Thus, the map F'7 — AUY = A% + BY + C% + DY is of class C¥.
Proposition 3.11, 3.10, and the product rule yield the existence of a A, such that
[A7G|d| T]:((— A, A) x (=12, 2) x By(0) x Bg(0) x Bg(0)) — Fy ,
A\ w, UY), 0,p) — 47G|d| T
is of class C*“.
Finally, with (3.1) we see that the map & :(\,w, (U%), 0,p) — F5,
A w, (UY), 0,p) = OV (\,w,(UY), 0,p)
T / 4rGld@)| T9 @) - [FI(@) — AUIG] 5

47 |z — /|
R3

is differentiable. Calculation of the partial derivative with respect to (U%) leads to

Dyiny[87(0,w,(U"), 0,p)] (BU?)

_sU _ -1 U0 4 Uiy — [gi], _, 6U%eU®
= 4r . Ix _ .’L'/|
R

2 B’ (4.5)

We can easily see that
D 175)[2(0, w, U"), 0,p)] ZFQ* - Fz*

is bijective.
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Section 4.1 shows that for all g,p € Bg(0), w € [—{2,2] there is a solution
N _ N
(U"Y) € By 12(0) of the equations 9*(0,w, (U"), p,p) = 0. Thus, the proposition
follows by the implicit function Theorem 3.8. [
From P\, w, (UY)(\,w, o,p), 0,p) = 0 and the chain rule, it follows that for
all 6o € Fy,
0= D, [8°\,w,(U9)(\,w, 0,p), 0,p)] 80
+ Dy [8%° N, w, (UY) (N, w, 0,p), 0, I D,[(U7) (A, w, 0,p)]60. (4.6)

Since U%? = 0 and [¢%],_, = 0, Eq. (4.5) leads to
0

D) [2%(0, w, (UY), 0,p)] (6UY) = 6UP. 4.7)
Because the energy-momentum tensor 7% and the functions %/ depend linearly on
0, it holds that
4 Go(x")

&P .
lz — /|

1

D,[8%(0,w,(U"), 0,p)160 = — /
47

R3

Insertion of this equation and of Eq. (4.7) into (4.6) leads to

do(z")

3
P d’x . (4.8)

D,[(U) (0,w, 0,160 = ~G /
R3

With a similar calculation it can be shown that
D,,[(Uij) 0,w,0,p)100=0. 4.9

At the end of this section, we make use of the fact that the functions o, p, and
(U*) can be defined on R*. They depend trivially on the coordinate x°. The matrix

1 0 0 0
0 cosp —sing O
S, = .
0 singp cosp O
0 o0 0 1
represents a spacelike rotation around the z*-axis with angle ¢, and
1 00 O
Lo 010 O
1001 0
0 0 0 -1

w

represents a reflection at the plane z° = 0. Assume that the matter is symmetric
relative to the z3-axis and relative to the plane z* = 0, i.e., for all ¢, the density o
and the pressure p fulfill

o@") = o(S,}z") = e(tja?),  p(x") = p(S,tz’) = p(tya),
respectively. Then, some calculations show, that for any solution (U*) of the reduced
field equations, the functions

U9(z*) = 5_,08_,U(S,}z)

—pa~—pa
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and
U9 (") = t, iUt a?)

also solve the reduced field equations. Due to Proposition 4.2, the solution of the
reduced field equations is unique. Thus, the solution of the reduced field equations
fulfills

UY (@) =S_ 08 iU (Se)a’), (4.10)
UY(x") =t U (ta’) . 4.11)

Equation (4.11) shows that any solution of the reduced field equations has the
property

G, (") = 10, (thx) . 4.12)

With Eq. (4.10), it follows that the Lie derivative into the direction (0, —z?, !, 0) of
the metric defined by (U*) vanishes. Thus, 9, = (0, —z?,z',0) is a Killing vector.

Because the functions (U*) are independent of the coordinate z°, 0, = (1,0,0,0) is
also a Killing vector. Finally,

(1, —wxz, wz! ,0)

is a Killing vector of the metric, defined by the solution of the reduced field equations.

5. Solution of Euler’s Equation and of the Reduced Field Equations
5.1. Euler’s Equation

We assume that a set of equations of state p, (¢), depending on A, is given. According
to some restrictions, presented in the next section, these equations of state fulfill
py = 0, agp/\ > 0. Integration shows that Euler’s equation (2.7) of an ideal fluid,
rigidly rotating with angular velocity w, is equivalent to

1 _ 1 _
Ax(e(@)) + 7 In(u 2(2)) — Ax(0(0)) — 7y 20) =0, G.D

where the points 0, x lie within the star and

o

_ asp,\('s)

Ay = / RO s, (52)
0

u?= —\/[dlng’zﬂ ,
v= (1, —wéz? wtz',0).

The function &, defined in (3.4), fulfills {(z) = 1 for all z with |z| < R,. Obviously,
the radius has to be chosen such that the whole matter lies in the Ball B Ro (0). The

Newtonian limit A — O in Eq. (5.1) yields

N 2,2 N
0= Ay(o(x) + U"(x) — %"— [(@")? + (@H)?] — Ay(0(0)) — U™(0), (5.3)
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N

where U denotes the Newtonian gravitational potential (4.2). Equation (5.3) is
Euler’s equation of an ideal fluid, rigidly rotating with angular velocity w, in
Newtonian fluid mechanics.

Assume that g,: T — R7 is a solution of Eq. (5.3) with angular velocity w,. Here,
T denotes a smooth and compact domain. The coordinate system is chosen such that
the star rigidly rotates around the z3-axis. The solution o is rotational symmetric
relative to this axis, and symmetric relative to reflections at the plane 22 =0.In
[12, 13] it is shown that any solution of Euler’s equation, representing a Newtonian
star in thermal equilibrium, is rotational symmetric relative to the rotation axis, and
symmetric relative to a plane, orthogonal to this axis. With the definition

N 2¢2 N
Aglog(@)) = =U"(@) + % (@ + @+ Ag(eO) + UYO)  (5:4)

we extend the function A(gy(x)) to points = ¢ T

Since the force, resulting from pressure, is directed towards the exterior of the star,
for all = on the surface of the star the sum of gravitational and centrifugal force

N 2, ,2
VI0"@) ~ S0 @ + (@)= VAo

is directed towards the interor. Let n(x) denote the normal vector on the surface 0T
at the point z with |n(z)| = 1, directed towards the exterior. Then, there exists a
constant ¥ > 0, such that for all x € 0T it holds that

—n(z) VAy(y(2)) = 29

. N w? N
Since the functions U ;(x)— =—— 9,.[(z')*+(2*)?] are continuous for all U® € F,,

there is an &, such that for all x € 9T, and all t € [—¢, €] it holds that
—n(z) V Ay(go(z + tn(z))) > 9, (5.5

i.e. in the whole shell of size ¢, the sum of gravitational and centrifugal force into
direction —n is greater than 1. Let

T. :={2' =z +tn(z);z € 9T, |t| < &} (5.6)

denote this shell. We choose ¢ such that for all z,% € 9T, and all ¢,f € [—¢, ] the
equation
T +tn(z) = T + tn(T)

has the unique solution z = %, ¢t = £. Consequently, any smooth function ¢:0T —
[—¢, €] uniquely defines a surface of a new body by 0T — R3, z — z + t(x)n(x).

5.2. Restrictions to the Equations of State

From a given tensor density (U*), that defines a function u 2, we calculate the density
¢ and the pressure p with Euler’s equation. Since the implicit function Theorem 3.8
will be used to prove the existence of solutions (A, o, p(U%)) of Euler’s equation and
the reduced field equations, this operation must be differentiable. This leads to some
restrictions to the equations of state.
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The equations of state p,(o) are assumed to fulfill p, > O, 8gp)\ > 0, and
p,(0) = 0. Because the surface of the star is defined by p, = 0, it follows that
the density o also vanishes on the surface of the star.

Let A, . 7, and A be constants, such that for all 0 < A < A4, all z € T, and all
0 <t < 7 it holds that

Ay(0p@) +t < Apay - (5.7)

The constant A_,, must be chosen in a way that for all 0 < A < A the functions

Fy(y) = {A;‘(y) for y € [0, A, ]
A 0 for y <0 ’ (5.8)
— byo Agl(y) for y € [Ov Amax] - F .
G () : {O for y < 0 PAF\(Y))

exist, and are continuously differentiable with respect to y. The functions F)(y),
G, (y), and their derivatives F;(y), G (y) are uniformly continuous for 0 < A < A,
and —oo < y < A, Furthermore, for all g, X, there exists a constant C, such that
the estimate

(A,\(Q) - A,\O(Q)l < O|/\ - Aol 59

is fulfilled.

Example. We discuss these restrictions in the case of a polytropic equation of state

p(o) = Cp? with > 1.

For arbitrary A,,,, > 0 we have
A\@) = w1 In(1 +ACg" 1),
Ay =1
1
1 A=t =1
F\(0) = [_CT/\ (AT IJ for y € [0, A,,,] ,
0 for y <0

1
| B e 71
G,\(Q) ={C [EX (e 7 = 1] for y € [0, Amax] .
0 for y <0

From these equations, it can easily be seen that the conditions of this section
1 1

are fulfilled if the functions f(z) := z7-! and g(z) := x7-! are continuously
differentiable in R*, and

lirr%) 0,f(x)= lin}) 0,9(x)=0.

This yields the restriction > 1, such that the polytropic index + has to fulfill

1<y <2.
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5.3. Solution of Euler’s Equation and of the Reduced Field Equations

Definition 5.1. Let p € R be the number, that is introduced in Defintion 3.9. The
density o and the pressure p lie in the Banach space

[A(TUT,) = {f € LP(TUT,)

f is symmetric relative to the x3-axis, a.e.
f is symmetric relative to the plane x> = 0, a.e.

with the norm || - || .. Note that T U T, is compact.

Obviously, the radius R, used to define the function £ Eq. (3.4), must be chosen
such that TUT, C B Ry ()

Proposition 5.2. Let g, be the solution of Euler’s equation in Newtonian fluid me-
chanics, introduced in Sect. 5.1. Then, there exist A > 0, 2 > 0, and § > 0, such that
for all 0 < X < A the condition

@) =—-> ln(u 2(@) X ln(u 2(0) + A, (y(0) =

defines a closed, and smooth surface in the shell T_. Here, the function u;f, is defined
by the solution [(U"))(\, w, 0, p) of the reduced field equations (Proposition 4.2), and
loe—ooll,, llp—polall, <8, |w—wp| <92.

For all points x € T'UT, outside the domain surrounded by this surface, it holds that

firlx) <O0.
Furthermore, for all A < A, the functions

T:10, A] % [wy — Qwo—l—(}]xBé(gO)CL (TUT.)

1
(A,w,g,pHFA( 53 In(u, @) + 55 ln(u;§,<0>>+AA<go(0»)

and
S:[0, A] X [wy — QwO+Q]XBé(gO)CL TuTy)
XB5@O(QO))CL (TUT)——>L (TUT),

1
A w,0,p) — G,\( 7y, In(y,, 2(@) Y ln(u 200) + A,\(Qo(o))>

can be defined, and have the property
[T\, w, 0,p)] (@) =[S\, w, 0,p)] (z) =
for x € O(T UT,). The functions F, G, were introduced in Sect. 5.2.

Proof. First, we take any {2 > 0, § > 0, and restrict A such that Propositions 4.2,
3.10, 3.11 hold, and the equations of state have the properties of Sect. 5.2.
Due to Proposition 3.11, 4.2, and the chain rule, the function
t:(—=A, A) x (=92,82) x Bs(gy) C LP(TUT,)
x Bg(py(op)) C LP(T'UT,) — F,,

. (5.10)
A\ w,0,p) — [5 1n<u—2>] N w, (U, w, 0,p))
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is continuously differentiable. It should be emphasized that continuous embeddings are
of class C, because they are linear. Thus, the continuous embedding LP(T'UT,) — F,
is of class CY(LP(T' U T,), Fy), such that Proposition4.2 can also be used if
0,p € (T UT,), rather than o,p € F,.

With (4.2) and (3.6) it follows

2
[0, w, 0, p)] (x) = —& “’7 (@) + (@2 + [U°(0,w, 0, p)] ()

2 /
=& w- @'Y + @) - G / o(x’) I
2 |z — 2’|
TOT:

Because t is continuously differentiable, Taylor’s theorem 3.7 leads to the existence
of a constant C|, such that for all p € B;(g,), all p € Bs(py(0y)), and all |w —w| < £2
it holds that

I|t()\,W,Q,p)—t(O,W,Q,p)HFZ S C’1)‘ (511)

Since g, is a solution of Euler’s equation in Newtonian fluid mechanics, Egs. (5.4),
and (4.2) yield for all z € TUT,,

— [U%0,w, 0, )] (&) + 2—— 5 [(x 2+ @) + [U%0,w, 0,p)] (0) + Ay(00(0))

£[w?
= Ay(0o(@) ~ U,_,. (@ >+——2—

where for any f € LP(T'UT.) the function U ¢ 18 defined by
/
Up@):= ~G / l—f(ﬂ &’

z— 7|
T.UT

This equation, the continuity of the embedding LP(T'U T,) — Fj, and (3.1) lead to
the existence of a constant C,, such that

E

(') + @1+ U, 0,

— [U%0,w, 0,p)] (x) + >=— [(m N2 4 @)1 + [U™0,w, 0,p)] (0) + Ay(00(0))

— Ayep@)|| <2 +6). (5.12)

F,
With
@) — Agleg())

= ([t w, 0,p] (@) + [t0, w, 0, ] (x)) + (— [U%0,w, 0, )] (x) — Ay(0y(x))

2,2
+ §—2‘"— (@) + @] + U0, w, 0,)] (0) + AO(QO(O))>
+ ([E(A, w, 0, P)1(0) — [0, w, 0, )1 (0)) + A, (05(0)) — Ay(00(0))),
(5.11), (5.12), the continuity of the embedding F, — C'*(R?), and (5.9), there
follows the existence of a constant C' such that
|f>\($) - Ao(@o(m’))l <CR2+6+4),

5.13
VLA (@) — Ay(eo@)]] < C(2 + 6+ A). ©-13)
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Since gy(zy) = 0 for all =, € OT, it holds that Ay(gy(z,)) = 0. This equation and
estimate (5.13) yield

|F(x)| S CR2+6+A).

If we choose 2,6, A < % then (5.5) and (5.13) lead to

—n(xy) V fr(zy + tn(zy)) > %

for all ¢ € [—e,€]. Thus, the function g(t) := fy(x, + tn(zy)) fulfills [g(0)] <

C(f2+ 6+ A), and in [—¢, €] it has a negative derivative that is greater than ﬂ If
we choose 2
2,54 < L2
] < 60 y
then g() has a unique zero in (—¢, £). Consequently, for all x € OT there is a unique
zero of the function f, on the line, defined by z, and the direction n(z,). Due to the
assumtpion, there is no intersection point of the lines x, 4 tn(x,) and %, + tn(z,) if
t € [—€,¢€] and x, # Z,. Furthermore, the function f, is continuously differentiable.
Thus, the condition f,(x) = 0 uniquely defines a closed, smooth surface in the shell
T.. In addition, it holds that f,(z) < O for all  outside the domain that is surrounded
by this surface.
If we restrict {2, §, and A such that

Ifx(fﬂ) - Ao(Qo(x))( <7,

condition |fy(x)| < A, is fulfilled (compare (5.7), and the functions F\(f,(x)),
G, (fy\(z)) are defined for all z € T, U T. These functions are continuous, and it
holds that

(T(0,p,w, V] (@) = [S(o,p,w, V] () =0

for all z € O(T U T,). This equation immediately follows with f,(z,) < O for
€ 0T UT,), and F\(y) = G,(y) =0 for y < 0.

In order to prove that the functions 7', and S map into Lg(T U T,), it remains
to be shown that the function f, is symmetric relative to the z3-axis and relative
to the plane z° = 0. Equation (4.12) and v'(z', 22, 2°) = v'(z!, 22, —2°) lead to
uy2(x!, 2%, 2%) = uyi(x!, 2%, —a?), such that fy(z',2?,2%) = f\(z', 2%, —2?). At
the end of Sect. 4.2 it was shown that v = (1, —wz?, wz',0) = o, + w@w is a Killing
vector. Since all functions are independent of the coordinate 20, it follows that

QPU;i = v’Vlu;E,
= vivl(—/\vjvj)
= =20V,

:O,

such that a¢ fy = 0. Here, we must keep in mind that {(z) = 1 for all x € T U
T. 0O
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Proposition 5.3. Let p,(0) be a set of equations of state, that fulfills the restrictioms
of Sect. 5.2. Assume that oy(x) is the solution of Euler’s equation in Newtonian fluid
mechanics, introduced in Sect. 5.1. Additionally, it is assumed that the integral equation

/ ’ 1 2

has the unique solution hy = 0 in

f is symmetric relative to the x3-axis
f is symmetric relative to the plane x*> = 0

CUT) := { fe T

Then, there exist constants A > 0, £2 > 0, such that for all 0 < X\ < A and all
|w — wy| < £2, there exists a solution (\,w, o, (U")) of Euler’s equation (5.1) and of
the reduced field equations (2.3).

Proof. According to Proposition 5.2, there exist constants A, {2, and § such that for
all 0 < X < 4, and all |w — wy| < §2 the function

W, ., Bs(og) € LA(TUT.) x By(py(ep)) C LE(TUT,) — LT UT.) x LE(TUT,),

<Q> _ (9 - T()‘7w7 Q’p)>

p p— S\ w,0,p)

can be defined. We can easily convince ourselves that the zeros of ¥, , determine a
solution of Euler’s equation and of the reduced field equations. This solution represents
a body, rigidly rotating with angular velocity w, and consisting of ideal fluid with
equation of state p, (¢). The matter of this solution completely lies in T"U T . Thus,

we have to prove the existence of zeros of the function ¥, , in the nelghbourhood
of the given zero ¥, wo(go,po(go)) = 0. This can be done with the implicit function

theorem 3.8.
Some straightforward calculations show, that for any Holder constant 0 < v < 1,

and any constant C', the functions
ty:By(0) C CY(TUT,) — CUTUT,), f@) — F\(f@)— f(0)+C),
5,:Bp(0) C CH(TUT) — CUTUT.), f@)— Gy(f(z)— f(0)+C)
are of class C''(B,;(0), CO%(T UT.)). Here, M must be restricted such that |f(z) —
f(0) + C| < A,,,. Furthermore, with the properties of F, and G, presented in
Sect. 5.2, it can be seen that these funtions and their derivatives
Dty (NH]:CY(TUT,) — CUT U T,
6f(x) — Fi(f(x) = f(0)+ O) - (6f(x) — §£(0)),
D[s,(H):C"(TUT.) — CUT UT),
6f(x) — G\(f(@) — f(O)+ C) - (6f(x) — 6 £(0))
depend continuously on . ~
Since the continuous embeddings CO(TUT,) — LP(TUT)), F, — C'¥(R?) are of
class C“, the chain rule, together with Propositions 3.11, 4.2, yields that the functions
T\, w, 0,p) = ty(—[t(\,w, 0,p)] (@) + [t(A,w, 0,p)] (0) + A,(20(0))),
S\, w, 0,p) = s\(—[t(\,w, 0, P)] () + [t(A, w, 0, P)](0) + Ay (05(0)))

(5.15)
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are continuously differentiable with respect to w, o, and p. Here, ¢ is defined in (5.10).
Thus, all functions ¥, , are continuously differentiable, and ¥, ,, and its derivative

DI, ,(0,p)): LY(T UT.) x IAT UT.) — L5TUT.) x IXTUT.),

<59> . (“—DQIT@,w,Q,p)] D,ITO\w, 0,p)] ) <6g>
ép D[S\, w, 0,p)] I—D,IS(\,w,0,p)] &p

depend continuously on A and w. Consequently, the proposition follows by the implicit
function theorem 3.8, if the operator D[Wo,wo (09, Py(0p))] is bijective.
With the chain rule, Proposition 3.11, and Egs. (4.8), (4.9), (5.15), we see that

oo _ 1-D,[T(, Wy, 09> Polop)] 0 )
D[WO7WO(:QO7 pO(QO))] (6p> - ( DQ [g(o’ wo, Qo,po(go))] ]l) (6}7) I

where
[DQ [T(0, Wo» Ops po(@o))] ool ()

1 1
= Fy(Ay(0y(@) G / 69@')(—— >d3x'.

o —a] ']
TUT:

Ay(o,(z)) is defined in (5.4). It can easily be seen that D[%,wo(@o, o0 is bijective
if

1~ D ,IT(0,wy, &, poeo)]: Le(T UT,) — LET UT,)
is bijective.

Due to Sect. 3.3.1 the embeddings LP(T'UT,) — Fj, C’“’(TUTE) — LP(T'UT),)
and the operator A~!: Fj, — F, are continuous, and the embedding F, — C''(TUT))
is compact. Since concatenation of continuous operators and a compact operator yields
a compact operator, the map

felPTUT,) — / f@h (—1/— — L) dx' e LP(TUT),)
|z —a'| ||
TUT:

is compact. Because the multiplication with the bounded function Fjj(A,(0,(2))) is
continuous, the operator D ,[T'(0,wy, 09, Po(p))] is compact. According to [10], it
follows that I — D, T'(0, wy, 09, Po(©y)) is bijective, if it is injective, i.e. if its kernel
is trivial.

Since Ay(0y(zy)) < 0 for all z, € (TUT,)\T, it follows that Fj(A,(0y(zy))) = 0.
Furthermore, [D,T(0,wy, 09, Py(09))] 1 is continuous for all hy € LP(T'UT,). Thus,

any function hy € L% (T U T),) that fulfills
ho = DQT(O, Wo, Qovpo(Qo)) ho
lies in the subspace

f is symmetric relative to the 2°-axis
f is symmetric relative to the plane z° =0 |’

CY(T) = {f € CUT)

and the operator D[y'/O’w0 (09, Pp(00))] is bijective if Eq. (5.14) has the unique solution
hy=0in CY(T). O
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6. The Harmonic Conditions

In this section we show that for sufficiently small A and all A < A, a solution of the
reduced field equations and the equations of motion (2.3) automatically fulfills the

harmonic conditions
7 7 _
gj,z:()a U]’i_o’

such that Einstein’s equation are fulfilled. Precisely, we prove

Proposition 6.1. Let T C R? be a compact domain with a surface smooth enough that
Gauf3’ theorem holds in T'. Furthermore, let n (i = 1,2, 3) be the normal vector that is
orthogonal to the surface OT and points towards the outside. Assume that TV : T € R
is a \-depending set (0 < A < A) of continuously differentiable energy-momentum
tensors, and (UY) € Fy' a set of tensor densities such that the equations of motion
and the reduced field equations (2.3) are fulfilled with the causality constant \. If

o there exist constants ©, ), such that for all 0 < X\ < A, it holds that ||(U*)|| g < ¥,
1T crery < O,
o the solution is stationary, i.e. (U ) = (T o) = 0,
e forall xy € OT and all j =0, 1,2,3 it holds that ), n,(xy) T (zy) = 0,
i=1

then there is a constant A > 0 such that for all 0 < A < Aand j = 0,1,2,3 the

harmonic conditions
g
U =0

are fulfilled, i.e. (\, (U"), T%) are solutions of Einstein’s equations (2.3) with causality
constant \.

Remarks.

e It is not required that (7%7) can be extended continuously to R3.

e This proposition also holds if the support of 7% is unbounded and (T*), (T% ;) €
Fy.

e This proposition can be generalized to piecewise continuously differentiably energy-

momentum tensors (77). In this case, it has to be required that in every domain of
3

continuity GauB’s theorem is applicable, and the conditions ) n,(zy) T (z,) =0
hold on all boundary-surfaces. v=1

In order to prove this proposition, we need the following properties of the
Christoffel symbols.

Proposition 6.2. Let B4(0) denote the ball with radius ¥ centered at the origin of Fz*-
Then, for any ¥ > O there is a A > O such that the functions mapping the causality
constant \ and the tensor density (U") to the Christoffel symbols,

F;M[O? Al x By(0) — F,, (A, (UY)) — F;]“

are of class C* for all i,j,k = 0, 1,2, 3. Furthermore, there exists a constant C' such
that for all (U") € By(0) it holds that

”1—130 - UOO,Z‘”FI <CA for 1 7é 0,

i 6.1)
1 llm < CA otherwise. (
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Proof. With the power series’ of /|d| — 1, and (g,,) — (g;;), it can be seen that the
functions 0

1
[X 0, \/W} (=A, A) X By(0) — F,

1
[X azk(g”)] :(—A, A) X By(0) — F,

are of class C'“. Furthermore, with (3.6) it follows that
1
[X R |d|] ©, W) = _ZUOO,z‘ )

1
[; %@,j)] ©,(U")) = —4@EHUY .

Calculation of the Christoffel symbols yields
7 1 ia
ij‘ = 5 h (h]a,k + hka,j - h]k.a) ’
1.
hY = — gl] ,
Vld|
1 _
hij = 2\ \% |d|gij :

Thus, the analyticity follows with the chain rule, the product rule, Proposition 3.10,
and the continuity of

0, F, — Fy,

F,-F, - F,,

F-F,— F,.

The equations [h,, 15 = —2U% 6967, and

[hlj]A=0 = [(g”)]A=O = diag(0,1,1,1)

lead to ,
[l = [gwhzo(—UOO,kayég - U 65060 + U ,8967).
Thus, estimate (6.1) follows by Taylors theorem 3.7. [

In order to prove Proposition 6.1, we choose A such that the results of Sect. 3.3.2
can be used. Since the function space C’OOO(]R3) is dense in F,, for all (U") there exists

n
a sequence ((U")),,cy of infinitely differentiable functions with compact support such
that the estimates

[T ~ @) gy <

S|

are fulfilled.
Using Proposition 3.10 and the results of Sect. 3.3.1, some straightforward consid-
erations show that the maps

1 i 1
[ﬁ (G”)] 1[0, 4] x By(0) — Fy', (A, (UY)) — 32 (G,

[(F7) = (AU")]:[0, A] x By(0) — Fyf, (A, (UY)) — (F7) — (AU"Y)
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are of class C¥. Here, Einstein’s tensor (G%), and (F'?) —(AU%) are defined in (2.4),
(2.3), respectively. It should be noted that 2 (GY) is regular at A = 0. Thus, Taylors

theorem 3.7 leads to the existence of a constant M, such that for all 0 < A < A and
all (U") it holds that

[(F2) = (AUY) — (F9) + (AU e <

Since a solution of the reduced field equations fulfills (4.4), it follows that

; (6.2)

IR =|&

GY) — — (GY) 6.3)

1 1
3 2

3

N
Fy

U@ = o ¢+ (@),

R3

-1 / 47Gd(x")| T (z") — F (z') + AU (z")
|z — 2’|

where

no 1 [ Fi_AUY — Fi 4 AUY
Glp) = - &z
2@ 4 / |z — 2| ‘
R3

With (3.1) and (6.2), it follows the existence of a constant M, such that
n.. M.
i 2
IGlley < =2

This estimate and the continuity of 0. :F, — F) yield the existence of a constant ¢
such that for all 7 =0,1,2,3,

ni‘ C
17 e <~ (6.4)
n
The equation 0 x|z — 2’| = =0, x|z — 2’| leads to

U9, (z) = 1 / (@rG|d(x)| TV (z") — F(a'y + AU (2'))d ,k; '
, 47 T8z — 2|
R3
+ fij,lc .

.. n n
Since |d|, T*, and F? — AU" are continuously differentiable, we can apply Gaufy’

n .. n
theorem. Because F/ — AU has compact support, it holds that

-1 / 0,1, (4nGld(x")| T (') — IT*E’”(:U')—l—Aﬁ”(x'))

2 _ 1 3.0, Fij
V9@ =2 |z — | SRR
R3
! g (! !
i / AnG|ld(z")| T (x )nk(x)da(x').
47 |z — /|

oT
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Here, do(2') denotes the infinitesimal surface element of OT. With U | = T ; =
n 3 B
FZJ,O — AUZ]’O — O and Z:l nz(x/)le(x/) — O we get
2=
‘ 3
Uw,i — U0J70 + ZUij,z
1=1
L1 [ GrGld@) T @) — Bl + Aﬁiﬂ’(m'))ﬂ, B
- / |z — 2| r

n..
+ .

With
4 _ab7y _ijfrab a(z —b
L = go0v 4 G0, — 200 50
0 ’ 0 o

it follows that L* , = 0, since (U*) is infinitely differentiable. This leads to

+ ;L”'j

e -1 / @ArGld@"|TY (') — F¥(z") + AU (z') — LY (")), Pl

|z — ']
Let (G denote Einstein’s tensor, defined by the tensor density (U*/). Then,

|d|

n. . n n
g G = F7 = AUV + LY.

Thus,

4nGld(a")| T (') — ;2 ()| G (')
=g | EREd
R3
_1 g AnGld@E)| T (') - —15 Ig(x’)lg‘”,z(:c’)
2 L'+ 19, (6.5

4 |z — |
R3

Since (U*) is a solution of the reduced field equations, and U% ;, = 0, it holds that

47GTY — =5 GY = — (AUY — V) = L gy w— L)
|d| d| o ’
=— — HY,
ldl
where
HY :=g7u® ,, — 20" 57" (6.6)
0 0

Let V, denote the covariant derivative, and ka the corresponding Christoffel symbols

.. n
defined by the tensor density (U*). Furthermore, V,, and Flk are defined by (U i),
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Since V,T% = 0 and %&” = 0, there follow
v l]____ ’L]:_ _ 1) . 'LJ____ 'Lj
mGla| T = 5 il = o 1 5 GV = 10,6, )
and

?, 1 n n'L
4n Gl T, ~ 35 |GV,
7 1n ni' % ! 1 n g

. . 1 n n
- Iy <47rG|d| T — 7z ldl G”)

d
2&‘2 (V, = V)G + TLHY + Fng”
= 53z Lalld| GV = 1d| GY) — 2_{2 r’(d G* — |d| G
dl |d i i rrlj i
2|A2 (r l)GlJ + mlz l)G Yy riHY + ) H
1 . . ; non
7WWMWth%5pﬂMGZMGW (6.8)
Inserting (6.7) and (6.8) into (6 5) yields
|d(z")] HY (x")
] ’ |d( I)l 3.7
[ . = —
UY i@ 47 / |z — x| d'w
R3
v ¥ il n. n
-1 I(x"H (x)+Fl(x)H (x)d3x'+f”1+h3(:c), 6.9)
47 Ix — gj’| )
R3
where
O
_1 [ 3 (d@)], GV @) — |d@)] , GV (@)
= —/ df’x
4 |z — 2|
R3
d .’ZI/ n
| | ()\2)| (F ( /)_Fl(xl))Gl]( ' ( )l l( /) 737[(1,/))6;'11(‘1:/) d3
K e
R3
I (z' . n n
1 _Q;MWNWW%WwWWWf/
R / |l — | r
R3

F] / n n
D i ot - e Gy
- — &>’
47 / | — |

R3
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With the results of Sect. 3.3.1, the differentiability of |d| — 1, F;k, and estimate (6.3)
it follows the existence of a constant ¢’ such that for all j = 0, 1,2, 3 it holds that

/

17 @)] g, < % (6.10)

In order to prove the equation U ’j,i = 0, the following Banach spaces must be
introduced:

-1
Definition 6.3. Forp>4and0 <6< —2+3%

define

Fji=MLs (R and F|:= M R).

With Proposition 3.3 and the definition of the weighted Sobolev spaces, we can
easily convince ourselves that the embeddings

Fl—>F6, Fz—eFl’,
Fy— Fy, F,— F{,
and the functions
F,-Fy— F,, and 0,.:F — F;

are continuous.
We show that there are constants A and C' such that for all 0 < A < A, all
n=1,2,3,...,and j =0, 1,2,3 it holds that

- C
()
10% dlley < = ©.11)

Thus, a limit n — co yields [U* ||z = 0, which is equivalent to the desired result

Since H(Uij)HFz* <9 for all 0 < X < A, it holds that
o= sup{HU”,illFl/;j =0,1,2,3} < 0.
With the continuity of 0, : F| — Fj and (6.6), the estimate
IH || gy < Chax (6.12)

follows for an appropriate constant C,. Furthermore, with the continuity of 0,.: F, —
F| and (3.3) it follows the existence of a constant C, such that

el Nl < CoA-

Finally, (3.1), Proposition 3.10, and the continuity of the multiplications F, - F|, — F},
F, - Fj — F, lead to the existence of a constant M such that for all j =0,1,2,3,

1
|d(2")| ; e HY (')

i/ |d(a")] Sl < Mia. (6.13)

4 |z — ']

R3 P
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With (6.1), the continuity of the multiplication F\ - F; — F, and

HOO — —OOUab’ Ua(O ;O)b A(UQO,aO _ Ual,al _ UvaZ’a2 _ Ua3,a3) ,
0

it follows the existence of a constant C; such that
ITRHY + T HY g < Cida.
This estimate and (3.1) yield the existence of a constant M’ such that for all
j=0,1,2,3,
Iy (=) HY (x') + Fjl(:c')H”(x’)

4m |z — 2|

Because |- |y < ||l |- lly < |- [l inserting (6.13), (6.14), (6.4), and (6.10)
into Eq. (6.9) yields

SMa. (614

|d(z")] HY (a')

R /
o7 @le <| = f ) &a!
! 47 |z — /|
]R3 Fl/
/ Fz (x’)H“(a:’) + szl(wl)HZl(.T/)
4r |z — 2’|
]R3 Fll

+ I My + IR gy

< (M + Mo+ CZCI )
such that
= sup{[[U7 |35 = 0,1,2,3} < (M + M) Aa + cte
A< (M + M), finally leads to (6.11), where C = ”—c.
1— (M + M)A

7. Result

Propositions 4.2 and 6.1 yield the following

Theorem 7.1. Let p,(0) be a set of equations of state that fulfills the restrictions of
Sect. 5.2. Assume that T is a compact domain, and the density g,:T C R* — R is a
solution of Euler’s equations (5.3) in Newtonian fluid mechanics that represents a body
rigidly rotating with angular velocity w, and consisting of ideal fluid with equation of
state p,(0). Furthermore,

o cither the integral equation

’ , 1 1 ,
0 = hy(z) — Fo(Ao(Qo(w)))G:/ ho(z") (m - |x—ll> dz 7.1
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has the unigue solution hy = 0 in

U1 = { f e {

f is symmetric relative to the x3-axis
f is symmetric relative to the plane x> =0 |’

o orwy =0, i.e. g, represents a static, spherically symmetric star.

Then there are constants A > 0 and 2 > 0 such that for all 0 < X\ < A and
all |bw| < 2 there exist a continuously differentiable density 0T, — R* and a
tensor density (g") such that the stationary, axisymmetric Einstein equations (2.3)
with causality constant \ and energy-momentum tensor

g , 2
T = (0 + Apy(0)620'0” + py(0) —ee
V/ | det(g™)]
are fulfilled. Here, T, — R? is a bounded domain, and wv* is the velocity of the ideal
Sfluid rotating with angular velocity w,+ 6w around the axis of symmetry. Additionally,
it holds that v = 0, + (wy + 6w)0,,, where 0, is the timelike and 0, the spacelike
Killing vector.
Furthermore, there exists a harmonic coordinate system (z°, ', 22, 2*) such that

v =(1,—(wy + éw) 2%, (w, + bw)x',0).

In this chart (UY) =

40372 ((¢"7) — (g” )) fulfills

(Ul])€F2*7 Uij =O> j=0’172737

2
and the matter is symmetric relative to the x>-axis and relative to the plane x> = 0.

Remark. 1 would like to mention, without proof, that the tensor density (U%) is even
analytic in the vacuum region. Furthermore, if S is a compact domain in the star such
that Fy, G, € C"*(I), where

reS } ,

the density g, the pressure p, and the tensor density (U%) are [, [, and [ 4 2 times
Holder continuously differentiable in .S, respectively.

1 1
I= {y = — 55 In(u, (@) + 33 In(u,2(0) + A, (2,(0))

Proof. In the case of a static star (w, = 0), g, is spherically symmetric [4, 11], i.e. g,
depends only on |z|. Furthermore, it can be shown [12, 9] that in spherical coordinates

cos®¥, sindcosp, and sindsingp
is a basis of the kernel of (11— K):C%T) — C%T), where K is the compact operator

K:CUT) — CUT),

K:h K(h = ¢ (2’ D h(z ! L 2o
th(z) — [ ()](:v).—w—(w—)/—@o(lzrl) (m(——— T
T

e—a] T

with

] ,

—4rG ,
U(x) = # /go(r)r2 dr, and o)(|z|) = gy(z) = % 0,.00() .

0
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The equation Fj(Ay(0y(2))) = (Ay by (Ap(op(@)) = and Euler’s equation

1
Aj(p())
2|

—4nGx?
Al(00(@)) 0,0 04(x) = IZ—IJC / 0o(r) T dr
0

yield
2o(|z))
()

Fy(Ag(go(2))) =

Thus, if there is any h, € Cg(T) that fulfills Eq. (7.1), it follows that
adzD / ( 1 1 ) o
ho(x ho(z)| ——— — d’x
=@ ¢ N T

lies in the kernel of 11— K. It should be noted that for any continuous

ho(l')

o(lzh
function hy, it holds that

_1_ / __1_ 3,/ 0
Mas)GT/%(x)(lx—x’l @7 |>dw €.

can be extended continuously to the zeros of g{(|z|). Consequently, in

such that

hy(x)
oy(|z oh(|z])

the case wy = 0, Ay is a linear combination of

Thus,

opcos?,  ppsindcosp, and g)sindsing,

which do not lie in C%(T).

Now we have convinced ourselves that in both cases the assumptions of Proposi-
tion 5.3 are fulfilled. Thus, for all 0 < A < A and |w — wol < 12 there exists a tensor
density (U%) € F," and a density o € LP(T U T.) such that for all x € T UT. there
hold

1 1
o(@) = Fy ( = 5y I (@) + 53 I 0) + AA(@O(O))> . (72)

1
Py (0(2)) = G, ( — — In(u"*(2)) + 55 1n<u‘2<0)> + AA(@0<0>>> (7.3)

. 1 . . . .
Since F, G, and 23 ln(u_z(:r)) are continuously differentiable, the density o, the
pressure p, and the energy-momentum tensor
9"
/| det(g®7)]|

are continuously differentiable. The surface of T, is defined by

T = (0 + Apy(0)u™*v"v? + p,(0)

1 1 -
Fg) = = 33 In(u™(2g)) + 5 In(w™*(0)) + A(09(0) = 0
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and lies in 7"U T,. Because f, is continuously differentiable, the surface 9T, is
smooth, such that Gaul}’ theorem can be applied in T',. Furthermore, with (7.2), (7.3),
F,(0) =0, and G,(0) = 0 it follows that T (z4) = 0 for all z, € 0T,

The fact that 8, = (1,0,0,0), 8, = (0, —z?,2",0), and v" are Killing vector was
shown at the end of Sect. 4.2, such that Euler’s equation (2.7) and the equations of
motion V,T% = 0 are equivalent. 4 .

Thus, application of Proposition 6.1 yields that (X\,(U%),T%) is a solution of
Einstein’s equations with causality constant A\. [
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