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Abstract: The Newtonian equations of motion, and Newton's law of gravitation can

be obtained by a limit λ = — —» 0 of Einstein's equations. For a sufficiently small

constant A the existence of a set of solutions (0 < λ < A) of Einstein's equations of a
stationary, axisymmetric star is proven. This existence is proven in weighted Sobolev
spaces with the implicit function theorem. Since the value of the causality constant
λ depends only on the units used to measure the velocity, the existence of a solution
for any small λ is physically interesting.

1. Introduction

In order to study the properties of a relativistic equilibrium stellar model, we would
like to take the energy-momentum tensor of a bounded ideal fluid body and find the
most general solution of Einstein's equations. Even in Newtonian fluid mechanics the
ellipsoidal figures with constant density are essentially the only rotating solutions that
are known [5]. In general relativity there exists no analytical solution representing
a rotating star. Although there are known some interior solutions, they could not
be extended to the exterior of the star. Thus, the question arises, under which
circumstances there exists a solution of Einstein's equations representing a rotating
star. One kind of existence theorem is given in this paper (Theorem 7.1).

In general relativity the spacetime of an isolated and stationary star has a timelike
Killing vector dt that represents the symmetry relative to translations of time, and a
spacelike Killing vector dφ that represents the symmetry relative to the axis of rotation.
The star consists of a rigidly rotating ideal fluid, whose density and pressure are related
by an equation of state. I would like to point to the fact that this stellar model follows
from much more general conditions under the condition "thermodynamic equilibrium"
[13].

In this paper the existence of solutions of Einstein's equations is proven, that fulfill
the above restrictions. Precisely, we use Einstein's equations of Ehler's frame theory
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[7, 8] instead of Einstein's equations of general relativity. These equations contain
a parameter λ, the causality constant. If λ = 0, then these equations are equivalent

to the Newtonian equations of motion and Newton's law of gravitation. If λ = -z,

then Einstein's equations of the frame theory are equivalent to Einstein's equations of
general relativity. In Sect. 2 Einstein's equations of the frame theory are introduced.
We assume that a solution of the equations in Newtonian fluid mechanics is given,
i.e. we assume a given solution of Einstein's equations with causality constant λ = 0.
This solution represents a Newtonian star, rigidly rotating with angular velocity ω0,
and consisting of ideal fluid. We prove the existence of constants Λ, Ω, such that
for all causality constants 0 < λ < Λ, and all angular velocities \ω — ω^\ < Ω
there are solutions of Einstein's equations of the frame theory. Since any solution of

Einstein's equations of the frame theory with causality constant λ φ 0, λ φ -r can
cι

be considered a solution of Einstein's equations of general relativity, displayed in a
system of units, in which the gravitational constant has the value G, and the speed

of light has the value —=, these solutions are of physical interest, even if A < —.
γ λ c

This interpretation is discussed at the end of Sect. 2. I would like to point to the
fact that there are known various equations of state, such that there exist solutions,
representing a static (ω0 = 0) Newtonian star. Thus, this existence theorem yields the
existence of slowly rotating stars in general relativity.

To prove this existence theorem, some parts of mathematical theory are reviewed in
Sect. 3. These are the Sobolev spaces, which guarantee some mathematical theorems
(Sect. 3.1), the implicit function theorem, which is used to prove the existence of
solutions in the neighbourhood of a given one (Sect. 3.2), and the properties of the
components of Einstein's equations (Sect. 3.3).

Einstein's equations in the form used in this paper can be devided into 3 parts:

1. The equations of motion,

2. The "reduced field equations",

3. The harmonic conditions.
In Sect. 4 the reduced field equations are solved, if density and pressure of the

fluid are given functions. In the Newtonian case (λ = 0), this can be done by
pure integration (Sect. 4.1), and for λ > 0, the implicit function theorem yields the
existence of such solutions (Sect. 4.2). If the full Einstein equations for a stationary
and axisymmetric energy-momentum tensor are solved, it holds that the metric also
is stationary and axisymmetric, i.e. has the Killing vectors dv and dφ. At the end
of Sect. 4.2 it is shown that if pressure and density are stationary, and axisymmetric
functions, the solution of the reduced field equations also represents a stationary, and
axisymmetric spacetime. This has the consequence that the equations of motion are
equivalent to the single Euler equation.

In Sect. 5 the existence of solutions of Euler's equation and of the reduced field
equations in the neighbourhood of the Newtonian solution, introduced in Sect. 5.1, is
shown with the implicit function theorem. To use the implicit function theorem, the
differentiability of a function is needed. This causes some limitations for the equation
of state (Sect. 5.2).

In Sect. 6 it is shown that for sufficiently small causality constants the harmonic
conditions are fulfilled automatically, if the reduced field equations and the equations
of motion are fulfilled. Thus, the solutions of the reduced field equations and
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Euler's equation are solutions of Einstein's equations. The result is summarized in
Theorem 7.1.

2. Einstein's Equations

Let (hυ) be a metric of a spacetime, and

the corresponding tensor density. In the case of a flat spacetime, there exists a
coordinate system (t,x,y,z) = (x°, xι, x2, x3) such that the metric has the form

(hυ) = diag ( z , 1,1,1). In this chart the tensory density has the form

o V c )
/-Λ/X 0 0 0

0 1/Vλ 0 0

0 0 0 0 1/Vλ 0

V o o o i/vX

In order to describe the influence of matter on spacetime, we define the functions

According to Lottermoser [14], Einstein's equations can then be written in the form

4πG\d\Tιj = gklUij

M + gtjUk\kl - 2Uk(\kιg
j)l + A11 + Bt3 + Cij , (2.1)

where

9%j

d

= gtJ

— Ί\l n n —n n 1 \nian^b l nιJ πabλ TJkl TT171™
— Z L 2 9kl9mn 9nk9ml\ [9 9 ~ 2 9 9 J u ,aU , 6 '

Tkπι l n^JTjkm jrln -mnrpk rrjl

= 4λ2[Uij

jkU
kl j - Uik

tU
jl

k],

and T u is the energy-momentum tensor of matter. Any solution (λ, UlJ, Tιj) of these
equations for arbitrary λ > 0 is a solution of Ehler's frame theory [7, 8] with causality
constant λ.

If λ φ 0, the equations of motion, V^TU = 0, follow from Bianchi's identities.
However, if λ = 0, the frame theory shows that they have to be imposed as an
additional axiom. If we choose harmonic coordinates,

V V V = 0 , or Ut3

ji = 0,
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we can divide Einstein's equations of Ehler's frame theory into

1.

2.

3.

F

the

the

the

ιj _

equations of motions, V•'

harmonic conditions, Uιj

"reduced field equations",

Ω ' '

+ #ύ + BlJ + ClJ.

r J = o,
, = o,
4πG|d|T^

+ Ui*Uk\

= F' J , where

fcZ-2£/%[/^]

(2.3)

Due to the harmonic conditions we could drop the terms UlJUkl

 kl - 2Uk^ ^k

within the reduced field equations. However, if the equations of motion and the
reduced field equations are fulfilled for certain energy-momentum tensors and suffi-
ciently small causality constants Λ, the harmonic conditions are satisfied (see Sect. 6).
Thus, we don't drop the terms UijUkl

kl - 2Uk{ι

 klU
j)l within the reduced field

equations. It should be noted that Einstein's tensor is

(2.4)

With

and the formula

G
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which can be derived with estimate (6.1), the limit λ —> 0 in Einstein's equations
N

yields the Newtonian equations for the Newtonian potentials UlJ and the Newtonian

energy-momentum tensor TlJ.

1.

2.

3.

N

T3% —

N .

ΔUXJ =

N N
0 0 0

f or j = 0

for • φ 0

\ [ ^ ] λ = 0 ίgab]λ=0

^ 0

°\°
(2.5)

= ΛπGT1' + { ^mβ°°,j ~ \ δυ IIV^00||2 for i φ 0 and j φ 0
[ 0 otherwise

According to [14, Sect. 3.3], Eqs. 1 and 3 are equivalent to the Newtonian equations
of motion, and Newton's law of gravitation. If we use function spaces, such that the
equations / = 0 and Δf — 0 are equivalent, the harmonic coniditions 2 follow from
the equations of motion and the reduced field equations. Thus, Eqs. 1, 2, 3 can be
regarded as Newtonian equations.
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In this paper we investigate the existence of a set of solutions of Einstein's
equations (2.3) for 0 < λ < A We use the energy-momentum tensor of a star,
consisting of ideal fluid, and rotating with angular velocity ω. The density and the
pressure of the matter are related by an equation of state. The spacetime of this stellar
model is axisymmetric and stationary, i.e., there exists a timelike and a spacelike
Killing vector, dt and dφ, respectively.

The energy-momentum tensor of an ideal fluid, moving with velocity v — dt +
ωdφ, is

T3 = (ρ + λp) u2vιvJ + p ^
'\d\

where

\u\vx = - 1 , u~2 = -λh%Jv
ιυ3 = ~Λj\d\gl3v

%v3 . (2.6)

In our harmonic coordinate system we use the following ansatz for the Killing vectors:

0t = (1,0,0,0), dφ = (0,-x2,x\0).

Since the coordinate lines of x° are integral curves of the Killing vector dt, all
functions are independent of x°.

Because v is a Killing vector, and τ/V^ρ = vιV{p = 0, the equations of motion
VτT

ιj = 0 are equivalent to Euler's equation

0 = pίt + (Q + λp) ^ dχl (\n(u~2)). (2.7)

At the end of this section we will discuss a possible physical meaning of a solution

of Einstein's equations (2.3) for 0 φ Λ φ -r . Any solution of Eqs. (2.3) can be
cι

considered a solution of Einstein's equations of general relativity, displayed in a new
system of units in which the gravitational constant has the value G and the speed of

light has the value —=. We will denote all quantities in the new system with a prime.
Vλ

The transformation

length:

time:

mass:

new system -

V -

t' -

ml -

-> Si-system

-» / : =

-> ί :=

-> 777-

α

= at'
c

• m

with any a > 0 transforms this new system of units into the Si-system. Transformation

( \ ( \ ί

yiems

kq \ ( kq\ ί Y
of pressure ( [p] = — > I, density I [ρ] = —r ), and angular velocity I [ω] = - },

-1- \ Kyi QZ I • ' I ^-^-. Λ I *-̂  • ' I n I

1 , 1 , , 1
Q = — Q > V = -2T-2 P> a n d ω = ~ ω 'a1 cιλaz a

respectively. Thus, this transformation changes the form of the equation of state to

4
a1
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If we are interested in solving Einstein's equations of general relativity for a given
equation of state p(ρ), we must take a set of equations of state pr

x(ρ'), such that
we can solve Einstein's equations of frame theory for any λ ^ O with equation of
state p'χ(Qf)' Then, we can consider this solution a solution of Einstein's equations of

newgeneral relativity with equation of state p(ρ) = a2c2\pf

x I — ), displayed in the

system of units. Thus, we must take such a set p'x, that for an appropriate choice of
a, the desired equation of state can be achieved.

A physical interesting equation of state with p(0) = 0 can be written in the form

where /(0) φ 0 and v > 1. If we take the set of equations of state

then limpf

λ(ρf) = f{0)ρtv. It follows that the set of equations of state depends
A—>ϋ

regularly on the parameter λ, and we can expect the limitations to be fulfilled, we have
to impose on the equation of state (Sect. 5.2). Thus, with the existence Theorem 7.1,
we get a set of solutions of Eqs. (2.3) for an energy-momentum tensor of a rotating
body, consisting of ideal fluid with p'x{ρ'). Since we consider a solution with λ ^ O
a solution of Einstein's equations, displayed in the new system of units, this solution
has the following equation of state in the Si-system:

1

If we choose a = (c2X)2{u~{), this solution is a solution of Einstein's equations of
general relativitiy with equation of state

and angular velocity
1

displayed in the new system of units.

3. Weighted Sobolev Spaces and Functional Analysis

3.1. Weighted Sobolev Spaces

Definition 3.1. Let || | | p be the standard norm of Lp(Rn), and σ(x) := yj\x\2 + 1.
Then, the Banach space M^ δ(Rn) is the completion of Co°(Rn) with respect to the
norm

|α|<m

Here a is a multi-index, and Co°(IRn) is the set of C°°-functions with compact support.

This definition is due to Cantor [2]. In this paper, Cantor investigated the bijectivity
of the Laplacian on weighted Sobolev spaces. An improvement in the analysis of
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the Laplacian was achieved by McOwen [15]. Theorem 1 of his paper and the
corresponding proof yields

P r o p o s i t i o n 3 . 2 . For alln>3 and - - <δ < - 2 + n(l ) the Laplacian

P V P)

is bijective and continuous. The inverse operator Δ~ι is

[Δ-ιf](x)=n \ ί f(X'l
(2-ή)An J \x-x'\

where An is the area of the unit sphere in Rn.

According to Cantor [3, Theorem 5.6], the following proposition holds:

Proposition3.3. For all δ < δ1 + δ2, TΠ < mι,m2 with m < mι + m2 there

exists a constant C, such that for all f G M ^ (§i (Rn) and all g G M^δi (Rn) it holds

that

Wf9\\m,p.δ ^ C\\f\\mι,p,δι \\9\\m2,p,δ2

Thus, the pointwise multiplication

/ x 9 -> / ' #

is bilinear and continuous.

3.2 Differentiability and Analyticity

Definition 3.4. 2?%(BX, B2) denotes the Banach space ofi-linear and continuous maps
from the Banach space Bx into the Banach space B2 with the norm

Definition 3.5. Ck(A, B2) is the set of functions, which map the open subset A of the
Banach space Bγ into the Banach space B2, and are k times Frέchet differentiate.
The derivative of f at a point x0 is denoted with Df(x0). If f has several arguments,
DχJ / ( # ! , . . . , Xj) denotes the partial derivative with respect to the argument xK

A function f:A-^B2 is said to be of class Cω(A, B2), if for each x0 G A there is
a radius r > 0 and a sequence fi G ^'i(B1, B2) ofi-linear symmetric maps, such that

2=0

and for all x with \\x — xo\\ < r it holds that

/Or) = Σ f% {x - xQ, ..., x - x0)
2 = 0 V " ^ "



464 U. Heilig

Remarks.

• A derivative Df(x0) of a function / at a point xQ belongs to 58(Bγ, B2).

• Higher derivatives at x0 into directions /zl5 . . . , hk are denoted with

Dkf(x0,hu..., hk).
• If Bλ = Rn, B2 = M, we have

Jl\X ~ XQ ) . j X — XQ)
 = / v Γ ̂  J\^θ) \% ~ xθ) i

\a\=i a '

and Definition 3.5 reduces to the statement that a function is called analytic if it can
be represented by a uniformly and absolutely convergent power series.

• A function / is of class Cω(BR(0), B2), if for all x e BR(0),

OO OO

f(x) = y^ fι(χi 5 x) with /> IIΛll $%(#! 5 2 ) ^ ^ °° '

where all fi are i-linear and symmetric. The proof is similar to that of the
corresponding statement in the Banach space M, since for all x0 e BR(0) and all
h e BR_^XQ^(0) it holds that

f(xo + h)--
i=0

fc times i-fc times

OO I

oo i

-<ΣΣ

i=0

Linear and i-linear continuous maps are of class Cω'. The derivative of z-linear
functions into direction /ι at ( x l 5 . . . , x^ can be calculated by the product rule

Df(xu . . . , ^ ) f t = f(hι,x2, . . . , £;) + . . . + /(a: 1, . . . , x _ l 7 / z z ) .

• Concatenation of C f c , and C^-functions yields a C f c-, and a C^-function, respec-
tively. The derivative can be calculated by the chain rule

D(f o g) (x0) - Df(g(x0)) Dg(x0).

Proposition 3.6. Let f:Rn -> R with /(0) = 0 ^ analytic on the ball Br(0).
Furthermore, let B be a Banach space with a scalar multiplication and a commutative
multiplication B x B —> B, such that for a constant C and all Xλ, X2 E B,

\\Xl'X2\\B<C\\Xι\\B.\\X2\\B.
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Then, the function

α!

is of class Cω(BR(0) x . . . x BR(0), B), where R = ^ .

/ With respect to the estimates

0 0 i

a>\

^\

this proposition easily follows from the fact, that for all x G Br(0) we can represent
/ by the absolutely convergent power series

D

Major tools, to be used in the remainder of the paper, are the following theorems
[6, 16]:

Theorem 3.7 (Taylor). Let A be an open, convex domain of the Banach space Bλ. If
the function f is in Ck+ι(A, B2), then for any x0, ft G A it holds that

k 1
f(x0 + ft) = f(x0) + V - Dτf(x0, ft, . . . , ft) + Rk+ι ,

i=\

/
th, ft, . . . ,

o
1

^ + 1) o<t<i

Theorem 3.8 (Implicit Function Theorem). Let Bv B2, B3 be Banach spaces, and A
an open subset of Bγ x B2. Furthermore, let

be a continuous function, whose partial derivative Dyf(x,y) is continuous in A.
Assume that for a point (xo,yo) G A it holds that f(xo^yo) = 0 and Dyf(x0,y0)
is bijectίve. Then, there exists an open neighbourhood L C Bχ ofx0, and a continuous
map I'.L —> B2, such that for all x G L,

In addition, it holds that I G Ck(L, B2) if f G Ck(A, B3).
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3.3. Properties of the Tensor Density (UιJ)

3.3.1 The Function Space of the Tensor Density (UlJ)

υ - 1
Definition 3.9. For p > 4 and 0 < δ < -2 + 3

P

ί/iβ Banach spaces of 2, 7, 0 ί/raes weakly dijferentable functions, respectively.
For a matrix (U%3) of functions,

F* : = {(Utj); Uιj e F2 for all i,j = 0,1,2,3} ,

F* := {(U^) U^ € F1 for all i,j = 0 , 1 ,2 ,3} ,

F* := {(Uij); lPj € Fo for all ί, j = 0,1,2,3}

are the corresponding Banach spaces of '4 x 4 matrices with the norms

\W)\\F* := sup ||£/ ' Ϊ | F
2

F
2

| | (£/ l J ) | | F * := sup
»j=0

We can easily see that any smooth matter density δ with compact support is in
FQ, the corresponding Newtonian potential U is in F2, and all components of the
corresponding Newtonian gravitational force —U^ii = 1,2, 3) are in Fx.

Properties of Fo, Fv and F2:

1. Since all derivatives of σ" 1 are bounded, and M^6(Rn) C Wm^(Rn) for δ>0,
we get with Sobolev's embedding theorem [1, Theorem 5.4], the following continuous

embeddings for 0 < v < 1 :
P

F2 -^ Cι>vφ?), ^i -^ C^'^ίR3).

Here, Cτ'v denotes the Holder space of i times Holder continuously differentiable
functions.

2. With the Rellich-Kondrachov theorem [1, Theorem 6.2] we see, that for all compact

domains Γ c t 3 and all 0 < v < 1 the embeddings
P

F2^Cι^(T), Fx ^C°^(T)

are compact. It should be noted that an embedding B{ ι—• B2 is called compact, if it
is continuous, and if all sequences that are bounded with respect to the norm || \\B ,
have a subsequence that converges with respect to || \\B .
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3. Due to Proposition 3.2, the operator

Δ:F2^F0 (3.1)

is linear and continuous. The inverse operator Δ~ι is

4π J \x — x'\

4. With Proposition 3.3 the following pointwise multiplications are bilinear and
continuous:

F2-F2-,F2, F.-F^F,,
7 7 7 7 . I T 1 T? T? v 771

t2 ' tχ -> tχ , tχ ' tχ -> î Q,
771 T71 v 77" Tp ΈP v Z71

^ 2 ' ^ 0 ^ 0 ' 1 " 0 0 *

Furthermore, the multiplications

F2 F2 ^ F2 ,

771* 771* 7 7 *

defined by the usual matrix multiplication, are bilinare and continuous.

5. Definition 3.1 of weighted Sobolev spaces yields the continuity of the differential
operators

3.3.2. Properties of the Components of Einstein's equations

In this section we investigate the differentiability of some components of Einstein's
equations.

Proposition 3.10. Let Bϋφ) denote the ball with radius ϋ, centered at the origin of
F2*. Furthermore, let Bε(0) be the ball of radius ε, centered at the origin of F2. Then,
for any ΰ > 0 and any ε > 0, there is a A > 0, such that the following functions are
of class Cω:

1. (ί9tJ) ~ (gtJ)]:(-AΛ) x ̂ ( 0 ) -+ F2* , (λ,(t^')) -+ (gtJ) - (gtJ),
o o

2. (I3tj) - (gtj)]: (-^1, A) x ̂ ( 0 ) -^ F * , (λ, (Utj)) -+ (gtj) - (gτj),
o o

3. [\d\ - 1]:(-Λ,Λ) x B*(0) ^ S e (0), (λ,(ί/<J')) -> |d| - 1,

The functions (g1^), (g^), and d are defined in (2.2). If ε is chosen sufficiently small,
then the following functions are also of class Cω:

1. [ v 1 d i - l ] : ( - j M ) x B t f ( 0 ) - + F 2 , (λ, ([/")) -* vidf - 1,

2 ί - ^ = - ll : (-Λ, A) x Btf (0) -> F2 , (λ, ([7ij)) -> - i = - 1,

3. \l\:(Λ,Λ)xBϋ(0)>F2, ( λ , ( ^ ) ) »
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Furthermore, the partial derivatives with respect to the argument (UlJ), evaluated at
Λ = 0, vanish for all these functions.

Proof Since (gij) = (gij) + 4X2(UlJ), where
o

/ - Λ 0 0 0\

0 1 0 0

0 0 1 0

\ 0 0 0 1/

the first statement is trivial.
Let U be an abbreviation for the matrix (UlJ). With Born's formula (I - U)~ι =

oo

]Γ U\ it holds that
u=0

Thus

Since

(9υ) - 4

/

Λ)n(

- 1

0

0

0

0

λ

0

0

0

— 1

0

0

λ

0

o\
0

0

λ /

V\g-1

o

Ί

(3.2)

for any A e F*9 and |λ| < 1, it holds that

\\Vλg-ιA\\F* < \\A\\F* .
o 2 2

Because the multiplication F2* F2* —>> F2* is continuous, there exists a constant C,
such that for any Λ ^ G F2* it holds that

These inequalities yield

0 2

^ S~ΊTi-
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Thus, the series (3.2) converges absolutely for AXϋC < 1, i.e., it converges for all

|λ| < A and all (UlJ) G B#(0) if A < -\-. Hence,
4(

(S%3) -

is of class Cω((—Λ, /I) x B#(0), F2*), because it can be represented by an absolutely
convergent power series.

According to [14, Eq. 3.15], it holds that

\d\ = -\dεt(gij)

= 1 - 4XU + 4λ2 tr Z - Λ316(17 tr Z - W2) + λ48(tr2 Z - tr Z 2)

- 64λ5 (*7 i (tr2 Z - tr Z 2) - W2 tr Z + H^Zl^)

+ 64λ 6 detZ - 256λ7(ί/detZ - VF adj(Z)M>) . (3.3)

Here, we use Lottermoser's definitions

U := f/00,

W:=(U01,U02,Uω),

/Un Un C/
Z •= Un U22 U23

and adj denotes the adjoint matrix. Thus, the continuity of the multiplication F2-F2 —>
F2, and the fact that |d| — 1 is a finite linear combination of products of the functions
Uυ, lead to the existence of a A > 0, such that the functions [\d\ — 1] is of class
CT((-A,A) x Bϋφ),Bε(0))

The functions \/l + x— 1, ; j — 1, and -^- 1 are analytic in the intervall
/ί+x " ~" " l+x

(—1,1), and vanish at x = 0. Thus, Proposition 3.6 yields the existence of an ε, such
that the functions

1 + fix)

are of class Cω(Bε(0),F2). Thus, since concatenation of C"^-functions yields a C ω -
function, the functions

1
- 1 and

1

are of class Cω((-A, A) x 5^(0), F2).
The statement that the partial derivatives with respect to the argument (Uυ),

evaluated at λ = 0, vanish, easily follows with the power series representations
of these functions and the chain rule. D
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Since v — (1, — ωx2,ωxι,0), and the angular velocity ω is a constant, the
components of the velocity v are unbounded. However, the velocity v is of interest
only within the star. Thus, it is useful to choose a radius Ro, such that all matter of
any body, regarded in this paper, lies within the ball BR (0). Then, we take a function

ξ β C0°°(IR3), depending only on \χ\, with ξ(x) = 1 for \x\ < Ro and ξ(x) = 0 for
x\ > 2R0, and substitute v by

υ:=(l,-ξωx2,ξωx\0). (3.4)

Using this definition of v9 we have

Proposition 3.11. Let B^(0) denote the ball with radius ΰ, centered at the origin of
F2*. Furthermore, let BΘ(0) be the ball of radius Θ, centered at the origin ofF0. Then,
for any ΰ > 0, any θ > 0, and any Ω > 0, there is a A > 0, such that the following
functions are of class Cω:

1. [u-2-l}:(-Λ,Λ)x(-Ω,Ω)xBύ(0)-*F2, (λ,ω,(Uij)) -> [u~2 - 1],

2. [u2-l]:(-Λ,Λ)x(-Ω,Ω)xB#(0)->F2, (λ,ω,(C/")) -> [u2 - 1],

|_2λ J 2/\

The function u~2 is defined in (2.6). Additionally, the function

[(Γ^)]: ((-Λ, Λ) x (-β, β) x 5^(0) x Bθ(0) x Bθ(0)) -> Fo* ,

defined by the energy-momentum tensor

Tυ = (ρ + λp)u2υιvj +p , where v = (1, -ξct x 2 , ^ ^ 1 ^ ) ,

vldl
is of class Cω.

Furthermore, the partial derivatives with respect to the argument (Uιi), evaluated
at λ = 0, vanish for all these functions, except

D{U%3) [ ^ ln(^-2) (0, (U"))] (δU*) = δU00 .

Proof With Eq. (3.4), we have

Q^tfxP = gm - gQι2ξωx2 + 2g02ξωxι + gnξ
2ω2(x2)2

The properties of ξ, the continuity of the multiplication F2 F2 —> F2, Proposition 3.10,
and the equality gtJ = diag(-l, λ, λ,λ), imply that there exists a Λ, such that the
function °

SyVV + 1

is of class Cw((-^1, τl) x (-Ω, Ω) x -8^(0), F2). With Proposition 3.10 and the product
rule it follows that

u~2 - 1 = -y/\d\gi:jv
lvJ - 1

= -(V\d\ ~ 1) (§tJ v V - 1) - (vTdf - 1) - @ t ^V + 1) (3.5)

is of class Cω((-Λ, Λ) x (-β, β) x J3^(0), F2).
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Proposition 3.10 and Eq. (3.5) show that the partial derivative of u~2 — 1 with
respect to the argument (UlJ) vanishes at λ = 0 for all (If13) G fi#(0). Using Taylor's
Theorem 3.7, for all (Uij) e B#(P) it holds that

1

[u~2 - 1] (λ, (U13)) = [u~2 - 1) (λ, 0) + / D{U%3) [[u~2 - 1] (λ, t(W3))] (W3)dt.

o

Because [u~2 — 1] and its derivative depend continuously on λ, it follows that for
all ε > 0, there exists a Λ, such that for all |λ| < A and all (U%3) e Bϋ(0) we have
\\u~2 — l||_p < ε. Thus, for all ε > 0 there exists a A such that u~2 — 1 is of class
Cω({-A,A)x ( - β , β ) x 5^(0), £ ε(0)).

Since the functions 1, ln(l + x) are analytic in (—1,1) and vanish at
1 + x

x — 0, Proposition 3.6 yields the existence of an ε, such that the functions

xj\: B£(0) cF2^F2, f(x) ^ ln(l + f(x))

are of class C ω (5 e (0), F 2). Since concatenation of Cω-functions yields a Cω-function,

[u~2 - 1], and [ln(w~2)]

are of class Cω((-Λ, A) x ( - β , β ) x B^(0), F2) for sufficiently small yl. A calculation
of the power series of \n(u~2) yields

\n(u-2) = -λξW((x1)2 + (x2)2)) + 2λU00(x) + O(λ2),

where O(λ2) represents all elements of the power series, that are at least quadratic
in λ. Since there exists a Λ, such that this power series converges absolutely for all

|λ| < A, the power series that represents — \n(u~2),
2Λ

- ί ln(^-2) = -ξ2 y ((x1)2 + (x2)2)) + U°°(x) + O(λ),

also converges for these λ. Thus —- ln(u~2) is of class Cω((—A, A) x (—β, Ω) x
Bϋφ),F2). L 2 Λ J

With

=(ρ + Xp)(u2 - \)vιv3 + p (-^L - g13) + (ρ + λp)v^ 7 +
|d| o /

and the continuity of the multiplications F2 F2 -^ F2, F2 F o -^ Fo, the product rule
leads to the analyticity of TlJ. Finally, the statements about the derivatives at λ = 0
follow by straightforward calculations. D

Remarks. I would like to point out that there are some regions, where the functions
of Propositions 3.10, 3.11 are defined mathematically, but where they are physically
absurd. One example is λ < 0. Later, we restrict ourself to those regions, where
λ > 0, and to those densities ρ and pressures p, where T%3 has the meaning of an
energy-momentum tensor of a bounded body, consisting of ideal fluid, and rotating
uniformly with angular velocity ω.
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Without proof, I present the results of the calculation of the first elements of the
power series, representing the functions, used in Propositions 3.10, 3.11:

\d\ - 1 = -4λU00 + O(λ2) G F2 ,

y/\d\ - 1 = -2λU00 + O(λ2) G F2 ,

1 - 1 = 2λU00 + O(λ2) G F 2 ,

(5%3) ~
0

• - 1 = 2λ

• - 1 = 2λ

O(λ2) G

- e 2 y ( ( ^ ) 2 + (χ2:

' 2u?_ 1 2 2 2

•t/0 0| + e F 2 ,

+ 0(λ2) e F2,

t/υυ + O(λ) G F2.

(3.6)

4. Solution of the Reduced Field Equations

4.1. Solution of the Newtonian Field Equations

For λ = 0 and any (UlJ) G F2* we have — 7 = - 1 = 0 and u2 - 1 = 0. Thus, the

Newtonian limit λ —> 0 in the energy-momentum tensor

T%3 =(ρ + λp)u2υιvJ +p
glJ

yields the Newtonian energy-momentum tensor

where

o

Inserting this equation into the newtonian field equations (2.5) leads to

ΔUij - 4πG(ρυιυJ +p[gιJ]λ=0) + U00

o
N N

- 2 ίg h=0U U α J

when using the following definition:
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Definition 4.1. For any differentiable function,

W , , j 0 fori = 0

denotes the partial derivative of f, raised with the matrix [(# 2 J)] λ : = 0 .
o

Since the Laplacian Δ\F2 —> Fo is continuous and has the inverse (3.1), these
equations are equivalent to

N

UlJ(x)

°^0^ - \ [ g ^ ] 0 0 0

= - ί4π J
'xf. (4.1)

We can solve these equations by pure integration, because for i = j = 0 it reads

Since this is the equation for the Newtonian potential of the density ρ, we see that
the Newtonian field equations and Newton's law of gravitation are equivalent.

With the continuity of the operations Δ~ι:F0 —• F2, dxz\F2 —> F{, and the
continuity of the multiplications Fx F{ —> F o , F2 • Fo —> F o , we can convince
ourselves that for all θ > 0 and all Ω > 0 there exists a constant C, such that for
any ρ,p e Bθ(0) C Fo, and any ω e [-Ω, Ω], the solution of the Newtonian field
equations fulfills

^ ) | | F * < C . (4.3)

4.2. The Case λ φ 0

Because of (3.1), the reduced field equations (2.3) are equivalent to

J—
4π

Proposition 4.2 (Solution of the Field Equations). Let BΘ(0) and B$(0) denote the
balls, centered at the origin of Fo with radius Θ and F* with radius ϋ, respectively.
For all Θ > 0, Ω > 0, there exist constants A > 0, ϋ > 0, and a differentiable
function

[(UlJ)]:(-A,A) x (-J?, Ω) x BΘ(0) x BΘ(0) -• Bϋ(0) c F * ,

such that [(Uzi)] (λ, CJ, ρ,p) and the energy-momentum tensor

T%J = (̂> + Xp)u vτvJ + \

Eqs. (4.4) and the reduced field equations.
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Proof. Due to estimate (4.3), there exists a constant C, such that for all ρ, p e BΘ, and
all ω e [—Ω, Ω], the solutions of the Newtonian field equations lie in Bc(0) C F2*.
Choose ΰ = 2C.

Proposition 3.10, the continuity of the operators

dχi:F2^Fλ, F2-FO->FOJ

and the product rule lead to the existence of a A, such that

. [(A*>)]:(-Λ,Λ) x Btf(0) - F* , (λ,(t^)) - . (A*),

• [(Bιή): (-yl, Λ) x Bϋ(0) -> Fo* , (λ, (t/^)) -»(B«),

• l(CV)]:(-Λ, A) x βtf(0) -> Fo* , (λ,(U*)) ^ (C«),

. [(D«)]:(-Λ,^) x Btf(0) - Fo* , (λ,([/^)) -> (£>«)

:= 4X2(UklUij

M + UijUk\kl - 2Uk(\kιU
j)l),

are of class Cω((-A,Λ) ^ β^(0),F0*), where A^, Bι\ Clj are defined in (2.2).
Furthermore, it holds that

Thus, the map i™ - AUn = Aij + Bij + Cιj + Dι* is of class Cω.
Proposition 3.11, 3.10, and the product rule yield the existence of a A, such that

[4πG\d\T^]:((-A, A) x (-Ω, Ω) x Bύ{0) x Bθ(0) x Bθ(0)) -> F* ,

is of class Cω.
Finally, with (3.1) we see that the map Φij: (λ, ω, (U13), ρ, p) -> F2*,

), ρ,p) -

- [F'^a O - ΔlΓ>(x')] ^ ,-1 /•
A I

4π J

is differentiable. Calculation of the partial derivative with respect to (Uιi) leads to

D,jjij\[Φ1^(0, uj, (£72^), Q-,p)\ (6Uτ^)

= 6U« - - J ,., : / ^ * dV. (4.5)
I a; — x1

R3

We can easily see that

D(Ul,}[Φ(0,ω,(UιJ),ρ,p)]:F*

is bijective.
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Section 4.1 shows that for all ρ,p G BΘ(0), ω G [—J?,i?] there is a solution
N N

(UtJ) e Bϋ/2φ) of the equations φV(0,ω,(UtJ),ρ,p) = 0. Thus, the proposition
follows by the implicit function Theorem 3.8. D

From Φ00(λ,α;,
all δρ e Fo,

Since C/000 = 0 and [goo]x=o = 0, Eq. (4.5) leads to
o

= 0 and the chain rule, it follows that for

(4.6)

= 6lT00 (4.7)

Because the energy-momentum tensor T^ and the functions Φιj depend linearly on
ρ, it holds that

4π J
4πGδρ(x') 3 ,

ax .
x - x'

Insertion of this equation and of Eq. (4.7) into (4.6) leads to

Dp[(χr>)(O,ω,ρ,p)]δρ=-(
δρ{x')

\x — x'
dV. (4.8)

Sψ:=

With a similar calculation it can be shown that

Dp[(W3)(0,ω,ρ,p)]δρ = 0. (4.9)

At the end of this section, we make use of the fact that the functions ρ, p, and
(UlJ) can be defined on R4. They depend trivially on the coordinate x°. The matrix

/I 0 0 0\

0 cos φ — sin φ 0

0 ύnφ cos</> 0

\0 0 0 1/

represents a spacelike rotation around the #3-axis with angle φ, and

/I 0 0 0 \

0 1 0 0

0 0 1 0

\0 0 0 - 1

represents a reflection at the plane x3 = 0. Assume that the matter is symmetric
relative to the x3-axis and relative to the plane x3 = 0, i.e., for all φ9 the density ρ
and the pressure p fulfill

ρ(xι) = ρ(Sφ

%

3x
3) — ρ(tljXJ), p(xι) = p(Sφ

ljXJ) = p(t%

3x
3),

respectively. Then, some calculations show, that for any solution (UlJ) of the reduced
field equations, the functions

t:=
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and

also solve the reduced field equations. Due to Proposition 4.2, the solution of the
reduced field equations is unique. Thus, the solution of the reduced field equations
fulfills

Ux\x%) = S_ψ\S__ψiU^{Sφ)χ3), (4.10)

UlJ(xl) = tι

at{Uab{t)x3). (4.11)

Equation (4.11) shows that any solution of the reduced field equations has the
property

9tj(x%) = tΐήgab(t]χ3). (4.12)

With Eq. (4.10), it follows that the Lie derivative into the direction (0, — x2,x\θ) of
the metric defined by (UlJ) vanishes. Thus, dφ = (0, —x2,xl,0) is a Killing vector.
Because the functions (UtJ) are independent of the coordinate x°,dt — (1,0,0,0) is
also a Killing vector. Finally,

(1, — ωx2,ωxλ ,0)

is a Killing vector of the metric, defined by the solution of the reduced field equations.

5. Solution of Euler's Equation and of the Reduced Field Equations

5.1. Euler's Equation

We assume that a set of equations of state px(g\ depending on λ, is given. According
to some restrictions, presented in the next section, these equations of state fulfill
Px > 0, dQpx > 0. Integration shows that Euler's equation (2.7) of an ideal fluid,
rigidly rotating with angular velocity ω, is equivalent to

Ax(ρ(x)) + - ^ ln(^-2(x)) - Ax(ρ(0)) - -?- ln(n~2(0)) = 0, (5.1)
ZΛ ZΛ

where the points 0, x lie within the star and

ds, (5.2)

The function ξ, defined in (3.4), fulfills ξ(x) = 1 for all x with \x\ < Ro. Obviously,
the radius has to be chosen such that the whole matter lies in the Ball BR (0). The
Newtonian limit λ —> 0 in Eq. (5.1) yields

0 = A0(ρ(x)) + U°\x) - ϊ-%- [(x1)2 + (x2)2] - A0(ρ(0)) - U°°(0), (5.3)
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N

where U00 denotes the Newtonian gravitational potential (4.2). Equation (5.3) is
Euler's equation of an ideal fluid, rigidly rotating with angular velocity ω, in
Newtonian fluid mechanics.

Assume that ρ0 :T —• R+ is a solution of Eq. (5.3) with angular velocity ωQ. Here,
T denotes a smooth and compact domain. The coordinate system is chosen such that
the star rigidly rotates around the x3-axis. The solution ρ is rotational symmetric
relative to this axis, and symmetric relative to reflections at the plane x3 = 0. In
[12, 13] it is shown that any solution of Euler's equation, representing a Newtonian
star in thermal equilibrium, is rotational symmetric relative to the rotation axis, and
symmetric relative to a plane, orthogonal to this axis. With the definition

AQ(ρ0(x)) := -U00(x) + ^ή- [(x1)2 + (x2)2] + 4>(0o«») + ^°0(°) (5 4)

we extend the function A0(ρ0(x)) to points x ^ T.
Since the force, resulting from pressure, is directed towards the exterior of the star,

for all x on the surface of the star the sum of gravitational and centrifugal force

-V[U°°(x) - ^ [(x1)2 + Or2)2] = VA0(ρ0(x))

is directed towards the interor. Let n{x) denote the normal vector on the surface dT
at the point x with \n(x)\ = 1, directed towards the exterior. Then, there exists a
constant ψ > 0, such that for all x G dT it holds that

-n(x)VA0(ρ0(x))>2ψ.

N £2

ω

2 N

Since the functions U00

 z(x)- ^ — dχZ[(xι)2 + (x2)2] are continuous for all U00 G F 2 ,

there is an ε, such that for all x G <9T, and all t G [—ε, ε] it holds that

-n(x)\7A0(ρ0(x + tn(x))) > φ , (5.5)

i.e. in the whole shell of size ε, the sum of gravitational and centrifugal force into
direction — n is greater than ψ. Let

Tε := {x = x + tn(x)\ x G dT, \t\ < ε} ( 5 . 6 )

d e n o t e t h i s s h e l l . W e c h o o s e ε s u c h t h a t fo r a l l x , x G dT, a n d al l t,t G [ — ε , ε ] t h e
e q u a t i o n

x + tn{x) = x + tn(x)

has the unique solution x = x, t = t. Consequently, any smooth function t:dT —»
[—ε, ε] uniquely defines a surface of a new body by dT —» M3, x —» x + t(x)n(x).

5.2. Restrictions to the Equations of State

From a given tensor density (UlJ), that defines a function u~2, we calculate the density
ρ and the pressure p with Euler's equation. Since the implicit function Theorem 3.8
will be used to prove the existence of solutions (λ, ρ ,p(Uιi)) of Euler's equation and
the reduced field equations, this operation must be differentiable. This leads to some
restrictions to the equations of state.
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The equations of state px(ρ) are assumed to fulfill px > 0, dρpx > 0, and
pχ(0) = 0. Because the surface of the star is defined by px = 0, it follows that
the density ρ also vanishes on the surface of the star.

Let ^4max, T, and A be constants, such that for all 0 < λ < Λ9 all x e T, and all
0 < t < τ it holds that

t<Amax. (5.7)

The constant AmΆX must be chosen in a way that for all 0 < λ < A the functions

fovy<0

f or y < 0

exist, and are continuously differentiable with respect to y. The functions Fλ(y),
Gx(y), and their derivatives F'x{y), Gf

x(y) are uniformly continuous for 0 < λ < A,
and —oo<y< Amax. Furthermore, for all ρ, λ0 there exists a constant C, such that
the estimate

\Aχ(ρ) - AXQ(ρ)\ < C\λ - λo | (5.9)

is fulfilled.

Example. We discuss these restrictions in the case of a polytropic equation of state

p(ρ) = CρΊ with 7 > 1.

For arbitrary Amax > 0 we have

for y G [0, Am a χ] β

0 for y < 0

From these equations, it can easily be seen that the conditions of this section
1 1

are fulfilled if the functions f(x) := x^~ι and g(x) := x~*~l are continuously
differentiable in R+, and

lim dxf(x) = lim dxg(x) = 0.
x—»0 x - ^ 0

This yields the restriction > 1, such that the polytropic index 7 has to fulfill

1 < 7 < 2.
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5.3. Solution of Euler's Equation and of the Reduced Field Equations

Definition 5.1. Let p e R be the number, that is introduced in Defintion3.9. The
density ρ and the pressure p lie in the Banach space

f is s y m m e t r i c r e l a t i v e t o t h e χKaxis'

f is symmetric relative to the plane x =

with the norm || \\p. Note that Γ U T ε is compact.
Obviously, the radius Ro, used to define the function ξ Eq. (3.4), must be chosen

such that TUTεc BRQ(Q).

Proposition 5.2. Let ρ0 be the solution of Euler's equation in Newtonian fluid me-
chanics, introduced in Sect. 5.1. Then, there exist A > 0, Ω > 0, and δ > 0, such that
for all 0 < λ < A the condition

fχ(x) := - -^ ln(u-£(z)) + -^ ln(^(0)) + Aλ(ρ0(0)) = 0

defines a closed, and smooth surface in the shell Tε. Here, the function u~2

p is defined

by the solution [(ί/ZJ)](λ, α;, ρ,p) of the reduced field equations (Proposition 4.2), and

\\Q ~ Qo\\P i \\P ~ Po(Co)\\p <δ> \ω-ωo\<Ω.

For all points x G T U Tε outside the domain surrounded by this surface, it holds that

fχ(x) < 0.
Furthermore, for all X < A, the functions

T: [0, A] x [ω0 - Ω, ω0 + Ω] x Bδ(ρ0) C LP

S(T U Te)

x Bδ(p0(ρ0)) C LP

S(T U Tε) -> LP

S(T U Tε),

(λ,α;, ρ,p) -+ Fχ ί - ^ ln(u^p(x)) + ^ ln(^

and

S:[0, A] x [c 0̂ - β,ω 0 + Ω] x B5(ρ0) C Lξ(T U Tε)

x Bδ(p0(ρ0)) C Lξ(T U Γε) ^ L^(T U Tε),

(λ, w , ρ,p) ^ G λ ί - ^ ln(7i^(x)) +

can be defined, and have the property

[T(\,ω, ρ,p)] (x) = [S(λ,ω, ρ,p)] (x) = 0

for x G d(T U Tε). The functions Fx, Gx were introduced in Sect. 5.2.

Proof. First, we take any Ω > 0, δ > 0, and restrict A such that Propositions 4.2,
3.10, 3.11 hold, and the equations of state have the properties of Sect. 5.2.

Due to Proposition 3.11, 4.2, and the chain rule, the function

t:(-Λ,Λ) x (-Ω,Ω) x Bδ(ρ0) c LP(TΌTε)

x Be(p0(ρ0)) C lf(T U Tε) -+ F2 , ( 5 j ( ) )

(λ, ω , ρ , p) -> U - ln(w"2) I (λ, ω, [(Uιj)] (λ, ω, ρ, p»
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is continuously differentiable. It should be emphasized that continuous embeddings are
of class Cω, because they are linear. Thus, the continuous embedding LP(TUT£) —> F o

is of class Cω(Lp(T U Tε),F0), such that Proposition 4.2 can also be used if
ρ,pe LP

S(T U Tε), rather than ρ,p e Fo.
With (4.2) and (3.6) it follows

2

[t(0,ω, ρ,p)] (x) = -ξ2 y ((x1)2 + (x2f) + [U°°(0,ω, ρ,p)] (x)

I \γ rpl\

τuτ£

Because t is continuously differentiable, Taylor's theorem 3.7 leads to the existence
of a constant C{, such that for all ρ G Bδ(ρ0), all p G Bδ(p0(ρ0)), and all |cc; — cu01 < Ω
it holds that

J-iQiP) — £(0, CJ, ρ,p)\\F < C i λ . (5.11)

Since £>0 is a solution of Euler's equation in Newtonian fluid mechanics, Eqs. (5.4),
and (4.2) yield for all x G T U T ε,

- [/700(0,u;, ρ,p)] (x) + ^ - [(x1)2 + (x2)2] + [U00(0,ω, ρ,p)] (0) + A0(ρ0(0))

where for any / e LP(T U Tε) the function Uf is defined by

Uf(x):=-GJ f\^J .— — Or /

TεUT

This equation, the continuity of the embedding LP(T U Tε) -^ Fo, and (3.1) lead to
the existence of a constant C2 such that

£2 2

, ρ,p)] (x) + ^ - [(x1)2 + (x2)2] + [C^°(0,α;, ρ,p)] (0) + A0(ρ0(0))

-A0(ρ0(x))

With

/ λ(x) - A0(

<C2(Ω + δ). (5.12)

(x) + [ί(0,α;, ρ,p)] (x)) + Γ - [U00(0,ω, ρ,p)] (x) - Ao(

£2 2

l(x1)2 + (x2)2] + [
1)2 + (x2)2] + [U°°(0,ω, ρ,p)] (0)

,p)] (0) - [ί(0, ω, ρ,p)] (0)) + Aλ(ρ0(0)) - A0(ρ0(0))) ,

(5.11), (5.12), the continuity of the embedding F2 -> C1>iy(IR3), and (5.9), there
follows the existence of a constant C such that

|/λ(x) - Ao{Qo{x))\ <C(Ω + δ + Λ),

- A0(ρ0(x))]\ < C(Ω + δ + Λ).
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Since ρo(xo) = 0 for all x0 e dT9 it holds that A0(ρ0(x0)) = 0. This equation and
estimate (5.13) yield

\fx(x0)\<C(Ω + δ + A).

Ψ
If we choose Ω,δ,Λ < y—, then (5.5) and (5.13) lead to

Ψ-n(x0) V/λ(x0 + tn(x0)) > —

for all t e [-ε,ε]. Thus, the function git) := fx(x0 + tn(x0)) fulfills |#(0)| <

ΨC(Ω + δ + A), and in [—ε,ε] it has a negative derivative that is greater than —. If
we choose

then git) has a unique zero in (—ε, ε). Consequently, for all x e dT there is a unique
zero of the function fx on the line, defined by x0 and the direction n(x0). Due to the
assumtpion, there is no intersection point of the lines x0 + tn(x0) and x0 + tn(x0) if
t G [—ε, ε] and x 0 7̂  x0. Furthermore, the function / λ is continuously different!able.
Thus, the condition fx(x) = 0 uniquely defines a closed, smooth surface in the shell
Tε. In addition, it holds that fλ(x) < 0 for all x outside the domain that is surrounded
by this surface.

If we restrict J?, δ, and A such that

\fχ(x)-A0(ρ0(x))\<τ,

condition |/ λ (x) | < AmΆX is fulfilled (compare (5.7), and the functions Fx(fx(x)),
Gx(fx(x)) are defined for all x e Tε U T. These functions are continuous, and it
holds that

[T(ρ, p, ω, λ)] (x) = [S(ρ, p, CJ, λ)] (x) - 0

for all x e d(T U Tε). This equation immediately follows with fx(x0) < 0 for
x e d(T U Tε), and F λ(y) = Gx(y) = 0 for y < 0.

In order to prove that the functions T, and 5 map into LP

S(T U Tε), it remains
to be shown that the function fx is symmetric relative to the x3-axis and relative
to the plane x3 = 0. Equation (4.12) and υι(xι,x2,x3) = υι(xι,x2,—x3) lead to

u ρp(x\x2,x3) = uρ

2

p(x\x2,-x3), such that fx{x\x2,x3) = / λ(x !, x 2,-x 3). At

the end of Sect. 4.2 it was shown that υ = (1, — α x2, CJX1, 0) = dt + α δ^ is a Killing

vector. Since all functions are independent of the coordinate x°, it follows that

= -2λυιvJVιυJ

= 0,

such that dφfx = 0. Here, we must keep in mind that ξ(x) = 1 for all x e T U

T. D
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Proposition 5.3. Let px(ρ) be a set of equations of state, that fulfills the restrictioms
of Sect. 5.2. Assume that ρo(x) is the solution of Euler's equation in Newtonian fluid
mechanics, introduced in Sect. 5.1. Additionally, it is assumed that the integral equation

ho(x) = F^(A0(ρ0(x)))G ίho(xr) (V-^ΓΎ, - γ^λ dV (5.14)
J \\x x \ \x \J

has the unique solution h0 = 0 in

C°(T) •= i f e C°(T)s \
f ίS s y m m e t r i c r e l a t i v e t o the z?-axis

f is symmetric relative to the plane x3 = 0

Then, there exist constants A > 0, Ω > 0, such that for all 0 < λ < A and all
\ω — ωo\ < Ω, there exists a solution (λ,cj, ρ, (C/u')) of Euler's equation (5.1) and of
the reduced field equations (2.3).

Proof. According to Proposition 5.2, there exist constants Λ, Ω, and δ such that for
all 0 < λ < A, and all \ω — ωo\ < Ω the function

Lp

s(TUTε) x Bδ(p0(ρ0)) C Lp

s(TUTε) -> Lp

s(TUTε) x Lp

s(TUTε),

can be defined. We can easily convince ourselves that the zeros of Ψλ ω determine a
solution of Euler's equation and of the reduced field equations. This solution represents
a body, rigidly rotating with angular velocity ω, and consisting of ideal fluid with
equation of state pλ(ρ). The matter of this solution completely lies in T U Tε. Thus,
we have to prove the existence of zeros of the function Ψx ω in the neighbourhood
of the given zero ΨOω (£o?Po(£o)) = 0 ^ m s c a n ^ e done with the implicit function
theorem 3.8.

Some straightforward calculations show, that for any Holder constant 0 < v < 1,
and any constant C, the functions

tλ: BM(0) c Cι>"(T U Tε) -* C\T U Tε), f{x) ^ Fλ(f(x) - /(0) + C),

sx: BM(0) c Cι^(T U Tε) -> C\T U Tε), f(x) -+ G λ (/(x) - /(0) + C)
x: BM

are of class C\BM(0),C°(T U Γe)). Here, M must be restricted such that \f(x) -
/(0) + C\ < AmΆX. Furthermore, with the properties of Fλ and G λ , presented in
Sect. 5.2, it can be seen that these funtions and their derivatives

D[tλ(f)]:Cι'»(TUTε)^C°(TUTε),

6fix) -> F'x(f(x) - /(0) + C) • (δf(x) - δfφ)),

D[sχ(f)]:Cι<"(TUTε)->C°(TuTe),

δf(x) -» G'λ(/(x) - /(0) + C) • (δf(x) - δf(O))

depend continuously on λ.
Since the continuous embeddings C°(TuTε) -> Lp(TuTε), F2 -> C 1 ' 1 "^ 3 ) are of

class Cω, the chain rule, together with Propositions 3.11, 4.2, yields that the functions

T(λ,ω, ρ,p) = tλ(~[t(λ,ω, ρ,p)} (x) + [t(λ,ω, ρ,p)] (0) + Ax(ρ0(0))),

S(\,ω, ρ,p) = sλ(-[t(λ,ω, ρ,p)] (x) + [t(λ,ω, ρ,p)] (0)
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are continuously differentiable with respect to ω, ρ, and p. Here, t is defined in (5.10).
Thus, all functions Φλω are continuously differentiable, and Ψx and its derivative

D[ΨXω(ρ,p)]:Lp

s(TuTε) x Lp

s(TUTε) -> Lp

s(TUTε) x Lp(TuTε),

-Dρ[T{\,ω,β,py\ Dp[T(λ,ω, ρ,p)] \ fδρ\

Dβ[S(λ,ω,ρ,p)] I - Dp[S(X,ω, ρ,p)] ) \δp)

depend continuously on λ and ω. Consequently, the proposition follows by the implicit
function theorem 3.8, if the operator D[ΨOω (go,po(ρo))] is bijective.

With the chain rule, Proposition 3.11, and Eqs. (4.8), (4.9), (5.15), we see that

nrir/ (n rr, ( Λ\ifδρ\ (^~ D

ρ\-TΦ,ω^ρo,pQ{ρo))\ 0\ fδρ\

where
[De[T(0,ω0, ρo,po(ρo))]δρ](x)

τuτε

A0(ρo(x)) is defined in (5.4). It can easily be seen that D[Ψ0 ωo(@oiPo(Qo))] is bijective
if

11 - Dρ[T(0,ω0, ρo,po(ρo))]:Lp

s(T U Tε) -^ LP

S(T U Tε)

is bijective.
Due to Sect. 3.3.1 the embeddings L^(TUT ε) -• Fo, Cι^(TUT£) -> L^(TUT ε)

and the operator Δ~ι :F0 —> F2 are continuous, and the embedding F2 -^ Cλ'u{TUTε)
is compact. Since concatenation of continuous operators and a compact operator yields
a compact operator, the map

/
τuτε

is compact. Because the multiplication with the bounded function FQ(T4 0(^ 0(X))) is
continuous, the operator Dρ[T(0,ω0, go,po(go))] is compact. According to [10], it
follows that 11 — DρT(0,ω0, ^O'%(^o)) ^s bijective, if it is injective, i.e. if its kernel
is trivial.

Since A0(ρ0(x0)) < 0 for all x0 e (TUT ε )\T, it follows that FQ(A0(ρ0(x0))) = 0.
Furthermore, [DρT(0,ω0, ρo,pQ(ρo))]ho is continuous for all h0 G LP(TUT£). Thus,
any function h0 e LP

S(T U Tε) that fulfills

lies in the subspace

C°(T) •= if e C°(T) f i S s ^ m m e t r i c r e l a t i v e t 0 t h e ^3-axis 1
s ' \ / i s symmetric relative to the plane x3 = 0 J '

and the operator D[Ψ0 ω (ρo,po(ρo))] is bijective if Eq. (5.14) has the unique solution

h0 = 0 in C°S(T). D °
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6. The Harmonic Conditions

In this section we show that for sufficiently small A and all λ < Λ, a solution of the
reduced field equations and the equations of motion (2.3) automatically fulfills the
harmonic conditions

such that Einstein's equation are fulfilled. Precisely, we prove

Proposition 6.1. Let T C R3 be a compact domain with a surface smooth enough that
Gauβ' theorem holds in T. Furthermore, let nτ(i = 1,2, 3) be the normal vector that is
orthogonal to the surface dT and points towards the outside. Assume that Tιi : T G M
is a X-depending set (0 < λ < A) of continuously differentiate energy-momentum
tensors, and (U1^) G F2* a set of tensor densities such that the equations of motion
and the reduced field equations (2.3) are fulfilled with the causality constant X. If

• there exist constants Θ, ϋ, such that for allO < X < Λo it holds that \\(Uίj)\\F* < ϋ,

• the solution is stationary, i.e. (Uυ

 0) = (Tυ

 0) = (λ

• for all x0 G dT and all j = 0,1,2, 3 it holds that Σ nt(x0)Tl*(x0) = 0,

then there is a constant A > 0 such that for all 0 < λ < A and j = 0,1,2, 3 the
harmonic conditions

are fulfilled, i.e. (λ, (L^ 7 ), T u ' ) are solutions of Einstein's equations (2.3) with causality
constant λ.

Remarks.

• It is not required that (Tιj) can be extended continuously to IR3.

• This proposition also holds if the support of T2-7 is unbounded and (TlJ), (TlJ

 k) G

K-
• This proposition can be generalized to piecewise continuously differentiably energy-
momentum tensors (TtJ). In this case, it has to be required that in every domain of

3

continuity Gauβ's theorem is applicable, and the conditions ^ n 2 (x 0 )T^(x 0 ) = 0
hold on all boundary-surfaces. ι=ι

In order to prove this proposition, we need the following properties of the
Christoffel symbols.

Proposition 6.2. Let Bΰ(0) denote the ball with radius ϋ centered at the origin ofF*.
Then, for any ΰ > 0 there is a A > 0 such that the functions mapping the causality
constant X and the tensor density (U"1^) to the Christoffel symbols,

η k : [0, Λ] x £?„«)) -> F,, (λ, (U^)) - Γ]k ,

are of class Cω for all z, j , k = 0, 1, 2, 3. Furthermore, there exists a constant C such
that for all (Uίj) G Bϋ(0) it holds that

\\n,-U*\t\\Fι<CX foriφO,
(6.1)

| |Γ^ | | F i < CX otherwise.
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Proof. With the power series' of y/\d\ — 1, and (gτj) — (g^), it can be seen that the
functions

are of class Cω. Furthermore, with (3.6) it follows that

(0,(^)) = -2[/°%,

Calculation of the Christoffel symbols yields

1
ij = λ

Thus, the analyticity follows with the chain rule, the product rule, Proposition 3.10,
and the continuity of

The equations [hιjk]x=0 = -2ί/00

>feό°δ°, and

lead to
00

~ U
00

,j6k°a
U

m

Thus, estimate (6.1) follows by Taylors theorem 3.7. D

In order to prove Proposition 6.1, we choose A such that the results of Sect. 3.3.2
can be used. Since the function space CQ°(R ) is dense in F2, for all (UlJ) there exists

n
a sequence ((UlJ))neN of infinitely differentiable functions with compact support such
that the estimates

i
are fulfilled.

Using Proposition 3.10 and the results of Sect. 3.3.1, some straightforward consid-
erations show that the maps

l
3)]: [0, Λ] x BJ0) -> F* , (λ, (£/«)
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are of class Cω. Here, Einstein's tensor (Gij), and (Fίj)-(ΔUij) are defined in (2.4),

(2.3), respectively. It should be noted that —r (GlJ) is regular at λ = 0. Thus, Taylors
Λ

theorem 3.7 leads to the existence of a constant Mx such that for all 0 < λ < A and
all (U%3) it holds that

1

λ 2

1 n%

λ2

M,

(6.2)

(6.3)

Since a solution of the reduced field equations fulfills (4.4), it follows that

-
4π x — x'

where

ΔUIJ

x — x'

With (3.1) and (6.2), it follows the existence of a constant M 2 such that

This estimate and the continuity of dχl :F2-^Fι yield the existence of a constant c
such that for all j = 0,1,2, 3,

I I K I U < - • (6.4)

The equation dxk \x — x'\ = — dχ/k \x — x'\ leads to

n n
Since \d\, TlJ, and F u — Z\[/2J are continuously differentiable, we can apply Gauβ'

n n

theorem. Because Fιj - ΔUIJ has compact support, it holds that

4π • — x '
d x + / ,k

4π y
4πG|d(x /)|T^(x /)%(^)^ , K

X —
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Here, dσ(x') denotes the infinitesimal surface element of dT. With Uιj

 0 = Tτj ' 0 =

Fι\0 = ΔUι\Q = 0 and Σ n^x1)^ (χr) = 0 we get

With

-1 f (4πG\d(x')\TV(x')-FV(x') + ΔWi(x'))τ , n
= -7- I j 7] ~d x + J J

 τ .
4π J \x — x'\

:= gahU*\ah + 9lJUa\ab - 2U^\abg
0 0 0

it follows that LtJ' = 0, since (Uυ) is infinitely differentiable. This leads to

n n n

(4πG\d(xf)\T^(xf) - FV(xf)1 ί (4πCτ\ίi(τf)\Tτj(rf) — F%J(T'\ 4- ΔJrHr ) — JHΎ'U n
jnj _ / ' v 7 | v v ^ ^73 / _|_ pj

j i ~ 4π / \x-x'\ >ι"

n n

Let (G l J ) denote Einstein's tensor, defined by the tensor density (Uιj). Then,

n

Thus,

\ n n
/\i rp^3(Ύf\ Ir/Γr^l CVΉΎ'Λ

4π ./ x — x'

- /π JΓ / ,
4π J \x — x

•')-^\d(x')\σ\(x')
: d3xf + r i (6-5)

Since (UlJ) is a solution of the reduced field equations, and Uιi 0 = 0, it holds that

- ~ & = ̂ Ϊ {ΔU* - L*>) = ̂  (gabU^ ab - L«)
2ΛZ \a\ \a\ o

where

0 0

Let V2 denote the covariant derivative, and Γι-k the corresponding Christoffel symbols
n n . n . .

defined by the tensor density (/7U). Furthermore, Vΐ? and I 1 ^ are defined by (U^).
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Since \7%TlJ = 0 and V%Gij = 0, there follow

and

= 4τrG|d| VJΓ" - ^

n n
lιE

- |2|Gιi)

Inserting (6.7) and (6.8) into (6.5) yields

4π
• d V

re - x'

where

-i /• /;κχθ^(χθ + ^ ( x θ ^ ( , o d 3 χ / + ? »

4π 7 F - ^ ;

(6-8)

4π J

n n

x — x'
• dfx'

4π J

n n
1

4τr

g!> (\d(x')\GιHx') - \d(x'

x — x'
•d3x'

3 ;

d3a
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With the results of Sect. 3.3.1, the differentiability of |d| - 1, Γfk, and estimate (6.3)

it follows the existence of a constant d such that for all j = 0,1,2, 3 it holds that

\\hj(x)\\F2<-. (6.10)

In order to prove the equation U^ i = 0, the following Banach spaces must be
introduced:

V- 1
D e f i n i t i o n 6 . 3 . For p>4 and 0 < δ < - 2 + 3 define

V

Fo' := M£ό+1(R3) and F[ := Mf^R3).
With Proposition 3.3 and the definition of the weighted Sobolev spaces, we can

easily convince ourselves that the embeddings

and the functions

. T?t 771 . 771/

Po , and 9xz: F(

are continuous.
We show that there are constants A and C such that for all 0 < λ < Λ, all

n = 1,2, 3, . . . , and j = 0,1,2, 3 it holds that

C
(6.11)

Thus, a limit n —> cx> yields | | [/ u ' J | F / = 0 , which is equivalent to the desired result

Since * < tf for all 0 < λ < Λ, it holds that

,; j = 0,1,2,3} < oo .

With the continuity of dχZ: F[ -^ FQ and (6.6), the estimate

\\Hl3\\F, < Cxa (6.12)

follows for an appropriate constant Cλ. Furthermore, with the continuity of dχί: F2

Fx and (3.3) it follows the existence of a constant C2 such that

Finally, (3.1), Proposition 3.10, and the continuity of the multiplications F2-F{ —• F{,
Fx - FQ -^ Fo lead to the existence of a constant M such that for all j = 0,1,2, 3,

4π x — x'
< Mλa. (6.13)

F2
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With (6.1), the continuity of the multiplication Fx Fo' —> Fo, and

TTOO _ ΛOjjab jτja(0 -0)6 _ \/τrαO rial τjal γja3 x
n — 9 U ,ab~ ZU ,ab9 ~ Λ(U 0 -U aι - U 2 - U 3) ,

0 0

it follows the existence of a constant C3 such that

This estimate and (3.1) yield the existence of a constant M' such that for all
3 = 0 , 1 , 2 , 3 ,

\x — x
< M'Xa. (6.14)

F2

Because || | | F , < || | | F 2 , || | | F , < || | | F i , inserting (6.13), (6.14), (6.4), and (6.10)

into Eq. (6.9) yields

R3

4π J

x-x'\

\x-x'

such that

a := sup{\\UijJF,;j = 0,1,2,3} < (M + M;)λα
c'

< (M + M O " 1 , finally leads to (6.11), where C =
1 ~(M + M')Λ'

7. Result

Propositions 4.2 and 6.1 yield the following

Theorem 7.1. Let px(ρ) be a set of equations of state that fulfills the restrictions of
Sect. 5.2. Assume that T is a compact domain, and the density ρ o : Γ c l 3 —> M+ is a
solution ofEuler's equations (5.3) in Newtonian fluid mechanics that represents a body
rigidly rotating with angular velocity ω0 and consisting of ideal fluid with equation of
state po(ρ). Furthermore,
• either the integral equation

0 = ho(x) - F J ho(x')
1

\x — x

1

"x1 (7.1)
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has the unique solution h0 = 0 in

C°(T)'= if e C°(T) ^ ίS symmetric relative to the x3~axis Ί
\ / is symmetric relative to the plane x3 — 0 J '

• or ω0 = 0, i.e. ρ0 represents a static, spherically symmetric star.

Then there are constants A > 0 and Ω > 0 such that for all 0 < λ < A and
all \δω\ < Ω there exist a continuously differentiable density ρ:Tρ —> R + and a
tensor density (glJ) such that the stationary, axisymmetric Einstein equations (2.3)
with causality constant X and energy-momentum tensor

=(ρ + λPχ(ρ))u2vV + pλ(ρ)

are fulfilled. Here, Tρ —• IR3 is a bounded domain, and uv% is the velocity of the ideal
fluid rotating with angular velocity ω0 + δω around the axis of symmetry. Additionally,
it holds that v = dt + (ω0 + δω)dφ, where dt is the tίmelίke and dφ the spacelike
Killing vector.

Furthermore, there exists a harmonic coordinate system (x°, x ι , x2, x3) such that

v = (1, — (ω0 + δω)x2,(ω0 + δω)xι,O).

In this chart (Uιj) = —^ ((glJ) - (glJ)) fulfills

( [ / ί J ) G F * , / 7 U

Z = O , j = 0,1,2,3,

and the matter is symmetric relative to the x3-axis and relative to the plane x3 = 0.

Remark. I would like to mention, without proof, that the tensor density {UlJ) is even
analytic in the vacuum region. Furthermore, if S is a compact domain in the star such
t h a t F λ , G λ eCι+ι(Il where

r 1 1
xeS

the density ρ, the pressure p, and the tensor density (UlJ) are I, /, and / + 2 times
Holder continuously differentiable in S, respectively.

Proof. In the case of a static star (ω0 = 0), £0 is spherically symmetric [4, 11], i.e. £>0

depends only on \x\. Furthermore, it can be shown [12, 9] that in spherical coordinates

cos ΰ , sin ϋ cos φ, and sin ϋ sin φ

is a basis of the kernel of (I — K): C°(T) —» C°(Γ), where K is the compact operator

T

with

4 π G /
Ψ(X) = —p-r̂ — / ^ o W ^ 2 ^ > a n d

|x| j
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The equation FQ(A0(Q0(X))) = (A~ιy (A0(ρ0(x))) = and Euler's equation

. 1*1
-AπGx1 , ,

dr- / Q0(r)r2

o

yield

Thus, if there is any h0 e C%{T) that fulfills Eq. (7.1), it follows that

T

ί ho(X') (j-L- - ±
J \\x — x'\ \x'\

K{x) = ̂ ΞJ) G ί ho(X') (j-L- - ±λ d\ ,
Ψ(x) J \\x x'\ \x'\J

such that /°, , lies in the kernel of 1 — K. It should be noted that for any continuous
Q(\x\)

function h0 it holds that

-f- G [ h,{xf) fT—^y -^r) £x' e C\T).
Ψ(x) J \\x-x'\ \x'\J

h (x)
Thus, -yη—- can be extended continuously to the zeros of ^>Q(|X|). Consequently, in

the case ω0 = 0, h0 is a linear combination of

£Q COS ϋ , >̂o sin ϋ cos (/?, and ρ'o sin ^ sin 99 ,

which do not lie in C°S(T).
Now we have convinced ourselves that in both cases the assumptions of Proposi-

tion 5.3 are fulfilled. Thus, for all 0 < λ < A and \ω — ωo\ < Ω there exists a tensor
density (UlJ) € F2* and a density ρ e LP(T U Tε) such that for all x e T U Tε there
hold

ρ{x) = Fλ(-^ ln(^-2(x)) + -^ ln(^-2(0)) + Ax(ρ0(0))\ , (7.2)

(7.3)
2λ

Since F λ , G λ , and — ln(w~2(x)) are continuously differentiable, the density ρ, the
2λ

pressure p, and the energy-momentum tensor

Ttj =(ρ + .

are continuously differentiable. The surface of Tρ is defined by

fx(xn) = \n(u~2(xn)) -\ ln(w~2(0)) + -Aλ(on(0)) = 0
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and lies in T U T£. Because / λ is continuously differentiable, the surface dTρ is
smooth, such that Gauβ' theorem can be applied in Tρ. Furthermore, with (7.2), (7.3),
Fλ(0) = 0, and Gλ(0) = 0 it follows that Tij(x0) = 0 for all x0 e dTρ.

The fact that dt = (1,0,0,0), dψ = (0, -x2,x\ΰ), and υι are Killing vector was
shown at the end of Sect. 4.2, such that Euler's equation (2.7) and the equations of
motion V\TlJ = 0 are equivalent.

Thus, application of Proposition 6.1 yields that (\,(UlJ),TlJ) is a solution of
Einstein's equations with causality constant Λ. D
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