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Abstract: The purpose of this paper is to apply the framework of non-commutative
differential geometry to quantum deformations of a class of Kahler manifolds. For
the examples of the Cartan domains of type I and flat space, we construct Fredholm
modules over the quantized manifolds using the supercharges which arise in the
quantization of supersymmetric generalizations of the manifolds. We compute an
explicit formula for the Chern character on generators of the Toeplitz (C* -algebra.

I. Introduction

LA. Since the early work on quantum mechanics ([15, 3, 12, 4]) by Heisenberg,
Born, Jordan, and Dirac, it has been generally recognized that ordinary geometry
does not apply to the subatomic world. In order to describe the physical pheno-
mena in that world, the classical notion of phase space needs to be replaced by
a non-commutative algebra of "quantum observables." The coordinates p and q
on the phase space 1R2 are replaced by generators p and q that obey the famous
commutation relation [q, p] = ih. This "quantization" procedure amounts to studying
a non-commutative deformation of a flat space, and, from a geometric viewpoint
quantum mechanics emerges as some form of symplectic geometry on this non-
commutative space. The classical algebra of functions on phase space arises as the
h —> 0 limit of the deformed algebra, and the Poisson bracket of two observables
turns out to be the subleading term in the small ft expansion of the commutator of
the corresponding quantized observables. Much work has been done since the early
quantum mechanics on extending this procedure to more general, non-flat phase
spaces, resulting in powerful theories known as geometric quantization, deformation
quantization, quantum groups, etc.

/. B. In the mid-eighties A. Connes [9] proposed a general scheme of non-commuta-
tive differential geometry which is ideally suited to describe the geometry of
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quantum theory. The central concept of this scheme is a non-commutative C*-
algebra si which plays the role of an algebra of continuous functions on the (pu-
tative) non-commutative space. The de Rham cohomology of a smooth manifold is
replaced by the cyclic cohomology of j/, while elements of the group KQ(J&) play
the role of vector bundles over the non-commutative space. Another central concept
of Connes' framework is that of a p-summable Fredholm module over j/, which
replaces the classical notion of metric structure on a manifold. This is defined as a
triple (Jf,p, g), where J f is a Z2-graded Hubert space, p is an action of jtf by
bounded operators on Jf, and Q is a self-adjoint operator on Jίf which is odd with
respect to the Z2-grading (see Sect. II for a precise definition). In examples, the
operator Q is often a Dirac type operator. To a Fredholm module over j/, Connes
associates a fundamental cocycle in cyclic cohomology, called the Chern character.

/. C A conceptual framework of quantization which fits the scheme of non-commuta-
tive differential geometry was proposed by Rieffel in [19]. This framework relies
on the use of (C*-algebras and precise operator norm estimates (rather than formal
power series in Planck's constant), and we refer to it as non-perturbative defor-
mation quantization. Examples of quantized spaces studied within this framework
include quantized tori (see [20] for a review and references) and quantized flat
spaces (see [8] for some recent results and references). In [17, 7, 5, and 6] we
studied quantum deformations of a class of hermitian symmetric spaces and super-
spaces, namely the Cartan domains and superdomains. In each case, we constructed
a family of C*-algebras of "quantized functions" and verified that these C*-algebras
are indeed quantum deformations of the corresponding classical algebras of func-
tions. In this paper and its sequel we study Fredholm modules over these algebras
and the associated Chern characters.

LD. As explained by Witten in his work on supersymmetry [21], it is natural to
regard Dirac type operators as generators of supersymmetries ("supercharges") in
certain physical systems involving bosons and fermions. This suggests that a natural
way of constructing Fredholm modules over a quantized manifold is first to quantize
a supersymmetric generalization of the manifold (see e.g. [2] for an introduction to
the theory of supermanifolds), and then to take Q to be a supercharge generating
the supersymmetry. Following this idea, we construct Fredholm modules over the
quantized type I Cartan domains and over quantized flat spaces. Our construction
relies on [5], where we studied the relevant supersymmetric theories. We introduced
there the notion of a super Toeplitz operator and the C*-algebra generated by such
operators. The Fredholm modules we construct bear a certain resemblance to those
constructed for the Toeplitz algebra over the circle in Sect. 4.2 of [11].

I.E. The paper is organized as follows. In Sect. II we briefly review Connes' for-
malism of non-commutative differential geometry. In Sect. Ill and IV we study
Fredholm modules over the quantized type I Cartan domains, and in Sect. V we
study Fredholm modules over quantized flat spaces.

II. Fredholm Modules and Their Chern Characters

77. A In this section we briefly review the notion of a ^-summable Fredholm mod-
ule over a C*-algebra s4. From a physical point of view, the concept of a Fredholm
module captures the essential features of a quantum supersymmetric system: the



Supersymmetry and Fredholm Modules Over Quantized Spaces 399

(C* -algebra stf is the algebra of observables, the Dirac operator is the supersymme-
try generator, and its square is the Hamiltonian of the system.

Let eβ/ be a trivially Z^-graded C* -algebra (all elements are even). Recall ([9,
11]) that a />-summable Fredholm module over stf is a triple (3?,p, Q) such that:

(i) J f is a Z2-graded Hubert space. We denote by Γ the grading operator and by
Jf'o and Jf7! the homogeneous subspaces of 3tf .
(ii) p : £# — > j£?(Jf ) is a grading preserving *-homomorphism of stf into the alge-
bra of bounded linear operators on Jf . For notational simplicity, we will suppress
p in all formulas throughout the rest of this paper.
(iii) Q is a self-adjoint operator on 3tf which is odd under the ^-grading, i.e.

ρr + rρ = o, (π. i)
and such that for any ε > 0,

(Π2)

Here, Ip(3?) denotes the p-th Schatten class of operators on Jf . It is natural to
regard the smallest number p in (II.2) as the dimension of the non-commutative
space.
(iv) The subalgebra stf® consisting of those a £ stf for which the commutator [Q, a]
is bounded is dense in jtf.

We refer to Q as the Dirac operator. In the following, we will denote H := Q2

and refer to it as the Laplace operator. Clearly, H is a positive self-adjoint operator.

II. B. A /?-summable Fredholm module defines a fundamental cocycle in the cyclic
cohomology of j/^, called the Chern character [9]. In this paper we use the Chern
character of [16], which is a cocycle in the entire cyclic cohomology [10] of s$Q.
It has the advantage of being expressed in terms of the heat kernel of the Laplace
operator (very much like the McKean-Singer formula in index theory), which leads
to useful integral representations. Its truncation to cyclic cohomology is discussed

in [11]. This cocycle, Ch*(β) = {Ch£(β)}£o, where each Chβ

2k(Q) is a (2k +

l)-linear functional on stfQ, is defined as follows. For a 6 ^f(Jf ) and t > 0 we
define the unbounded, densely defined operator

a(t) := e~tHaetH . (II.3)

For β > 0 and a^a\ ...,,#2* £ ̂ Q we set

(II.4)

where σ% := {(*!,...,*„) G Rn : 0 ^ ίi ^ - - ^ tn ^ β}9 and where Str denotes
the supertrace,

Str(Λ):=Tr(ΓΛ). (II.5)

The key analytic input ensuring the existence of (Π.4) is the following inequality
[16]. For Sj ^ 0,7 = O,. . . ,Λ, with Σn

j=QSj = β, and Ao,Aι,...9An G

-^H ...Ane-s»H)\ ^
7=0
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(we use this estimate with SQ = t\9s\ = t2 — t\9 . . . ,sn — β — tn). The inequality (II.6)
is proven using Holder's inequality and holds for any positive operator in place
ofH.

II, C. For the case of Fredholm modules arising from the quantized Kahler super-
manifolds discussed later in this paper, we will have two Dirac operators Q\ and
Q2 which generate an N = 2 supersymmetry algebra, namely

These two operators will be essentially self-adjoint on some dense subspace & C Jf
and will have the structure:

βi =</ + </*,
β2 = !(</-</*), (II.8)

where d is an operator such that d2 — 0, Dom(d) = &. We define j/1 := £/Ql Π
stf®2. Here we make an important assumption that J3/1 be dense in jtf (this is the
key element which limits the generality of the following theorem). This will clearly
be the case for the examples we consider.

Theorem ILL Let (^f, p, Q\) and (Jf, ρ,Q2) be Fredholm modules over jtf, with
Q\ and Q2 as in (II. 8). Then the corresponding Chern characters define the same
cohomology class in the entire cyclic cohomology of ja/1.

Proof. The theorem is proven through a homotopy argument. We can set β = 1
with no loss of generality. We form the family of operators

Q(λ) := Ql cos λ + Q2 sin λ = eiλd + e~iλd* , (II.9)

for 0 ^ λ < 2π, which interpolates between Qι and Q2 : £?(0) = Q\,Q(π/2) = Q2.
Clearly, Q(λ) is essentially self-adjoint on ,̂ and the commutator of Q(λ) with
any element of stfλ is bounded. We proceed as in [13] to show that j^Ch(g(/l))
exists and is equal to a coboundary, so that Ch(ζ>ι) and Ch(Q2) are cohomologous.
Note that the technical assumptions (i) and (ii) of Sect. Ill of [13] are not satisfied
in our case and we need to make some changes in the argument.

Observe that the Q(λ) obey the following algebra:

[Q(λ),Q(μ)]=2co*(λ-μ)H9 (11.10)

where [ , ] denotes the graded commutator. In particular, Q(λ)2 — //, and so H
is the Laplace operator corresponding to Q(λ) for any λ. On & we can take the
derivative

Q'(λ) := Q(λ) - -β! sin λ + Q2 cosλ = Q(λ + π/2) , (11.11)
dλ

and we thus see the Q'(λ) is also essentially self-adjoint on .̂ Define Gλ =
{^i-iiίSi' where each G^k__λ is a 2A>linear functional on j/1 given by

•'= Σ (-l)/+VStr{flo[β(λ),^
1=0 σισ2k

(11.12)
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for flθί 502*-ι £ <sfl Observe that the heat kernels in Ch(Q(λ)) are independent
of λ and so differentiating them is trivial. Differentiating the commutators with Q(λ)
is done by means of (11.11). The arguments of Proposition III. 5 of [13] show that,
algebraically,

- (11.13)

where b and B are the coboundary operators of entire cyclic cohomology. We will be
finished if we prove that each G^k_\ is well-defined and obeys the growth condition
of entire cyclic cohomology.

The key estimate on Q(λ) is

\\Q(λ}e ~sH (11.14)

which follows from the spectral theorem. We proceed as in the derivation of (II.6),
by applying Holder's inequality to the trace in (11.12). We obtain the estimate

Π \
y=0 "

Π \\Aj\ (Π.15)

Using this estimate, the integral over σ\k in (11.12) is well-defined and gives a

factor of n- ^e sum ^n (Π 12) involves 2k such terms, so the resulting boundnk-i)\
s

^ C

2k

— 1 )\
a,

where C is independent of k. This shows that the growth condition on Gλ is satisfied
and so Gλ is an entire cochain. D

II. D. In fact, formula (Π.4) defines a one parameter family of cocyles indexed
by β (we will refer to β as the temperature because of the obvious analogy with
quantum statistical mechanics). It is shown in [14] and [16] that the entire cyclic
cohomology class of Ch^(β) is independent of β. It is thus natural to study the
limit β -> oo. We have the following theorem ([11], Sect. 2.2).

Theorem Π.2. The zero temperature limits,

exist and define continuous (2k
Moreover,

+ \\linear functional^ over the algebra

where
ab —

(11.18)

is the orthogonal projection onto Ker(//), and where Ω(a,b) =
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In the examples studied in this paper, Ker(g) is a one dimensional subspace of the
even part ̂  of ffl . The above theorem then yields the following corollary.

Corollary IL3. Let Ker(2) be a one dimensional subspace of J^Q and let
aQ9a\9...9a2k € s^Q. Then

Π

where (a)o := (φ^aφo), and where φo is a normalized vector spanning Ker(g).

Remark. The factors (ab)G — (fl)o{&)o appearing in (11.19) are the truncated vacuum
expectation values of a and b.

Proof. As a consequence of Theorem II.2,

(_!)* A:

o Π
w=0

as claimed. D

Note, however, that the limit Ch°°(g) := {Ch^(0}^0 of Ch^(β) does not
define an entire cyclic cocycle. The power series Σk^Qkl\\Ch^(Q)\\z2k has a fi-
nite, rather than infinite, convergence radius, and so Connes' growth condition is
violated. As a consequence, the usual pairing [10, 14], {Ch°°((2),e) of Ch°°0g)
with a £o(^)-class e is meaningless. It is, however, easy to see that if a hermitian
projection e £ Mat(j3/) is such that the operator / — 2P§eP§ is invertible, then the
series defining (Ch°°(Q),e) converges and, in fact

/r,t oofn\ \ o,. r /ττ O Λ Λ(Ch (β)fe) = -StrKer(Q) / - - (Π.20)

Note that (Ch°°(β),e) is an integer such that \(Ch°°(Q)9e)\ ^ dim Ker(β). We
are not aware of a topological significance of this integer.

III. Fredholm Modules Over the Quantum Type I Cartan Domains

III. A. The Cartan domains of type I form an infinite sequence An,«? m>n ^ 1, of
non-compact hermitian symmetric spaces. Dm^n is an open subset of Cmn defined as
follows:

D^n := {* e Matm,«(C) : Im - zz* > 0} . (III.l)

The quantum deformation of Dm^n is the Toeplitz algebra $~r(Dm^n), defined as
follows [7]. For r > m + n — 1, we consider the following measure on Dm,n:

dμr(z) = Adet(/m - zz* )r^m+n">d2mnz . (111.2)

The normalization factor Λr is chosen to normalize the total integral to one:
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Γ, .
k=\Γ(r — m — n + k)

We let J^ (Z)) denote the Hubert space of holomorphic functions on Dm^n which
are square integrable with respect to dμr. The Bergman kernel of Z)m?π associated
with this measure is given by Kr(z,w) = det(/m — zw*)~r. The algebra 2Γr(Pm,n) is
the C*-algebra generated by the Toeplitz operators on J^r(D) whose symbols are
smooth functions on Dm^n which extend to the closure A»,« Its generators σ// :=
Tr(zij) and σ/y = Tr(?ij) obey the relations

[σ//,σjfc/] = μ(I - σσ*)ki(I - σ*σ)jΊ ,

where μ — \/(r — m).

HLB. Our construction of Fredholm modules over ^V(Z)m?w) will be based on a
quantization of the type I Cartan superdomain Jί = Dl

m , [6]. The starting point

of this construction is the Hubert space Jίfr(^) of superholomorphic functions on
Jί which are square integrable with respect to the measure

dμr(Z) = — det(/m - ZZ* γ-md2mnzd2mnθ . (III.5)
T^mn

Here, θ denotes the matrix of fermionic generators and Z = (z,0) is a collective
matrix notation for the generators of C°°(Jί). The corresponding Bergman kernel
is given by

Kr(Z, W) = det(/w - Z^* )~r (ΠI.6)

Let £Γr(Jt) denote the C* -algebra generated by the super Toeplitz operators on
^r(J^) with smooth symbols extending to the boundary. Its generators are £/y =

Tr(Zij) and ΣJJ = T r ( Σ t j ) . Note that ΣΪJ is the adjoint of Σ/7 . We will adopt a matrix

notation: Σ* = Σβ. Often we will write Σ = (σ, χ) to indicate the submatrices of
even and odd operators.

The theorem below applies to all Type I Cartan superdomains Q), not just the
supersymmetric case that we have denoted by Jί.

Theorem III.1. Using the above notation, the generators of yr(β\ where <2) =
®mn\q ™ aYl arbitmry type I Cartan superdomain, satisfy the following relations:

[Σij9 Σkl] = μ(Im - ΣΣ* )ki(In\q - Σ*Σ)jΊ , (III.7)

where [ , ] is the graded commutator, and μ = \/(r — m). In other words,

[σ//,σΛ/] = μ(Im - σσ* - χχ* )*/(/„ - σ*σ)7 / ,

[ffij, Iki} = -μ(Im ~ σσ* - χχ* )fe (σ* - χ)jΊ , (III.8)

IXij Xki] = -μ(Im ~ σσ* - χχ* )*,•(/„ - χ*χ)7 / .

Before proving Theorem III.l, we first prove two lemmas. Let AIJ be the unbounded
operator on 3fr(β} given by
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Lemma III.2. For φ e ^r(β} in the domain of ΔΪJ for all 1 ^ / ^ m, we have

(Im - ΣΣ*)jiφ = μ~lΣikφ . (III.10)
7=1

The domain of this operator thus extends to all of 2tfr(β\

Proof. By definition we have

ΣAJk(Im - ΣΣ*)jΊφ(Z) = £ fj£-[Kr(Z,Y)(Im -ZY*)β]φ(Y)dμr(Y). (III.ll)
7=1 j=\Jt°LJk

To evaluate the derivative, we need the fact that

j£-Kr(Z, 7) = rKr(Z, Y)[Y*(Im - Z7*)-1],, . (111.12)

We thus obtain

1

= Kr(Z, Y)Σίr[Y*(Im ~ ZY*rl]kjVm ~ ZY*)β - Yik]
7=1

= (r-m)ΫikK
r(Z,Y). (ΠI.13)

The lemma follows. D

Lemma III.3. For φ G fflr(β} in the domain of ΔΪJ for all 1 ^ j ^ n + q, we have

EVn\q ~ Σ*Σ)JkAlkφ = μ-lΣuφ . (111.14)
k=\

The domain of this operator thus extends to all o

Proof. We start with

n+q n+q

Σ(4|, - Σ*Σ)JkΔlkφ(Z) = Σ ίKr(Z9 W)(In\q -
k=\ k=\Jt

(111.15)
Integrating by parts gives

EVn\q-Σ*Σ)JkAlkφ(Z)
k=l

= -Σ(-Vek(ej+"fKr(Z> W)jj—[(In\q - W*W)jkάeϊ(In\q - W*Wγ~m}φ(W}dW,
k=\ Jί vWik

(111.16)
where ε7 :— p(Ztj}. The derivative is easily computed,
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- w *wγ-m

+ (_i)*<«,-i)(r _ w)(/nk _ W*W)jk[(Inlq - W*WΓl W*}k{\ . (111.17)

Summing over k we obtain

n+q a

* ~ m

(/ιι| _ w*w)jkάei(in\q - w*w
k=\

In view of (III. 16), this completes the proof. D

Proof of Theorem 7/7.7. We start with the fact that

(111.19)

restricted to the domain of Ay. We apply operators In\q — Σ*Σ and Im — ΣΣ* to
both sides of this equation and contract indices:

/n|* - Σ*Σ)jb[Aab,Σkl](Im - ΣΣ*)ai = (In\q - Σ*Σ)u(Im - ΣΣ*),* . (111.20)
a,b

Using Lemma III.2 and Lemma III.3, we reduce the right-hand side to

μ-lΣΣajΣki(Im - ΣΣ*)ai - μ~lΣ(-\)eb&l (In\q - Σ^Σ)JbΣklΣ~bμ-l[Σij9Σkl] .
a a

(111.21)

This proves the theorem on a restricted domain. It is easy to see that this domain
is dense, and since both sides of the relation are bounded operators, there is no
problem in removing the restriction. D

777 C. For / G COG(Dm^n) bounded, the Toeplitz operator T r ( f ) defines a unique
super Toeplitz operator which we will denote also by T r ( f ) . This defines an action
of T r ( f ) on the ^2 -graded Hubert space J^(^). A continuity argument shows that
this action extends to an action of the (C*-algebra ^~r(Dm,n) on Jjfr(Jί), and so we
have a *-morphism p : &r(Dm,n) -» ^(3^r(Jί)).

Let & C 2tfr(M} denote the dense subspace spanned by all polynomials. We
now take Dom(J^) = ̂ . This operator is broken up into its even and odd compo-
nents as A = (<9, τ), where, if Z = (z,θ),

dtjφ(Z) = -£-φ(Z), τijφ(Z) = -^Φ(Z) . (111.22)
OZjj Oϋjj

Let Ajj dij, and τ^ denote the hermitian adjoints of ^^δ//, and τ,y, respectively.
Now we define the operator

d =Enjdij> (ΠL23)
ij

and let d* := Σijχ^djj denote its adjoint.
The two operators

βi :=«/ + < / * ,

β 2 :=ι(rf-rf*), (ΠI.24)
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are defined on & and symmetric. Let NQ and N\ denote the operators on ,̂

Note that on monomials these operators have the form

N ι ( z μ f f t ) : = \ u \ z μ θ Λ , (111.26)

where μ e 7ί™ and α G {0, 1}W" are multi-indices and \μ\ = μ\ -\ ----- h /w Let H
be the total number operator,

H:=NQ+Nι. (111.21)

Then NQ is symmetric and A"ι is bounded and self-adjoint.

Proposition III.4. As operators on 0*9

Qf = Ql=H. (ΠI.28)

Proof. Using Lemma III.2 we have

(ΠI.29)
M

Thus,
βi = ΣXβδjk + ̂ ^ , (ΠI.30)

Λ*

and

β? = Σ te'%'

(πι.31)

The proof for Q^ is essentially identical. D

Proposition III.5.
(i) The operators Qj,H, and NQ are essentially self-adjoint on 0*.

(ii) For any ε > 0,(H +/Γ1/2 G hmn

Proof, (i) Let 0 e ̂  be a polynomial of degree m. Then ||#*0|| ^ Cw^, with
C independent of &. As a consequence, each φ G ̂  is an analytic vector for //,
and thus H is essentially self-adjoint on & by Nelson's theorem [18]. Since JVb =
H — NI, with N\ bounded, the same is true for NQ. Finally, Qj is essentially self-
adjoint on & as \\Q]φ\\ ^ Cmk/2 for all φ G &.
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(ii) The spectrum of NQ consists of the eigenvalues λp — p, p = 0, 1,2, . . . each
of which has multiplicity not exceeding 2mn x the number of monomials in z// of
degree p = O(pmn~l). Since N\ is bounded, the claim follows. D

The following proposition states that the operators Q\ and Q2 generate an N = 2
supersymmetry algebra.

Proposition III. 6. As operators on &9 we have the following relations:

[Qι , °ij] = Xij, [Q\ , σ//] = -χij9 \Q\ , χtj] = -σij9 \Q\ , χιy] = d{j ,

[β2, σij] = iχy, [Q2, δij] = iχij9 [Q2, Xij] = iσiJ9 [β2, χtj] = /σ/, , (ΠI.32)

Furthermore, the operators Qj satisfy the relations:

[Qj,Qk]=2δjkH. (ΠI.33)

Proof We have trivially the following relations:

[d,tij\ = °ij, (ΠL34)

In addition, we see using the adjoint of (111.29) that

[rf,ίl7] = 0, (IIL35)

and

[rf,χιy] = 5l7, (ΠI.36)

The relations (111.32) follow from (111.34), (111.35), and (111.36).
Among the relations (111.33), only [Q\,Q2\ = 0 needs to be established. This,

however, is an immediate consequence of (111.24). D

As a consequence of the above considerations and of Theorem II. 1 , we obtain
the following theorem.

Theorem III.7.
(i) The two triples (^r(J^),ρ,Qj) define 2mn-summable Fredholm modules over

(ii) The corresponding Chern characters define the same cohomology class in the
entire cyclic cohomology o

IV. The Chern Characters

IV. A. Let j/po1 be the subalgebra of ^r(Dm^n) consisting of polynomials in the
Toeplitz operators. Clearly, an element of a e £/po{ has a representation by an in-
tegral kernel:

(IV.l)

where α(Z, W) is an even function (with respect to the grading) which is holomor-
phic in Z and depends smoothly on W. In this section we derive explicit expressions
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for Cb^k(Qj)(aQ9 . . . 9 a 2 k ) , for α7 G j/po1, and give representations for these function-
als in terms of multiple Berezin integrals over M. We also consider the special case
when the aj are Toeplitz operators.

For the remainder of this subsection, / denotes a smooth function on Dm^n whose
first derivatives are bounded.

Proposition I V.I. For f as above,

ijStk, Tr(f)} =
ι=l

Proof. It is sufficient to prove the first of these identities as the second one follows
by taking the hermitian conjugate. Consider the commutator:

m m Q

=Σ fθij—Kr(Z,
1=1 M Ozik

-f

Σ fκr(Z>
i=\Jt

We use

logdet(/m

to rewrite the third term of (IV. 3) as

ι,/ M

We make the η^ into a derivative using

— logdet(/m -°nij

The third term of (IV.3) thus becomes

where p(0) is the parity of φ9 which appears because the η was moved past the
φ. If we integrate by parts, this parity is cancelled and the third term of (IV.3)
becomes

where the derivative strikes only the kernel. Using computations essentially identical
to (IV.4) and (IV.6), we find that
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m d m d
Σwlk—Kr(Z, W) = -Σθij—Kr(Z, W) . (IV.9)
7=1 oηij /=1 όWik

Thus, the third term in (IV.3) cancels the first term, and the proposition
follows. D

Corollary IV.2. With the above definitions,

[βl, W)l = T,Tr ~ Xij - XtjTr £ , (IV.10)

102, Tr(

Corollary IV.3. There is an inclusion .ί/P01 c

IV. B. For t G σζi and β0,...,αΛ G ̂ po1 bounded, we now consider the expression

(IV.ll)

As a consequence of (II.6), the supertrace (IV.ll) is well defined. Our goal in this
subsection is to express it as a multiple integral over M. The integral representation
given below has the flavor of a Feynman-Kac representation in Euclidean field
theory.

Proposition IV.4. Under the above assumptions,

.dμr(Zn). (IV. 12)

Proof. Using a basis of homogeneous polynomials, we can write (IV.ll) as

Now, for t > 0 and a holomorphic function φ G Ran(e~tH), we clearly have

by the definition of H. This, in turn, implies that

a(t)φ(Z) = fa(e~'Z, W)φ(elW)dμr(W} .
M

Using this fact we can rewrite (IV. 13) as
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J φa(
jfn+2

. ..dμr(Zn)

x φa(et"Zn)φa(e-βW)dμr(W)dμr(Z0)...dμr(Zn ). (IV.16)

Because

(IV. 16) reduces to

/ αoW^αKe-^ZO^^

xKr(e(β-^Zn9 W)dμr(W)dμr(Z0) . . .Jμr(Zrt) . (IV.18)

We perform the W integration, yielding (IV. 12). D

We now give the explicit formula for the Chern character. Here as in Sect. II,

Ch.2k(Qj) denotes the 2&-th component of the Chern character associated with the
Dirac operator Qj.

Theorem IV.5. Let /o,...,/2* € C°°(Dm,n) have bounded first derivatives. On
define the differential operator

(IV 19)
UZ jy UZy

Then, for j - I , 2 we have the integral representation:

=(-i)W-'*/r*/ / *(Σ*V 2k

τβ J?2k+l \/ι=0 / /=0
J2k+l

m=\ OZm Zm

(IV.20)
where Z2k+\ := ZQ.

Proof. Start with the definition (II.4). The variables tj are replaced by Sj := tj+\ — tj.
We use then the integral representation following directly from Proposition IV.4.
We apply then Corollary IV.2 to conclude the proof. D

V. Fredholm Modules Over Quantized Vector Spaces

V.A. A complex vector space V = <CW has a quantum deformation given by a
Toeplitz (C*-algebra (see [8] and references therein). The perturbed measure on V

is defined by dμr(z) := ~ exp(—rz z)d2nz on V, for r > 0, where z z — ΣjzjZj-



Supersymmetry and Fredholm Modules Over Quantized Spaces 411

Let JfV(F) be the Hubert space of holomorphic functions on V which are square
integrable with respect to dμr. The Bergman kernel for dμr on V is

A£(z,w) = exp(rz w). (V.I)

The Toeplitz algebra 3~r(V) is the C* -algebra generated by the Toeplitz operators
on 3Fr(V} whose symbols are smooth bounded functions on V. Its "generators"
σ/ = Tr(zι) and σ/ = Γr(f/), 1 ^ / ^ n obey the relations

[σj9σk] = ±δjk. (V.2)

Note that σ and σ are not bounded, so the algebra 3~r(V) will be generated only
by certain bounded functions of these operators. This issue will not be important
here.

To construct Fredholm modules over ^(F) we proceed as in Sect. III. The
supervector space $Γ = C/I'/I is the supersymmetric version of V '. The quantum
deformation of X [5] is based on the Hubert space 3tfr(3C) of superholomor-
phic functions on 3C which are square integrable with respect to the measure
dμr(Z) := ^ exp(— rZ Z)d2nzd2nθ. Here θ/, 1 ^ i ^ n denote the fermionic gener-

ators, Z = (z, θ), and Z Z = ΣJ(ZJZJ + #/#/)• The Bergman kernel for the measure
dμr on ̂  is

/T(Z, W) = exp(rZ - FT) . (V.3)

We denote the algebra generated by super Toeplitz operators on 3tfr($C) with
smooth bounded symbols on 3C by 2Γr(βC}. We define "generators" σ/ := Γr(z/),σz :=
Tr(zi),χi := Tr(βi) and χz := Γr(θ/). The operators σ/ and σ/ are not elements of
2Γr(9l>\ and they will be inteφreted as unbounded operators on J r̂(^). The gener-
ators satisfy the relations:

\βj><*k\ = -δjk ,

lXj> °k] = 0,

lXj,Xk] = -^k,

[<*j> ffk] - [Xj, Xk] = [σj9 Xk] = 0, (V.4)

and their hermitian conjugates.

V.B We can decompose the Hubert space 3tfr(β£) into odd and even subspaces,
which are orthogonal. As in Sect. Ill, we can define a grading preserving *-
morphism p : yr(V) -> JSf(JTr(^)). We again let & C 3tfr(S£) denote the dense
subspace spanned by polynomials in z and θ. For 1 ^ / ^ n we define the opera-
tor

with Dom(3/) = ,̂ and let 3Z denote its hermitian adjoint. Let

rf := Σχ/3y , (V.6)
j

with adjoint d*. Then the two operators



412 D. Borthwick, S. Klimek, A Lesniewski, M. Rinaldi

βi :=</ + </*,

Q2 := i(d - d*) , (V.7)

are defined on 8P and symmetric. Let TVo and Ή\ denote the following operators
on 0>:

(V.8)

where μ and α are multi-indices. Λ/Ό is symmetric, Λfj is bounded and self-adjoint,
and we let H := NO + M

Proposition V.I. Λs operators on 2P,

Ql = Ql=H (V.9)

words, H is the Laplace operator corresponding to both Q\ and Q2

Proof. We make use of the orthonormal basis for 3tfr(SC) [5],

where μ! = μ\ \ . . . μn\ and θα is ordered θ°[l ... θ^". We easily derive

dφμ,a — [(A*/ + l)rY Φμ+lj,<* > (V.l l )

where ly is the multi-index with 1 in the y'-th place and zeroes elsewhere. We
compute using (V.ll):

Q j = [ d , d * ]

kj
1 -

= NI+NQ, D (v.12)

fory = 1, 2.

Proposition V.2.
(i) The operators QJ9 H and NQ are essentially self-adjoint on @>.

(ii) For any ε > 0,(H + IΓl/2 £ hn+
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Proof. The proof (i) follows that of Proposition III. 5 (i). For (ii) we observe that
the norm

\\(H + /Γ1/2||i/+e = Σ(i + H + l«IΓ'"ε/2

μ

is finite for all ε > 0 precisely when / = n. D

The following proposition states that the operators Qj with j = 1,2 generate
an TV = 2 supersymmetry algebra.

Proposition V.3. As operators on ,̂ we have the following relations:

[βι,σ/ ] = χj9 [gι,<7/] = -χj9 [βι,χ/] = -σJ9 [βι,χy ] = σ/ ,

[62, σ/] - /ft, [62, σ/] - iχj9 [β2, Xj] = iσj9 [β2, ϊj\ = iSj . (V.14)

Furthermore, the operators Qj satisfy

Proof. These are easily derived from (V.ll). D

Following the arguments of Theorem III.7 we establish the following result.

Theorem V.4.
(i) The two triples ( J ^ f r ( ^ ) , p 9 Q j ) define 2n-summable Fredholm modules over

2Γr(V).
(ii) The corresponding Chern characters define the same cohomology class in the

entire cyclic cohomology o

V. C. We now proceed to find explicit expressions for the Chern characters, follow-
ing the approach of Sect. IV.

Proposition V.5. For f E C°°(F) bounded with bounded first derivative, we have
the relations

and their complex conjugates.

Proof. The second property follows immediately from the factorization

dμr(Z) = exp(-rz f)exp(-rθ Θ)d2nzd2nθ . (V.ll)

To prove the first we evaluate

djTr(f)φ(Z) = S-j~Kr(Z, W)f(w)φ(W)dμr(W)
scozi

= rfwjKr(Z, W)f(w)φ(W)dμr(W) . (V.18)
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We also have

Tr(f)djφ(Z) = fKr(Z, W}f(W}
o£ OWj

= rfKr(Z,

using an integration by parts. This completes the proof. Π

Corollary V.6. For f G C°°(F) bounded with bounded first derivatives, we have
the relations

[02, 7X/)1 = ΪΣ,Tr θj + -θj . (V.20)

V.D. For t e σ£ and a0,...,am € Λ/P°', we form the supertrace

Stc{a0aι(tι)...am(tm)e-lIH} , (V.21)

which is well-defined because of (II. 6).

Proposition V.7. Under the above assumptions,

.dμr(Zn). (V.22)

Proof. Using the basis (V.10), we can write (V.21) as

Σ(-l)|α|(Φft-,βoαι(ίι) ..fl«(ί«)^)e~WI'<l+l"l) (V.23)
μ,α

As the basis again consists of monomials, the proof follows that of Proposition
IV.4. D

At this point it becomes straightforward to evaluate the Chern character asso-
ciated to QJ on general elements of j/po1. However, as this essentially repeats the
statement of Theorem IV. 5, we will not write the result. We confine ourselves to
writing the integral representation for the functional evaluated on Toeplitz operators.

Theorem V.8. Let /0, . . . ,/at 6 C°°(T) have bounded first derivatives. On C°°(J?)
define the differential operator

(V 24)
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Then, for j = 1,2,

/ / δ >„ - β] UKr(e-s'Z,,ZM)
n=0 / 1=0τ

J2k+l

X /θ(*θ)

Ik ( Q fi ) 2k

) Π < ft- *-/m(*m) + (-lyβm ^/m(*m) I l[dμr(Zn)d2k+l S ,
m=l I ^m C/ZW J w=0

(V.25)
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