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Abstract: Explicit expressions for the generators of the quantum superalgebra
Uq[gl(n/m)} acting on a class of irreducible representations are given. The class
under consideration consists of all essentially typical representations: for these a
GePfand-Zetlin basis is known. The verification of the quantum superalgebra rela-
tions to be satisfied is shown to reduce to a set of ^-number identities.

1. Introduction

This paper is devoted to the study of a class of finite-dimensional irreducible repre-
sentations of the quantum superalgebra Uq[gl(n/m)]. The main goal is to present ex-
plicit actions of the Uq[gl(n/m)} generating elements acting on a GeΓfand-Zetlin-like
basis, and to discuss some of the ^-number identities related to these representations.

Quantum groups [5], finding their origin in the quantum inverse problem method
[6] and in investigations related to the Yang-Baxter equation [15], have now be-
come an important and widely used concept in various branches of physics and
mathematics. A quantum (super)algebra Uq[G] associated with a (simple) Lie (su-
per)algebra G is a deformation of the universal enveloping algebra of G endowed
with a Hopf algebra structure. The first example was given in [19,30], and soon fol-
lowed the generalization to any Kac-Moody Lie algebra with symmetrizable Cartan
matrix [4,12]. For the deformation of the enveloping algebra of a Lie superalgebra
we mention the case of osp(l/2) [20,21], later to be extended to Lie superalgebras
with a symmetrizable Cartan matrix [32] including the basic [16] Lie superalgebras
[1,2].

Representations of quantum algebras have been studied extensively, particularly
for generic ^-values (i.e. q not a root of unity). In this case, finite-dimensional
irreducible representations of sl(n) can be deformed into irreducible representations
of Uq[sl(n}} [13], and it was shown that one obtains all finite-dimensional irreducible
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modules of Uq[sl(n)] in this way [27]. In [14], explicit expressions for the generators
of Uq[sl(n)] acting on the "undeformed" GePfand-Zetlin basis were given. It is in
the spirit of this work that our present paper should be seen. Here, we study a class
of irreducible representations of the quantum superalgebra Uq[gl(n/m)]. The class
consists of so-called essentially typical representations; one can interpret these as
irreducible representations for which a GePfand-Zetlin basis can be given. Just as
in the case of sl(n\ the basis will remain undeformed, and the deformation will
arise in the action of the quantum superalgebra generators on the basis vectors.

In the literature, some results have already appeared for representations of quan-
tum superalgebras of type Uq[gl(n/m)]: representations of Uq[gl(n/l)] (both typical
and atypical) were examined in [25] following the study of [22,23]; a generic ex-
ample, Uq[gl(3/2)], was treated in [26]; and the induced module construction of
Kac [17] was generalized to Uq[gl(n/m}] [38]. On the other hand, oscillator repre-
sentations have been constructed [2,7,9] not only for Uq[gl(n/m}] but also for other
quantum superalgebras.

The structure of the present paper is as follows. In Sect. 2 we recall the def-
inition of the Lie superalgebra gl(n/m) and fix the notation. We also remind the
reader of some representation theory of gl(n/m} which will be needed in the case
of Uq[gl(n/m)], in particular of the concept of typical, atypical, and essentially typ-
ical representations. For the last class of representations, the GePfand-Zetlin basis
introduced in [24] is written in explicit form. In the next section, we briefly recall
the definition of the quantum superalgebra Uq[gl(n/m)]. Section 4 contains our main
results. We present the actions of the Uq[gl(n/m}] generators on the GePfand-Zetlin
basis introduced, and we give some indications of how the relations were proved in
these representations. Some of the relations actually reduce to interesting ^-number
identities, which can be proved using the Residue theorem of complex analysis. We
conclude the paper with some comments and further outlook.

2. The Lie Superalgebra #/(ff/m) and GePfand-Zetlin Patterns

The Lie superalgebra G = gl(n/m) can be defined [16,28] through its natural matrix
realization

where Mpxq is the space of all p x q complex matrices. The even subalgebra
gl(n/m)Q has B = 0 and C = 0; the odd subspace gl(n/m\ has A = 0 and D = 0.
The bracket is determined by

[a,b] = ab- (-lfβba, Vα G Gα and Mb G Gβ, (2)

where α,β G {0, ϊ} = Z2. If α G Gα then α = deg(α) is called the degree of α, and
an element of G = G-Q Θ Gj is called homogeneous if it belongs to either G-Q or else

G]. We denote by gl(n/m)+\ the space of matrices ( Λ Λ ) anc^ by gl(n/m)-\

the space of matrices ( Γ n ). Then G = gl(n/m) has a Z-grading which is con-
V c υ /

sistent with the Z2-grading [28], namely G = G_ι θ G0 Θ G+1 with G5 = G0 and
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GΪ = G_! 0 G+I. Note that gl(n/m\ = gl(ή) Θ gl(m). For elements x of 0/(/ι//n)
given by (1), one defines the supertrace as str(x) = tr(^) - tr(D). The Lie superal-
gebra gl(n/m) is not simple, and (for nφm) one can define the simple superalgebra
sl(n/m) as the subalgebra consisting of elements with supertrace 0. However, the
representation theory of gl(n/m) or sl(n/m) is essentially the same (the situation
is similar as for the classical Lie algebras gl(ή) and sl(ri)), and hence we pre-
fer to work with gl(n/m) and in the following section with its Hopf superalgebra
deformation Ug[gl(n/m)].

A basis for G — gl(n/nί) consists of matrices Ey (ίj = 1,2,..., r = m -f n) with
entry 1 at position (ij) and 0 elsewhere. A Cartan subalgebra H of G is spanned by
the elements hj = EJJ (jΓ = 1,2,..., r), and a set of generators of gl(n/m) is given by
the hj (j = 1,..., r) and the elements β/ = Eiti+\ and /,- = Ei+\ti (z — 1,..., r — 1).
The space dual to H is H* and is described by the forms ε, (z = l,...,r), where
ε/ : J —» y4yy for 1 ^ j ^ n and εn+y : x —» Dyy for 1 ^ j g m, and where x is given
as in (1). On H* there is a bilinear form defined, deduced from the supertrace on
G, and explicitly given by [34]:

(£i\εj) = δij9 for 1 ̂  ij ^ Λ;

(ε, |c^) =0, for 1 ̂  z ^ Λ and w + 1 ̂  p ^ r;

(εp|ε^) = -δpq, for n+l ^ p,q ^r, (3)

where <$/, is the Kronecker-^. The components of an element A G H* will be written
as [m] = \rn\r,mir,...,mrr\ where yl = £^=1 w^ε/ and ι̂/> are complex numbers.
The elements of H* are called the weights. The roots of gl(n/m) are the non-zero
weights of the adjoint representation, and take the form ^ - εy (zφy) in this basis;
the positive roots are those with 1 ̂  i < j ^ r, and of importance are the nm odd
positive roots

βip = ε/ — εp, with 1 ̂  z ^ n and w -h 1 ̂  /? ^ r. (4)

For an element A G //* with components [m], the Kac-Dynkin labels (αi,.. .,
an-ι'9an 9an+ι,...,ar-ι) are given by α/ = mir - m/+i,r for / Φ n and αn = mwr +
mn+ι,r Hence, A with components [m] will be called an integral dominant weight
if mir - nii+\f eZ+ = {0,1,2,...} for all z Φn (1 ^ / ^ r - 1). For every integral
dominant weight A = [m] we denote by V°(Λ) the simple G0 module with highest
weight A; this is simply the finite-dimensional gl(ri)®gl(m) module with gl(n) la-
bels {mis,...mnr} and with gl(m) labels {mM+ι)Γ,...,mrr}. The module V°(A) can
be extended to a Gp θ G+i module by the requirement that G+\VQ(A) = 0. The
induced G module V(A\ first introduced by Kac [17] and usually referred to as the
Kac-module, is defined by

V(Λ) = Indg,,θσ+| V\Λ) ^ [/((?_,) ® F°(/l), (5)

where U(G-ι) is the universal enveloping algebra of G_ι. It follows that dim V(A)
~=_ 2nm dim VQ(A). By definition, T(A) is a highest weight module; unfortunately,
Ύ(A) is not always a simple G module. It contains a unique maximal (proper)
submodule M(A\ and the quotient module

V(A) = V(A)/M(A) (6)

is a finite-dimensional simple module with highest weight A. In fact, Kac [17]
proved the following:
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Theorem 1. Every finite-dimensional simple G module is isomorphic to a module
of type (6), where A = [m] is integral dominant. Moreover, every finite-dimensional
simple G module is uniquely characterized by its integral dominant highest weight A.

An integral dominant weight A = [m] (resp. F(/l), resp. V(Λ)) is called a typical
weight (resp. a typical Kac module, resp. a typical simple module) if and only if
(Λ + p\βip)ήrQ for all odd positive roots βip of (4), where 2p is the sum of all
positive even roots of G minus the sum of all positive odd roots of G. Otherwise
A, V(A) and V(A) are called atypical. The importance of these definitions follows
from another theorem of Kac [17]:

Theorem 2. The Kac-module V(A) is a simple G module if and only if A is typical.

For an integral dominant highest weight A = [m] it is convenient to introduce the
following labels [24]:

lir = Wir — ί + n+l, (1 £Ξ i ^ n)\ lpr = —mpr -f p — n, (n + 1 ̂  p ^ r).
(7)

In terms of these, one can deduce that (A + p\βip) = lir — lpr> and hence the con-
ditions for typicality take a simple form.

For typical modules or representations one can say that they are well understood,
and a character formula was given by Kac [17]. A character formula for all atypical
modules has not been proven so far, but there are several breakthroughs in this
area: for singly atypical modules (for which the highest weight Λ is atypical with
respect to one single odd root βip) a formula has been constructed [34]; for all
atypical modules a formula has been conjectured [33]; for atypical Kac-modules the
composition series has been conjectured [11] and partially shown to be correct [31].
On the other hand, the modules for which an explicit action of generators on basis
vectors can be given, similar to the action of generators of gl(n) on basis vectors
with GePfand-Zetlin labels, is only a subclass of the typical modules, namely the
so-called essentially typical modules [24], the definition of which shall be recalled
here.

For simple gl(n) modules the GePfand-Zetlin basis vectors [10] and their labels
- with the conditions ("in-betweenness conditions") - are reflecting the decompo-
sition of the module with respect to the chain of subalgebras gl(n) D gl(n — 1) D
• - D 0/0). In trying to construct a similar basis for the finite-dimensional modules
of the Lie superalgebra gl(n/m) it was natural to consider the decomposition with re-
spect to the chain of subalgebras gl(n/m) D gl(n/m — 1) D D #/(#/!) 3 gl(n) ^
gl(n — 1) D D #/(!). However, in order to be able to define appropriate actions
of the gl(n/m) generators on basis vectors with respect to this decomposition, it
was necessary that at every step in this reduction the corresponding modules are
completely reducible with respect to the submodule under consideration. A sufficient
condition is that for every step in the above reduction the modules are typical, i.e. a
typical gl(n/m) module V must decompose into typical gl(n/m — 1) modules, each
of which must decompose into typical gl(n/m - 2) modules, etc. Such modules are
called essentially typical [24], and a Gel'fand-Zetlin-like basis can be constructed
with an action of the gl(m/ή) generators. In terms of the above quantities //r, a
module with highest weight A = [m] is essentially typical if and only if

{/lr, /2r, , Inr} Π {/π+l,Γ, /π+l,r + 1, /Λ+l,r + 2,. . ., /„} = 0 . (8)

The explicit form of the action [23,24] will not be repeated here, but the reader
interested can deduce it from relations (24-30) of the present paper by taking the
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limit q —> I (in fact, the limit of our present relations also improve some minor
misprints in the transformations of the GZ basis as given in [23,24]). It is necessary,
however, to recall the labelling of the basis vectors for these modules, since the
labelling of basis vectors of representations of the quantum algebra Uq[gl(n/m)]
is exactly the same (note that also for the quantum algebra Uq[gl(n)], the finite-
dimensional representations can be labelled by the same GeΓfand-Zetlin patterns as
in the non-deformed case of gl(n\ when q is not a root of unity [14]).

Let [m] be the labels of an integral dominant weight A. Associated with [m] we
define a pattern \m) of r(r -f l)/2 complex numbers my (1 ^ i ^ j ^ r) ordered
as in the usual GeΓfand-Zetlin basis for gl(r):

Wmn

 v '

Such a pattern should satisfy the following set of conditions:

1. the labels mir of A are fixed for all patterns,
2. mip - mifp-ι = θitp-ι e {0,1}, (I £ i £ n; n + I £ p £ r\
3. mip - mi+ιyp e Z+, (1 ̂  i ^ n - 1; n + 1 ̂  p ^ r\
4. mij+ι - niij e Z+ and m/>y - m, +ι,./+ι 6 Z+,

(1 g / ^y ^ Λ - 1 or Λ + l ^ / ^y ^ r- 1). (10)

The last condition corresponds to the in-betweenness condition and ensures that
the triangular pattern to the right of the m x n rectangle mip (1 ^ i ^ n\ n+ 1 ̂  /?
^ r) in (9) corresponds to a classical GeΓfand-Zetlin pattern for gl(m), and that
the triangular pattern below this rectangle corresponds to a GeΓfand-Zetlin pattern
for gl(h).

The following theorem was proved [24]:

Theorem 3. Let A = [m] be an essentially typical highest weight. Then the set
of all patterns (9) satisfying (10) constitute a basis for the (typical) Kac-module
V(A) = V(A\

The patterns (9) are referred to as GeΓfand-Zetlin (GZ) basis vectors for V(A) and
an explicit action of the gl(n/m) generators hj (1 ^ j ^ r), ef and // (1 ^ i ^
r — 1) has been given in Ref. [24].

In the following section we shall recall the definition of the quantum algebra
Uq[gl(n/m)]. We shall then define an action of the quantum algebra generators on
the GeΓfand-Zetlin basis vectors \m) introduced here. In other words, just as for the
finite-dimensional gl(n) modules, one can use the same basis vectors and only the
action is deformed.
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3. The Quantum Superalgebra Uq[gl(nlm)]

The quantum superalgebra Uq = Uq[gl(n/m)] is the free associative superalgebra

over C with parameter q e C and generators kj} kjγ (j = 1,2, . . . ,r = n + m) and
βi, fi (i = 1,2, ...,r — 1) subject to the following relations (unless stated otherwise,
the indices below run over all possible values):

• The Cartan-Kac relations:

Wj = kjkt, ktk~l = k~lki = 1 (11)

kfβjkr1 = qVv-δwWe/9 kifjkr1 = q-^-h+Mfj ; (12)

e i f j - f j β i = 0 i f / Φ y ; (13)

βifi-fiβi = (*?k£-kϊ+lkΓ2)/(q-q-1) i f ι Φ / ι ; (14)

enfn+f»en = (%%+i-J£2k-&/(q-q-1); (15)

• The Serre relations for the eι (β-Serre relations):

eiej = ejei if | / - y | Φ l ; e2

n=0; (16)

efei+ι -(q + q~l)eιei+ιei + ei+ιe* = 0,

for / < E {!,..., n- 1}U{^+ I , . . . ,Λ + m- 2}; (17)

<%+& - (q + q"l^i+\^i+\ + ete}+l = o,
for z € {!,..., Λ - 2} U {«,..., /i + m- 2}; (18)

enen+\enen-\

0; (19)

• The relations obtained from (16-19) by replacing every et by /,- (/-Serre rela-
tions).

Equation (19) is the so-called extra Serre relation [8, 18,29], which can also be
obtained from an ^-matrix approach [35,36,37]. The Z2 -grading in Uq is defined
by the requirement that the only odd generators are en and /„; the degree of a
homogeneous element a of Uq shall be denoted by deg(α). It can be shown that Uq

is a Hopf superalgebra with counit ε, comultiplication A and antipode S, defined
by:

ε(ei) = ε(fi) = 0, ε(kj)=\ (20)

Δ(e, ) =

Δ(e«) = e« <g> knkn+ι + k~lk~^ ® en,

(21)
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S(et) = -qei9

S(en) = -en, S(fn)=-fn. (22)

Remember that A : Uq — > Uq 0 Uq is a moφhism of graded algebras, and that the
multiplication in Uq (8> L^ is given by

(α (8) 6)(c ® rf) = (- 1 )des(*)deg(<W ® w . (23)

4. The t/0 [#/(/! /m)] Representations

Let A = [m] be an essentially typical highest weight, and denote by W(Λ) the vector
space spanned by the basis vectors \m) of the form (9) satisfying the conditions
(10). On this vector space, we shall define an action of the generators of Uq =
Uq[gl(n/m)]9 thus turning W(A) into a Uq module. For convenience, we introduce
the following notations: /// = my — i -f n -f 1 for 1 ^ / ^ n, lpj — —mpj + p — n
for n + 1 ^ /? ^ r, and |w)-t/y is the pattern obtained from |m) by replacing the
entry /w// by /w// ± 1.

The following is the main result of this paper (as usual, [x] stands for (cf ~

Theorem 4. For generic values of q every essentially typical gl(n/m) module V(A)
with highest weight A can be deformed into an irreducible Uq[gl(n/m)] module
W(A) with the same underlying vector space and with the action of the generators
given by:

^ / g r\ (24)

Γ/ j 1Γ7 7f φ i l ^ ~ IjklUik - Ijk -

(25)

(26)

T T
Φi^lL^Λ+l ~~ li,n+l\
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Ί
£φί=l VlΛ/H-l — **,/?+! JIΛ/H-l — *£,/?- 1 ~

/2

* p = r ~ 1}' (29)

/2

(n+1 ^ p ^r-l). (30)

In the above expressions, ]T^=M=i or Π£φ/=ι means that k takes all values from 1
to n with £φz. If a vector from the rhs of (24-30) does not belong to the module
under consideration, then the corresponding term is zero even if the coefficient in
front is undefined; if an equal number of factors in numerator and denominator are
simultaneously equal to zero, they should be cancelled out. The Eqs. (25,26) are
the same as in [14]; they describe the transformation of the basis under the action
of the gl(n) generators.

To conclude this section, we shall make a number of comments on the proof
of this theorem. Provided that all coefficients in (24-30) are well defined (which
is indeed the case under the conditions required here), it is sufficient to show that
the explicit actions (24-30) satisfy the relation (11-19) (plus, of course, also the
/-Serre relations). The irreducibility then follows from the results of Zhang [38] or
from the observation that for generic q a deformed matrix element in the GZ basis
is zero only if the corresponding non-deformed matrix element vanishes.
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To show that (11), (12) and (13) are satisfied is a straightforward matter. The
difficult Cartan-Kac relations to be verified are (14) and (15). We shall consider
one case in more detail, namely (15). This relation, with the actions (24-30), is
valid if and only if

(31)

=ι

Putting αf = /ί>n+1 for i = l,2,...,π, 6, = // > Λ _ι for z = l,2,...,/ι - 1 and &n =
/n+ι>n+ι, the identity between ^-numbers to be proved reduces to

n rp Γtf — /)/! Γ « » 1
Σ

11 !̂̂  P£J v^ v^τ r α o Λ

™ - FΊ - Γ ί̂ = 2^^ ~ L^ (32)
i=lttk*i=llai~akl U=l *=1 J

Using the explicit definition of a ^-number, and relabelling #2α' = At and ^2ό( = B^
this becomes

To prove this last identity, consider the complex function

This function is holomoφhic over C except in its singular poles 0, A\9 . . . ,An (under
the present conditions, all A^ are indeed distinct). Let C be a closed curve whose
interior contains all these poles. Then the Residue Theorem of complex analysis im-
plies that §cf(z)dz = 2πz'(Res(0) + £?=1 Res(^/)). It is easy to see that Res(O) =
limz^0f(z}z = (Bl'"Bn)/(Al "An) and that Res(Λ) = Hmz_Λ /(z)(z - At) =
ΠLι(^ -Bk)/(4 ?ΓCΦ/=1(4 < -40). On the other hand,

§f(z}dz =- -2πzRes(oo) - -2πz lim (-z)/(z) - 2πz, (35)
-̂, Z— > C50

and hence the identity (33) holds.
For the other cases, the method of proof is similar and we shall no longer

mention the details. For (14) with / = k ^ n — 1, the identity to be verified is of
the following type:

* / τik

l=l[at-bj][at-Cj-l] _ Π^.fo-cylfo-fy + l] \_

Π*+/=I[α, - ajϋίa, - aj - 1] H*+l=l[a, - aj\\at - a} + 1]

(36)
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or, using a similar transformation as before,

*

(37)

This identity is proven by taking the function /(z) = Π/z - Bj)(z ~

(z — AJ)(Z — q2Aj)) and applying the same Residue theorem. Finally, the most com-
plicated case is (14) with i — p>n. The identity to prove is (with s = p — «):

s
V^

Πy=1[α/ - bj][ai - cj - 1] n [a. _ jk

[dk-dι-f{\

=ι
(38)

Herein, the fk are equal to θk,p-\ - θ^p, and since the θ's take only the values 0
and 1, the fk's take only the values 0, ±1. To prove (38), one again has to use the
same technique on a function

^ Wj=l(z - Bj)(z - q2Cj) n(z-
J(Z) * ϋ (z-A)

However, it turns out that (38) is true as a general identity only when in the third
summation the factor ( f k ) is replaced by [/#]. In the present case, this can be
done without harm since for the values x = 0, ±1 we have indeed that [x] = x. This
completes the verification of the Cartan-Kac relations.

For the e-Serre relations, the calculations are extremely lengthy, but when col-
lecting terms with the same GePfand-Zetlin basis vector and then taking apart the
common factors, the remaining factor always reduces to a simple finite expression
which is easily verified to be zero. These expressions always reduce to one of the
following (trivial) identities:

[ά\[b + 1] - [a + l][b] = [a- b], (39)

[α+l] + [0- l] = [2][α], (40)

Γ 1 ~1 Γ Ί ' Γ Ί Γ i 11 Γ 1 T Γ I 1 ~ί ' ^ -̂
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In fact, the last of these reduces to the second one, and in some sense the only
identities needed to prove the e-Serre relations are (39) and (40), and combinations
of them. Finally, the calculations for the /-Serre relations are of a similar nature
as those for the £-Serre relations.

5. Comments

We have studied the class of essentially typical representations of the quantum
superalgebra Uq[gl(n/m)] and connected the relations to be satisfied for these repre-
sentations with certain ^-identities. At present, we do not know how to extend the
present results to other finite-dimensional representations of Uq[gl(n/m)]. In fact,
also in the non-deformed case the problem of how to modify the classical analogs
of (24-30) remains an open problem. There is some indication that for a typical
representation the only modification would be to simply delete those terms for which
the coefficient becomes undefined; however, this is still under investigation and we
hope to report results in the future. For atypical representations, the GZ basis will
presumably be no longer appropriate: if one still uses the same GZ-patterns in the
case that [m] is atypical, it turns out that some \m)-vectors have a non-trivial pro-
jection both on the maximal submodule and on the quotient module (of the module
spanned by the GZ basis vectors with a modified action when the corresponding
coefficient is undefined). This property was observed for atypical representations of
g 1(2/2), and here again further investigations are under way. Note that we also have
not examined the representation theory of Uq[gl(n/m)] in the case of q being a root
of unity.
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