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Abstract: We consider canonical two degrees of freedom analytic Hamiltonian
systems with Hamiltonian function H = i[pf +pl] + U(qι, q2\ where
U(q1,q2) = ίl-v2q2 + ω2q2

2l + ( 9 ( q 2

i + q 2

2 ) V 2 ) and dqΛU(q,9 0) = 0. Under
some additional, not so restrictive hypothesis, we present explicit conditions for the
existence of transversal homoclinic orbits to some periodic orbits of these systems. We
use a theorem of Lerman (1991) and an analogy between one of its conditions with the
usual one dimensional quantum scattering problem. The study of the scattering
equation leads us to an analytic continuation problem for the solutions of a linear
second order differential equation. We apply our results to some classical problems.

1. Introduction

Hamiltonian systems are usually classified as integrable or nonintegrable. In this
article we restrict our attention to two degrees of freedom real analytic Hamiltonian
systems and say that a system is integrable if it has an analytic first integral
independent of its Hamiltonian function. If the system is integrable then its dynamics
is essentially almost periodic and we can say that it is "well-behaved." Integrability
is a very strong property and integrable systems are the exception. So, why do we
care about integrable systems? Besides the fact that integrable systems appear in
some physical models, a possible answer is because this is the unique situation
where we have a more or less complete description of the global dynamics. In the
nonintegrable case the dynamics is much more complicated, and a usual approach
is to consider the nonintegrable system as some perturbation of an integrable one.
Due to the "practical" importance of the integrable systems it is crucial to decide if
a given system is or is not integrable.
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In general it is very difficult to show that a system is integrable without finding
its first integrals and there is no effective method to do this. Nevertheless, there are
some ways of showing that a system is nonintegrable by studying some local
properties near particular solutions of it (see, for instance, Arnold et al. (1988)). We
shall use in the present work the result due to Poincare that if a system has
a periodic orbit of saddle type and the stable and unstable manifold of this orbit
intersect transversally (i.e., the system has a transversal homoclinic orbit) then the
system is nonintegrable. The presence of transversal homoclinic orbits implies the
existence of invariant sets ("topological horseshoe") with very complicated dy-
namics and this complexity excludes the presence of another analytic first integral
besides the Hamiltonian function itself (Moser (1973)). In this work, we shall
restrict our attention to systems that have transversal homoclinic orbits, so all the
nonintegrable systems considered here do have a transversal homoclinic orbit.

The main goal of this article is to study the integrability question associated to
the following class of Hamiltonian systems

Pk= ~ dqkH, qk = dPkH, pk e R, k = 1, 2

q2), (1)

where:

a) U is analytic,

b) U(ql9q2) = \ [ - V2ql + ω2qΐ] + 0((q\ + d)3/2) ,

with ω2 > 0, v2 > 0,
c) 3βa 17(^,0) = 0, for any βl e R,
d) equation U(ql9 0) = 0 has a nontrivial nondegenerated solution qίc and no

solutions in (0, qlc).

These systems have two important properties:

- the origin is an equilibrium point of saddle-center type, namely it is asso-
ciated to a pair of real ± v and a pair of imaginary + iω eigenvalues,

- there is a homoclinic orbit to the origin (it is contained in the plane
q2 = q2 = 0).

These systems are good candidates to admit an explicit proof of nonintegrability in
the way mentioned above. First, if we suppose that near the equilibrium the flow is
approximately the linear one, then in each energy level the system has a periodic
orbit of saddle type. Second, the existence of a homoclinic orbit to the origin
suggests that the stable and the unstable manifold of these periodic orbits can
intersect and by a genericity argument it may occur in a transversal way. In fact,
this picture is correct. In a more general context this argument was made rigorous
by Lerman (1991) (it first appeared in Russian in 1987) and also by Mielke et al.
(1992). In both references, besides the requirement of having a saddle-center
equilibrium and a homoclinic orbit to it, a new hypothesis appears. It requires that
the monodromy operator associated to this homoclinic orbit satisfies a certain
condition. As we could expect from the generic character of the nonintegrable
systems this last hypothesis is generically verified. Our work begins at this point.

In Sect. 2 we present a proof of Lerman's theorem. The condition that appears
in it depends on a special system of coordinates. Our first result is to rewrite this
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condition in a way that it is independent of the coordinate system. Then we restrict
our attention to systems (1) and present a theorem relating the new condition to
a well-known one dimensional quantum scattering problem. We can briefly state
the theorem as:

Let Γ:IR ->1R be the q^-component of the solution of system (1) homoclinic to the
origin. If the "reflection coefficient9' B associated to the following scattering problem:

is different from zero then the system is nonίntegrable.

See Sect. 2 for a more precise statement.
In Sect. 3 we present some immediate applications of the theorem above.

Solving the scattering problem we can prove that:

Consider system (1) with U satisfying

where n e (2, 3, . . .} and α > 0. //

^φf^/(/-l), for
α 2(n + 1)

then the system is nonintegrable.

This result was already applied to a two degrees of freedom Hamiltonian system
related to a nonlinear wave equation (Grotta Ragazzo (1994)). It has many other
applications to physical problems as, for instance, to the generalized Henon-Heiles
systems (Henon and Heiles (1964)). For most of these systems this is probably the
first rigorous proof of nonintegrability. In Sect. 3 we also present a theorem that
uses the classical "reflectionless potentials" of the "inverse scattering theory."

Our thorem of Sect. 2 reduces the integrability question for systems (1) to
a scattering problem. As mentioned above, the scattering condition B Φ 0 is
"generically" true but checking it is far from being an easy problem. This leads us to
alternative formulations of the condition B Φ 0. In Sect. 4 we introduce a new
independent variable x, defined by x = Γ(t\ in the scattering equation. Considering
x as a complex variable the scattering equation is transformed into the linear
second order equation

- 2U(x9 0) - dqιU(x9 0) + dMΛU(x9 0) = 0 .

This equation has at least two regular singular points at x = 0 and x = qίc. The
scattering condition becomes an analytic continuation problem for the solutions of
this new equation. Two theorems are presented in Sect. 4. In the first one, to check
the scattering condition, we have to verify that two solutions of the above equation,
defined by their Taylor series in neighbourhoods of x = 0 and x = 1, respectively,
can be analytically continued one into the other. In the second theorem we present
a geometric characterization of the scattering condition. In a few words it says, if
we make the analytic continuation of any solution of the above equation through
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a closed arc that winds twice the interval (0, qίc) and does not contain in its interior
any singularity of the equation, but x = 0 and x = qΐc, then we should return to the
"original solution" if, and only if, the reflection coefficient of the associated
scattering problem is zero. We finish Sect. 4 using this theorem to prove the result
presented in Sect. 3 in a very simple way. The proof illustrates well some advant-
ages of the geometric formulation of the problem.

Section 5 is a short conclusion where we make some comments on possible
extensions of the results of this article and briefly discuss the relation of this work
with Ziglin's theorem (Ziglin (1983)) on the integrability of complex analytic
Hamiltonian systems.

2. Saddle-Center Loops and Scattering

In this section we present the relation between the integrability question of some
four dimensional Hamiltonian systems and the usual one dimensional quantum
scattering problem. The first theorem, which is presented without proof, is essen-
tially due to Moser (1958) with a supplement of Rύssmann (1964). It says that near
a saddle-center equilibrium point the Hamiltonian vector field is integrable. It
plays an important role in the proof of the next theorem.

Theorem 1 (Moser, Russman). Let (M, Ω, H) be a Hamiltonian system defined on
a 4-dimensional symplectic analytic manifold M, with symplecticform Ω and analytic
Hamiltonian function H. Assume that:

i) p is a saddle-center equilibrium point of(M, Ω, H\ namely p is associated to
two nonzero real, ± v, and two nonzero imaginary, + ωι, eigenvalues.

Then there exists a neighborhood U of p with conjugate canonical coordinates
(x1? x2; Xa, #4) =f x, symplectic form Ω = dx^ Λ dx2 + dx$ Λ dx4 and the
Hamiltonian function is given by (possibly after time reversing)

H(x) = h(ξ, n) = vξ + ωη + Λ(ξ, η\ Λ(ξ, η) = Φ(ξ2 + η2),

OE = *ι*2; η = (xl + xl)/2l v,ω>0).

Proof. See Moser (1958), Russmann (1964).

The following theorem plays a fundamental role in this work. It gives a suffi-
cient condition for the existence of transversal homoclinic orbits to periodic orbits,
near a saddle-center equilibrium point. It is due to Lerman, and it first appeared in
Russian in 1987. Its first English-translation appeared in Lerman (1991). It is
important to say that Mielke et al. (1992) have related results.

Theorem 2 (Lerman) Consider the same hypothesis and notation of Theorem 1.
Assume that

(ii) there is a homoclinic orbit Γ to p.

Let us fix some time parameterization and denote by ψ(t9 tQ):TΓ(to)M -»TΓ(ί) the
linearized flow operator associated to Γ, where TΓ(ί)M denotes the tangent space to
M at Γ(t). Let ί',ί"eIR be such that Γ(t')eU, and, in the coordinates x,
Γ(f) = (0, d', 0,0), Γ(£") = (d", 0,0, 0); d\ d" > 0 (the case d" < 0 is analogous). Let
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Ψx(t",t') be the matrix representation ofψ(t",t') in the coordinates x, and ajk,
j, k = 1,. . . , 4, be the elements ofψ^t", t'). Suppose, in addition, that

iii) for all δ e [0, 2π]

£ def /#33 ^34 cos (5 — sin δ\ d^f

sin 5 cos δ J

Under these conditions there is an E* > 0 such that in each energy level E,
0 < E ̂  £*, (M, Ω, H) ftαs an unstable periodic orbit LE (LE -> p as £ -> 0) and four
transversal homoclinic trajectories to LE. Moreover the system does not have an
analytic integral independent of H.

Proof. Let us suppose that v = 1 (this is obtained with a simple time re-scaling and
a redefinition of ω). In the local coordinate system of Theorem 1 the local flow of
the system is given by:

/xΛ
X2

\*4/

e~"

0

0

\ 0

0 0 0

eth° 0 0

0 cos(ίΛ°) - sin(ίfc°)

0 sin(ίΛj) cos(ίfc°) l

\ / x ? \

v°\X4/

(2)

where

From (2) it is immediate that the one parameter family of periodic orbits L£,
0 < E < EX, is given by

LE = {x = (0, 0, ^/2η cosθ, ̂ /2ηsmθ)\Q ^θ< 2π,E = h(Q, η)} .

It is also immediate that the local unstable and local stable manifolds of LE are
given by:

-ao ̂ = h(Q,η)},= {x = (0,1 ± έ,

where t* is a sufficiently small number.
Let us define the three dimensional disks

Σu = {(*!, d', x3, x4)|xι + xf + %4 < ε'} ,

Γ S ΓM" v v v M v2 _L v2 J_ v2 ^ o'\— \\(Λ> , &2) -^3) -^'4/|"^'2 ~r" ^3 ~τ~ Λ-4 ŝ. o j 5

both contained in U (see Fig. 1). Using that Σu and Σs are transversal to Γ and
choosing ε' sufficiently small we can define the Poincare map Φ:ΣU-*Σ* induced
by the flow near Γ (in the coordinates x Φ: (xί, d', x3, x4) ->• (d", Φ2, Φ3, Φ4)). Let us
denote the intersection between Σs and the energy level E (determined by the
equation h(d"9 x2, η) = E) by ΣE. Since Λ(0, 0) = 0 and 5 (̂0, 0) = 1 the implicit
function theorem implies that ΣE is given by the graph of a function x2 = x2(E, η),
namely ΣS

E is a manifold parametrized by (X3,x4). From the form of W\OC(LE) we
have that Ws

loc(LE)nΣs

E

 d= ys

E is the circle

ys

E = {x = (d", 0, ̂ /ΐηcosθ, ^sinθ)|0 ̂  θ < 2π, E = Λ(0, η)} ,
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Fig. 1. Diagram showing the geometrical construction described in the text. The xlt x2 and η axis
represent W[oc(p\ W"oc(p) and Wc

loc(p\ respectively. We point out that the η axis is representing
the "two dimensional" center-manifold

defand analogously W?OC(LE) = Σu = yl is the circle

= {x = (0, d", , ̂  sin θ)| 0 ^ = h(Q, η)}

Notice that by the conservation of energy Φ(yE) is contained in Σ5

E. Moreover,
since yu

E belongs to the global unstable manifold of LE (denoted by WU(LE)\ if there
is a point q such that q e Φ(yE)nγE then there is a homoclinic orbit to LE passing
through q. This homoclinic orbit will be transversal if the two one-dimensional
tangent spaces TqγE and TqΦ(yE) span the two-dimensional tangent space TqΣE

(or if Tqy
s

E does not coincide with TqΦ(yE)) (see Fig. 2). In the polar coordinates

x3 = V/2Ϊ/ cos θ, x4 = ^/2η sin θ the condition for the existence of these homoclinic
orbits is the equation

def
η = Φη(09 d'9 η, θ) β=* [Φi(0, d'9 *3, x4) + Φt(0, d'9 *3, x4)]/2

to have solutions η^ θ# and the transversality condition is

(3)

(4)

(see Fig. 2). Since Φ3 and Φ4 are equal to zero for x3 = x4 = 0 we can expand Φη in
Taylor series around η = 0 and using that 0ί<7 = dxj Φj(0, d', 0, 0), ϊ,j = 3, 4, we can
write Eq. (3) as

= (033 COS θ + 034 Sin θ)2 + (043 COS θ + 044 SΠ1 θ)2 + 0(ί/1/2) .
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Fig. 2. Diagram representing the intersection between ys

E and Φ(yu

E). In this figure φ is the angle
between Tqy

s

E and TqΦ(y"E) in the (x3, x4) coordinate system. It is given by

Λ ίφ = —== δ, V2

that is the expression appearing in condition (4)

In order to show that this equation has some solution for η > 0 we will apply the
implicit function theorem using η = 0 as a basis point. This requires the equation

1 = dηΦη(Q, d', 0, θ) = (α33cos θ + α34sin θ)2 + (α43cos θ + α44sin θ)2 (5)

to have some solution Θ0 and that dθdηΦη(Q, d', 0, Θ0) Φ 0. This last condition also
implies the transversality one (4) because of the limit dθΦη(0,df,η^9θ^)
-> 1*dedηΦη(Q9 d', 0, 00) as η* -> 0. Equation (5) is equivalent to find the points of

intersection between the unit circle (S1) and its image (CS1) by the linear transforma-
tion defined by the matrix C. The condition dθdηΦη(Q, d', 0, Θ0) ή= 0 is equivalent to
these intersections being transversal. If C is nonsingular then C S1 is an ellipses with
semi-axis /11} λ2 such that λ± λ2 = det(C) (this can be easily seen if we use that C can be
represented as the product of a positive symmetric matrix by an orthogonal one). Let
us assume that det(C) = 1. Then CS1 is either an ellipsis with semi-axis λ > 1, ί/λ < 1,
which implies that Eq. (5) has four solutions that verify the transversality condition, or
it coincides with S1 which implies that Eq. (5) has a continuum of solutions and the
transversality condition is not verified anymore. This last case implies that C is
orthogonal and, since det(C) = 1, it is a rotation matrix which contradicts hypothesis
iii). So Eq. (3) has four transversal solutions for η sufficiently small.

In order to finish the proof we have to show that det(C) is one. More than this,
we will present some properties of the matrix ι//*(t", t'\ that will be useful in the
proof of the next theorem. Notice that:

• if (0,1,0, 0) are the coordinates of a vector in 7γ(OM, then i/^ί", t') maps this
vector into a vector in TΓ(tΊM with coordinates (/?, 0, 0, 0), β e 1R, since
Γ(t) = ψ(t, to)Γ(t0)9 Γ(t) being the velocity vector associated to Γ at the point
Γ(t)l

• \l/*(t",t') maps the linear space {x|xι =0} contained in TΓ(t'}M into the
linear space {x\x2 = 0} contained in TΓ(ίΊM, since the energy H of the
system is conserved and \l/(t"', t') takes tangent spaces to energy level onto
tangent spaces to the same energy level.
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• \l/^(t",t') is a symplectic linear transformation, that is, it preserves the
symplectic form Ω.

These remarks imply that ι/^(ί", t') can be written as

/
-l/β 0

031 0

#4.1 0

\

(6)

where det(C) - 1.
We remark that the nonexistence of another analytic integral of motion, besides

H, is a well-known consequence of the existence of transversal homoclinic orbits
(see Moser (1973). D

In order to apply the previous theorem to a given system we have to verify that
hypothesis iii) is true using a very special coordinate system. In the following
theorem we present a hypothesis equivalent to iii) that does not depend on the
coordinate system. This greatly facilitates any explicit calculation. The way we
handle the linearized flow operator in the proof suggests an algorithm for numer-
ical estimation of the required limits as t goes to infinity.

Theorem 3. Using the same notation of Theorems 1 and 2, let us consider a Hamil-
tonian system that satisfies hypothesis i) and ii) of them. Then, the following limit is
well defined:

Λ(r) = lim ψ(nT + r, - nT\ r e [0, T), n e N ,
n—> oo

where T = 2π/ω and A(r): TPM -> TPM. Moreover, the tangent space to the center
manifold at p, TPW

C, is invariant by Λ(r) and hypothesis iii) of Theorem 2 is
equivalent to

iv) IfAc(r) is the restriction ofA(r) to TPW
C then there is a value ofr such that

Sp(Ac(r)) (the spectrum ofAc) does not contain points with modulus one.

Proof. Let n be such that nT + r > t", — nT<tr, where ί', t" were defined in
Theorem 2. Using the matrix representation (6) and the local flow (2) we obtain:

r, - nT) =

-e-t'-'+r/β 0 0 0

\ ^41 ̂  " 0 I

where: fe31, b4i,b13, b14. are independent of n and D = R-ωt" CR-ωt'. Therefore
the limit

Λ+(r) = lim ψ*(nT + r, - nT)
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exits and is given by

/ π βe''+t"-"

0

0

0

0

0

Rω,

0\

0

D

I\ υ

which implies that A(r) = lim,,^ ψ(nT -f r, — nT) also exists. Using that
lim^oo Γ( + nT) = p we conclude that Λ(r) can be defined as a mapping of TPM
into TPM. Moreover, since Wc is given by x^ = x2 = 0 in the x coordinates, we
have that Tp W

c is invariant by Λ(r) and the representation matrix ΛcJ(r) of Ac(r) in
these coordinates is RωrD. In order to finish the proof we use the following
proposition

Proposition I. If C is a 2x2 real matrix with det(C) = 1 then the following
assertions are equivalent:

l } Φ 0 for any value of θ, θe[0,2π), (7)

\Ίr(RθC)\ ^ 2, for any value ofO, θ e [0, 2π) , (8)

C is a rotation matrix , (9)

where Ύr(RθC) denotes the trace of RΘC.

It is immediate that (7) implies (8). If (8) is true then

[Tr(^C)]2 = [(α33 + α44)
2 + (034 - ^a)2] sin2(0 + ff) ̂  4 ,

for some & e [0, 2π) and any θ e [0, 2π), which implies

033 + #34 + 043 + 044 + 2(a33a44 - ^34^43) ^ 4 .

Subtracting 4det(C) = 4 from this inequality we obtain

which implies (9). If (9) is true, then (7) is immediate. Using this proposition, and
that D = R-ωt»CRωt> is a rotation matrix if, and only if, C is a rotation matrix, we
conclude that condition iii) of Theorem (2) is satisfied if, and only if,

Sp(Λ *(r))n{λ| \λ\ = 1} = 0 for some value of r, re [0, τ) .
c

Since Sp(Λc(r)) does not depend on coordinates we obtain condition iv) of the
theorem. Π

In all the theorems above we have considered generic four-dimensional Hamil-
tonian systems containing saddle-center loops. In the rest of this article we will
restrict our attention to the class of Hamiltonian systems (1) presented in Sect. 1. It
is convenient to introduce the following notation:

= ω2 + 0(00 = a ί lβal/(<h,0) . (10)
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Notice that

for 4ιe(0,4ic),

) = 0, ^(<hc)<0, (11)
dqi

where g l c was introduced in hypothesis d) in Sect. 1. It is easy to see that systems (1)
satisfy hypothesis i) and ii) of Theorems 1 and 2. Our main goal in this article is to
establish conditions on H such that they also satisfy hypothesis iii) of Theorem 2.
The program that we develop below certainly works for systems more general than
(1), but, as a first approach, we prefer to work with this simple and relevant case. In
the following theorem we relate condition iv) of Theorem 3 to the well-known one
dimensional quantum scattering problem.

Theorem 4. Consider a Hamίltonίan system of class (1). It has a homoclίnic solution
to the origin given by qι = JΓ(ί), pi = Γ(t\ q2(t) = P2(0 = 0> where Γ satisfies the
equation

x2 = P(x) . (12)

Consider the (q2,p2) components of the first variational equation associated to this
homoclinίc solution

y=-(ω2 + Q(Γ))y. (13)

It has a complex-valued solution φ with the following asymptotic behavior

φ(t) -> Aeiωt + Be~ίωt as t -» - oo ,

φ(t)^eίωt αs ί->oo, A,Be<C. (14)

The system verifies all hypothesis of Theorem 2 if, and only if,

v) B Φ 0.

Proof. The Hamiltonian system (1) satisfies hypothesis i) and ii) of Theorems 1 and
2, with the equilibrium point p being the origin. It will satisfy hypothesis iii) of
Theorem 2, if and only if, it satisfies hypothesis iv) of Theorem 3. In the following
we show that, in this case, hypothesis iv) is equivalent to v).

First, since \Q(Γ(t))\ decays exponentially fast with ί, Eq. (13) has a solution
with asymptotic behavior given by (14). For systems (1) TPW

C is given by
Pi = q\ = 0, which implies that the operator Ac(r) defined in Theorem 3 can be
written as

Λc(r) = lim ψc(nT + r, - nT\ r e [0, T), T ά= 2π/ω ,
«-»oo

where \l/c is the linearized flow operator associated to Eq. (13). Using the solution

φ(t) = φι(t) + iφ2(t) and its asymptotics (14) we can write the matrix representa-

tion of ψc(t9 10) in the (y, j) coordinates as:

(t ] =

c( ' o j ω\φί(t)φ2(t()) -
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Making t = ί0? to -> °° and using the asymptotics (14) we obtain the following
relation

1= lim -
f0-»-oo CO

Now, from Proposition 1, hypothesis iv) is not satisfied if, and only if, |Tr(ylc(r))|
^ 2 for any r e [0, T\ with

Tr(ΛW) = - lim {φ^nT + r)φ2( - nT) - φ2(nT + r}φ,( - nT)
CO «-»oo

- φ^nT + r)φ2( - nT) + φ2(nT + r)φL( - nT)}

= - lim {Imίφ(nT + r)φ( - nT) + φ(nT + r)φ( - nT)]}
CO n->oo

= 2\A\cos(rω — θA),

where Im [(/>] is the imaginary part of φ, φ is the complex conjugate of φ, and ΘA is
the argument of A. Thus, using identity (15) we get

• VA)\ >

which is smaller than or equal to two for any r e [0, T) if, and only if, B = 0. Π

Sometimes we may refer to hypothesis v) as the "nonresonance" condition and
to I £ |2/1.412 as the reflection coefficient. Both expressions are borrowed from
quantum mechanics.

3. Applications

In this section we present two applications of Theorem 4. Consider a Hamiltonian
system of class (1) with U satisfying

= ^«ϊ~1, (16)

where P, Q are defined in (10), n e (2, 3, . . .} and α > 0. In this case it is possible to
solve Eqs. (12), (13) and prove that system (1) is nonintegrable for almost all values
of jS/α.

Theorem 5. A Hamiltonian system of class (1) with P, Q (defined in (10)) is noninte-
grable if

"-"- for ( e N

Proof. In order to prove this theorem we show that hypothesis v) of Theorem 4 is
verified. Using (16) Eq. (12) can be written as

n+ 1
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The nontrivial even solution Γ of this equation is given by

fv(«-l)\ ,_ „ /(fi + lίvΛ1/*--"
-^—), where C-J-^

Using it we write Eq. (13) as

(18)

This equation represents a well-known one dimensional quantum mechanics
scattering problem and can be solved using hypergeometric functions. The
modulus of B is given in Landau and Lifshitz (1965), Sect. 25, Problem 4, as

2

sinh (πε)

where
2ω /?8(n + l)

' „ /_ 1\2 ' * '(n-l)v ' ' α(n-l) 2

These relations and hypothesis (17) ensures that B φ 0. Π

It is important to point out that the class of Hamiltonian systems presented
in Theorem 5 contains some classical problems of the physical literature as
the Henon-Heiles system. The generalized Henon-Heiles system is very well
studied and its nonintegrability was previously proved for some parameter values
(Churchill and Rod (1980), Holmes (1982)) but, besides this special case, we believe
that Theorem 5 is the first rigorous proof of nonintegrability for most of the
remaining cases.

The very convenience of working with condition v) of Theorem 4 is the
existence of well-developed one dimensional scattering and inverse scattering
theories. The following theorem is an example of an immediate result obtained
using the classical "reflectionless" potentials of the inverse scattering theory (also
associated to the soliton solutions of the KdV equation).

Theorem 6. Consider a one parameter family of Hamiltonian systems (1) para-
meterized by ω2, ω2 > 0. Let Γ be the solution ofEq. (12). Then a necessary condition
for the ίntegrability of all systems of such family is that Q(Γ(t)) can be written in the
following form'.

Q(Γ(ή) = 2^ log[det(I + Λ/(ί))] , (19)

where: Q is defined in (10), I is the N x N identity matrix, £/ is an N x N matrix with
elements given by

Amn(f) = α^mC

+ k , π , m ε { l , 2 , . . . Λ Γ } ,

N e N, an and kn are some positive numbers, kn are distinct.



Nonintegrability, Scattering and Analytic Continuation 267

Proof. This theorem is a consequence of Theorem 4 and of a theorem in the inverse
scattering theory (Kay and Moses (1956)), saying that condition (19) is necessary
and sufficient for B = 0 in (14) for any value of ω2, ω2 > 0. Π

Notice that the function on the right-hand side of (19) is positive and decays
exponentially fast as t -» ± oo. If N = 1 we can write k± = v, a\ = 2ve~2vί° and
the right-hand side of (19) as

2v2sech2(v(£-f0))

This is exactly the function that appears in the right-hand side of Eq. (18) when
α = β, n = 3 and ί0 = 0. In this case, as imposed by Theorem 5, condition (17) is not
satisfied.

In Grotta Ragazzo (1993) we present a particular function U, satisfying (16),
such that when condition (17) is not satisfied then the system is integrable. The
determination of the general algebraic form of P and Q such that condition (19) is
satisfied seems to be a very interesting question. Among other things, it can suggest
possible families of integrable Hamiltonian systems.

4. Analytic Continuation

In Sect. 2 we saw that the integrability question for the class of Hamiltonian
systems (1) reduces to the verification of the nonresonance condition v) of Theorem
4. In the way the problem was posed it involves two steps, first to integrate Eq. (12)
and second to analyze the scattering problem. This is far from being easy for most
systems. In this section we present new formulations of Theorem 4 so that we can
reduce condition v) to the problem of analytic continuation into the complex
domain.

Let us fix a convenient scale for q± such that the value of #lc, defined in Sect.
1 hypothesis d), is one. Let us also normalize the solution Γ of Eq. (12) such that
Γ(0) = 1. The central idea is to consider the following change of independent
variable in Eq. (13):

x = Γ(t) ,

for t < 0 or t > 0. In the new variable x, Eq. (13) becomes

f—!Ly-*+&,. (20)

where the prime means differentiation with respect to x. This equation has no
singularities in the interval (0, 1) and has two regular singular points on its
extremes. Let us consider Eq. (20) in the complex domain, that is y: C -> (C. From
the theory of second order linear equations (Morse and Feshbach (1953), Hille
(1976)) we know that Eq. (20) has two independent analytic solutions in a neighbor-
hood of each one of its regular points. In a punctured neighborhood of each regular
singular point ζ it has a pair of independent singular solutions that can be written
as (x — ζ)s g(x) where g is analytic and 5 e C. The value of s is determined by the
indicial equation

s(s-l)-as-b = Q , (21)
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where a and b are such that

pl a

I* -
We denote by G l 5 G2 and G3, G4 the pairs of local solutions of Eq. (20) defined in
the neighborhoods of x = 0 and x = 1, respectively. These local solutions are
explicitly given by

GiM = *αι0ιM, G3(x) - (x - I)α303(x) ,

G2(x) = xα2<h(x), G4(x) = (x - l)α^4(x) , (22)

where

= 1 + Atx + ,

g4(x)=l+D1(x -!) + • • - .

The indicial equation at x = 0 and x = 1 implies

<*! = i— d= iη, α2 = - wy, α3 = 0, α4 = 1/2 .

Using that_P(x) and β(x) are real when x is real we conclude that Cfe, Dk are real
and Ak = B f o k e N . The values of ylfc, Cfc, Dk are given by some recursion relations
obtained from the substitution of the respective series into Eq. (20).

At this point it is easy to see an advantage of working with the independent
variable x instead of ί, we can locally compute the solutions of Eq. (20) by
convergent power series expansions. As usual in the theory of linear equations the
problem that arises is how to "connect" these local solutions. In this case the
problem is the following.

Let us define the functions ψ- and ψ+ as

= φ(t\ xe(0,l), ί < 0 ,

x e(0,l), ί > 0 ,

where φ is the solution of Eq. (13) with asymptotic behavior (14). Near x = 1 the
solutions ψ- and ψ+ can be written as

β-(x ~

β+(x - I ) l l 2 g 4 ( x ) , (23)

where α_, β-, α+, β+ e C. In order to relate α_, β- with α+ and β+ we use the
continuity and the differentiability of φ at t = 0. We get

lim ψ-(x)= Urn φ(t) = lim φ(t) = lim ψ+(x), (24)
x-+l- ί-»0- f->0+ jc-» l-
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and

= lim φ(t) =
x-»0-

lim ^(t) = lim φ'+(Γ(t))Γ(t) = lim tfr'+ (*)( - >/PW) - (25)
t->0 +

fFrom relations (23) and (24) we get α_ = α+ = α. From relations (23) and (25) we
dget β- = — β+ = β. Therefore we can rewrite relations (23) as

)1/2 04(x) - (26)

These relations say that to "connect" ψ- and ψ+ at some point ζ, sufficiently near
x = 1, we should make the analytic continuation of ψ- along a small circle of
radius 1 — ζ centered at x = 1. In fact, since g3 and #4 are single valued, after win-
ding once x = 1, they return with same value, while (1 — Q1/2 returns with value

e'«(l-01/2

The solution φ of Eq. (13) Γ of Eq. (12) have the asymptotic limits

φ(t) -» Aeiωt + BQ-iωt as ί -* - oo ,

φ(ί) -> eίωί as ί -> + oo ,

and

Γ(ί) -> evί as ί -> - oo ,

Γ(ί) -> e~vί as ί -̂  + oo .

Therefore, as x -> 0+ ,

ψ-(x) = φ(t) -+ Aeίωt + Be~ίωί = ^(e1*)1? 4- JB(evί)"^ -* ^x/n + Bx'*1 ,

ιA + (x) = φ(t) -+ eίωί = (e-^)-' v ^ x-%

and we conclude that, for x near zero, ψ- and ψ+ can be written as

ψ+(x) = χ-ί»g2(x). (27)

From relations (26) and (27) we see that we can determine A and B if we know how
to connect the local solutions G l 5 G2 with G3, G4 through the interval (0, 1).

Below we present two theorems that give us necessary and sufficient conditions
for B = 0 in Theorem 4. The first one is a straightforward consequence of the
argument above. In the second one we consider Eq. (20) in the whole complex plane
and obtain a geometric condition on the Riemann surface associated to its solu-
tions. The result reinforces the idea that integrable systems imply "simple" geo-
metric structures.
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Theorem 7. A necessary and sufficient condition for B = 0 in Theorem 4, is that Eq.
(20) has a complex solution ψ :(0,1) -> C such that

ψ(x) = xlηgι(x) for x near x = 0 ,

ψ(x) = eί<5 f |α|03(x) - i , >/l - x#4(x) j /^ x near x = 1 ,

vv/iere α =f |α|e"w is some nonnull complex number.

Proof. Relations (27), the analyticity of ψ and f̂ + and #ι(x) = #2(x)> xe(0,1),
imply that ψ(x) = ψ + (x) for x e (0,1). Therefore the α defined above is equal to that
one appearing in relations (26). Let us assume that B = 0. Then ψ+ = A'1^-.
Using relations (26), and the definition

(x _ l)i/2 = ψί _ X9 for xe(0, 1),

we obtain

φ+(x) = *g3(x) + βijl - xg4(x) = A~^-(x) = A-l(ag3(x) + ^Vl - xg4(x)),

which implies α = A ~1 α and β = A ~1 β, or

αj8 = άj8 . (28)

Actually, condition (28) is also sufficient for B = 0. Suppose α/α = jβ/jβ = C. Then
from relations (26) we get

ψ-(x) = 003 (*) + /&V1

This and relations (27) imply B = 0 and C = A.
In order to relate |α| and \β\ we use the fact that ψ satisfies the Wronskian

identity

L ^ Jp(ψ$' -ψ'ψ)ϊ- = constant .

This identity near x = 0 implies

= - lim Γ - 2iιj^i
2x-^o+ 1_ x

^= lim ^ - ^7l^ι(x)|2 = ηv = ω
x-+0+ X
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Doing the same thing near x = 1 we get

ω = L = lim

This relation and (28) imply that B = 0 if, and only if,

p -2ω
αp =

--P'(l)

Using this, relations (26) and ψ+ = ψ we finish the proof. Π

Before presenting the next theorem we have to introduce some notation. If G is
a global analytic function (or the set of all "branches" of a "multi-valued" analytic
function) let us denote by Gζ a function element of G (or a branch of G) defined in
a neighborhood of ζ e C. We say that two function elements a, b are equivalent,
a ~ b, if their domains of definition have a nonempty intersection and they coincide
on it. Let y be an arc beginning at xi9 ending at x/, and that does not cross any
singularity of G. We denote by

(GX ι,y)d^ f GXf

the element function Gx/ obtained by the analytic continuation of GXι from x, to xf

through y. If y i is an arc going from xt to xm and y2 is an arc going from xm to xf we
represent the arc y going from x, to xf, through y^ and y2, as y = yιy 2 . Notice that
if y = 7ι?2 and Gx/ = (Gx., y), then Gx/ = ((GXι, yj, y2). The composition of arcs
define a product operation. For closed arcs we define y" as the product yy . . . y with
n factors. Let us define some special arcs. Let x0 and x^ be two points belonging to
the interval (0,1) such that the unique singular point of Eq. (20) in the region
|x| < x0 is x = 0 and in the region \x — 11 < 1 — x1 is x = 1. We denote by γ1 the
counter clockwise positively oriented circle centered at x = 0 that begins and ends
at x0. We denote by y2 the straight line going from x0 to Xι and by y3 the counter
clockwise positively oriented circle centered at x = 1 that begins and ends at xi (see
Fig. 3). If G is a solution of Eq. (20) then any of its elements GXo can be written as
a linear combination of G1 ? G2, the same being true for GXι with respect to G3, G4

(Gί? ί = 1,. . ., 4, were defined in (22)). This implies that the analytic continuation
of GXo is determined by the analytic continuation of G1 ? G2. For instance, if

(G 1,y 2)-α 1 1G 3 + α21G4 and (G2, y2) - α12G3 + α 2 2G 4,

then GXo ~ aG1 + bG2 implies (GXo, y2) ~ (ααn + bα12)G3 + (#α21 + bα22)G4.
Representing the basis (G l9 G2) at x0 as
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and the basis (G3, G4) at Xi as

we can write

In a similar way we define the matrices Myl and My3 related to the arcs γ^ and y3,
respectively. Due to this correspondence between arcs and matrices the analytic
continuation operation through products of arcs is reduced to a matrix multiplica-
tion. For instance if GXo ~ aGi + bG2, then

My

2

3My2(GXo, 7273) ~ My3My2 , (GXo,

and so on. When 7 is a closed arc then My is called the monodromy matrix
associated to 7.

Theorem 8. Let Gbea nontrίvial global analytic solution ofEq. (20) and m, n be any
pair of integers with m Φ 0. Then B = 0 in Theorem 4 if, and only if,

where y = 7273

W + 1 yϊ 1 ?T (or, equiυalently, if, and only if, the monodromy matrix My

satisfies My = identity) (see Fig. 3).

Proof. Let us begin calculating the matrices My l,My 2 and My3. From Eqs. (26)

and (27) we have (G2, γ2) - αG3 - βG4. Since G2(φ= G^x), G3(x) = G3(x),

G4(χ) = - G4(x), for x e (0, 1) we get (G1? γ2) - αG3 + βG4 which implies

Using that G3 is analytic and G4 has a square root singularity inside 73 we obtain
(^3> 73) ̂  G3 and (G4, 73) ̂  — G4 which implies

i -°

Fig. 3. The closed arc y defined in Theorem 8 in the case m = 1 and n = 0
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Using that G! = xiηgι(x) and G2 = x~iηg2(x) with gί9 g2 analytic inside y± we get
(G l5 y j - C'^G! and (G2, y j - e2πηG2 which implies

0 e2

The form of these matrices imply: M2% + 1 = My3,

where Kd= (ά)8 + αj8) = - det(My2), and

From Eq. (27) and the remark below Eq. (26) we have that
(G2, 72 7s 72 X ) ̂  ̂ 4ί?ι + #G2, so we can write A = 2βa/K, B = (j8α - αj8)/X, and

Therefore

Λ — 2πηm A0 — 2nητn

M =1 -
* AQ2πηm Be2πηn

and

2 'A(B + Be4πηm) B2Q4πηm + \A\

Finally, using that \A\2 — \B\2 = 1 (Eq. (15)) it is easy to see that M2 is the identity
if, and only if, B = 0. Π

We end this section applying this theorem to the system considered in Theorem
5. Using the functions P and β given in (16) we write Eq. (20) as

v2*2 ^—xn+1 }y" + (v2x-axn)y' + (ω2 + βxn~1)y = 0 . (29)

This equation has singularities at: x = 0,

x = Ceχpί;-^j, C^ An + 1)vΎ/(""1) fc = 1,2,. . . ,«-!,
[ n - 1J \ 2a J

and possibly at x = oo . The symmetry of these singularities suggests the following
change of independent variable
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so that Eq. (29) becomes

z2(l - z)/ + I (2 - 3z)/ + (Ω2 + σz)j; = 0 , (31)

where

σ_
V -

(n-l)V 2α(n-l) 2 '

This is the hypergeometric equation and to prove Theorem 5 we implicitly used
some well-known properties of its solutions. Now, we are going to prove Theorem
5 in a different way.

Consider the closed arc y2 = (727s7ί17ι)2 in the x-plane where y l 5 y2, 73 are
defined as in Theorem 8 with the singularity at x = 1 being replaced by another one
at x = C. We want to find the conditions on the parameters of Eq. (29) such that
some solution G satisfies

G X o ~(G X o ,y 2 ) . (32)

The image of the arc y2 in the z-plane is homo topic to the arc y2^ =f

(727s72~17Ϊ"1)2 where again y1 ? y2, ya are defined as in Theorem 8. Denoting by
F the solution of Eq. (31), related to G through z = (x/C)""1, we obtain that
condition (32) is equivalent to

(33)

where z0 = (xQ/C}n~l. Since Eq. (31) is of the same kind of Eq. (20), with

P(z) = z2(l - z), ω2 + β(z) = Ω2 + σz ,

we conclude, using Theorem 8, that relation (33) is true if, and only if,

F Z o ~(F Z o ,y 2 ), (34)

where y* = γ2 73 yί17ι (if the condition of Theorem 8 is true for some pair m, n then
it is true for any pair). Now, we use that Eq. (31) has only three singularities, at
z = 0, z = 1 and z = oo, to deform the arc γl to an homotopic one y2^ that winds
twice the singular point at infinity. Therefore we reduced the problem to the
analysis of the singularity at infinity. In order to do this we make the change of
independent variables

1
z = —

u

in Eq. (31) and obtain

, 1/1 1 \ / σ Ω2 + σ Ω2 + σ
y = 0.

The indicial equation (21) at u = 0 becomes

s(s - 1) + - s - σ = 0 ,
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which implies

, = ! ± V! + 16σ

 = ! ί t + /1 +/»("+!)

4 - 4 V ± i V «(»-W

Relation (34) will be true if, and only if, both values of 5 are multiples of 1/2, that is

v" ' ' oφ-1)2' ^

or

- = ̂ >«-D> ' e N .α 2(n + 1)

This condition is the same one that we got in Theorem 5.

5. Conclusion

The results presented in this article represent a first approach to the question of
integrability of two degrees of freedom Hamiltonian systems using the theorem of
Lerman (1991), Mielke et al. (1992), and scattering ideas. Theorems 4, that plays
a central role in this work, can be extended to some more general systems than (1).
If we relax the definition of the "scattering equation", keeping its essential features,
we can go further with such generalization. How far it is interesting to go depends
on our ability in extracting information of the new "scattering problem."

In Sect. 3 we presented Theorem 6 as an illustration of an application of
scattering results to the integrability question of systems (1). We believe that many
other interesting results can be obtained in this way. For instance, we may use the
"quasi-classical" approximation to the scattering problem (Landau and Lifshitz
(1965), Fedoryuk (1965)) or the related theory of "adiabatic invariants" (Arnold
et al. (1988)).

Finally, I would like to mention some very interesting comments pointed out by
one of the referees. One can consider the integrability question in view of "com-
plex" Hamiltonian systems. Formally, complex analytic Hamiltonian systems are
defined in the same way as the real analytic ones, with the difference that we
consider complex phase spaces ((p, q) e C ) and orbits parametrized by a complex
time. The definition of integrability is also formally the same. In particular real
analytic Hamiltonian systems can be extended into complex plane. For complex
Hamiltonian systems an important necessary condition for integrability was ob-
tained by Ziglin (1983) (see Kozlov (1983) for a brief discussion on Ziglin's result
and also Ito (1985)). Ziglin's condition requires that we analyze the first variational
equation associated to some periodic orbit of the system. If we think about the
homoclinic orbit Γ of the system of Theorem (5) as being a periodic orbit with
"infinite" period and consider Eq. (29) (or Eq. (18)) in the complex time domain
then the condition of Theorem 8 is similar to Ziglin's condition for those periodic
orbits contained in the p2 = #2 = 0 plane that approximate the homoclinic orbit Γ.
In particular, Ito (1987) applied Ziglin's theorem to systems similar to those we
considered here and got a necessary condition for complex integrability that
formally resembles the condition of Theorem 8. Another interesting remark comes
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from Yoshida's applications of Ziglin's theorem (see for instance Yoshida (1988))
and further work by Churchchill and Rod (1988) concerning Yoshida's approach.
Yoshida was able to verify Ziglin's condition for an equation similar to (29) using
the same change of variables (30) we used. Churchill and Rod (1988) having
considered Ziglin's theorem and Yoshida's approach from a geometric point of
view were able to extend Yoshida's method for more general systems. It would be
very interesting to apply Churchill and Rod (1988) ideas in the context of Theorem
8. Concluding, the similarities between our results and Ziglin's theorem provide
many interesting questions on the relationship between complex integrability and
the presence of transversal Homoclinic orbits in real systems, as well as, by mean of
previous results on Ziglin's theorem and its applications, it indicates some ways the
results in this paper can be extended.
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