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Abstract: We investigate the additional symmetries of several supersymmetric KP
hierarchies: the SKP hierarchy of Manin and Radul, the SKP, hierarchy, and the
Jacobian SKP hierarchy. In all three cases we find that the algebra of symmetries
is isomorphic to the algebra of superdifferential operators, or equivalently SW, .
These results seem to suggest that despite their realization depending on the dynamics,
the additional symmetries are kinematical in nature.

1. Introduction

The aim of this paper is to study the additional symmetries of the following
supersymmetric extensions of the KP hierarchy: the SKP hierarchy of Manin and
Radul [1], the SKP, hierarchy [2], and the Jacobian SKP hierarchy of Mulase [3]
and Rabin [4]. The additional symmetries of the KP hierarchy were first studied in
[5] (although see [6]) and their algebraic structure has been recently identified with
the algebra DOP of differential operators [7,8]. The additional symmetries of the
supersymmetric KP hierarchy defined by Manin and Radul have been previously
studied in [9].

Let us first briefly review what is known about the additional symmetries of the
KP hierarchy. The KP hierarchy can be thought of as a dynamical system defined on a
space whose functions are given by a subring of the ring k[[x]] of formal power series
in the variable = with coefficients in the field k. It is defined as the universal family

of isospectral deformations of a pseudodifferential operator L = 0+ > u,0'~*. The
121
evolution of L is specified by a commuting family of flows 0, in terms of which

O,L =—[L",L)=[L",L]. (1.1

If one restricts oneself to operators satisfying u; = 0, then one can lift the KP flows to
the Volterra group GG. The Volterra group acts naturally via dressing transformations
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L ¢7'Lp, where ¢ = 1+ > v,07% € G is the dressing operator. In terms of the

i>1
dressing operator, the flows of the KP hierarchy are given by
0;p = ~(¢0'¢™_¢. 12

One can write these flows in a different way by using an analogue of the Radul
map [10]. Motivated originally by attempts to understand the geometric meaning of
W-symmetry, Radul introduced a homomorphism

W :DOP — T, 9, (1.3)

between the Lie algebra of differential operators and the Lie algebra of vector fields
on the space of Lax operators by associating, to every differential operator E, the
tangent vector

W(E)=(LEL™Y)_L (1.4)

at the point L in the space 90 of Lax operators. The similarity between the expression
for the Radul map (1.3) and the one of the KP flows (1.2) suggests us to define a
map

W(E) = (pEd~")_¢, (1.5)

from DOP to the Lie algebra .72_ of the Volterra group. The KP flows become now
0,¢ = —W'(0™) = =0y (gn)p, Where Oy (gn) is then a flow on the Volterra group.
The map (1.5) now translates the trivial fact [0™,0™] = 0 into the commutativity of
the flows [0,,,0,,] = 0. This allows us to represent the flows in terms of an infinite

set of times, 9, = TR with ¢ = 1,2,.... One interpretation of this feature is that

7
every flow possesses an infinite number of symmetries given by the other flows. This

interpretation begs the question whether these are all or, if on the contrary, there exist
additional symmetries. Remarkably enough, it turns out that one can construct a larger
family of times-dependent flows which contains as a subset the original KP flows and
commute with them. This new family of flows satisfies a nonabelian algebra with
respect to which the KP hierarchy forms its center. Thus we adopt here the following
definition.

Definition 1.6. By (additional) symmetries of an integrable hierarchy of flows, we
mean its centralizer in the algebra of times-dependent vector fields.

The fact that these symmetries contain the original hierarchy, although largely
taken for granted, is only true provided the flows of the hierarchy themselves satisfy
an abelian algebra; and it is to these case that the word “additional” can be applied.
We will see in fact that this is not generally the case for supersymmetric hierarchies.

Along with Definition 1.6, it is in practice convenient to have a “working
definition” that is more suitable for computation. Our working definition is motivated
by the following fact. The flows Oy, generated via (1.5) by differential operators
I" satisfying

[0,-0,I'1=0 (1.7)

commute with the KP flows. Indeed following [8] we have that

[8wl(11), 81] = _[awl([v), awl(az)]
= —8W,([p78i]¢) 5 (18)
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where [, 0] » 18 a modified Lie bracket (see Sect. 3) given by

[1,0"y = Owrcry0" — Oprion " + 11, 0°]
=10,, I+,
=10, — 0%, I
=0. (1.9)

We therefore call “additional symmetries” the flows generated by operators I" subject
to (1.7). It is conceivable that (1.7) is also a necessary condition — that is, that all
additional symmetries arise in this fashion; but we shall not attempt to prove it here.

This means that looking for the additional symmetries comes down to trying to
find solutions for (1.7). An obvious solution to this equation is simply I" = 0, which,
introduced in (1.7) and after applying a dressing transformation, gives precisely the
KP flows (1.2). This agrees with the fact that the KP flows commute with each other.

A more interesting solution can be obtained if we allow for an explicit dependence
on the time parameters of the hierarchy; that is, if we extend our ring of functions by
the infinite set of independent variables {¢,,1,, ...}, in which case we have to extend
the derivative operator O as a derivation in this new ring.

A priori, since x and all the ¢; are independent variables of our infinite set of
partial differential equations, we can automatically conclude that O has to be extended
trivially to the new ring. Nevertheless in the case KP, since the first flow (for dressable
L) reads 0,L = [L,L] = [0, L], and therefore gives & = 0,, one can identify z
with ¢;. One can then define (see, for instance, [11]) a formal infinite-order differential
operator

r=>y jt;o""! (1.10)

121

which satisfies (1.7), and from it a two-parameter family of flows

0, k= @I*0"¢™") o, (1.11)
that satisfy [0

ks O] = 0. Notice that for & = 0 and m > 0 they agree with the KP

flows. Moreover since [0, I'] = 1 it follows that the Lie algebra generated by I'*0™,
k > 0 and m € Z is isomorphic (as a Lie algebra) to W, __ and hence the algebra
of additional symmetries is nothing but W__ (see [7] and [8]).

One can alternatively write the two-parameter family of flows in a Lax form

O p L= —[(M*L™_, L],

where M = ¢I'¢~! is the dressed version of I'. In this form, the additional
symmetries prove to be a useful tool in the solution of the (multi-)matrix models for
2d quantum gravity. Indeed, the partition function of the (n — 1)-matrix model can be
identified with the 7-function of the n-KdV hierarchy. The 7-function is subject to an
infinite set of W-constraints which follow from the string equation [P, Q] = 1, where

1
@ is the n-th power of the Lax operator for the KP hierarchy and P = -~ (ML~ "

is directly related to the generator M of the additional symmetries [12].

In this paper we analyze the additional symmetries of several supersymmetric
extensions of the KP hierarchy along these same lines. In order to do that we shall start
in the second section with a brief review of a few basic facts about the supersymmetric
formalism of pseudodifferential operators in order to introduce the basic objects we



264 S. Stanciu

shall work with and to fix the notation. (For a more detailed account on this topic we
send the reader to [1, 13, 3, 2].)

As we have seen in the case of the KP hierarchy, a very useful tool in the study
of the additional symmetries is the map (1.4). We shall therefore need to define its
supersymmetric version. We do that in the third section where we also prove that,
analogously to the nonsupersymmetric case, it is a Lie algebra homomorphism.

In the fourth section we will consider the additional symmetries of the SKP
hierarchy introduced by Manin and Radul (MRSKP). One of the distinctive features
of this supersymmetric hierarchy is the fact that its algebra of flows is nonabelian
and therefore not all the flows of the hierarchy are symmetries as well. Imposing an
analogous condition to (1.7) we shall find the algebra of the additional symmetries to
be isomorphic with the algebra of superdifferential operators SDOP. The additional
symmetries of this particular hierarchy have been studied also in [9] and we find
agreement with their results.

The even order SKP hierarchy will be discussed in the fifth section. An important
feature of this hierarchy is the fact that it has only even Lax flows which can be
represented in terms of an infinite set of even times. This has as a consequence the
fact that not only the generator ) of supertranslations but also the odd derivation D
generate symmetries of the hierarchy. As a result, the algebra of additional symmetries
will be again seen to be the algebra SDOP of superdifferential operators.

Finally, in the sixth section we shall consider the Jacobian SKP hierarchy of Mulase
and Rabin (JSKP), and we shall find its additional symmetries. In contrast to MRSKP,
the flows of JSKP do commute with each other and the additional flows will therefore
contain the JSKP flows as well. Moreover, we shall find that the symmetries form a
Lie algebra isomorphic to the Lie algebra of superdifferential operators, which is in
turn isomorphic — as a Lie algebra — with SW the additional flows corresponding
to a subalgebra containing SW__.

The results seem to suggest that the additional symmetries considered so far are
to a large extent kinematical in nature, although their explicit realization does depend
on the dynamics.

14+00>

2. Supersymmetric Formalism

Let k be an arbitrary field of characteristic zero. We define our function space to be
a Z,-graded ring over k, R = R, ® R;, endowed with an odd derivation D. Then
D? = 9 is an even derivation. For the present purposes it suffices to restrict ourselves
to the case in which R is given by

R=Ka& K0, @.1)

where K is a subring of k[[x]], the ring of formal power series in an even variable z,
and @ is an odd variable satisfying 26 = 6z and % = 0. This gives rise to a structure
of supercommutative algebra in the ring R. The Z,-grading is defined by putting
|z| = 0 and |f] = 1 so that any element of R, (respectively R,) is homogeneous of
degree O (respectively 1). The odd derivation operator is given by D = 0, + 60 and
satisfies the supersymmetric analog of the Leibniz rule

D(ab) = D(a)b + (=) *laD(), (2.2)

where a is a homogeneous element of R of Z,-degree |a| and |D| = 1. We
further define the ring of supersymmetric pseudodifferential operators (SWDO) with
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coefficients in R

/%ER((D—‘))={P= > @D

123> —00

a; € R}. 2.3)

The ring of SWDO’s can be given the structure of a superalgebra using the generalized
Leibniz rule

DFa=>" [k g } (—Dlalk=nglil ph=e 2.4)

; —1
1=0

where a is a homogeneous element of R and [ E k } are the so-called superbinomial
coefficients given by -

0 for + <O or (k,7) =(0,1)mod?2;

k

-1 B
k—1i

2

Since the Z,-grading gets induced here we have that .72 = 72, ® .%2,, where

for ¢ > 0 and (k,7) # (0,1)mod 2.

Fy = Ry(D™1)) = { Z a; D7 ay| = 0,]ay, | = 1}’ @2.5)
i>—00
and
Py = Ry(D7Y) = { S a0yl = 1, Jay,| = o}, 2.6)
i>—00

and we have thus defined the notion of an even (respectively odd) S¥DO.
Let us remark the following fact:

R(D™) = R(0™") @ R(O™"))9, . 2.7)

Indeed, on the one hand we clearly have R((9~")) @ R((07'))8, C R((D™')) since
D? = 9 and 8, = D — 6D?. On the other hand any SWDO can be written in the
following manner:

Z a; D" = Z ay,D* + Za%HDZZ“
= Z a0+ ay,,,0'(9, + 00)
= Z Uy, + 0, 000" + Dy, 00, (2.8)
so that we have also R((D~')) C R((0™")) ® R((07'))0,.

In general it is important to distinguish in the ring of SWDO’s the subring of
supersymmetric differential operators SDOP

A, = R[D] = { Y 4D

0<iK oo

%ER} (2.9)

with respect to which we have the splitting

R=Ry ®T_, (2.10)
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where

#_=DT'R[[D] = { > a,D7

=1

0, € R} @11

denotes the integral SWDO’s. If P € % is any SWDO we shall denote by P, its
projection onto .72, along 7.
The ring .72 of SWDO’s can be made into a filtered associative k-algebra if we
define
= {P: Y aDies

(2

ord P < n} 2.12)

where we say that ord P = n if a; = 0 for all ¢ > n and a,, # 0. We have then

" C A and B = U T (2.13)
nez

and under the multiplication .72P x 729 — .72PT9. Moreover defining a bracket
[ 1: 7 x 9 — 7P*a (2.14)

via the graded commutator [AB] = AB — (—)AIIBIBA, 7 becomes a Lie
superalgebra.
Let us now consider the supersymmetric trace map Str = [ osres, where the
supersymmetric noncommutative residue is given by sres (Z aiDi) = a_, and the
K]

notion of integration can be defined abstractly as the canonical projection [ :R —

R/DR, which simply means dropping the derivatives. One can alternatively consider

the integral defined by the Berezinian, where for any homogeneous differential

polynomial of U = u + 6v, f(U) = a(u,v) + 0b(u,v), [ f(U) = [ b(u,v). The only
B

difference between the two definitions consists in the fact that the abstract integration
defined directly as a canonical projection is an even operation whereas the Berezinian
has a Z,-degree of one.

The Str functional allows us now to define a dual pairing in .% by

(A,B) =St AB, (2.15)

under which R[D] and D~ R[[D~']] are maximally isotropic spaces nondegenerately
paired with each other.

One of the central objects in our formalism is the space of sueprsymmetric Lax
operators of degree n, defined by

m, = {L =D"+ iUiD"“i

i=1

U, e R\U,| = z'modZ}. (2.16)

(We shall drop the subscript n whenever no confusion can arise.) Given any
L € M C # one can define R; the differential subring generated by the U;’s
which will obviously induce the corresponding subrings R;[D] C R[D] and
R, [D~'] ¢ RID7!]. M is an infinite-dimensional affine space modeled on the
vector space .72"~! of SWDO’s of order n — 1. Its tangent space T, 9 at the point
L is thus isomorphic to .72" ! itself, namely

T,M = {A = i A, D"

2=1

A, € R, |Az|E|A|+n+imod2}. (2.17)
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Then to every tangent vector A € T 9t one can associate a vector field D, whose
action on any f € R; is defined by

d
Daf = 21U, +2A)

e=0

_ n)k Alk]
= Z_;g(_)dfm kAl SO (2.18)

where we do not impose a priori that € be even, i.e., |L| = | A] is not necessarily true.
Lemma2.19. D,D = (—)!4*™pDD,.

The proof is a straightforward computation and it is left as an exercise.

Notice that D ,:R; — R, induces a map — also denoted D, with some abuse
of notation - D,:R; /DR; — R; /DR, givenby D, [ f = [ D, f. But in this
case since R; /DR; is no longer a superalgebra, D , is no longer a derivation. This
nevertheless will not affect the formalism.

In order to define the cotangent space of 91 at L it suffices to notice that the
tangent space I, 9 is nondegenerately paired [via the pairing defined in (2.15)] with
the quotient space .2/ D~ ™7 _, and therefore we have

T'M=%/D"7%_. (2.20)

3. The Supersymmetric Radul Map

In this section we shall introduce a supersymmetric generalization of the Radul map
and we shall see that it defines a Lie algebra homomorphism between the space
of SWDO’s and T; 9. In order to do this we have first of all to define a Lie
(super)algebra structure on T;9M. Of course, since the elements of 7,9 are in
particular S¥DO’s of order at most n — 1 one always has the obvious bracket given
by the graded commutator. Still this is not the one that will allow us to exhibit the
supersymmetric Radul map as a Lie algebra homomorphism. Instead let us consider
the natural Lie bracket on vector fields on 91, namely

[D,,Dp) =D, Dy —(—)PAlIPBID . D, . (3.1
This will induce in 7', 901 a bracket [ ] by
[DA,DB] = D[]A,B]]? (3~2)
whose explicit form we shall obtain now.
Lemma 3.3. The Lie bracket [ | in T} 9N is given by
[A,Bl = D B — (—)/PallPBIp 4, (3.4)
for any two S¥DO’s A and B in T; M.

Proof. Consider f an arbitrary function in R;. Then

(D4, Dplf = (D4Dy — (—)/PAIPBID D Hf, (3.5
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which using the fact that D , f¥1 = (—)*IPal(D , )*I (which follows by repeated
application of Lemma 2.19) becomes

[D4,Dplf = Z Z ((_)leBl+(l+k)|DA|A[_l] [lzc]
47=1 k,1=0 ! ou,
k]

_ (=)\Dal IDBI+KID Al +(+8) | Dp| gl 04, of

?ouf)  oul

7 2
= Y Y AP, By DT (3.6

i=1 k=0 oU;

where

0B, 0A,

_ D4l pAlll 3 D4l |D l|D {11 i
[4,B], = E E (M 4l Al m_(~)l allDpl+ B|Bj SO (3.7)

j=11=0 Lj [j

and we get indeed (3.4). O
It is well known [11] that one can pull the Lie bracket [ ] on 7,9 back to T/

via the Adler map J(X) = (LX), L — L(XL),. In other words one can define a
bracket [ ]} on 7790 such that

L0, JY)] = J(IX, JIT). (3.8)
Computing [X, Y]} one finds [14]

[X, Y]z = (_)n(nHX!)DJ(X)Y + X(LY)_
—(XL),Y)_ — () eD X oy, (3.9)
This already tells us that the Adler map is a Lie (super)algebra homomorphism
mapping the cotangent space to the tangent space of 91 at L, each of them being

considered with the corresponding Lie algebra structure.

Now we can finally define the supersymmetric analog of the Radul map
W:SDOP — T M (3.10)
sending any E € SDOP to the tangent vector W(E) defined by

W(E)=LE - (LEL™"),L=(LEL™Y)_L. (3.11)

Theorem 3.12. The supersymmetric Radul map is a Lie (super)algebra homomor-
phism, ie.,

W(E), W) = W(E, Fl,), (3.13)
where [E, Fl; is the modified Lie bracket on SDOP given by

(B, Fl, = [B,F1+ ()"EIDy, p F — () ENWFHIFID L B (3.14)
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Proof. By direct computation in the right-hand side we have

[W(E), W = Dy s, W(F) — (—)Pwel1Pwsl Dy W (E)
= Dy (LFL™"_F — (-)\PwelIPwel(E « F)
= (WEFL™)_L+()"PWON LDy FL™)_L
— ()IFIPweLFL'"W(E)L™")_L
+ (H)FNPwE(LFL™Y W(E) — (—)PwdlIPwil(F « F)
= ((LEL™Y_LFL™"_L+(=)PIWI(LFL™_LEL™")_L
~ (HENWNLFEL™_L+ ()P LDy, FL™")_L
— (—)IPwal IPwel(E « F)
= (LIE,FIL™"_L+ (-)"*(LDyxFL™"_L
— ()T ("HED(LDW(F)EL_I)#L
=W(E,Fl;). O (3.15)

Remark 3.16. Notice that in the case where E and F' are independent of L we recover
the usual Lie bracket on SDOP.

We have in this moment the following diagram where both maps W and J have
been proven to be Lie algebra homomorphisms:

TFm
i
w
SDOP — T,

It would be thus interesting to see whether one can complete this diagram with a map
R such that J o R = W and, if this is possible, to check whether the new map R is
a homomorphism as well.

We consider therefore the map R:SDOP — T} defined by

R(E)= —(FL™")_mod D™ "%_, (3.17)
for any F in SDOP. Since D~".72_ C ker J we have that indeed
Jo R(E)=W(E), (3.18)

for any F in SDOP and therefore Jo R = W.

Theorem 3.19. R is a Lie algebra homomorphism, with

[R(E), R(F} = R(E, F,). (3.20)



270 S. Stanciu
Proof. Using the fact that J o R = W and that |R(F)| = |E| + n we have

[R(E), RUT = (=" Dy oy (FL™H_ + (BL™) _(L(FL™)_)_
—((BL™H_L),(FL™H_)_ — ()"II(E & F)
= — ()" Dy iy FL™_ + ()FNWVFF L W(B) L™ _
+(BEL™Y_(LFL™Y_ —(E(FL™Y_)_
+(EBEL Y, LEFL ) — (IFIF(E - F)
= —(E,FIL™")_ = (=)""{(Dyy g FL™")_

4 (—)MFIHIE] IFI(DW(F)EL—I)A
=R(E,F];). O (3.21)

Corollary 3.22. We have the following commutative diagram of Lie algebras:
THM
R /\ l J

w
SDOP —— T,

4. Additional Symmetries of the MRSKP Hierarchy

We shall start in this section the study of the additional symmetries of supersymmetric
KP hierarchies by considering the supersymmetric extension of KP defined by Manin
and Radul in [1], the MRSKP hierarchy.

One of the most remarkable features of the MRSKP hierarchy is the fact that it
possesses a standard Lax formulation, although at the price that the (odd) flows do
not commute with each other. It is due to its Lax formulation that this hierarchy
has received the most attention from the physics community. Indeed, since the KP
hierarchy is connected to 2d quantum gravity via the Lax formalism, one might expect
that MRSKP be relevant for 2d quantum supergravity. So far, however, it seems that
the relevant supersymmetric hierarchies in 2d quantum supergravity are more or less
naive supersymmetrizations of the KdV-type hierarchies [15, 16, 17].

In order to study its additional symmetries, let us first briefly recapitulate a
few basic things about MRSKP that will be useful in the following. The MRSKP
hierarchy is defined as the universal family of isospectral flows deforming a S¥DO

A= D+ Y UD'" with U, € R. But in contrast to the nonsupersymmetric case
12>1

this infinite family of odd and even flows satisfy a nonabelian Lie superalgebra whose

commutation relations are

[D,,, D2j] =0, [D,,, D2j—l] =0, [D;,_15 D2j—l] = _2D2i+2j—2' (4.1

(We have adopted here the same sign conventions for the time parameters ¢, as in
[13,4].) A particular representation of (4.1) in terms of an infinite number of odd and
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even times {¢,,t,,t5,...} is given by

0
Dy =+,

2oty

P Z ) 4.2)
Dy = — 2l ,
Oty > 7T Otgigag
where the odd times are odd variables satisfying ¢,,_,t,; | = —t,,_t,,_, and
t3,_, = 0. These flows are initially defined on R but one can extend them on the
whole .72 as evolutionary derivations, that is,

[Dy,, D] = [Dy;_y, D] =0, (4.3)

and one can thus write the Lax flows of the MRSKP hierarchy in the following

manner: ) ”
Dy A= —[AT" A] = [AT, A]

2 o o , (4.4)

Dy (A= —[A"7, A] = [AL7, A] = 247

The necessary and sufficient condition for the existence of an even SWDO, ¢ =

1+ > V,D™% with V, € R, such that A = $D¢~" — that is, for A to be dressable

>1

— is in this case UM + 20U, = 0. If we restrict ourselves to such A’s then we can
alternatively define the MRSKP hierarchy as the family of flows on the dressing
operator ¢

D,p = ~(¢D'¢"")_¢, 4.5)
or equivalently
7] _
= @D,
2
(4.6)
9 o( D% _'_thj_lDszj—z o 6.
Oty =i -

Remark 4.7. One can prove that provided A satisfies the dressability condition the two
definitions of the MRSKP hierarchy are indeed equivalent. First of all it is obvious
that given the flows on the dressing operator (4.5) one obtains the Lax flows on A:

D,A=D,(¢D¢p™ "
= —(¢D'¢"")_¢D¢™" + (-)'¢Dp " (¢D'¢™")_
= —[A", A]. 4.8)

In order to prove the converse let us introduce the dressed version of A in the Lax
flows and rewrite them in the following form:

(D;¢+ (@D'¢™H_¢p)Dgp™" — (=)' ¢Dp™ (D¢ + (¢D"¢™)_¢)p ' =0. (4.9

Suppose now that D;¢ + (¢D*¢~1)_¢ = AyDN + Ay DN71 4+ .., for some
arbitrary N. Then one obtains the following conditions for the leading coefficients:

Ay =0 for N odd,
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and
A — ()" Ay = (9)™2V Ay =0

for N even. ,
A{N-—l + 2‘/1AN-—1 — (—)n‘/lIAN -0 } or even (4.10)

That is, in both cases we obtain that — provided we drop the constants — the leading
coefficient A, must vanish and hence (4.5) is satisfied.

Remark4.11. Notice that one can dress the following obvious commutation relations:

[D,, — D*,D] =0, (4.12)
[D,,_, — D*~!', D] = —2D*, (4.13)
and obtain the Lax flows (4.4).

The flows (4.5) are reminiscent of the supersymmetric Radul map (where in this
case n = 1) and suggest us to define a map W’ :SDOP — .7%2_ by

W'(E) = (¢E¢™")_¢, (4.14)

for any SDOP E such that D¢ = —W'(D") = — Dy pny¢, Where Dyyipny is a
flow on the Volterra group. The algebra of flows of MRSKP becomes in light of this
definition a simple consequence of Theorem 3.12.

Proposition 4.15. The MRSKP flows satisfy the Lie superalgebra given in (4.1).
Proof. Following step by step the proof of Theorem 3.12 and replacing L with ¢ we
have that

Applying this to our MRSKP flows we get for instance

[D2i~1>D2]—1] = [DW’(D%—I)’ DW’(Dzﬂ‘[)]
= DW/(2D2i+2j—2)
= —2D21+2]~2 . “4.17)

One can in a similar way check that all the other commutators in (4.1) do indeed
vanish. [J

After these general considerations concerning the MRSKP hierarchy we are now
prepared to tackle the problem of finding its (additional) symmetries. We have seen
that in the case of KP one defines a larger family of flows (i.e., containing the KP
flows) which satisfy an algebra whose center is the KP hierarchy itself. Here the
situation will turn out to be slightly different since the MRSKP flows themselves do
not commute with each other but rather they obey the nonabelian (super)algebra (4.1).

Definition 4.18. We call (additional) symmetries of the MRSKP hierarchy the central-
izer of the algebra (4.1) of flows of MRSKP in the algebra of times-dependent vector
fields on .

Analogous to the nonsupersymmetric case, one way to look for additional
symmetries is to look for operators I satisfying

[D, - D" T1=0. (4.19)

The additional flow associated to I is then obtained via the supersymmetric Radul
map and is given by Dyyr(ry.
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One obvious solution is I" = 0, the even derivation on the ring .72 and the generator
(via the Radul map) of the even flows of the hierarchy. Notice nevertheless that the
odd derivation D — the generator of the odd flows — does not obey (4.19) but for even
i. One is therefore forced to conlcude that only the even flows are actually symmetries
of the hierarchy, this being the most striking distinction from the nonsupersymmetric
case. Apart from this “trivial” solution, one can of course ask whether there also exist
time-dependent symmetries of the MRSKP hierarchy. The answer to this question is
the object of the following lemma.

Lemma 4.20. Let R[t,] be the extension ring of R by the time variables {t,} and let

R | . 1 o .
FO:JH—EZJt]DJ 2—52%_@ 2Q+§ > G = oty yty; 0772,

Jjz1 Jjz1 1,521

Li=0+Y ty 07",
j=1
where () = Oy — 00, be formal infinite order (super)differential operators in R[t,] [D]
of Zy-degrees |I)| = 0, |I'|| = 1. These operators enjoy the following properties:
W [D,-DI,1=0,[D,-D"11]=0,and [D, — D*,Q1 =0 for any i > 1;
i) 1Q, I'1=1L1Q, I}l = -1}, [0,I] = 1;
Gii) [I,, 11 =0, [, 1]1=0, [I},I,]=0.

Proof. There is one point that ought to be mentioned here, concerning the extension
of the derivations 0 and D to the ring R[t,]. We recall that in the case of the KP
hierarchy the first even time could be identified with = because of the first flow
which read 0, = 0. Here, although the first even flow tells us again that D, = 0,
things turn out to be different. Indeed D cannot be (analogously to 9) identified with
D, as one can easily convince oneself by writing down the first odd flow. We are
therefore forced to proceed safely and do not identify 2 with ¢,, but rather keep
them as independent variables and extend trivially the action of 0 and D to the ring
Rt O

We can now define the “additional” flows of the MRSKP hierarchy as the following
four-parameter family of odd and even flows:

Dy g p® = W IGTTIQPO™), 4.21)
with £ > 0,1 =0,1, p = 0,1 and m € Z, where the even MRSKP flows can be
obtained as a particular case, namely D, o, = —D,,, for m > 0.

Theorem 4.22. The additional flows are symmetries of the MRSKP hierarchy, that is
they commute with the MRSKP flows:

[Di’ Dfn,k,l,p] =0. (423)

Proof. Using the expression of the flows in terms of the supersymmetric Radul map
and Theorem 3.12 we have that

[Dz’ D7n,k,l,p] = Dw’(—[Dl,Fé‘:F]/Qpamlqg) 5 (424)
with
(DY, FéCFllQpﬁm]d) = DW,(Di)p(fpllQpam — (=) p
+ D I3 1QPO™)
=-[D, - DY, FO’“F{QPam] , (4.25)

which using Lemma 4.20 gives us the announced result. [

2
Wi F{Qpam)D
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Corollary 4.26. The algebra of additional symmetries of the MRSKP hierarchy given
by (4.21) is isomorphic to the Lie algebra of SDOP, which is isomorphic (as a Lie
algebra) to SW,__ .

Proof. Indeed, the isomorphism is given by
z»—>—8, g'—}Q+F187

9, = Iy, eI, 4.27)

The isomorphism between SDOP and SW,, _ is standard (see, e.g., [18]). [

Remark 4.28. The fact that we have introduced the generator @) of supertranslations
may seem unsatisfactory to the purist, given that the MRSKP hierarchy is only defined
in terms of abstract derivations D; and D. One could therefore ask whether it is
really necessary to break manifest supersymmetric covariance in this fashion instead
of trying to construct another even generator [ that would behave like = and that
would satisfy [D; — D*, I;] = 0, [D, I)] = I, and [9, [;)] = 1. This turns out to be
impossible, essentially because D itself is not a symmetry of the hierarchy. Indeed,
an explicit calculation shows that

[Dy;_, — D*' ] = [Dy,_, — D*'[D, IH]1
= —2[0", [}]
= —2i0""1, (4.29)

which is different from zero and which thus contradicts the theorem. Hence such
an operator [}, cannot exist. One could nevertheless insist that the very definition of
(additional) symmetry is not appropriate. Namely, one could argue that by the very
nature of an integrable hierarchy, every flow of MRSKP should be thought of as a
symmetry of all its other flows. In other words one should include D too as a generator
of the additional symmetries. This would of course require redefining the additional
symmetries by adding to the previously found flows (4.21) the actual flows of the
hierarchy. One could even go further and claim that once we allowed for the odd
flows of the hierarchy to be part of the additional symmetries, what we have done is
really to relax the condition (4.19) in order to include (4.13) as a particular case. But
then consistency would force us to also look for possible times-dependent solutions
of (4.19) where the right-hand side would be proportional with an appropriate power
of 0. If one carries on this computation one finds for instance a whole family of odd
operators I} = 6 + > a;t,; 107 ~1 satisfying
g1

[D,, — D*, I1=0, (4.30)
[Dy,_, — D* ', N1 =(a; —a)d"". “.31)

This embarrassment of riches suggests that this more relaxed notion of additional
“symmetry” is of little interest.

5. The SKP, Hierarchy

As it is well known the KP hierarchy can be thought of as a universal hierarchy for
the series of generalized KdV hierarchies, in the sense that every n-th order KdV
hierarchy is a reduction of KP, obtained by imposing L™ = 0. Unfortunately this is
no longer true for the MRSKP hierarchy. Imposing the constraint L” = 0 one can still
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get integrable hamiltonian hierarchies but not every generalized n-SKdV hierarchy is
a reduction of MRSKP.

In a nutshell, this comes about because a superdifferential operator of order n has
a unique n-th root if and only if n is odd. For even n, there may not exist an n-th

root or, even if it exists, it need not be unique [1]. Nevertheless, the fact that for even
nd

n a unique g root does always exist [2] has prompted the study of the so-called

even order SKP hierarchy, SKP,, and it is the purpose of this section to study its
additional symmetries.
SKP, is defined [2] as the universal family of isospectral deformations of a S¥'DO
of the form
L=D*+> UD", (5.1)

i>1
with U; € R and its evolution is described by a commuting family of flows
oL =—[L",L1=[L', L], (5.2)

where all the flows are even and therefore can be represented in terms of an infinite
0 . .
set of even times {t;,¢,,...} by 9, = T In the following we shall restrict ourselves

2
to operators L which are dressable, i.e., which satisfy the conditions U, = U, = 0.
Remark 5.3. Notice that one can dress the following obvious commutation relations

[0, — "89] =0 (5.4)

with an arbitrary ¢ = 14+ )~ V,D™*, V, € R, and obtain the SKP, flows.
1 2>1

Let us now consider the problem of finding the additional symmetries for this
hierarchy. Fortunately we can use our previous experience with KP and MRSKP
to write down the generators of additional symmetries for SKP,. Indeed since the
hierarchy has only even flows, it follows that the z-like generator for the additional
flows of KP still commutes with the SKP, flows. Moreover, and because of the same
reason, both D and () can now be considered generators of additional symmetries. In
fact we have the following result:

Lemma 5.5. Let R[t;] be the extension ring of R by the even time variables {t,} and
let

=z+>Y jt,o!

t>1

be a formal infinite order (super)differential operator in Rl[t;][[0]). This operator
enjoys the following properties: [0; — 0',I'} = 0 and [0,1'] = 1. Moreover, the
operators D and Q) obey: [0, — 0", D1 =[0,— 0",Q]1=0. O

We can now define the “additional” flows of the SKP, hierarchy as the following
four-parameter family of odd and even flows

D,, 1,6 =W T*D'QPo™), (5.6)

with £ > 0,1 =0,1, p=0,1 and m € Z. Again, the original flows of the hierarchy
can be obtained as a particular case, namely D,, ¢ = —0,, for m > 0.
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Theorem 5.7. The additional flows are symmetries of the SKP, hierarchy, that is they
commute with the MRSKP flows:

(D,, D 1=0. (5.8)

m,k,l,p

Proof. Using the expression of the flows in terms of the supersymmetric Radul map
and Theorem 3.12 we have that

[817 Dm,k,l,p] = DW’(—[E)’,F’CDle’ame 5 (59)

with
[0, I'"D' Q0™ y = D90, T*D'QPO™ = Dy i prgrom) @ + [0°, T*D'QP0,,,]
= [0, - 9", I'*D'QPo™], (5.10)

which using Lemma 5.5 gives us the announced result. I

Corollary 5.11. The algebra of additional symmetries of the SKP, hierarchy given by
(5.6) isomorphic to the Lie algebra of SDOP.

Proof. Indeed, the isomorphism is given by

2 =0, - 3(D+Q),

| (5.12)
8,~I, 8—3D-Q0". O

6. Additional Symmetries of the JSKP Hierarchy

Since there is no unique supersymmetric extension of the KP hierarchy one could of
course ask what distinguishes the different supersymmetric KP hierarchies or which
one of them is a more natural generalization of the KP hierarchy. We have previously
argued that the MRSKP hierarchy has the advantage of possessing a Lax formulation.
Nevertheless, from a geometrical point of view, it is not the MRSKP hierarchy, the
one that seems the most natural supersymmetric generalization of the KP hierarchy.
Indeed, according to [4], one can interpret geometrically the KP flows as deformations
of a certain line bundle over a fixed manifold. This picture gets slightly modified in the
supersymmetric case where the supersymmetry relation D? = 0 leads to deformations
of the base supermanifold as well as of the line bundle on it. From this point of view
the MRSKP hierarchy describes a special subset of deformations in which changes
of the supermanifold are coupled to changes in the line bundle in such a way that the
resulting hierarchy is integrable. It is the Jacobian SKP (JSKP) defined by Mulase
and Rabin [3, 4], the one that seems to provide the closest geometric analog of the
KP hierarchy in the supersymmetric case since it only involves deformations in the
line bundle.

With this motivation in mind let us define the JSKP hierarchy as the infinite family
of odd and even commuting flows on the Volterra group given by

9¢
Oty

9¢
Ay

= —(¢ai¢)_l)-—¢>
. 6.1)
= —(¢0" 0,97 ")_8,
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where ¢ = 14+ Y V,D~* and {¢,,1,,t5,...} is the same infinite set of odd and even
>1
times as in the case of the MRSKP hierarchy.

Remark 6.2. The even flows of JSKP coincide with the even flows of MRSKP being
actually nothing but the original KP system. On the other hand, since ¢9, # 0,¢, it
seems there is no simple way of writing the odd flows in terms of a Lax operator
L = $D¢~'. We can nevertheless write the JSKP flows in a Lax form by defining
L= ¢0¢~" and M = ¢9,¢~", in terms of which the flows can be written as follows:

oL 1 oL
oty, i Oy,

=—[(L*"'M)_,L]. (6.3)

Following the same path as for MRSKP it is easily seen that the JSKP flows can
be written in terms of the W’ map, (4.14), by

D2n¢ = —W/(an) = —le(an)ﬁb,

D _ _W/ an—la —_D (64)
2n-—1¢ - ( 9) - W’(@"‘l89)¢'

Proposition 6.5. The JSKP flows satisfy a commutative Lie superalgebra.
Proof. This is already clear since [0™,0™] = [0™,0™0,] = [0"0,y,0™0,] =0. O

Lemma 6.6. Let R[t,] be the extension ring of R by the time variables {t,} and let

Ty=2+Y jty;0 '+ jty,,077'0,, (6.7)
121 121
Li=0+) t) 07, 6.8)
121
Iy=x0,+ Y _jt,0°~'0,, (6.9)
Jj21

be formal infinite order differential operators in R[t,] ([0, 0y1] of Z,-degrees || =0
and |I')| = |I)| = 1. These operators have the following properties:
Q) [Dy, — 0", 1) =0 and [Dy;_, — 0"~'8,, [}] = 0 for all k = 0,1,2;
(11) [87F]] = O’ [80,F1] = 1’ [F17F1] = O,
(iil) [0, 1] = 0y, [0y, 151 =0, [[5, I}] = 0;
@(iv) [0, I, =1, [0y, 131 =0, [, 1] =T,

Proof. In order to compute the above commutators one has to extend the action of
the derivatives 0 and 0, to the ring R[t,]. Here too O can be identified with the first
even flow D, since

D,¢ =10, ¢]. (6.10)

If we now consider the first odd flow

D¢ =—(¢9y0~")_0, 6.11)

one may expect that D, can be identified with 0,. Still a short computation of the RHS
of (6.11) shows us that this is not actually the case, but rather D, = [0y, ¢] + V|¢. It
is therefore safe to extend trivially the action of 0 and J, to R[t,]. O
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We can now define a three-parameter family of flows
D,, .0 =W/(IFriomy,

b, @12

Dzm—l,k,z¢= Wi(Iy F16 ‘99)7

where £k > 0,1 = 0,1, and m € Z. Here the original JSKP flows are a special
case, Dm,O,O = —D,, for m > 0, whereas the other ones represent the additional
symmetries of the JSKP hierarchy.

Theorem 6.13. The additional flows are symmetries of the ISKP hierarchy, in other
words they commute with the flows on the Volterra group.

Proof. We only have to use Theorem 3.12 and we obtain, for instance, for the even
flows

[D2Z’ D2m,k,l] = —DW/([az‘p(;cl"llam]qs) ’ (614)
where
[0°, Iy T10™), = Dyyron Iy T1O™ + 0%, Iy T 0™]
= —[D,; — &', I[Frio™)

=0. (6.15)

Analogous computations give us that
[D2is Dy i) = =Dy rpriom=1a1,) = 05 (6.16)
[DZi—l? DZm,k,l] = _DW/([az—lae’p&cp]lam]qS) =0, 6.17)
[Dai—1s Do 5] = = Dwrqar—r0, rkriom=1041, = 05 (6.18)

which finally proves the above statement. [

Corollary 6.19. The Lie superalgebra of symmetries of the Jacobian SKP hierarchy
is isomorphic to SDOP.

Proof. Let /% be the Lie superalgebra of symmetries given by (6.12). It is generated
via the Radul map by I[FI!0™ and IFI'0™10, for k > 0,1 = 0,1 and m € Z.
The isomorphism SDOP— _# is given explicitly by

zZ = _67 £ = 69 )
(6.20)
a9, I}, 85e—>1"1. O

Remark 6.21. Of the flows D, , | defined by (6.12), all but the D, , o with m > 0 are
additional symmetries. These additional symmetries are isomorphic to the direct sum
of SW__ with the abelian algebra generated by the flows D, ;, with m < 0. These
flows are present only because the JSKP hierarchy is deﬁned on the supervolterra
group. If, as in the KP hierarchy, JSKP were defined on the space of Lax operators,
these extra flows would not be present; for they act trivially on L = ¢9¢~".

The isomorphism of the additional symmetries of all three SKP hierarchies deserves
a final comment. The picture that begins to emerge is that the additional symmetries,
although realized dynamically with explicit dependence on the times, are actually a
kinematical property of the dynamical system; that is, symmetries of the phase space
in which they are defined.
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