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Abstract: The asymptotic stability of traveling wave solutions with shock profile is
considered for scalar viscous conservation laws ut + f(u)x = μuxx with the initial
data u0 which tend to the constant states u± as x -• + oo. Stability theorems are
obtained in the absence of the convexity of / and in the allowance of s (shock
speed) = /'(w±). Moreover, the rate of asymptotics in time is investigated. For the
case f'(u+)<s<f'(u-\ if the integral of the initial disturbance over (— oo, x) is
small and decays at the algebraic rate as |x| -• oo, then the solution approaches the
traveling wave at the corresponding rate as ί -^ oo. This rate seems to be almost
optimal compared with the rate in the case f=u2/2 for which an explicit form of
the solution exists. The rate is also obtained in the case f'(u±) = s under some
additional conditions. Proofs are given by applying an elementary weighted energy
method to the integrated equation of the original one. The selection of the weight
plays a crucial role in those procedures.

1. Introduction

We consider the Cauchy problem for scalar viscous conservation laws:

(u)x = μuXX9 xeR, ί > 0 , (1.1)

(1.2)

where feC2 under consideration, μ is a positive constant and the initial data uo(x)
is asymptotically constant as x-> + oo:

uo(x)-+u+ as x - > ± o o . (1.3)

Let Eq. (1.1) admit traveling wave solutions with shock profile such that

u=U(x-sή = U(ξ), U(ξ)-*u± as ξ-+±oo, (1.4)

where the constants u± and s (shock speed) satisfy the Rankine-Hugoniot condition

) - / ( « _ ) = 0 , (1.5)
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and the generalized shock condition

It is noted that the condition (1.6) implies

/ '(u + )^s^/'(u_) (1.7)

and that, especially when / " > 0 , the condition (1.6) is equivalent to

which is well-known as Lax's shock condition (Lax [5]).
When / " > 0 and so f'(u+)<s<f'(u-)9 the stability theorems of the traveling

wave solutions have been investigated by IΓin and Oleinik [1], Kawashima and
Matsumura [3], Nishihara [7] and etc. Recently, in the absence of / " > 0 the
stability theorems have been also investigated by Kawashima and Matsumura [4],
Jones, Gardner and Kapitula [2], Mei [6]. See also Osher and Ralston [8],
Weinberger [9].

Especially, for feC2 and ff(u+)<s<f'{u-) Jones et al. [2] have obtained the
stability of traveling wave solutions and the speed of asymptotics, which are based
on the spectral analysis. But its rate of asymptotic speed is less sufficient than that
of Kawashima and Matsumura [3] for / " > 0 . When / has only one inflection
point, the stability theorem has been obtained by Kawashima and Matsumura [4]
including the system case and the rate of speed by Mei [6], both of which are due
to the energy method. Mei [6] also has treated the case of s = /'(«+) for the first
time.

Our purpose is to show the stability and the rate of asymptotic speed for any
feC2 which satisfy the generalized shock condition (1.6) only. Even when f'(u+)<
s<f'(u-\ our rate is sharper than that of Kawashima and Matsumura [3], and
seems to be almost optimal from the viewpoint of the optimality in Nishihara [7]
for f=u2/2. Our results are given by a rather elementary weighted energy method,
but the weight function will be suitably taken.

Our plan of this paper is as follows. After stating the notations, the main
theorems will be given in Sect. 2. In Sect. 3 we reformulate our problem and state
theorems for the reformulated one. Those proofs will be given in Sects. 4-6.

Notations. We denote several positive constants depending on a,b9. . . by
Cfl, />,... o r o n ' y by C without confusion. We also denote f(x)~g{x) as x -> a when
C~1g<f<CginzL neighborhood of a. For function spaces, L2 denotes the space of
square integrable functions on R with the norm

l/2

11/11 = ( J
Here and after the integrand R is abbreviated. Hl(l^0) denotes the usual /th order
Sobolev space with the norm

I V/2
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For the weight function w, L 2 denotes the space of measurable functions / satisfy-

ing yfwfeL2 with the norm

When w(x) = < » α = (1 + x2)α / 2, we write LI =L I and | | w = | |α without confusion.
Moreover when w is replaced by <x>αw, we denote that space by L^w with the
norm

When C~1^w{x)^C, we note that L2=HQ=L2

0=Ll with
I | 0 ~1 \w and that L lw=L 2 with | |«. w ~ H«.

2. Preliminaries and Theorems

We first state the existence of traveling wave solutions with shock profile. Substitu-
ting (1.4) into (1.1) we have

μUξξ= -sUξ + f(U)ξ = h'(U)Uξ . (2.1)

Integrating (2.1) over (± oo, ξ) and noting the Rankine-Hugoniot condition (1.5)
we also have

μUξ= -s(U-u±) + f(U)-f(u±) = h(U) , (2.2)

which has a unique smooth solution U up to a shift satisfying U(±co) = u +
provided that h(U) -> 0 at finite order as U->u±. Moreover, if f'(u+)<s<f'(u-\
then | ft(ί/) |~|ί/-w ± | as U->u± because of /i'(w±)Φθ. Hence \U(ξ)-u±\~
exp( — c|£|)as ξ^> ±oo for some constant c. Whens = f'(u+)orf'(u-), \U(ξ) — u±\
~\ξΓllk± as ξ-> ±oo provided \h(U)\~\U-u±\1+k± for fc±>0. We note k± = niϊ
h'(u±)= =hin){u±) = O and /i ("+ 1 )(u±)Φ0. Thus we have

Lemma 1. Assume (1.5), (1.6) and

\h(U)\~\U-u±\1+k\ U-+u± (2.3)

with fc±^O. Then there exists a traveling wave solution U(ξ) of (1.1) with
U{+ OO) = M±, unique up to a shift, which is determined by the ordinary differential
equation (2.1) or (2.2). Moreover, it holds as ξ -> ± oo,

| t/(ξ)-H±l~exp(-c |ξ | ) if f'(u+)<s<f'(u-), (2.4)

\U(ξ)-u+\~\ξΓ>k+ if s = f'{u+), (2.5)

and

κ-l~|ξΓ / f c- (T s = / '(«_). (2.6)

To investigate the stability of traveling wave solution U, we assume uo — U is
integrable. First we determine a unique shift of U as

00

-£/(x))dx = O, (2.7)
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and define

φo(x)= f (uo(y)-U(y))dy . (2.8)
— oo

Then our three theorems are given as follows.

Theorem 1 (Stability). Assume (1.5), (1.6) and (2.3) and let U be a traveling wave
solution uniquely determined by (2.7). Then the following hold:

(i) When f'(u+)<s<f'(u-\ suppose uo — U is integrable and ι//0eH2. Then there
exists a positive constant ε1 such that if | | I /ΌII2< £ I> then the Cauchy problem (1.1),
(1.2) has a unique global solution w(ί, x) satisfying

u-£/eC°([0, oo); Hx)nL2{0, oo; H2)

and moreover

sup I u(t, x) - U(x — si) I —> 0 as t -» oo . (2.9)
R

(ii) When s = f'(u+)<f'(u-), there exists a positive constant εx such that if | | ^ 0 | l 2
+ l^ol<o+

 < f i i then the Cauchy problem (1.1), (1.2) has a unique global solution u(t, x)
satisfying

u-C/eC°([Q, oo); Hx)nL2([0, oo); H2nL2

ξ>+),

and moreover

sup|w(ί, x) — U(x-st)\ -»0 as ί-»oo, (2.10)
R

where {ξ}+ = ^ 1 ξ < Q

(iii) When f'(u+)<s = f'(u-) or s = f'(u+) = f'(u-), then L2

ξ}+ in (ii) should

/Y+ξ2 ξ<o
replaced by L2

ξ} or L2

ξy=L2, respectively. Here (ξ>_ = \
I 1 ς ^ ϋ

Remark 1. When S = / ' ( M + ) or f'{u-\ we need a weight of order ( O ^ -
£ -> -+- oo or — oo for a stability theorem.

Theorem 2 (Rate of asymptotic speed for f'(u+)<s<f'(u-)). Let u be a solution
obtained in Theorem l(i) and let φo lie in L2for some α>0. Ifoc is an integer, then it
holds

sup\u(t,x)-U(x-st)\^C(l + tΓ«l2(\\u0-U\\1 + \ψ0\a), (2.11)
R

while if α is not an integer, then

p ( ) ( ) ( ) «) (2.12)
R

for any constant ε > 0 and some constant Cε such that Cε -> oo as ε -• 0.

Remark2. For / e C 2 Jones et al. [2] have shown supR|w — U\^Ct~MIAr and, for
/ " > 0 , Kawashima and Matsumura [3] have shown suρR|w —ί/ |^Cί~ [ α ] / 2 . So,
Theorems 1 and 2 improve both results. Further, for f=u2/2 Nishihara [7]
showed, using an explicit formula, that if | ι^ 0 (x) |^C|x |~ α / 2 as |x |->oo, then
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supR | u — U\ S Ct'*12 and this decay rate is optimal in general. Hence the decay rate
in Theorem 2 seems to be almost optimal in the L2-sρace version.

Next we state the result for f (u+) = s<f'(u-). When ff(u+)<s = f'(u-) or
s = f'(u+) — f'(u-)> the similar result is obtained as in Theorem l(iii).

Theorem 3 (Rate of asymptotic speed for f'(u+) = s<f'(u-)). Let u be a solution
obtained in Theoreml(ή) and /"(«+)= =f{n)(u+) = 0 and / ( n + 1 ) ( w + ) * 0 far
n^l. Then, ifψ0eL2

ΛO+ (0<α<2/rc), it holds for any ε>0,

Remark 3. Our rate seems to be not so sharp. But, the rate in this case is not known
as far as we know. More contributions will be expected.

3. Reformulation of the Problem

Letting U(ξ) be the traveling wave solution in Theorem 1, we put

u(t9x)=U(ξ) + ψξ(t9ξ), ξ = x-st. (3.1)

Then the problem (1.1), (1.2) is reduced to

μψξξ , (3.2)

= I (uo-U){η)dη. (3.3)
— oo

Equation (3.2) is rewritten as

F=-(f(U+ψζ)-f(U)-f'(U)ψξ). (3.5)

Now we select the weight as

(3.6)
h(U)

Since w(U)~const. for the case f'(u+)<s<f'(u-\ L2

W(U)=L2. While if 5 =
f'{u+)<f'{u-\ then w{U)~\U-u\~k+ as U-^u+ and w(C/(ξ))~<O as ξ - + oo,
and hence Z , £ ( l 0 = Z < o + . Also, L J ( ί / ) = Z < O _ if f'(u+)<f'(u-) = s and l ί ( ϋ ) =
L \ ^ — L \ if ff(u+) = f'(u-) = s. Noting these we define the solution space of (3.2)
and (3.3),

X(0, T) = {ψeC°([O, Γ]; H2nL2

w(U)% ψξeL2(O, T; H2nL2

w(U))} ,

with 0 < Γ ^ + oo. Then the problem (3.2), (3.3) can be solved globally in time as
follows.

Theorem 3.1. Suppose ιl/0eH2nL ^ ( t 7 ) . Then there exists a positive constant ε2 such
that if ||^oll2 + l^olw(i/)<ε2j the problem (3.2), (3.3) has a unique global solution
ψeX(0, oo) satisfying

ί )) (3.7)
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for any ί^O. Moreover, ψξ tends to 0 in the maximum norm as t -> oo, that is,

p | / ξ ( , ξ)\ as ί->oo
R

For the decay rate we have the following.

Theorem3.2 (/'(w+)<s</'(w_)). Suppose ff(u+)<s<ff(u-). Then the solution
\j/(t) obtained in Theorem 3A satisfies

(i+t) ϊ ! !>/'(t)i l2+ί(i+τ)ΊI^WIl2^^c( |^ 0 |2 + ||1//0||2) (3.8)
0

for any y such that 0 ^ y ̂  α if a is an integer and that 0 ^ 7 < α i/α is not an integer.

Theorem 3.3 (s = f'(u+)<f'(u-)). Suppose s = f'(u+)<f'{u-) and /"(«+) = - • =
f(»\u+) = 0 and /<" + 1 >( w + )φ0 for w^ l . J / 0 < α < 2 / n , then the solution ψ(t,x)
obtained in TheoremZl satisfies

ί (3.9)

for y such that 0 S 7 < α/2.

All assertions (i)-(iϋ) in Theorem 1 are direct consequences of Theorem 3.1.
Theorem 2 and Theorem 3 are, respectively, consequences of Theorem 3.2 and
Theorem 3.3. Theorems 3.1-3.3 are all proved by a weighted energy method
combining the local existence with a priori estimates. These are on the same line in
Kawashima and Matsumura [3] etc.

Proposition3.1 (Local existence). For any εo>0, there exists a positive constant To

depending on ε0 such that ifιl/0eH2nLl(U) and ||tAoll2^εo,
 t^iien l^e Vr°blem (3.2),

(3.3) has a unique solution ψeX(0, To) satisfying | |^(ί) | | 2 <2εo for 0 ^ £ ^ Γ 0 .

Proposition 3.2 (A priori estimate). Let ψ be a solution in X(0, T) for a positive
constant T. Then there exists a positive constant ε3 such that if s u p o ^ r IIΦ(ή II2 <&?>>
then φ(t) satisfies (3.7) for O^ί^Γ.

Proposition 3.1 can be proved in the standard way. So we omit its proof.
Proposition 3.2 will be proved in the next section. For the proofs of Theorems 3.2
and 3.3 more estimates are necessary.

In later sections we only show the case u+<u- and /z(t/)^O for Ue[u+, M_].
The other case is shown in the same way.

4. Basic Estimate and Stability Theorem

Assumingw+ <w_ and/*(£/) < 0 for Ue(u+, w_), we first derive the basic estimate in
all our proofs.

Lemma 4.1. Let ψ{t)eX{0, T) be a solution of (32), (3.3). Then it holds
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Proof. Multiplying (3.4) by w(U(ξ))ψ(t, ξ) we have

)+μw

^ (4.2)

Here we have used μϋξ = h(U). Since we have taken the weight w as (3.6), we obtain
(4.1) by integrating (4.2) over (0, ί ) x R and noting Uξ<0. Q.E.D.

We now put

JV(ί)=sup ||ιA(τ)||2,

and assume JV(ί)<Ξε0. Since \φ\SN(t)9 \F\<,Cφ2. Hence, if N(t)<ε3 for sufficiently
small ε 3 > 0 , then we have

\Ψ(t)\ϊ(u) + f \Φξ(^\2

W(u)d^C\φ0\
2

w{U) . (4.3)
o

Moreover, we apply δξ to (3.4), multiply it by dξψ and dξφ and integrate the
resulting equations over (0, t) x R. Noting \Fξ\ ̂ o ( l ) | ^ | -\-C\φξφξξ\ as supR \ψξ\ ->0
we can get the next lemma. We omit the details.

Lemma 4.2. There is a positive constant ε 4 ( ^ ε 0 ) such that ϊ/iV(ί)^ε4, the estimate
holds:

\\Φξ(t)\\f+ί WΦ^nidτSCdψoi^+wψo^i).
0

Combining Lemma 4.2 with (4.3) gives the proof of Proposition 3.2 and so
Theorem 3.1.

5. Decay Rate for the Case f'(u+)<s<f'(u-)

We proceed to more a priori estimates of the solution φ of the problem (3.2), (3.3).
Since h(U)<0, Ue(u + , w_), there exists a unique number ξ*eR such that

= ΰ = ? ^ . (5.1)

Putting < ί - ^ > = y i + ( ξ - ^ ) 2 and multiplying(3.2) by 2(1 +tr(ξ-ξ*yβw(U)ψ,
we get

= 2(1+tY(ξ-ξίiiyw(U)φF, (5.2)
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where

by virtue of (3.6).

(U-ΰ)

Lemma 5.1. Let a be a given positive number. For βe[0, α], ί/iere is α positive
number c0 independent of β such that

Aβ(ξ)^coβ for any ξeR . (5.3)

/ Let 0 ( ξ ) = -(wA)'(£/(ί))= -2{U{ξ)-ύ), then gf(^) = O by (5.1) and g'(ξ) =
— 2U'(ξ)>0, so gf(ξ)->«τ—M± as ξ-+ + 00, respectively. Hence

^ ξ (5.4)

for any δ > 0. On the other hand,

(5.5)

for some constant <50. Combining (5.4) with (5.5) we obtain (5.3), where co =

ί H . Q.E.D.

Integrating (5.2) over [0, t] x R and noting C ^ r S w t f / ^ C , we have

(l+tγ\ψ(t)\2

β +β\(ί+τy\Ψ(τ)\2β-1dτ + \ (l+τy\ψξ(τ)\2

βdτ
0 0

1 l(l+τy<ξ-ξty\ψ\\F\dξdτ} . (5.6)
o

Since
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and

= ί

For some fixed R > 0, we have

.+τy\\φξ\\2dτ}.
0 0

Thus we get the following.

Lemma 5.2. There is a positive constant ε5 such that if N(T)<ε5, then it holds for
ίe[0, Γ],

(1 + tγ\ψ{t)\2

β +\{β(l+τ)y\ψ(τ)\2

β_ί+^+τ)y\ψξ(τ)\2

β}dτ
o

•(H-τ)" | | ^(τ) | | 2 dτ} . (5.7)
0 0

Applying the induction to (5.7) we have

Lemma 5.3. It holds for fc = 0,1, . . . , [α],

t

0

U ^ l (5.8)t

Consequently, if a is an integer, then the following estimate holds for OίSyrgα:

(l+t)ΊIΆ(OII2 + ί(l+τ)ΊI^(τ)||2rfτ^C| lAolα2 (5-9)
0

Proof First, letting y = 0 and β = & in (5.7) we have (5.8)O, which shows the lemma
for α < 1. Here we have used (4.3). Next we take 1 ̂  α < 2. Letting β = 0 and γ=l and
letting β = ot — l and y = 1 in (5.7) show (5.8)χ. Hence the proof for α < 2 is completed.
Repeating the same procedure we can get the desired estimate (5.8)k for any α^O.
Q.E.D.

Methods used in this section till now are almost same as in Kawashima and
Matsumura [3]. Further we show a sharper estimate. Let α be not an integer and
y be [ α ] < y < α . Taking β = 0 in (5.7) we have

^ ) . (5.10)
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Using (5.8)fc withfc = [α],

, (5.8)M

we estimate the final term in (5.10):

= f (i + τ)y~1 f (ξ — ξ
0

α-M

because of : > 1. Thus we have the following from (5.10).
[α] + 1 — α

Lemma 5.4. // α is not an integer, then it holds for any given y<a,

{l + t)γ\\ψ(t)\\2 + \ (l+τ)γ\\φξ(τ)\\2dτ^C\φ0\ϊ . (5.11)
o

Similar estimates to Lemma 4.2 give the same decay rate for derivatives of the
solution. The details are omitted.

Lemma 5.5. Let I = 1 and 2. For any y ̂  α (α: integer) or y < α (α: not integer), there
exists a positive constant ε6 such that if N(T)^εβ, then the decay estimate

Combining the latter part of Lemma 5.3, Lemma 5.4 with Lemma 5.5 we
complete the proof of Theorem 3.2.

6. Decay Rate for the Case s=f'(u+)<f'(u-)

First we show the following estimate for the solution φ obtained in Theorem 3.1.
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Lemma 6.1. For O<β^oc<2/n(n^ 1), there exists a positive constant ε7 such that if
N(T)^εΊ, then the estimate

$w(U)1 + βψ(t,ξ)2dξ + \ J w(Uy-ιψ(τ,ξ)2dξdτ
o ξ>o

+ 1 J w(C/)1+<V?(τ, ξ)2dξdτ^C\ w(U)i+βφ0(ξ)2dξ . (6.1),
0

Proof Letting z(ξ) be a positive function and multiplying (3.4) by 2zw(U)φ, we
have

(zw(U)ψ2)t + (' ')ξ + 2μzw(U)φ2

ξ-2(z{hw)'(U))ξψ
2

+ 2μzξw(U)ψψξ = 2zw(U)ψF . (6.2)

Since

-(z(hw)'(U))ξ = 2(ΰ-U)zξ-2zUξ

and

for βe(0, 1), Eq. (6.2) yields

(zw(U)φ2)M' ' )ξ + 2{l-ε)μzw(U)ψl + 2l-2zUξ + (2(ύ-U)-

(6.3)

Taking z = w(U)β, we have

If we put δ = U~u+ > 0 and ύ = u- —w + , then we have near w+ or ξ = + oo,

+

and hence
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Since β ^ α < - , if we set ε < 1 as 1 > 0, then there are positive constants c± and
Yl ZίCt

Rγ such that

I^cί for ξ^i^i . (6.4)

Noting C~1^w{U)^C,C~1^W(U)^C as £->-oo and using Lemma4.1, we
have

J f 2I.ψ2dξdτ^C\xl,0\lm. (6.5)
0 ξ£Rι

Because of (6.4) and (6.5) the integration of (6.3) over (0, ί ) x R gives the estimate
(6.1). Q.E.D.

Again multiplying (3.2) by 2(l + ί)y<ξ — ζ*yw(U)\l/ and integrating its equa-
tion ( = (5.2)) over (0, t) x R, we have for O^β^α,

(6.6),

o

For (6.6)y>j9 with y=0 and β^a,

(6.7)

and

z o

0
f

\ J ^?d^τ (6.8)
0 -Λ

for some constants R2, i^3>0, because w(U(ξ))~ξ as ξ -• oo and w(f/(<!;))~const,
as ξ -> — oo. Applying Lemma 6.1 and Lemma 4.1 to (6.6)Otβ9 (6.7) and (6.8), and
taking β = oc, we get the following.
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Lemma 6.2. There is a positive constant εΊ such that ifN(T)^εΊy then the estimate

holds for

* m (6-9)
0

2 . _

n

Next we consider (6.6)ytβ with γ<oc/2 and β = 0:

w(V)dx). (6.6) y,0

0

We estimate the final term in a similar fashion to the proof of Lemma 5.4. We
divide the integrand as

1 ( J + J )w(U(ξM(τ,ξ)2dξdτ
\ξ>0 ξ<0/

1 J w(C/)^(τ,ί)2^dτ + Cf(l+τ)"- 1 f φ(τ,ξ)2dξdτ

Noting j ί > 0 w(£/) 1 + β^ 2dξ~f ί > 0 <ξ-ξ»>"w(I/)^2dξ, we have

'ί f

by (6.1)α and (6.9) and 2 ^ ~ ^ > 1 . While, since y < - < - ^ l by
2 —α 2 n
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by virtue of (6.9) provided α ̂  1 or n = 1. Let n ^ 2 and so α < 1. Then, by virtue of
(6.9)

f ( l + τ)y"1 f
o ξ<o

f J

0

ί

l —y
because of > 1 by y < α/2. Thus we have had a desired estimate.

Lemma 6.3. For N(T)^εΊ, it holds for y < α/2 < 1/π,

We complete the proof of Theorem 3.3 by obtaining the decay rate for deriva-
tives of the solution, similar to Lemma 5.5. The details are omitted too.

Lemma 6.4. Let 1=1 and 1 = 2. There exists a positive constant ε8 such that if

)^ε8, then the decay estimate

0

holds for any γ, 0 ^ γ < α/2 < 1/π.
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