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Abstract: This article investigates the limiting behavior of a diffusion in a half
space with a complicated boundary condition. The boundary condition implements
a reflection condition everywhere except a number of small sets or "holes" that meet
Dirichlet or mixed boundary conditions. Probabilistic methods associated with the
Feynman-Kac formula are used to find the limiting behavior of the diffusion equations
as the number of holes gets large and the size of each hole is reduced. With particular
scaling homogenization occurs, and we see that the complicated boundary condition
is replaced by a simple mixed boundary condition depending on the capacitance and
distribution of the holes.

1. Problem Formulation

Our model problem investigates diffusions in the half space 9\ x 91 x ${+ with a fine-
grained boundary condition. Our boundary implements Neumann boundary conditions,
du/dx3(xl,x2,0) = 0, everywhere on {x : x3 = 0} except at a number of small sets.
These exceptional sets are scaled, rotated, and translated copies of a nominal set H.
On these exceptional sets, Dirichlet conditions, u(xl,x2,0) = 0, or mixed conditions,
du/dx3(xl,x2,Q) — \u(xl,x2,Q) - 0, occur. We refer to these exceptional sets as
"holes," and the number of holes is scaled by TV while the size of each hole is
scaled by I/TV. Figure 1 shows an example of a nominal hole H, and Fig. 2 shows a
possible boundary configuration with N = 5. Our goal is to study averaging effects
as TV —» oc.

The properties of these collections of small sets are first formally described.

Hole Assumption I. Let H c 9l3 be a bounded closed set contained in the plane

P = {(x1,x2,x3) : x3 = 0}

1 This work was partly supported by ARO Grant DAAL03-92-@-0219
2 The author acknowledges the direction and encouragement provided by his advisor, Mark Freidlin
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Fig. 1. Fig. 2.

with C2 boundary in P. Assume (0, 0, 0) G H and H C {x : \x < 1} Define, for all
N and ί = 1, 2, . . . , TV, the collection

for given rotation matrices and hole origins

These collections represent the sets of perturbation to the Neumann boundary
condition. Each collection (H\ \ i = 1,2, . . . , TV) is a set of scaled, rotated, and
translated copies of H, located on the boundary plane P. The holes are scaled in size
by I/TV as the number of holes is increased to N. Clearly the assumption of the size
and location of H are purely for convenience. The proofs below also show that the
results are independent of the orientation of the holes. Any set of rotations R\N) may
be used.

We now set up the probability framework. Let Px be the measure on continuous
trajectories on 91 x JH x 9Γ induced by

(1)

with W^9 W^, W^ independent Wiener processes shifted to initial conditions x.
Note the reflection at the boundary with x3 = 0. The following definitions are also
useful:
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The local time on the boundary is defined as

(3)
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The concept of local time on the holes proves useful. For a single hole H^ , let

, (4)

0

and for the 7Vth collection,

0 i=\

Our first goal is to find asymptotic properties of the sequence u^N\x^ t) of solutions
to

= -Δu(N\x,t) for t > 0 , zat 2
?y(]VVτ ftt - f f r ϊα vx 5u; - j ι^x;,

N

u^N\x^ t) = 0 for x € y H[ (holes of radius

"

(x, t) = 0 for x G P - (J ίί|AΓ) (insulation),

for / continuously differentiable with compact support. We set by definition the
solution to problem (6),

(7)

with

V i=\

We then study the asymptotic limit of

— ^,t) for ί>0,
UL λ

z e JK x 9t x 9Γ

N (8)

(x, ί) - \NΊu(N\x, t) = Q for x G y #^} (holes),
~~J i=ι

Λ (A^) N

— (x,t) = 0 for x G P — I j H* (insulation),
αx3 ^

with λ > 0, 7 > 0 and / continuously differentiable with compact support. We set
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by definition the solution to problem (8),

/ * M<e>/
The requirements on initial condition / can be easily relaxed, but are convenient

in the proof.
Partial differential equations with boundaries with holes have been widely studied.

Most research has been directed towards a Stokes equation called the Neumann Sieve,
which describes fluid flow across perforated boundaries with periodic holes. Poisson
equations have also been considered. Del Vechio [1], Murat [2] and many others
address these problems.

Diffusion equations have also attracted attention. For diffusion equations, most
results address holes distributed in three-dimensional regions instead of along bound-
aries. Kac's paper [3] used the Wiener sausage to establish the limiting effect of
spherical, randomly distributed holes with Dirichlet conditions. This was followed
by Taylor and Rauch [4] analysis of a similar problem using the same approach.
Papanicolaou and Varadhan [5] extended the result to non-spherical holes with both
random and nonrandom distributions by use of a semigroup expansion based on the
Feynman-Kac formulas. This method is also used in this paper. Figari et al. [6] applied
a Green's function approach to achieve similar results. Problems with fine grained
boundary conditions are discussed in Khruslov and Marchenko [7], which contains
useful discussions on requirements for hole placements.

Our problems are somewhat different. We use probabilistic methods to study how
containers "leak," the phenomena by which heat and other processes move from areas
of high concentration to areas of zero concentration. We also consider the effects of
scaling associated with mixed boundary conditions. Our methods of proof, which
provide a strong form of convergence, are motivated by Papanicolaou and Varadhan's
paper [5] on diffusions in regions with holes. Although the details here are often quite
different, the overall approach and several lemmas from [5] are used. Rauch and Taylor
also briefly describe, using analytical methods, diffusions when small spherical holes
with Dirichlet conditions are distributed on a smooth surface. Weinryb [8] applied a
Wiener sausage approach to circular holes randomly distributed on a boundary.

We will study the behavior of u^N\x^ ί), making various assumptions on the
distribution of holes. These conditions will be used for both Eqs. (6) and (8).

Hole Assumption II. There exists a bounded, continuous function V(x) > 0, x G £H2,
with support contained in a compact set S. For all continuous φ,

N

(9)

Here (y f°, y f}, θ) is the center of the ίth hole of the Nth collection. For

convenience, we further require H\ C S for all i and N, and that S contains
the origin.

Hole Assumption III.

1 Λ 1 Γ ΓV(x)V(y) , , (10)
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Hole Assumption III implies a more general relationship. See Lemma 4 of [5]. For
any bounded, continuous function φ9

,. 1 ^ Φ(y?,y?) I f Ψ(χ,y)V(χ)V(y)
lim -—r > -r—r; ΓjΓΓ = : ax ay. (11)
"τ~^ i^Tlrf k - y ι Γ l J2J2 \x~y\

This relationship will be used later.
In [5] we see that both these conditions are met if the holes are located periodically.

Theorems I and II below deal with cases in which the hole distributions are
deterministic. If the hole centers are independently drawn from a random distribution
with density V", then Hole Assumption III holds in probability, and Theorems III and
IV apply.

The main theorems require several definitions. We first identify the set Dε.
Consider a circle C in the plane P = {x : x3 = 0} with

H^N} C C for all i and N, (12)

and
distance(P - C, S) > 1.

Hole Assumption II describes S and implies the existence of such a circle. For fixed
ε, choose δ at least small enough that the set

Dε = {(xl,x2,x3) : xl G 9^;x2 £ ̂

x3 > 6 if (x1 ;x2) £ C and x3 > 0 otherwise} (13)

meets
volume^ x 91 x 9Γ - De) < ε.

Thus £>ε is just £H x D^ x 9ί+ with a thin disk removed. This set Dε is fixed, after
choice of ε, for the remainder of this paper.

We also define two useful parameters. First, associated with the Dirichlet problem
(6),

α = / w(x) a A

half sphere
of radius 1

with
Δw = 0 x € ί K x 9 ΐ

w —> 0 as x\ —* (X),

dw

dx3

= 0 (insulation).

This α is just one half the Newtonian capacitance of the hole. See [5] among many
other references. For the mixed boundary condition problem, Eq. (8), define

v(x) dA

half sphere
of radius 1
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with
Δv = 0 α; € JH x 91 x JK+ ,
v —* 0 as x\ —> oo,

—-(x) - λt (x) |XE#= -λ (hole),

dv
(x) - 0 (insulation).

The constant α, determined by both hole shape and λ, plays a role similar to
capacitance.

We can now turn to the main theorems.

Theorem I. Assume Hole Assumptions 7, 77, and HI are met. Let ε > 0 and T < oo.
Define

u(N\x,t) = Ex{f(Xt)Iσ(N)>t} (14)

with

and assume f is continuously differentiable with compact support. Then there exists
an integer N0(ε, T) and Dε (defined above) such that, for all N > NQ(ε, T),

sup sup u(N\x, t) — u(x, t)\ < ε
0<£<T

with

volume(9l x 91 x 9Γ - Dε) < ε

and

ί ( }u(x,t) = Ex{ f(Xt)exp - 2α / V(X l a,X2 e)dC s

tx is the solution of

du 1

du

, t) for ί > 0, x G ft x 9ί x 9l+ ,

u(x,Q) = f(x), (15)

c, ί) — 2aV(Xγ, x2)u(x^ t) = 0.

This theorem has a transparent interpretation in the probabilistic setting. The
contribution of each trajectory to the expectation is reduced by the local time on
the boundary.

Theorem II illustrates the effect of the constant 7 on the mixed boundary condition.
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Theorem II. Assume Hole Assumptions I, II, and III are met. Let ε > 0, 7 > 0,
λ > 0, and T < oo. Define

WZf/Z

Ct 'X3 =

assume / zs continuously differentiable with compact support. Then there exists
an integer 7V0(ε, T) and Dε (defined above) such that, for all N > 7V0(ε, T),

sup sup \u(N\x,t) — u(x,t)\ < ε
0<ί<T x€Dε

with

and

volume^ x <K x 9T - £> ) < ε

/(Xt) exp - 2α(7) (16)

it z' s ί/ie solution of

- = Δu(x, t) for t > 0, x E 91 x <H x 9^+

(17)

— (x,t) - 2a('γ)V(xl,x2)u(x,t) -0.
a; €{0:3=0}

Here
0 /or 7 < 1
α /or 7 = 1

α /or 7 > 1.

(18)

Again the theorem has a clear interpretation in Eq. (16). We see the critical value
is 7 = 1. For 7 < 1, the effect of the holes disappears. For 7 = 1, the scaling is
appropriate for boundary conditions resulting from a thin layer, in which the layer
thickness scales linearly with the diameter of the hole. For 7 > 1, the mixed boundary
condition is dominated by the non-derivative term, and the same limiting behavior as
problem (6) occurs.

Theorems I and II apply to deterministic hole distributions meeting Eqs. (9) and
(10). Random hole distributions may also be considered using the viewpoint in [5].
If each y^ is an independent draw from a random distribution with density V, then
Eq. (10) holds in probability. Consider the probability space (ΩN , FN , PN) associated
with the AΓth hole distribution. In this case, u(N\x,t) = u(N\x,t,ω) for ω 6 ΩN .
Theorems I and II then become:
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Theorem III. Let the hole centers y[ be independent and identically distributed
with density V(x). Assume Hole Assumptions I, II, and III are met, with Hole
Assumption HI holding in probability. Let ε > 0, δ > 0 and T < oo. Define

u(N\x,t,ω) = EXtω{f(Xt )Iσm>t} (19)

with

and assume f is continuously differentiate with compact support. Then there exists
an integer NQ(ε, T), sets Ω^δ C ΩN , and Dε (defined above) such that, for all

sup sup u(N\x,t,ω) — u(x,t)\ < ε, when ω G
o<t<τ

with
volume(9ΐ x <K x 9t+ - D£) < ε

Probability (ΩN - Ω*δ) < 6

and

{
/ t \ \

/(X t)exp( -2α ί V(Xls,X2s)dζs \ \.
V ) }

u is the solution of

Γ\ -f

-̂  = -Δu(x, t) for t > 0, x 6 9ί x 9t x ίH+ ,

«(ar,0) =
rj

-^(x, t) - 2αF(x1 , x2Mx, t) - 0.

Theorem IV. Let the hole centers y[ be independent and identically distributed with
density V(x). Assume Hole Assumptions I, II, and HI are met, with Hole Assumption
III holding in probability. Let ε > 0, δ > 0, 7 > 0, λ > 0 and T < oo. Define

E

vv/ί/z

assume f is continuously differentiate with compact support. Then there exists
an integer 7V0(ε,Γ), sets Ω^δ C ΩN , and Dε (defined above) such that, for all
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TV>TV 0 (ε,T),

sup sup u(N\x,t,ω) — u(x,t)\ < ε, when ω E Ω^δ,
0<t<T

with
x ft x 9T - Dε) < ε

Probability (ΩN - Ω^δ) < δ

and

i ί ^
/(Xt)exp ( -2α(7) ί V(Xls,X2s)dζs

V

u is the solution of

-̂  = -Δu(x, ί) for t > 0, x € <K x 9Ί x 9T ,
(_/ 6 ^

0 for 7 < 1

α /or 7 = 1

a for 7 > 1.

The proofs of Theorems III and IV essentially follow from Theorems I and II,
with set Ω^δ chosen so that the difference in (10) is sufficiently small. We provide a
detailed proof of Theorem I, starting with a series of lemmas in the next section and
the proof in the section after that. The proof of Theorem II is then summarized by
sketching the differences with the proof of Theorem I.

2. Supporting Lemmas for Theorem I

In this section, only the Dirichlet problem in Eq. (6) is considered.
We first make estimates for the case of a single hole scaled in size by TV. The

stopping time for hitting the hole centered at y of size I/TV is

σ(

y

N} = inf [t : X% € {(x{, x2, £3) : (N(Xl - yj, N(x2 - y2), TVx3) G if}]. (20)

Lemma 1. For T > 0, ε > 0, D a compact set not intersecting S,

t

NP\σ(^<t\-+2alp(s,x,y}ds as TV -» oo
* [ _ ! / -

uniformly for x G D, y G 5, and 0 < t < T. This result is independent of the
rotational orientation of the hole.
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Fig. 3.

Proof. Without loss of generality, assume y = 0. Define

τw if τ W < o o
0 if τ = oo

Note r^ < σw because we have assumed the hole H fits into a ball of radius one.
Then

NI4N)<

(21)

The two terms of Eq. (21) are dealt with separately, with the first term providing the
needed bound, and the second going to zero.

We first describe the proof method heuristically. The approach used here is
illustrated in Fig. 3. A random path is followed until it intersects a sphere of radius
I/TV at time τ(Λ/λ We then expect, for large TV, that a path hitting the hole will hit the
hole quickly. Thus term one of (21) should provide the needed result, and the second
term in (21) should be zero. For large TV, we also expect XT<ΛO to almost uniformly
distributed over the sphere of radius I/TV. This convergence to uniform distribution
implies hole rotations Rf make no contribution. We now present the details of the
argument.

Note that for large JV, the distribution of Xr(τv), conditioned on τ(jv) < oo,
converges to uniform on the half sphere of radius I/TV. Thus we use for term
one of (21)

= lim Ex
7V->oo X

X •(N), '
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The conditional expectation is calculated in the limit by rescaling x = NX. Use the
definition of a and, from Lemma 1 of [5],

t

NEX [/τ(Ao<t] -> 4π I p(s, x, 0)ds as N oo (22)

o

with

Straightforward calculation then yields

t

Jim EX\NI ( N ) . I r ( N ) < t \ = 2a p(s,x,0)ds.
N-+OO I σo °̂° — J J

0

To finish the proof of Lemma 1, we need only show that the second term of (21)
goes to zero. Consider a Δ, to be chosen later, with 0 < Δ < t. Then, conditioning
on the time and location of the first hitting of the sphere of radius I/TV,

Recalling that τ(A^ is the stopping time for hitting the sphere of radius l/N9 the first
term may be made as small as desired via choice of Δ and N. This is clear from
Eq. (22). Limiting the second term is accomplished by examining the conditional
expectation. By rescaling ΐ = N2t and x = NX, as we did above, we immediately
see that the calculation of the limit may be reduced to

lim sup PX{ΔN2 < M{t : Xt G H} < 00} = 0.
N-+°°\x\ = l

Uniformity in t G [0, T], y e 5, and x G D results form compactness and
continuity. QED.

The second lemma is a simple result to bound solution at large \x\.

Lemma 2. For T > 0 and ε > 0, there exists an r(ε,Γ) and 7V0(ε,T) with the
following property. For all

x e <K x 91 x 9T with |x > r, TV > ΛΓ0, and 0 < ί < T,

/ Recall the holes are located in a bounded set. Without loss of generality,
presume y\ - 0. Define again

r(7V) = Mt :
TV
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We can, via a partial differential equation, solve explicitly for

< oc )> = -—-> 0.
x\

(24)

Note TQAΓ) < σ^\ so the result follows when \x —> oo. QED.

The third lemma is one side of the convergence for collections of holes.

Lemma 3. Given ε > 0, T < oo, αrcd closed D C 91 x JH x 9Γ ftόtf intersecting 5,
α/i 7V0(ε,T) vwY/z the following. For all

N > N0, x e D, and 0 < t < T,
6

•/
with

Proof. Note that

We split D into two portions: a far from the origin subset handled by Lemma 2,
and a compact, close to the origin subset handled by Lemma 1.

First the far from the origin subset is handled. Note from Lemma 2 that there
exists an r(ε, T) such that, if x\ > r and t < T, then

TV
Pp (N)

(25)

We use this r to define compact D = D Π {\x\ <r}.
From Lemma 1,

NPX σ(

y

N } < ί 2α ί p(s,x,
J

y)ds

uniformly for x G A y G 5, and 0 < t < T. We conclude there exists an N{(ε,T)
such that

, N

for all iV > AΓj, x e .D and 0 < t < T. Using Assumption II on hole spacing, we
see there exists an 7V2(ε,T) such

N
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for all TV > 7V2, x e D and 0 < t < T. We now examine the integral by using
expression (23) for p and Fubini's theorem. Identify

N

= I

-2α

The integral now may be evaluated using a simple result on local time on the boundary,
whose proof is deferred to Lemma 4. We have

N t
r

0

and use independence of Xls, X2 , and X3 to see

t

o

< ε. (26)

Only Lemma 4 remains to be shown. QED.

Lemma 4 is a simple result on integrals with respect to local time.

Lemma 4. For one-dimensional Brownian motion with reflection at 0 and continuous
function F,

F(s)dζs

L o

Proof. Note that Exζt is the solution to

-
C/ 1/

-j

- -Δu(x,t) for t > 0, x

Direct substitution establishes

is a solution. The lemma follows by considering simple functions Fi(s) ] F(s).
QED.
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Lemma 5. Given ε > 0, T < oo, and closed D C 91 x 91 x 9Γ not intersecting S,
there exists an TV0(ε,T) with the following. Let

d = i distance(D, 5).

For β// N >N0, x e D, andO<t<T,

Px{σm<t}>2Ex

with

g(t) = tC exp

I dζs \- ε - g(t),

( — I
\ 2t )

for a constant C,

i=ι

constant C is independent of N, ε, D, and T.

Proof. We need only consider compact D since, because of the finite support of V,

^ < t}sup sup Px{σ
\x\>R 0<ί<T

and

sup sup 2EX

\x\>R 0<t<T

are small for large enough R.
Let ε > 0. We first consider the contributions from holes that are adequately

far apart. We sum over all holes whose centers are at least 3/TV from their nearest
neighbor. Let σ(jv) be the minimum of σ(^} for {i : \y\N} - y(N) > 3/N Mj i i}.

Using inclusion/exclusion, and noting the first summation is over i and the second
over i and j,

Σ <

y(N)
τ

The first term of (27) is handled first. Note

Σ
<W> >3/JV

P
*Γ
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ψγ(s)

Φd(s)

Fig. 4.

The first summation is handled as in the proof of Lemma 3. The second summation
takes a moment of consideration. Since the choice of regions specifically separates
the starting point x from the holes, we can call the minimum separation d. Now we
consider 7 > 3/TV, to be chosen later, and two smooth functions φd(s) > 0 and
ΨΊ(s) > 0 with φΊ(s) = 1 for s < 7, and ψΊ(s) = 0 for s > 27. We also require

Φd(sϊ ^ Is>d witn Φd(sϊ = 1 for s > d, and φd(s) = 0 for s < d/2. Figure 4 shows

two candidate functions. Consider some i and j such that \yi ^ — yi ^\ < 3/TV. Then

obviously

Again define

1 < (28)

3 *

- i n f / \XX-mt<t. \Λt -

and note > } . The relation in Eq. (24) leads immediately to

N\x-y ,(AO| '
(29)

We then know from Eqs. (28) and (29), going to a double summation by adding many
extra non-negative terms to a summation, that

V^ p ί (AΓ) < t\
i: \\y^-y^ <3/N for some j^J

(30)

for large enough TV. Using Hole Assumption III and Eq. (11), we see the term
converges uniformly in x to

φd(\x-z\)ΨΊ(\z-z\)
\x — z \z — z

V(z)V(z) dz dz as TV -» oo. (31)
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The double integral is then analyzed using polar coordinates. Choosing 7 small
controls this term for all t and x by choosing TV large enough. This is independent
of d.

The second term of (27) is handled now. Again following the argument in [5],

P σ < f π < f σ
x v(N} - ' ,/N> - '

^i Uj

t

(N}

t-s

sup (32)

Note the bound

I

I p(s,x, x-y\~lexp{-\x-y\2/4t}

for a constant c. Using Lemma 1, we see there is a constant c independent of x, y.
and TV with

,(ΛO

for all t. Since y\N} - y(^\ > 3/TV, there is a constant ό with

0 exp { — x — exp -

N2

Now, using the definition of φd above,

Σ p / W < y. (N) < Λ

\ 1,(N) - ' ,,(N} - I
V yi y] )

/2t

<
-

*3 X~V]
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This summation converges according to Hole Assumption III and Eq. (11),

(Λ0ι

7/
(x2 -

-V(yW(z)dydz

0-\y-z\z/2t

-V(y)V(z)dydz. (33)

The lemma then follows by transforming the double integrals to polar coordinates,
using the finite support of V, and using the Gaussian density formula with variance
t. QED.

3. Proof of Theorem I

The tools are available now for a straightforward proof of Theorem I. This proof
follows the general approach of [5], but the details are much more complicated.

Proof. The proof will be based on picking five values: Cl9 S, Δ, C2, and TV. The

value of Cl may be chosen first, then δ, then Δ, then C2, and finally AT. The order
of these choices is critical in the following results.

Let Tt, Tt

(AΓ), and Tt

y be the semigroups associated with Eqs. (6) and (15),

TJ(x) = Ex{f(Xt)},

Define the error as

If Ξ sup sup {|TΓ>/(20-T/7(*)|}.
0<ί<T x£Dε

We use a value 0 < Δ < T, to be chosen later, and the integer part function [J to
see that

\i/Δ\

< sup sup Σ (N)
(k-l}AA

+ sup sup
0<t<T xeDε

+ sup sup
0<t<T x6Dε

(34)
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δ A

δ1

, A 1/2
1Δ

C2Δ

k ^

D2

D3

k X3

D2

D3

D4

fc>

Fig. 5

We use an indicator function to split the summation in (34). Several different sets are
used to partition £H x 91 x 9l+. First identify a set slightly larger than Dε. Consider
a circle C in the plane P with

for a11 * and N,

and

dist(P - C, S) = 1/2.

C is a strict subset of C in Eq. (12), implying P — C is separated from ό by some
positive distance. Choose a thickness S with <5/2 > δ > 0 for 6 described in the
definition of D£ in Eq. (13). This S is also chosen small enough that the set

Dε = {(x1,x2,x3) : χl G 91, x2 ^ ̂ ? X3 ^ ̂

if (x l 5x2) ^ ̂  and x3 > 0 otherwise}

contains Dff and

sup supEx{(l-Jώ e(X t))}<e/||/| |40. (35)

This again is just the half space minus a thin disk. Now consider, for constants Δ,
Cl9 and C2, with C^1/2 > C2Δ and C^1/2 < ,̂

X ̂  XD2 = (91 x 91 x 9t - £>e)

Π {(x l 5x2,x3) G <H x 5H x $H+ : C2Δ < x3 <

D3 = (JH x 9^ x 9l+ - £)ε)
(36)

4 = DεΓ] {(x1,x2,x3) + : 0 < x 3 <

Figure 5 shows a section of the different volumes in the (x2, x3) plane. We can choose
Cγ > 2 large enough that

and
(37)
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are as small as needed, independent of <5, Δ, C2, and N. The associated processes
are described in Eqs. (1) through (3). Splitting the sum,

\t/Δ\

sup sup
Q<t<T xζDε

\t/Δ\

0<ί<T

+ Σ

Σ
^

sup sup
0<t<T

+ sup sup \TYf(x)-T%Vt/Δ\f(x)\. (38)

Each of the six terms in (38) is handled separately. The first term may be estimated
as

sup

^upτ sup T(k_l)ΔIDι

< sup sup \[Ί^-Tl]τYf(x)\.
o<t<τ

(39)

Terms two through four of (38) follow similarly, although more attention is paid to
the indicator term. For term two,

sup

sup l)ΔID2\[T(^ - TΔ]τχt/Δ]_k)Δf(x)\

<\ sup suPT t/J sup sup \[Ί*W-TΔ]T?f(x)\. (40)
[o<t<τ xeDε J o<ί<τ xeD2

For term three of Eq. (38),

< sup sup T(k_
0<t<T ccG-Dε

< 2 H / I I sup sup TtI

- TΔ]T^_k)Δf(x)\

o<t<τ
D

(41)
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The fourth term of Eq. (38) may be estimated as

sup (k

< sup sup \[T(^-Tl}τYf(x)\. (42)
o<t<r

Applying Eqs. (39), (40), (41), and (42), Eq. (38) then becomes

< sup
0<t<T

+ sup sup Tt

y/(x)-Tj,tMJ/(z)|
0<ί<T x£Dε

T

Δ o<t<τ x

+ Γ sup sup TJD]- sup sup \[T(£} -Tl]τYϊ(x)\
0<ί<T x£Dε ^ 0<t<T x£D2L J

+ 2^11/11 sup sup TtID + ̂  sup sup | [T^W) - TX]Tt

v/(a;)|. (43)
^ 0<ί<T xGDε ^ 0<ί<T x£D4

The first term of (43) is handled using the fact that D£ is separated from the holes,

sup sup \TlN)f(x)-T(^t/Δ^(x)}\
0<t<T xeDε

~ SUP _ _ _

π(N)
< sup sup {I*™ /Δ]If,t[^ΔWΔίf(x)-f(x)]\

L ' J L 7 J
0<t<T

sup sup T (
0<t<T xeDε

 L ' J

< sup sup

+ 2 H / I I sup sup Ex{(l-It,ε(Xt))}. (44)
0<t<T x£D£

The second term of (44) is controlled in the definition of Dε. Recalling the use of δ
in the definition of Dε,

sup sup \ T Ϊ N ) f ( x ) - f ( x ) \

< 2 I I / H sup sup pj sup |̂ 3s - x3| > δ/2
0<t<Δ x^D

+ sup sup |T t/(z)-/(αO|.
0<t</\ xEDε

From the smoothness of /, both of these terms clearly go to zero for small Δ.
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The second term of (43) follows from simple continuity.

sup sup T?f(x)-T%WΔίf(x)\
Q<t<T

= sup sup \T%[t/Δ1[τy_Δ[t/Δ1f(x)- f(x)]\
o<t<τ χeDε

< sup sup |Γt

v/(x)-/(x)|.
o<t<Δ

Again this term is small for small Δ because of smoothness of /.
The remaining terms in (43) are really the heart of the proof, in which order of

choice of constants is critical. Term three of (43), involving Dl, is examined first.
Consider, to simplify notation,

(45)g(x) = T

Note that \g(x)\ — > 0 as x| — > oo. Consider for some A,

= — sup

V(X,,X2)dζ3

Then

•i sup \T^g(x)-Tlg(x)

< — sup"

+ — sup

2ag(XΔ)

2ag(XΔ)

- g(XΔ) 1 - exp - 2α / V(Xla, X2)dζt

( Δ

-E\2α f
I J
^ π

V(Xls,X2s)dζs

1

Z' Ex{ζ2

Δ}

i f Ί ^
(g(XΔ) - 5(0;)) J 2α ί V(Xls, X2s) dζs I I

I o -* '

^ sup Ex{(ff(X4)-ί7(s))/<r(Λ0<4}|.

+ - sup
Δ x6D,

(46)
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Lemmas 3 and 5 are then applied to make the first term of (46) small.
The second term of (46) follows from noting

(47)

The choice of large Cl above guarantees this is small enough, independently of Δ
and N.

The third term follows from (47) as well as the properties of the initial function
/. Note Eq. (45) and the smoothness of f(x). There is a constant K with, using the
notation from Eq. (1),

< K2EX(\XΔ - x|2)

(48)

Now examining term three,

~ SUP { ( Δ ) Ί
(g(XΔ)-g(x))\2a f V(Xs)dζλ\

( J

0 ) )

-i s*pEx{\g(XΔ)-g(x)\ζΔ}

1/2

Noting Eqs. (47) and (48), the first factor is bounded while the last is smaller for
large Cv

The fourth and final term of (46) requires more care. We follow the general
approach described in Lemmas 1 through 3 above. Note we use σ (jγ} to indicate the

hitting time of the ith hole of the JVth collection centered at y[N\ Then

— sup Ex{g(XΔ)-g(x))Iσ(N)<Δ}\

• sup Ex{\g(XΔ)-g(x)\Iσ(N)<Δ}1 xeD{

i N Λ

NI
(N}<

Δ

N

JN)
NI

y(JV)

y[N]
<Δ

(49)
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The three sums in (49) are handled in a similar way. Using the hole assumptions and
Lemmas 3 and 5, for small enough A and then enough TV,

1

i=\ yτ

/ \
/ 2α / \g(y) - g(x)\p(s, x, y) ds I V(y) dy

J \ J /I

is small. Due to the smoothness of the initial condition, we again note for some
constant K that \g(x) — g(y)\ < K\x — y\. We need only consider

-

— I \y — x\ ί J
j j \ /

y\2 0

Δ

1 ί ί lί l

sup —- / / xJ -—
xen, ΔJJ 6\2πs

2s J dsdy

y£\
' ds dy

3/2 Γ |x-d2lI f f ( 1 \
sup 7v / / \y2-χ2\(^—) e 2s J dsdy

xeD Δ J J \2πsJ
^2 o

1 f Δf ( 1 \3 / 2 I l^-yl 2 )
sup — / / I ? / ! - x j -— e l 2* J ^dy

ZED! ^ y J \2πsJ

Note trivially that
I

J
= 1.

Then, by changing order of integration

I f f ί \ \ ^ / I*-^I2 |
sup — / / |x3| -— ) e l 2s * dsdy

χeol Δ J J \2πsJ

= sup — / IxJ f )
XGJD. 21 y ' 3 l V 2 π 5 y

0

Γ ί ,X I γ\ ί-f- /Ύ>
I r* \ \ 7

^
4>?2

2U
1 ί i Y x

= SUp — / £λ —
xeb.ΔJ ' 3 I V 2 7 Γ

1/2

/2
,
ds.

(50)

(51)
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Note for 0 < s < Δ,

J.P. Dunyak

2πs

1/2 \ 1/2

) e'

and also

(52)

Applying this and change of variables, s = Z\s, and using Lemma 4 and (37), the
term is small.

Treatment of the second and third terms of Eq. (50) is identical, so only the
second term is described. Note, since E(\X\) < E(\X\2)1/2, again carrying through
integrations,

\y2 - x2

3/2 \*-y\z\
25 ; ds dy

9*2

•//* " / 1_lPι(t^yι) y ι j
1/2

ds

v

Because of the definition of Dλ in Eq. (36) and the requirement Cl > 2, we know
for s G [0, Δ] and x e Dl that s1/2 < C^1/2 < |x3|. Finally,

, , r V I ^ 3 / 2

sup

1H2 0

< SUp

< sup - / x
1/2

ds.Ά ;̂ e

0

This term is the same as the one handled immediately above in Eq. (51).
The second term in (49) follows easily by noting

yτ

NI
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and following through the hole assumptions and lemmas again. For small enough Δ
and then large enough N,

sup
K

NΔ

- 2α
\

ί \I p(s,x,y)ds \V(y)dy
,ί /

is small. Again carrying through the integrals,

A
K f f

sup (
^
r

J P(s,x,
n

λv(y)dy

< sup
NΔ J \2πs

o

ds

2V2a\\V\\K

For fixed Z\, this term is small for large enough N.
The third term in (49) also follows easily by using the Markov property and

conditioning on the hitting time of the hole. The hole assumptions and Lemmas are
then applied, along with standard inequalities and the argument in Eq. (48),

E

N

g(XΔ)-g{ X
o.W

x NI

σ(1?><Δ
(N}

,<Δ '
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Again the hole assumptions and Lemmas 3 and 5 are used to show that we need to
show, for small enough Δ and large enough TV,

K
sup

N

/ \

- I 2α / p(s,x,y)ds\V(y)dy
j \ j i

/
'JV w

is small. Again switching the order of integration and carrying through integration of
the density function,

/ Δ \
jr sup 2a[ I p(s,x,y)ds ]V(y)dy

L^x£DlJ \J I
9*2 X 0 /

Δ

< — ̂  sup 2a\\V\\ p3(s,x3,Q)ds
A ' x^Dl J

0

Δ

Using Lemma 4 and Eq. (52),

/ Δ \
-^ sup 2al p(s,x,y)ds \V(y)dy

Iχ2 V Q ^

Consideration of Eq. (37) establishes the needed result.
We now can return to the fourth term of (43) and observe that D2 C (91 x £H x

9Γ - ί)ε). Then, from Eq. (35), the leading coefficient

sup sup TtID]
<t<Tx<EDε J0<t<TxeDt

may be made as small as needed. The rest of the term goes to a constant, completing
consideration of this term. The argument is identical to the one for term three, with
the expectation that we use

jίup Ex{ζΔ} <

and

1 sup Et{ζ*Δ} < E0{ζ2

Δ}

Term five of (43) is handled by noting that, for a fixed Δ, we may control the
term's size by choice of C2.
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Term six of (43) is easily controlled by recalling for the Wiener process Wt,

P( max Ws > a\ = 2P{WΔ > a}
\0<s<Δ J

and

7rp{l^l > °} -* ° for a11 α as Δ I °

Ύhc definition of D4 explicitly separates x G D4 from the support of V and the hole

locations {y N)}. Then

-Jr sup P{σ(AO < Δ} -> 0 (53)

and

^ sup PJ / F(X ls, X2s)dζs > 0 1 -» 0. (54)
^ xeD4 7v o y

Then

^ sup sup|[τr-Γl]τ7/(x)|

sup sup βχ
^ 0<t<T x€D4

T
- sup sup
^ 0<ί<T x£D4

Ex 1 - exp - 2α

<2||/||- sup sup Ex{lσ(N)<Δ}

sup s u p p v(Xla,X2a)dζa>0
^ 0<ί<T

The first term is managed by Eq. (53). The second follows from (54).
This finishes the proof of Theorem I. QED.

4. Discussion of Theorem II

Theorem II is proved using the same general approach as Theorem I. Lemma 6
provides the critical single hole limit and is discussed in the some detail. Proofs for
the many hole limits as well as Theorem II are only outlined, with emphasis on
differences from earlier results.



378 J.P. Dunyak

Lemma 6. Let T > 0, ε > 0, D be a compact set not intersecting S, and yζgN^ be
the local time on the boundary of a hole of size 1 /N located at y G S. Then

t x -,
r \

- \NΊ I dyζ(

s

N)

o / J

• 2α(7) p(s,x,y)ds as TV —» oo
j
o

uniformly for x £ D, y £ S, and 0 < t < T. This result is independent of the
rotational orientation of the hole.

Proof. Without loss of generality, assume y - 0. Define

>, if

0 if

Then

lim

= lim

- lim

*

ί

/•

lim
ΛΓ-+OO

T V - T V e x p ί -
^ V

ΛΓ exp -
~ N

jf<™

-exp -( f 0 (N)\\

\ J ' )) T

\ π / /

(55)

We follow the general pattern of the proof of Lemma One. Again the approach is
illustrated in Fig. 3. A random path is followed until it (possibly) intersects a sphere
of radius 1/n. For term one of (55),

lim E

= lim
/V-^oc

N (
CXJ \ \

-λΛΓ ίd°ζ(

s

N)] }lτ

n / /

NIrm<tE( 1-exp -

(56)
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For large TV, the distribution XT(N), conditioned on τ(]V) < oo, converges to uniform
on the half sphere of radius I/TV. The conditional expectation is examined closely by
considering an equivalent representation. Consider the solution w of the equation

r\ J\f .j

-^—=-ΔwN(x,t) t>0, z e « x ί K x ί K + ,

or

c>n

for x 6 <9P - HN, and n the outward normal

on

for x e dHN ', and n the outward normal,

exp -λΛΠ

(57)

Define

Using Eq. (57), we see

at 2

,0) = 0,

for x £ <9P — HN " , and n the outward normal

,
on

for x G OHN , and n the outward normal,

Now we use the definition of 0(7). This is accomplished by rescaling with t = N2t
and x = NX. Then, using Eq. (56) and letting £ — > oo,

lim j
N -^oo

TV - TVexp -
7
/

-̂

= 2α(7)

Again we have used Lemma 1 in [5], whose result is described in Eq. (22).



380 J. P. Dunyak

The second term of Eq. (55) follows from the discussion relating to Eq. (57) by
noting, for some Δ > 0 to be chosen later,

lim EΎN-^oo x
N( exp -

- exp -

exp -

T(N), r(N)<t_Λ

Equation (22) is used for the first term, which is made small by choice of A and N.
To address the second term, again use the representation in Eq. (57) and then rescale
with ΐ = N2t and x = NX. This completes the proof of Lemma 6. QED.

Lemma 7 provides a bound for the many hole situation, and is similar to Lemma
5 for the Dirichlet condition.

Lemma 7. Given ε > 0, T < oo, and closed D C 9ΐ x 91 x 9Γ not intersecting 5,
there exists an 7V0(ε,T) with the following. Let

d= di

For all N > 7V0, x e D, and 0 < t < T,

Ex{ 1 -exp -

with

g(t) = tC exp for a constant C.

The constant C is independent of N, ε, D, and T.

Outline of Proof. Let ε > 0 and fix <5, to be chosen later. First consider contributions
from holes that are adequately far apart. We sum over all holes that are at least 3/TV
from their nearest neighbor. Recall the local time notation in Eqs. (4) and (5). Again
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use σ(^} as the hole hitting time. Then

381

-exp -

Σ

1 - exp -

Because the indicator restricts contributions to trajectories interacting with only one
hole,

1-exp -

Σ

Then

j 1-exp -

>EX<

N

Σ

N

-E,

(58)
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We address the first term in (58) first.

ί 1 - exp ί - λΛΠ ί

V V {

. (59)

Our first term is handled exactly as discussed in Eqs. (25) through (26), by application
of Lemmas 4 and 6 and the Hole Assumptions. This establishes the bound in the
lemma statement.

For the second term of Eq. (59),

The discussion around Eqs. (30) and (31) establish the size of this term.
Proof of the lemma will be complete with examination of the second term in

Eq. (58). This is the step where the function g will be defined. Note we replace a
single summation in ί with a double summation in i and j,

This is the same term we have in Eqs. (32) through (33). QED
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Lemma 8 provides the bound in the other direction, and its proof closely resembles
the proof of Lemma 3.

Lemma 8. Given ε > 0, T < oo, and closed D C Uft x 91 x 9l+ not intersecting S,
there exists an 7V0(ε,T) with the following. For all

N > ΛΓ0, x e D, and 0 < t < T,

exp -

t

α(7) v(Xl

8 , X2

S) dζi

{

with

Outline of Proof. Note for constants α > 0 and b > 0,

1 -e~a-b <(1 -e~a) + (l -

Recalling the definition of the local times,

/
l -expί -

Γ / r M
?X l -exp -AΛΠ /^Cf) I

I V / J

Again this term is handled in Eq. (59). QED.

Lemmas 7 and 8 provide the tools for proving Theorem II. For a(j) > 0, the
proof is identical to that of Theorem I, with the expression (l — exp ( — λ/V^ζ^ ^))
replacing IσN<Δ in the equations. For a(j) = 0, the argument is even simpler and
all the required terms are examined above.
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