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Abstract: In this paper we give an explicit formula for level 1 vertex operators related
to Uq(sl(n)) as operators on the Fock spaces. We derive also their commutation
relations. As an application we calculate with the vector representation of Uq(sl(n)\
thereby extending the recent work on the staggered polarization of the XXZ-model.

1. Introduction

The Hamiltonian of the XXZ-model has L^(s/(2))-symmetry in the thermo-
dynamic limit. Recently, on the basis of this fact, the XXZ-model was formulated in
the framework of representation theory of Uq(sl(2)). Let us explain the scheme
described in [1] briefly.

First we recall XXZ-model as it appears in physics. The space of states of the
XXZ-model is the infinite tensor product ®V®V®V® •••, where
V= Cv + (x) Cυ~ is the two-dimensional vector space. The XXZ-Hamiltonian is the
following operator formally acting on the above space:

where σx, σy, σz are the Pauli matrices on V, σ£ acting on the kth component
of - - (x) V ® V <g) V ® - . Let Uq(sl(2)) denote the subalgebra of Uq(sl(2)) with
the grading operator d being dropped. It acts on V as follows:

e0 v+=v-, fQ v-=v+9 t0 v±=q+v±.

Uq(sΓ(2)} acts on ® V® V® V® - via the iterated coproduct zl(oo).
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{Formal manipulation shows that

Furthermore, we can identify d with (#CΓM — S)/2, where

HCTM= — : - 2 Σ ^(σfcσfc+ι + σ fc σ fc+ι-^ -- ~
1—4 fceZ Z

and S=^ΣkeZσ
z

k is the total spin operator. Letting T denote the shift operator on
• ®V ®V ®V ® , we can also check formally

The above observation holds only in the infinite lattice case. Of course,
HXXZ and the action of Uq(sΐ(2)) are not literally well-defined. Nevertheless, when
we consider the model in the anti-ferroelectric regime — 1 < q < 0, we can construct
a well-defined theory on "the space of physical states", which is the subspace
consisting of finite excitations over the ground states i n . . . ® F ® F ® F ® .
The formulation of [1] is based on the (hypothetical) identification

"the space of physical states" = @ V(At) ® V(Aj)* ,
0^/, jg l

where V(At) is the level 1 highest weight irreducible £/ρ(s/(2))-module and V(Λj)*
is the dual module of V(Aj). The symbol ® is to be understood with an appropriate
completion, but we will not go into such details in the sequel. To motivate this
hypothesis, consider the intertwiner of (7^(sί(n))-modules

called vertex operators ([2]). In fact, such an operator exists, is unique up to
a scalar, and gives an isomorphism if we properly define the completion of the
right-hand side. Iterating the vertex operators, we get the following isomorphism:

® V(Λj)* ^V(Al^i)® V® V(Λj)* ^F(Λoori)® V® -

It tells us that the local structure •• ® F ® F ® in the naive picture is realized
in the space @V(A{) ® V(Aj)*. By composing (*) with a similar vertex operator

we get

The resulting isomorphism can be identified with the shift operator Γ. In this
manner we can build a well-defined theory on φ V(At) ® V(Aj)* that captures all
the essential features expected from the physical definition.

It is straightforward to generalize the above formulation to the models related
to any quantum affine algebra. In this paper, we consider a multi spin-analogue of
the XXZ-model related to the vector representation of Uq(sl(n)). Our main results
are twofold. One is the bosonization of the level 1 vertex operators (Theorem 3.3,
3.4). The other is the exact calculation of the one-point functions (Theorem 5.2).
The structure of this paper is the following. In sect. 2, we review the construction of
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the level 1 irreducible highest weight Uq(sl(n))-modules. In sect. 3, we construct the
vertex operators on the bosonic Fock space explicitly. In sect. 4, we explain the
mathematical formulation of models. In sect. 5, first, we derive an integral repres-
entation for the one-point function by using the bosonization of the vertex oper-
ators. Next, by using the commutation relations of the vertex operators, we derive
difference equations for the one-point functions. This equation can be solved easily.
As a result, we obtain an explicit formula of the one-point functions extending the
previous work on the spontaneous staggered polarization for the XXZ-model
([13]).

2. Vertex Operator Representations of Uq(sl(ri))

In this section, we review the construction of the level 1 irreducible highest weight
modules following [5].

2.7. Notations. Throughout this paper, we fix a real number q( — l<g<0) and
a positive integer n. Wedenote(gk —g"*)/(# —g" 1) and Y[^=0(l — aqk)by [fc] and
(α; g)oo respectively. Most notations concerning Lie algebras follows [14]. Let P be
a free Z-module

n- l

ί = 0

We call it the weight lattice. We define P* as follows:

The pairing is given by (Λi9 hjy = δiJ9 <yl / ? d> = 0, <<5, ftj> = 05 <<5, <f> = l. The
indices are extended cyclically such as Λi = Λi+n, etc. Let
α0= — Λn-ι + 2Λ0 — Λ1 + δ, α7 = — Λj-l + 2Λj — Λj+1 (Irg rgrc— 1) be the simple
roots. The invariant bilinear form on P is given by (α f | «_,•)= — δij-ι+2δij — δij+ί

and (δ \ <5)^0. The projection to the classical weight lattice is given by Ai = Ai — AQ9

δ = Q. U q ( s l ( n ) ) is the C-algebra generated by the symbols {t^( = q±hl\ qά, eh fί9

(z' = 0, , n — ί ) } which satisfy the following defining relations:

* + _ + + / - . Λ . / Γ 1 — /7< α " h '>p. f f t~l — / 7 ~ < α " h ' > Λί ι ί j ~ i j L ί > Lί^jLί ~q Vj, iijjii —q jj ,

Σ ( - i ^ ^ e f - ^ o , Σ (-

where ft = l - < α ί , h , > , = - , [ / c ] ! = [l] [2]- . [fe]. Throughout this

paper, we denote U q ( s l ( n ) ) by Uq. Uq is the subalgebra of Uq generated by {ti9 ehft}.
We denote the irreducible highest weight Uq (or £/^)-module with highest weight
λ by V(λ). We fix a highest weight vector of V(λ) and denote it by |λ>. The
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coproduct A and antipode S are given as follows:

When FF is a C/€ (or L^)-module, we introduce the left module structure on the dual
space W* by x u*(υ) = u*(S(x) Ό) for xeί/β (orl/g), u*eW* and ueFF. If *F has
a weight decomposition @A Wλ, we define the completion ^^Πλ ^λ Normally
we omit.

2.2. Drinfeld Generators of Uq. We introduce another set of generators of Uq ( [4] ).

Definition. <$/ is the C-algebra generated by the symbols {y ± 2 5 K ί ,α ί (fc), x^(ί)
( l^i^n— 1, /ceZ\{0}, /eZ)} which satisfy the following defining relations:

~
2)

3)

4)

5)

6)

7)

where

Cj == 1

/c q — q

k = l

-ί-1) Σ «i(-
fe=l

8)

9)

= 0 /or<« ί,Λ ί>=-l

We know the following theorem.

Π
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Theorem 2.2 ([4]). The following correspondence gives an isomorphism Uq = <$/:

7(0) (l^n-1),

. - •£„-![[ - - [xί(-l),x2

+(0)]g - , xί-2(0)]β,x;-!(0)]β .

we /zflί e set [A, B~\q = AB~ qBA. Π

2.3. Group Algebra C[P]. For the constuction of representations, it is enough to
consider only C[β], where β = ©j="~ 1 α,- is the classical root lattice. But, for the
construction of the vertex operators it is convenient to define C[P]
(^ = ®j=2~ l a j® Λ Λ - - I : the classical weight lattice). In fact, we use a central-
extension of the group algebra of P.

Definition. C[P] is the C-algebra generated by the symbols {eα% , ean-^eAn~'}
which satisfy the following defining relations:

l) . Π

= m 2α 2+ +m M _ 1 α / J _ 1 + m π yΐ w _ 1 (6P), we denote em^2' ' ^-^-^-^
by eα. For example, e

ΰίl=e~2ΰί2e~^3 - - .^-("-iK-i^-^ ,̂ = β-α,+ig-2α / + 2 . . .
£-(n-i-Dα π _ l e nA-ι ^ simple calculation shows the following.

Proposition 2.3.

1) e^^-l^KV^ (
2) e«i£4-1 = (_ιy>-ι

3) eα e^ =(- l)n*» eΛlea>

4) ^^"--(-l)"^-1^1 .
D

2.4. Construction of Representations. Let

We define the operators θy(A ) (l^j^n— 1), δα, eα(αeβ), d on JF; as follows:
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Let

keZ

We define the action of Uq9

/ °° S].( — k\ k

( ± Σ %ĵ  q+>zk exp
\ k = ι LKJ

We know the following theorem.

Theorem 2.4([5]). By the above action, W , becomes the irreducible highest weight
module with highest weight Λh and 1 ® e^1 is a highest weight vector of W ^. Π

From now on, we identify W{ and 1 ® eΆi with F(/ti) and |/ti> respectively.

3. Construction of Vertex Operators

In this section, we construct the vertex operators on Wt explicitly.

3.1. Vertex Operators. We review the definition and some properties of the vertex
operators. ([2,3]) Let V be a finite dimensional representation of U'q. The affihi-
zation of V is the following [/^-module Fz,

We define the (/^-module structure on Vz as follows:

+δ>0, fr(v® zm)=frv® zm"5l°,

zm, qd (v® zm) = mv®zm.

Definition. Γ/zβ vertex operator is a Uq-homomorphism of the following form:
Type Γ.

$lv(z):V(λ)-+V(μ)®VZ9

Type II:

Φv

λ

μ(z):V(λ}^Vz®V(μ).
Π

The symbol ® means WΊ ® W2> From now on, we omit it. We know the following
theorem about the existence of the vertex operators.

Theorem 3.1 ([3]).
HomUq(V(λ), V(μ)®Vz)^{veV\the weight ofv = λ-μmodδ

where ΦeHom^ (V(λ\ V(μ}® Vz) corresponds to v via the relation Φ\λy =
® v + (terms of positive powers in z). Π



Staggered Polarization of Vertex Models 283

We define the components of the vertex operators as follows.

φf(z)|W>="Σ Φ f j ( z ) \ u y ® V j f o τ \ u y e V ( λ ) ,
J = 0

where {ΌJ} is a set of basis of V. For the type II, the components are also defined
similarly. Using the components, we define similar vertex operators

by

Φ ϊ v ( z ) ( \ v y ® v i ) = ΦΓj(z)\vy for | ι ;>6F(λ) .

Here xeUq acts on V(μ)® C[z, z"1] as x® 1.
Now, we specialize V to the vector representation,

F=Cι?0θ '"®Cυn-1 .

The t/g-module structure on V is the following:

ei vj = δίjvi-ί, fi vj = δi-ιjvi9 trvj = qδ-l'δ-vi .

(F*)z is denoted by F* . The action of Uq on Vf is the following:

ei (vj®zm}=-q-1δi-ljvf®zm + δ«>, fr(υ* ® zm}= -qδ^^

ti Vj ® zm = q~δ'^1~δ^vj ® zm, qd Vj ® zm = mVj ® zm .

In our case, by the above theorem, only

are non-trivial. Furthermore, each of them is unique up to a scalar. Here, we take
the following normalization:

$ A l , 1 ( z ) \ A i + 1y= /I,) ® t;f + (terms of positive powers in z) ,
"*vl V*

ΦΛ? ( z ) \ A t y = \Ai + 1y ® ι;f + (terms of positive powers in z) .

For the type II, we take a similar normalization.

3.2. Coproduct of at(k\ xf(l) and action o/αt (/c), x f ( l ) on Vz. The coproduct of
Drinfeldjenerators is not known in full. But the "main terms" are calculated in [7]
for Uq(sl(2)). The case of Uq(sl(n)) is quite similar.

Proposition 3.2. A. For fc^O, />0,

m o d W V _

/ - I

Σ y( ί"Λ/2 <Pi(-'+J)® y~'+V(-./) modt/N_
7=1
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k-1

Σ
7=1

fc-l

+ Σ yJ~k^(-J)®y~(k + 3J)/2Ψί(J-k) modUN2-®UN+,
7 = 0

ai(l)®γτ + yτ®ai(l) modUN-®UN + ,

31 I

A(aί(-l)) = aί(-l)®y-τ + γ-2®ai(-l) modUN- ® UN +

where, UN ±, UN2

± are the left ideals generated by {x?(k)}> {x* (k) xf (I)} . D

Proposition 3.2.B. The action o/αt (/), xf(k) on Vz is the following:

where Ey is the matrix unit o/EndV such that E^v^δμVi. Π

3.3. Vertex Operators of Type I. First, we consider the vertex operator
i>Al+l(z):V(Ai+i)->V(Ai)®Vz. We can determine the (n— l)th component as
follows. By Prop. 3.2, we get the following commutation relations:

for

The above conditions determine the form of $At+in-i(z) completely under the
normalization conditions in Sect. 3.1. The other components are determined by one
of the interwining conditions

Hence, the other components are represented by the integral of the currents.
For the vertex operators Φ^\+ lF*(z): V(At)->V(Ai+l)®'V* , we have the similar

commutation relations this time for the 0th component. We summarize the results.
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Theorem 3.3.

2/ί-r-l

X (—

2)
\ k = l

xexpf £ αί

The coefficients of a*-± (k) and α*(fc) are determined by the conditions

M * _ e OT

D

3.4. Vertex Operators of Type II. We can also apply the same method for the
vertex operators of type II.

Theorem 3.4.
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fc=l

exp -
2n+3

k=l

X (_ iy - — «-

(i = 0, ,n- l ) ,

o =ι,
D

3.5. Commutation Relations of the Vertex Operators. In [12], by solving the q-KZ
equations the authors get the commutation relations of the vertex operators of type
I related to Uq(sl(n)). These formulas can be derived directly by using our explicit
formulas for vertex operators. First, we write down the matrixs coefficient of
Rv*v(zι/z2)eEndcVϊί (g) VZϊ,

RV*V(Z)(VI ( S ) V j ) = Vi ®Vj(ϊή=j)^ Ry*y(z)(v* (X) Vι)= 2_j ^ijVj ® Vj •>

;=°

Proposition 3.5.

where αί<7 =

1-z

1-2

1-z

( i > j )

( i = j )

2)

3)

\<Γ

Proo/. Formulas 1), 2) follow from simple calculations. We know the uniqueness of
the vertex operator V(Ai)-^V(Ai} (g) F* (g) FZ2. (For the details see [2, 3].) So, the
left- and right-hand sides of 3) coincide up to a scalar factor. By comparing the
vn ® t f component of both sides, we get the above equation. Π

4. Vertex Model

In this section, we give a mathematical definition of the model treated in this paper
([1, 10, 12]).
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4.1. Space of States. We know the integrable generalization of the XXZ-model
related to any quantum affine algebra Uq(§). Let Vz be a finite dimensional
representation of U'q(§) with a spectral parameter z and R(z1/z2)εEnd( VZι ® VZ2)
be the β-matrix for U'q(§). We define the model on the infinite lattice

• - ® V ® V ® V ® . Let Λ be the operator on V ® V such that

PR(zί/z2) = (l + uh + • • • ) > < const. (w->0),

P: the transposition, eu =

We define the Hamiltonian 2? as follows:

fceZ

where hι + u is (x) 1 (x) 1 (x) /ι (χ)l ® 1 (x) acting the /th component and 1+ 1th

component. We can check immediately

When g = s/(2) and Fz is two-dimensional t/^(s/(2))-module, Jf becomes Hxxz.
From now on, we specialize g to s/(rc) and Vz to the vector representation of

Uq in Sect. 3.1. Later, when we solve the difference equations for the one-point
functions, we find it convenient to pass to an equivalent representation V\r defined
by

V=Cu1 Θ - - ®Cun-ί9

ei uj = δijuί-1ζ, fi uj = δi-υuiζ~1

9 ti uj = qδi-lj~δi}uj .

The equivalence is given by

We will refer to Vz and Ffr as the homogeneous picture and the principal picture,
respectively. As explained in the introduction, we take

Endc

as the space of states 3F . 2F is understood naively as the subspace of the infinite
tensor product - - >®V ®V ®V ® - . We give the left and right action of U on
2F as follows:

where /eJ^, xeU, zl(x) = ̂ xd) ® x(2)

The space J^ regarded as the right module is denoted by ^\ Let

% i has the unique canonical element idF(yl.). We call it the vacuum and denote it by
ac^e^/i, f< vac | eJ^ / . There is a natural inner product between J^ and J^ ; as
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follows:

trm)(<Γ2>)

where p = Λ0-i-Λ1+ +/lw-ι

It is invariant under the action of ί/g: </x |0> = </|x0> for VxeE/.

4.2. Local Structure and Local Operators. We use the vertex operator

to incorporate the local structure into ^. Setting z = l, we obtain the Vq-
homomorphism

Let

converges and gives the following isomorphism:

2ί ®V® ®V®V(Λj)*

By this isomorphism, the local structure is inserted into 3F . Next, we define the
local operators. For L e End F®w, let

By Prop. 3.5, we know

( / n2. n2n\ \m
W > ^ /oo \

r/72n. ^a^^x 1
w 5 4 oo /

where ΦX_1κ = ΦX-ικ(l) The action of Z on is defined as follows:

We denote the correlator f<vac|L |vac>j by <L >(0.

5. Staggered Polarization

The aim of this section is to give <Em'm>(l) explicitly.

5.1. Integral Representations. In [9], the authors construct an integral representa-
tion of correlators of the XXZ-model by using the trace formula explained in [8]
Appendix C. We can apply the same method to <£m'm>(ί). Put
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then <Em.my® = PZ.(z,Z\q2*,q-1\i). Let

h(z) = (z;x)ao(q2z'1;x)co,

We get the following:

P^(z1 ?z2]x,};10

(a2- a2n\\<ί 9 4 ^,_ m'm\

(l-zwm)wm +ι

u q qζi qζn-2
where w0 = —, wι=—, , w M _ 2 =^ , w w _^

SI S2 S«-l

(m<0

By this expression, we can verify that

is a function of z( = z l / z 2 ) and regular in q~2n< \z\<q2n.

5.2. Staggered Polarization. In this subsection we derive the difference equations
for one point functions and solve them. These equations can be solved easily up to
a pseudo-constant factor and we can determine the factor by the analyticity gained
from the integral representations. Following [10], we explain how to derive the
difference equations in our context.

Let

\Z2

then, we get the equation
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or,

We show this equation reduces to scalar equations. Let

then

Let z = ζn and ω be the nth primitive root of 1. We put

"
m = 0 i = 1

Let further

G ( M )(o-cMΣω
m = 0

Then, we find

Let

The reduced equation determines Gu k\ζ) as

where c; fe(C) is a pseudo-constant (i.e. c/k(£g 2) = cJ fc(C)). Let us show that cjk(ζ) is
independent of ζ. As F(ζn) is regular in g~~2 <\ζ\ <q2,so is G°'fe)(Q. So, when we
set ζ^^v^ϊ" and q = eκ^l\

has at most a simple pole in the fundamental region [0,1] x [0,τ] in the w-plane.
Hence, cjk(ζ) is an absolute-constant cjk. Moreover, it can be determined by
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calculating the residue atζ = q~ 2ωj of the both sides of the above equation (*). The
result is the following:

'πω'C 1~ω.;l

(otherwise)

in2' a2}3 (a2n a2n\\(i » *! /oo I f f 5 Ύ /o -2o\
P

We get the following theorem.
Theorem 5.2. Let ω be an nth primitive root of 1 and E^ be the matrix unit, then

V ωkm<E >(ί)= — (q ; q \"> ,
m=0 (q2ωkιq)ao(qω~,q)ao'

D
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