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Abstract: A number of interesting features of the ground states of quantum spin
chains are analyzed with the help of a functional integral representation of the
system's equilibrium states. Methods of general applicability are introduced in the
context of the SU(2S+l)-invariant quantum spin-S chains with the interaction
— P(0), where P(0) is the projection onto the singlet state of a pair of nearest
neighbor spins. The phenomena discussed here include: the absence of Neel order,
the possibility of dimerization, conditions for the existence of a spectral gap, and
a dichotomy analogous to one found by Affleck and Lieb, stating that the systems
exhibit either slow decay of correlations or translation symmetry breaking. Our
representation elucidates the relation, evidence for which was found earlier, of the
_p(θ) Spjn_s systems with the Potts and the Fortuin-Kasteleyn random-cluster
models in one more dimension. The method reveals the geometric aspects of the
listed phenomena, and gives a precise sense to a picture of the ground state in which
the spins are grouped into random clusters of zero total spin. E.g., within such
structure the dichotomy is implied by a topological argument, and the alternatives
correspond to whether, or not, the clusters are of finite mean length.
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1. Introduction

There is a geometric aspect to the structure of the spin-spin correlations found at
low temperatures in a number of quantum spin systems. Our purpose is to
introduce some generally applicable tools for the analysis of such phenomena. That
is done in the context of the 811(25 + 1) invariant models introduced by Affleck
[55] and also studied by Batchelor and Barber, and Klύmper [6, 10, 11, 38, 39],
which include the spin 1/2 Heisenberg antiferromagnet as a special case.

The systems considered here are one dimensional chains of spin S variables,
with the Hamiltonian

ff=-(2S+l)£J»Pi?i+i, (1.1)
X

where P(£*y is the orthogonal projection onto the singlet state of two quantum spins
of magnitude S, and Jx>0. The models with translation invariant (all JX = J) or
staggered coupling constants (possibly with two different values for x even and
odd) are of special interest and some of our results are specific for these cases. We
will refer to the Hamiltonians (1.1) as the spin S models with interaction — P(0). The
explicit form of the interaction in the basis of eigenstates of S3 is:

(2S+1)P<°>= £ (-ir*|jβ, -/?><«,-«|. (1.2)
a,β= -S

The interaction can of course also be expressed as a polynomial in the Heisenberg
interaction Sx Sx+^. For S = 1/2 and S=l one obtains

Sx'S,+1 f o r S = l/2

S» S,+ 1)
2-i f o r S = l (Lό)

The analogous expressions for general S can be found, e.g., in [11].
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The phenomena which we shall address are:

1) The nature of the order parameters which characterize the possible occur-
rence of symmetry breaking in the ground state.

i. Neel order. In higher dimensions such models may exhibit Neel order in the
ground state. For the standard Heisenberg antiferromagnet this has been proved
for dimensions d^3 and also for d = 2 if S^l [16, 35]. The representation
introduced here permits to rule out that possibility for the translation invariant
models with interaction (1.1) in one dimension, on the basis of known results in
percolation theory (in two dimensions). (In one dimension, the representation
relates Neel order to a transient behavior in a system of random loops which form
the boundaries of the connected clusters of a random cluster model.)

ii. Dimerization. The one dimensional models may, nevertheless, exhibit a two-
fold translation symmetry breaking, caused by dimerization. While the interaction
favors the pairing of neighboring spins into singlet states, not all neighboring spins
can be paired simultaneously. There are, of course, states - corresponding to
different dimerizations of the lattice, in which half (or, on the lattice TLd, a fraction
l/(2d)) of the interaction terms are minimized. While these are not true ground
states, it turns out that in one dimension for S large enough (S^l) this structure is
present in the ground state, which decomposes into a superposition of two partially
dimerized states. Spins on even sites have stronger correlations with their neigh-
bors to the right in one of the states, and to the left in the other.

The classical dimerization picture is too naive in two aspects: 1) the model's
correlation functions extend beyond nearest neighbors, and 2) the spins correlate in
larger clusters than pairs. A virtue of the method employed here is that it permits to
describe this phenomenon (and the picture of the correlated clusters) in explicit and
precise terms. In particular, we find the following behavior: in the state where the
spins on the even sites are more correlated with their neighbors to the right one
finds that with probability 1 some spins on the left half-infinite chain (— oo, x] form
a singlet with some spins on the right half-infinite chain [x+1, +00), for each
x even. In the same state this probability is < 1 for x odd.

2) The "dimerization versus power law decay" dichotomy. The dimerization does
not always occur. However, we show that there is a dichotomy: the ground state
either dimerizes, or exhibits slow decay of correlations (with £J x<SoS^> \ = + oo).
The dichotomy has the following geometric content. When the (even) clusters of
correlated spins are tightly bound, with only a finite number of clusters having the
origin in their span, then a topological argument implies that the translation
symmetry has to be broken. The alternative is that the clusters of correlated spins
are loosely bound, with the origin (as well as any other lattice site) belonging to the
span of infinitely many correlated pairs. In that case, the above sum of the
correlation function diverges. In fact, in our representation, that sum measures the
number of correlated spin pairs with x < 0 and y > 0.

The dichotomy discussed here is reminiscent of the one found by Affleck and
Lieb for the Heisenberg antiferromagnetic spin chain with half-integer spins [7].
However, unlike the dichotomy of [3], the one discussed here is not restricted to
half-integer spin. The string order parameter mentioned above is also a variant of
one which has been found relevant before in the context of the Heisenberg model.
In fact, the method introduced here applies to quite a broad class of antiferromag-
netic spin models, to be discussed in a subsequent paper [5].
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3) Relation with the Potts models. The ground states of the ID spin chains with the
Hamiltonian (1.1), as well as the Gibbs states exp(-βH) are related to Potts model,
which in case of the translation invariant interaction are always at the self-dual
point. The existence of a relation was noted, at the level of a similarity of the spectra
of the relevant transfer matrices, by Baxter [8] for the spin 1/2 model, and by
Affleck (who introduced the general spin S model with interaction — P(0)),
Batchelor and Barber, and Klύmper [6, 11, 39] for general spins. The representa-
tion employed here makes this relation very explicit. In particular, the dimerization
corresponds to the existence of long range order in the corresponding Potts model,
and the expectation values of any observable of the spin chain can be expressed in
terms of quantities calculated within the Potts model. The relation presented here
extends also to models with inhomogeneous couplings (for which the correspond-
ing Potts models are no longer at their transition point), and thus extends beyond
the exactly soluble cases discussed in [8, 6, 11, 39].

4) Decay rate. Using the geometric representation, and the FKG inequalities
which it allows to bring to bear on the problem, we derive an effective bound on the
decay of correlations of general observables in terms of the truncated two-point
function τ(x, y) of an associated two-dimensional (2S+ l)2-state Potts model:

B _ τ ( x , y ) . (1.4)
xesuppA
yesuppBz

For a more complete statement and the notation see Theorem 7.2. Assuming that
the truncated two-point function of the two-dimensional Potts model in a magneti-
cally ordered pure phase always has exponential decay, this result implies the
existence of a spectral gap in the ground states of the spin S models with interaction
— p<°) whenever dimerization occurs. The case of staggered couplings, {Jeven? Λ>dd}>
is of interest for the discussion of the spin Peierls instability. Our method confirms
the results obtained by Cross and Fisher for the exponents describing the leading
behavior of the energy and the mass gap as a function of | JevQn — Jodd\ [15].

This paper serves as an introduction to a technique of wider application, which
is based on a decomposition of the Gibbs states of a large class of quantum
spin Hamiltonians as superpositions of what we call quasi-states (see Appendix I).
In a subsequent paper we show that such a representation exists for any iso-
tropic nearest neighbor interaction under the condition that there are no frustra-
tion effects. No frustration essentially means that the lattice is bipartite and the
Hamiltonian has ferromagnetic interactions only within each sublattice, and all
interactions between spins of different sublattices are antiferromagnetic. In case
there are only ferromagnetic interactions the bipartite structure is irrelevant.

For the more general case, the method used here permits to give a natural
description of the occurrence of a fractional spins at the edges of finite chains.
Let us just mention some results for the spin-1 antiferromagnetic chain with
Hamiltonian:

ff = £αSχ.Sx+1 + Z>(Sχ.Sx+1)
2 (1.5)

X

with the coupling constants a and b satisfying α^O and frrgO. Again there is
a dichotomy [5]: under the assumption of sufficiently fast decay of correlations
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(expected to be violated only when a= — b) either

1) the ground state of the infinite system dimerizes, and thus breaks the translation
invariance of the Hamiltonian,

or, 2) finite pieces of the chain behave as if near each edge there was an excess spin
<?— iύ — 2.

The latter case corresponds to the Haldane phase [30] and the spin-l/2's at
the edges have been observed in electron spin resonance experiments on NENP
[29, 27, 28].

2. Quasi-State Decompositions for Equilibrium States of Quantum Spin Systems

In this section we derive the path integral representation for the ground state, and
the equilibrium states, which is employed in the derivation of the results described
in the introduction. The discussion applies to a more general class of systems than
those covered by Eq. (1.1). We also introduce here the notion of a "quasi-state
decomposition" of a quantum state. Some of its basic properties are presented in
Appendix I.

Before turning to the derivation, let us state the net result for the spin S models
with interaction — P(0).

2.1. The Functional Integral Representation for the Spin S Models with Interaction
— P(0). Absorbing a convenient constant in its definition, the Hamiltonian is now
given by:

P™+1}, (2.1)

and we are considering finite chains of spins of magnitude S. (The validity of
Proposition 2.1 below is actually not restricted to the one-dimensional case,
though it requires the model to be frustration free, i.e., to have a bipartite structure.)

We denote by σ = {σx} a configuration of joint values for the commuting family
of observables {Sχ3)}. These configurations form a natural parametrization for an
orthonormal basis of the Hubert space of the system's state vectors. We obtain the
following representation for the matrix elements, in this basis, of the operator e~βH.

For each specified pair of configurations, e~βH(σf, σ) is given by an integral over
various possible histories of a time dependent configuration σ(t) = {σx(t)}9 with the
time t ranging over the interval [0, /?], and σ(0) = σ and σ(β) = σ'. What remains to
be specified is the description of the configurations contributing to this integral,
and the measure with which they are integrated over.

The contributing spin configurations are piecewise constant in time. When
a change occurs, the spins change simultaneously at a pair of neighboring sites, but
the two spins are constrained to add to zero both before and after the change.
A useful description of the process is obtained by associating with each spin
configuration a collection of "horizontal" bonds (in the space-time diagram in
which time is in the vertical direction) linking the pairs of related sites in all the
discontinuity events. For a technical reason, we find it convenient to somewhat
modify this relation, and consider the bonds as enabling, rather than forcing the
spin flips. (This extension yields a higher degree of independence in the measure
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seen below.) The integral over the time dependent spin configurations is based on
an integral over those time indexed bonds, which we denote by the symbol ω.

We shall use the following symbol for the consistency indicator function:

1 if σx(t) satisfies the above described constraints
and all its discontinuities occur at bonds in ω

0 otherwise
(2.2)

and Iper[0"( )lω] which equals one if, in addition, σ( ) is periodic in time

The collection of all the spin configurations which are consistent with a given
bond configuration ω is conveniently described with the aid of a loop decomposi-
tion of the space-time diagram (which forms a finite-volume subset of TL x [0, β] as
illustrated in Fig. 1). The loop to which a point (x, t) belongs is found by moving
from it along the vertical line till a bond is reached. Upon reaching a bond, the path
traverses it, and then continues in the reversed time direction along the vertical line
to which it just crossed. This procedure is continued until the path either closes (by
returning to its starting point), or reaches the time f = 0 or t = β. For the time-
periodic constraint, the loops do not stop at t = 0, β but reemerge at the other end.
Following these instructions, space-time is decomposed into a collection of lines
which may form either closed loops or lines connecting pairs of "boundary sites" (at
ί = 0, β) (in the non-periodic case). Drawing each bond in duplicate, the corres-
ponding lines may be drawn so that they do not cross. For a specified ω, the
consistent spin configurations are completely characterized by the condition that
the staggered spins, ( — l)xσx(t\ are constant along each of the loops of ω. In
particular, for the periodic constraint, the number of consistent spin configurations
is, (2S+ l)/per(ω), with /per(ω) being the number of loops.

Fig. 1. A space-time configuration ωfor the —P(0) quantum spin chain, at an inverse temperature β.
As in a more general case, the spins are correlated within loops drawn by following the lines in the
space-time. A special feature of this interaction is that the loops can be viewed as the boundaries of
the connected clusters of two random cluster models, dual to each other. The shaded areas are the
connected ^-clusters, the connected 5-clusters are left blank. Alf A2, Bl} B2 are the four
independent regions surrounding a bond that appear in the proof of the Euler relation. The trace
of the loops on the t = 0 line shows a decomposition of the spins into random clusters of zero spin
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The relevant measure for the time dependent spin configurations can be
constructed by means of a product measure, obtained by the integration over
ω with an auxiliary Poisson process distribution, ρ[0ίβ}(dω\ and the discrete
summation over the (25' + l)ίper(ω) consistent spin configurations (i.e., those with
I[σ( )|ω] = l). The Poisson measure is characterized by the condition that the
mean bond density is 1, and that they occur independently in disjoint regions. The
contribution of a given bond configuration to the integral is enhanced by the factor
(2SΉ- l)/per(ω), and therefore its effective weight in the partition sum is given by the
probability measure

1^^ . (2.3)

The situation is summarized in the following proposition.

Proposition 2.1. For a finite system with the Hamiltonian (2.1):

i)
I|σO?) = σ', σ(OHσ] . (2.4)

σ( ) :I[*( ) |ω] = l

ii) The partition function is given by:

#, = Tr^Σ*«M+υp2Uι-i) = j p[0^(dω)(2S +!)<-<*> . (2.5)

iii) The equilibrium expectation values of observables which are functions of the
operators S(^ can be expressed as

~βH f ) , (2.6)

where μ(dω) = ̂ β

1ρ[o9β](dω)(2S+l)lpt:r(ω) and the expectation functional E ω ( f ) is
obtained by averaging., with equal weights, over all the spin configurations consistent
with ω:

<>)). (2-7)
σ:I|σ( )|co]=l

In the above proposition and in the rest of this paper by I [ . . . ] we denote the
indicator function of the event described between the brackets. Of course, the
objects 3?β,p[Qtβ](dω\ E ω ( f ) and μ(dω\ depend on the size of the finite system and
the magnitude S of the spins.

The functionals Eω can be extended to the full algebra of observables (see Sect.
2.5 for explicit expressions). Thus Eq. (2.6) is akin to a representation of the
equilibrium state as a superposition of states. That, however, is only partially true.
The linear functionals do not have the full positivity properties of quantum states.
Nevertheless, this point of view is very useful, and is well justified in so far as the
expectation values of the special (but important) subalgebra of observables
{/({£*})} is concerned. We refer to such functionals as quasi-states. The notion is
elucidated in Appendix I.

As given by Eq. (2.7), in each quasi-state Eω the joint distribution of the spins
takes a very simple form. In particular:

Eω(S*S*) = (- l)|χ-^C(S)I[(x, 0) and (y, 0) are on the same loop] (2.8)

with
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Hence, the spin-spin correlation is proportional to the probability, with respect
to the effective probability measure on the space of bond configurations, that two
sites are on the same loop of ω:

<S2Sj> = (-l)|χ-y'C(S)Probμ((x, 0) and (y, 0) are on the same loop) . (2.9)

The rest of this section is devoted to the derivation of Proposition 2.1, and
of similar results for other systems (e.g. the Heisenberg ferromagnet). The dis-
cussion of the specific properties of the model with H= — Σx^°χ+ι *s resumed in
Sect. 3.

2.2 Poisson Process Representation ofe~βH. We now turn to the derivation of the
functional integral representation, which is done in the broader context of oper-
ators of the form

HΓ=-Σ Jthb. (2.10)
&e^

where Γ is a (finite) collection of sites, & is a collection of subsets of Γ, and for each
£>e^, hb is a self-adjoint operator acting in the Hubert space ®ieb^fi, with ̂  the
state space at the site i, and Jb are non-negative coupling constants. We refer to the
sets fce^ as bonds, although for the moment they are not required to be pairs of
sites.

Thermal equilibrium states of the system, and its ground state (approached in
the limit /?— >oo), are associated with the operator e~βH. Following is a general
expansion of such operators by means of integrals over a Poisson process. The
symbols p and ω appearing here are defined afresh, but their usage is consistent
with the example discussed in the previous subsection.

β/Δt

where ω = {(bh ίf)} c ̂  x [0, /?] is a configuration of time indexed bonds, f|* is the
time ordered product:

Π* hb = hbk. . . hb2hbl9 such that tbl<tb2 - <tbk, (2.12)
feeω

and pj(dω) is a probability measure, under which ω forms a Poisson process over
^ x [0, jβ], with the Poisson density γ[bJbdt. Thus, ω forms a random countable
collection of time-indexed bonds which occur independently in disjoint regions of

The Poisson integral formula (2.11) offers a non-commutative version of the
familiar power series expansion of the exponential function.
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2.3. The Quasi-State Decomposition. In a wide class of models there exists an
orthonormal basis {|α>} of the Hubert space of the system such that for all ω

Π (2.13)

For such models the Poisson integral formula (2.11) provides a starting point for
a quasi-state decomposition (Q-S decomposition) of the Gibbs state defined by

Ύτe'βHQ

As we shall see, the condition (2.13) can be met, in suitable bases, for both
ferromagnetic and antiferromagnetic models, and it does not require the existence
of a basis in which all hb have only non-negative matrix elements as was the case in
various previous approaches [14, 24, 26, 33, 37, 44, 45, 51, 52, 53] (for a treatment of
a much wider class of interactions see [5]).

The Q-S decomposition resulting from (2.13) takes the form:

< >=ίμ(<M<.>ω (2.15)

with

<δ>»=^Γ' K(ω)= Π* hb, (2.16)
lΐK(ω) (b,t)sω

and

pJ

[0,β](dω)ΎrK(ω)

Important features of the model are reflected in: i) the structure of the quasi-
states < >ω> and ii) the relative weights in the decomposition (2.15) of different
classes of ω. To illustrate this, we now look in detail at the spin-1/2 ferromagnetic
and antiferromagnetic models.

2.4. TheSpin-1/2 Heisenberg Ferro- and Antiferromagnet. The Heisenberg Hamil-
tonian is

AF

H(F} = ( - ) 2 Σ Λc,Λ βy + Const (2 18)
<*.y>

AF

= - Σ J*.>ΛS,}+ Const > (2 19)
<χ,y>

where σ = (σ1, σ2, σ3) are the usual Pauli matrices and the sum is over a set of pairs
of sites. The signs are chosen such that we can always assume that the coupling
constants JXty are non-negative. The following choice of hb permits us to cast both
the ferromagnetic and the antiferromagnetic Hamiltonians in the form of (2.10):

T X t y ferromagnet

2P™ antiferromagnet ' (2'2Ό)

where Tx,y and P(£y are the transposition and singlet-projection operators acting in
the Hubert space of the sites x and y (so, Tx,y interchanges the states at the sites
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x and y). Use is made here of the relations

cr^ σ =2TX —1 = 1— 4P(®} (2.21)

In discussing the matrix elements

T-T* \ mI r V i / \ \ Λ s I ι j \ / I It I \ / I ίi I ' \ ίΌ O1\
J. A / Z_J \ l ι l l / \ ι l t ' 2 2 \ k — 1 fc

beco / σ t j , . . . ,σtk_ι

it is convenient to consider a space time picture in which the RHS is viewed as
a sum over paths in the spin configuration space, with {σx} defined at all times.
That configuration is piecewise constant, and the amplitude for the process is
determined by the matrix elements of the operators {hb}. Beyond this point the two
cases need be discussed separately.

2.4. a: Theferromagnet (HF). In the ferromagnetic case, the hb are transpositions,
which occur with amplitude 1. Thus, the time-ordered product (2.12) consists of
a sequence of transpositions which result in a permutation which we denote π(ω).
In particular, it is easily seen that

ΎΐK(ω) = 2lF(ω} , (2.23)

where lF(ω) is the number of cycles in the corresponding permutation. (The factor
2 reflects the dimension of the single-site Hubert space.) More generally, quantities
of the form Ύrf({σl})e~βH are described by the following construction - which is
similar to but not quite the same as the one presented in Sect. 2.1 for the
Hamiltonian considered there.

The paths σ(£) which contribute are constrained, by the nature of the trace, to
have σ(t = Q) = σ(t = β), and thus are periodic in time. The configuration ω is
visualised, in a space-time graph, by a collection of "horizontal" bonds connecting
"vertical" lines indexed by the lattice sites. For each ω, the contributing spin
configurations are obtained by decomposing the graph into a collection of loops.
The ferromagnetic loops are obtained by replacing the antiferromagnetic bonds in
Fig. 1 by ferromagnetic ones (see Fig. 2). The loop to which a point (x, ί) belongs is
found by moving "upward" along the vertical line at that point till a bond is
reached. At a ferromagnetic bond b = {x, y}, the path crosses from x to y and
continues in the positive time direction. This procedure is continued until the time
t = β is reached at which point the path jumps to t = 0 at the same site, i.e. t = 0 and
t = β are identified. The process is repeated until one comes back at the point (x, t).

The permutation K(ω) and its cycle decomposition is easily read from the
above picture: K(ώ) takes x into the site where the loop drawn starting from (x, 0)
returns, for the first time, to t = 0.

The discussion in Sect. 2.3 yields now the following proposition.

Fig. 2. The graphical representation of the ferro- and antiferromagnetic bonds used in the
drawing of the loop configuration ω
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Proposition 2.2 For the spin-^ Heisenbergferromagnet, the partition function and the
expectation values of observables generated by {σ^}X6Γ are given by:

ω) , (2.24)

and
Ίΐf(σ3}e~βHF

^°-£ - = J μF(dω)EF

ω(f) , (2.25)
-έ β

"where μF(dω) is the probability measure

(2.26)

and the expectation functional E^(f) is obtained by averaging, with equal weights,
over all the spins configurations which take common values (ηy = ± 1) on the cycles
{y}eω, corresponding to K(ω):

EF

ω(f) = 2~lF^ X f ( σ ( η ) ) . (2.27)
ηy=±ί

In fact, EF

ω(f] are quasi-states (adapted to the algebra generated by {σχ}xeΓ

according to the definition in Appendix I). In Sect. 2.5, below, we shall discuss the
expectation values of other observables. However, let us note here that two
interesting choices for / are: /ι(σ3) = σ^σ^ and f2(σ^) = Qxp(βh^χeΓσl). Here, in
contrast to our overall convention, σ* denotes a Pauli matrix with eigenvalues ± 1.
For these functions ££(/) is given by

£*(/!) = I [(x, 0) and (y, 0) are on the same loop] , (2.28)

EF

ω(f2)=Hcosh(\y\βh), (2.29)
γeω

where \γ\ denotes the number of times γ intersects the t = 0 axis (so, | y | = the length
of the cycle πy). In fact very similar expressions to the ones above can be derived
also for itinerant electron models. The analogue of formula (2.29) for the Hubbard
model was used by Aizenman and Lieb in [3] to derive a generalization of
Nagaoka's Theorem to finite temperatures.

2.4.b: The antiferromagnet (HAF). A significant difference between the ferromag-
netic interaction and the antiferromagnetic one, which is seen already at the
classical level, is the possibility of "frustration." Our analysis is restricted to the
frustration-free case, which is characterized by the existence of a bipartite structure:
the lattice Γ decomposes into two sublattices, ΓA and ΓB9 with the couplings
between two sites restricted to be antiferromagnetic if the sites belong to distinct
sublattices, and, in more elaborate models in which both kinds of interactions are
present (see [5]), ferromagnetic within each sublattice. For convenience we also
define

+ 1 if x and y belong to the same sublattice

— 1 if x and y belong to distinct sublattices

As we shall see now, under the assumption of a bipartite structure, the positivity
condition (2.13) is satisfied even though not all the matrix elements of the operators
K(ω) are positive.
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In the computation of quantities of the form Ύτf({σχ})e~βHΛF we need the
matrix elements of hb for the antiferromagnet:

hb = 2P(

b°
}= £ (-l)*-β\β, -£>O, -«l - (2.31)

α,/?e{l,-l}

Note the similarity between (2.31) and (1.2).
At this point we have a choice: the spin 1/2 AF system can be discussed in

a form close to that of the spin 1/2 ferromagnet or in a form which is suitable for the
more general spin-S models (with the Hamiltonian (2.1)). In order to lay the
grounds for a sequel to this paper, where we encounter spin 1/2 systems with mixed
F and AF interactions, we shall present the first option before treating the general
spin case.

As in the ferromagnetic case, for a given ω the allowed time dependent spin
configurations {σ^} are piecewise constant (in time) and can change only at pairs of
sites where a bond occurs. When a change occurs it is again a transposition.
However, there are the following differences from the ferromagnetic case:

i) there is a restriction that where a bond occurs the two spins add up to zero
(both before and after the event),

ii) at a given bond a transposition may or may not occur,
iii) the amplitude for a given "path" is (— 1) raised to the number of transpositions,

i.e. it equals the parity of the resulting permutation.

Lemma 2.3. In a bipartite system, for each pair of configurations {σ, σ'}, all the
permutations which take σ into σ' and which can be written as products of transposi-
tions exchanging sites on different sublattices have a common parity, denoted here
sign(σ, σ'), with

sign(σ,σ)=+l . (2.32)

Proof. Each transposition changes the number of positive spins on the A-sublattice
by ± 1. Therefore, noting that the spin configurations take values ±i, the parity of
any admissible permutation is

(-1)Σ—(σ"~σ'x} . (2.33)

•
We now derive the following formula for the matrix elements of the operators

K(ω):

Π**
beω

O= Σ <σlVK>OΛK> <<^JW>
/ σtι,...,σtk-ι

= sign(σ, σ')2^(ω>I^[>, σ'|ω] , (2.34)

where /oF(ω) an(* ^AF\β, σ'\ ω] are defined graphically, in a decomposition of the
spacetime graph into paths, which in many ways is similar to the one seen in the
ferromagnetic case. The paths now come in two kinds: open paths with end points
of the form (x, 0) and (x, β\ and closed paths which we call internal loops (see Fig. 1).
The open paths are constructed by starting from any point (x, ί) with xeΓ and t = 0
or β, by moving in the vertical direction until a bond is met. Upon the traversal of
a bond, the orientation of the motion in time is reversed. The path stops upon
reaching t = 0 or t = β. The internal loops are obtained in the same way, starting
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from any point (x, t)eΓ x [0, /?] that does not already belong to an open path and
a loop is completed when the path comes back to its starting point. /oF(ω) denotes
the number of internal loops. IAp[.σ, d\ &>] is defined in terms of the open paths
which we interpret as imposing a pairing condition on the spin configurations
σ = σ(0) and σ' = σ(β). The condition is that for any pair of points x = (x, ί)
and y = (y, £') with t and t' either 0 or jδ, that are the end points of a path in ω, one
has

σ(t)xσ(t')y = (-l)\χ-y\ = l-2δt,t, , (2.35)

\AF\β> o'\ω] = \ if (2.35) is satisfied for all open paths in ω and 0 otherwise.
Formula (2.34) is now a direct consequence of the graphical representation of

ω and the definitions given above.
When computing TrK(ω) one identifies f = 0 and t = β. Then, all paths are

closed, i.e. they are loops, and we write lAF(ω) or lper(ω) to denote the total number
of loops in ω.

The above discussion leads now directly to the representation given by Prop-
osition 2.1 for 8 = 1/2.

2.5. Structure of the Quasί-States. From the expressions in Proposition 2.1 and 2.2
it is obvious that the quasi-states < >ω depend only on the structural properties of
ω revealed in the random loop picture of the configuration. In fact, the only
relevant property of ω is how its random loops link together sets of sites at ί = 0. In
both the ferro- and the antiferromagnet a quasi-state Eω is uniquely determined by
the permutation πω of the sites in Γ, which takes the site xeΓ to the site π(x) which
is where the loop at x, starting off in the positive time direction, intersects t = 0 for
the next time. There is a one-to-one correspondence between the cycles in πω and
the loops in ω that intersect the t = 0 hyperplane. Let y0 denote such a generic cycle:

(2.36)
X2

A first observation to make is then that in the functional £*, with # =F or AF,
there are no correlations between the spins on two sets of sites which support
distinct cycles in the permutation:

(2-37)

where Ayo is an arbitrary operator acting on the sites {x1? . . . , xr}. Moreover,
E* (Ay ) depends on ω only through y0 and we therefore might as well denote it by

££(A0)
As the E* are linear, they are completely determined by their values on

operators of the form Ayo = σ^ σ£., where z/e{0, 1, 2, 3}, and by σ° we denote the
identity operator. It is a straightforward exercise to compute E^σ1^ . . . σ£.)
starting from the space-time picture: we consider the spin to be a piecewise
constant function along y0 taking values σ 3= ± 1. Where there is a factor σ3 the
expectation value picks up a factor ± 1 according to what the spin is at that point.
σ1 reverses the spin and σ2 = iσlσ3. For the ferromagnet the result is:

(2.38)
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Classically, the antiferromagnetic state is equivalent to a ferromagnetic one of the
staggered spins

σx = (-l)xσx. (2.39)

We find that such a relation holds between the two quasi-states corresponding to
the same permutation y0. The relation (2.39) does of course not correspond to
a unitary transformation of the full algebra of observables of the system and is
possible only because we are not dealing with true quantum states but only with
quasi-states. A compact expression for the antiferromagnetic functionals is:

<F(< - σίl) = EF

Q(σi

x\ σXH(-1)#{^£><\ . . . <) . (2.40)

We conclude this section by summarizing the results of Propositions 2.1 and 2.2
in the following way: we found a representation of the ferro- and antiferromagnetic
ground states as a convex combination of quasi-states which for the ferromagnet
are a partition of the lattice into subsets on which the spins are locked together in
a parallel state. For the antiferromagnet the spins are rigidly correlated in a stag-
gered manner. This picture can be considered as a generalization of the VBS-states
where neigboring spins are paired into the singlet state (for a different generaliz-
ation see [17]). In particular, depending on the properties of μ(dω\ the states can
also have long range order, characterized by the fact that the clusters percolate
throughout the system. Finally we want to remark that the quasi-states each have
a much larger symmetry group (which depends on ω) than the ground state itself.
Because there are no correlations between the sets of sites belonging to different
loops, the spins on the distinct cycles in πω can be rotated independently.

2.6. The SU(2S -1- ^-Invariant Spin-S Models with Interaction - P(0). We now turn
to the Q-S decomposition of a generalization of the spin-^ Heisenberg ferro- and
antiferromagnet to arbitrary values of the spin. In particular this generalization
includes the one-dimensional antiferromagnets that are the main subject of this
paper. Starting from the Heisenberg Hamiltonians as they were written in Sect. 2.4,
we just replace Tx,y and 2P(£*y by the corresponding operators for a spin S system: in
the "ferromagnetic" case the interaction hζ = T X t y interchanges the states at the sites
x and y and for the antiferromagnet hf = (2S +Ί)P^, where P(0) is given in (1.2). It
is obvious that both hζ and h£F are SU(2)-invariant. Due to the invariance of this
interaction under parity preserving relabelings of the 2S+1 states, this SU(2)-
symmetry is actually embedded in a larger (for S^l) SU(2S-f l)-symmetry. The
model with interaction hζ is a degenerate ferromagnet and its ground states
are given by all permutation symmetric states of the system. (The integrability of
the one-dimensional models with interactions hζ and — hζ was demonstrated in
the well-known work of Sutherland [50]). The interaction h£F is much more
interesting and is the actual subject of the rest of the paper. In the case of the
one-dimensional lattice, we recover the SU(254-l)-invariant model that was
first studied by Affleck [6] and also by Klϋmper [39] and Batchelor and
Barber [11].

As before, we can only deal with the non-frustrated case, and let ΓA and ΓB

denote the two sublattices defining the bipartite structure of the system. The
SU(2S+ l)-symmetry of the Hamiltonian with interaction (1.2) is then represented
by the fundamental representation on one sublattice and the antifundamental
representation on the other sublattice.
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The matrix elements of e~βH and the partition function for this model can be
expressed using the same correspondence between configurations ω and sets of
loops as for the spin—1/2 antiferromagnet. But now each loop has to be decorated
with a label α taking the 25 + 1 values — 5, —5+1,. . .5 — 1,5. The spin configura-
tion as a function of xeΓ and f e[0, /}], is now the following:

3 Γ α if the label of the loop is α and xeΓA

\— oc if the label of the loop is α and xeΓB '

The proof of Proposition 2.1 now follows by the same arguments of Sect. 2.4,
taking into account the correspondence between loop labelings and space-time
spin configurations given in (2.41).

In the one-dimensional case the loops can be interpreted as the boundaries of
the elements in a partition of the two-dimensional space-time. As we will see in the
next section, the weights with which these partitions occur are given by the Gibbs
weight for the associated configurations of a Potts model at the selfdual point. This
will enable us to analyse the possible long-range order in the ground state of these
models.

3. Equivalence with the Two-Dimensional (25'+l)2-State Potts Models

It will be natural to consider the spin chain with a priori different coupling
strengths for the even and odd bonds. More generally, we are concerned with the
Hamiltonian for a spin-S chain given by:

L+-1

where hAF = (2S+l)P(0) is defined in (1.2), Jx>0 and L_, L+eZ, L_^
We shall now show that associated to the geometric structure of Sect. 2 is

a Potts model, or rather a pair of dual Potts models (the A- and the 5-model). In
the translation invariant case ( Jx = J for all x) one arrives at the Potts model at its
self-dual point, where it is exactly solvable [8]. In this situation the equivalence was
conjectured by Affleck and established on the level of the spectrum of the transfer
matrices by Batchelor and Barber [11] and Klϋmper [38, 39].

The Potts models are defined over a 1 + 1 dimensional lattice, Z x 1R, in which
one of the directions (corresponding to the "time" of Sect. 2) is continuous.

To introduce the lattices on which the A- and B-Potts model variables reside,
we start from the space-time of the quantum spin chain embedded in R2 and
partition R2 into vertical strips of width 1 which we label alternatingly A and B,
with the strip 0<x< 1 getting the label A, as in Fig. 1. The Potts variables of the
^4-model reside on the vertical lines bisecting the y4-strips and the variables of the
β-model are situated on the lines bisecting the β-strips.

For a volume [0, 7] x [L_, L+], the Potts configurations of the y4-model are
functions ξ(x, t), x = even-h^6[L_, L+], which are piecewise constant in time and
take values in {!,...,#}. In the time direction we always take the periodic
boundary conditions. Other than that, there are two natural boundary conditions
for a Potts model, which are exchanged under the standard duality map: the free
and the wired, the latter corresponding to adding an extra strip to the left and to
the right of the volume where the spins are required to assume a common value
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(we assume the convention that the partition function includes also the sum over
this common value). As will emerge from our discussion, the relevant boundary
conditions here depend on the label of the strip along the boundary. If it is A then
the A -model gets the/r^e b.c. and the J9-model the wired one, and otherwise it is the
other way around.

The partition function of the A-model (with the relevant boundary terms) is
given by

(3.2)

where Jv = {Jζ} and {Jf } are sets of positive constants (these are the ferromagnetic
coupling constants in the vertical and horizontal direction respectively and in
which we have absorbed the inverse temperature of the Potts model), ρJ

A is
a product of independent Poisson point processes on the lines {x = 2n+^} x [0, T\
with intensity J*, and £ω denotes the sum over all configurations ξ for which the
discontinuities happen only at points (x, t) in the configuration ω of the Poisson
process. The sum in (3.2) should be interpreted as incorporating the boundary
condition convention explained in the previous paragraph.

The Poisson measure incorporates the interaction in the vertical direction, and
it can be arrived at by way of a continuum limit of ordinary discrete Potts models
with vertical couplings analogous to those seen in (3.2) for the horizontal inter-
action.

For the jB-model we have an analogous expression with the condition
{x = even+^} replaced by {x = odd+^}.

Potts models are conveniently studied via an embedding in the random cluster
model formulated by Fortuin and Kasteleyn [19]. As we shall see, it is at that level
that the correspondence with the quantum spin chain is most explicit. The theorem
below and Theorem 7.2 present some key results which are derived by that route.

Theorem 3.1. Let the parameters of the finite quantum spin chain with interaction
— P(0) on the interval [L_, L+], and the ones of the A- and B-Potts models be related
as follows:

. (3.3)
Then

i)

Σ J*+2S Σ ^
jc = even x = odd

(3.4)

In particular the ground state energy per site of the quantum chain equals the free
energy per unit volume of the associated Potts model up to a trivial constant.

ii) The Potts model has periodic boundary conditions in the vertical direction and free
boundary conditions in the horizontal direction.

iii) The distribution μ(dω) of the random loop representation for the quantum chain as
described in Sect. 2, is identical to the distribution of the boundaries of the
connected clusters of the Potts model in the ¥K-representation (see below).
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It should be noted that the coupling constants of both the A and the B Potts
model depend on all the coupling constants {J x} of the quantum spin chain. The
relevant coupling constants as defined in Theorem 3.1 are j£ and Jf with
x^even+ ̂  for v4-model, and x = odd-\-^ for the B-model.

In Sect. 7 we present some explicit relations between the correlation functions
of the quantum chain and those of the Potts models, which, in particular, imply
a non-perturbative result on the spectral gap in the quantum spin chains with
staggered couplings (see Theorem 7.1).

We now turn to the proof of Theorem 3.1.
First we derive the Fortuin-Kasteleyn representation [18, 19] of the two-

dimensional Potts models described above, by showing that the partition function
and the probability measure of the Potts model are equal to the ones of a random
cluster model. The random cluster model is obtained by considering a configura-
tion ω = ωA x ωB generated by the Poisson process pJ

A (dωA)pJ

B (dωB\ as a partition
of the union of the vertical strips of type A in the following way: a point (x, t)eωA is
considered as cutting the vertical strip with coordinate x at the height t and a point
(x, ήeojβ connects the two ^4-strips adjacent to the B-strip at coordinate x and
height t (see Fig. 1). The partition function of the random cluster (RC) model is then
given by:

&RC = $pJ

A(dωA)pJ

B

H(dωB)qCA(ω*x^ , (3.5)

where CA(ωA x ωB) denotes the number of connected clusters (consisting of pieces
of strips of type A) in the configuration ωAxωB. The equality of ̂ Potts and J^RC can
be derived straightforwardly by expanding the exponential in (3.2):

^otts = ί PJI(dω) ΣωA exp j Σ ί ΛJ?(<
ξ (.x = 2n + ±

= jV/(<to)Σ-Π Σ —](J^e-"
ξ x nx=0nx-

x J dt(x) - dt™δξ(Xtt<?>}tξ(x+2.t<?)' '

= \ρA(dωA)pJ

B(dωB) ΣωA [] δξ(y

ξ (y,t)eωB

= j pJI(dωA)pJ

B(dωB)qCA(ωA xωβ) = ̂ RC . (3.6)

v In the sequel we shall write ω for ωA x ωB and pj(dώ) or p(J ' J \dώ) instead of
pJ

A(dωA)pJ

B(dωB).
A by now standard and very convenient tool for the study of the random cluster

model is provided by the FKG inequalities [20]. Following is the FKG-structure
which will be used to derive some of the main results of this paper in Sects. 4-7.

We define a partial order on the configurations ω as follows: ω'<ω if the set of
,4-bonds in ω is contained in the set of ,4-bonds in ω' and the set of β-bonds in
ω contains the set of £-bonds in ω'. (By ,4-bonds we mean bonds occurring in an
,4-strip and analogously for 5-bonds.) As before, let /per(ω) denote the number of
loops in ω, considered with periodic boundary conditions in time. We consider the
loops as the boundaries of a collection of connected subsets (connected clusters) of
the plane. Each such connected set consists of the vertical strips n < x < n +1
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connected by horizontal bridges. All strips in a given cluster are either of A or of
B type. Let CA(ω) denote the number of connected clusters of A type and CB(ω) the
number of clusters of B type. With these definitions one then has the following
obvious but crucial properties: NA(ώ) and CA(ώ) are decreasing functions of ω and
NB(ω) and CB(ω) are increasing, where Nc(ω) denotes the number of bonds in
ω which occur in the strips of type C, C = A, B.

In the following proposition and throughout the rest of the paper, pj(dω)
denotes the Poisson measure on the configurations ω for the quantum spin chain
on a finite interval, [L_, L+], containing L+ — L_ -f 1 sites, and at inverse temper-
ature β (see Sect. 2.1). J stands for the collection of coupling constants {JX}L ^X^L*
which determine the intensities of the independent Poisson measures for each
bond. We will sometimes need to distinguish between the coupling constants for
even and odd x; we then use the notation: J = (Jeven, Joάά).

One then has the following relations:

Proposition 3.2. With boundary conditions described above, the following relations
hold: for any ι/>0,

p( Jeven, Jodd) ̂  „ /per(ω) = ( Jeven, Jodd) Cx(θ» + CB(θ>)

where

xeven .x odd

C3==M-*«-i) l-(-i)^}- lexp{jβ((1_M) Σ Λ-Kl-u-i) Σ J,)}. (3.8)
xeven x odd

Proo/. We start by reformulating the random loop picture as follows. As before we
consider the loops as being embedded in the plane which we have divided into
vertical strips labeled alternatingly A and B as in Fig. 1. We can then associate with
each configuration ω, a set of A- and ^-clusters as follows. When ω contains an
activated bond in an /4-strip this bond is considered as forming a connection
between the two B-strips to the immediate left and right of it and as cutting through
the ,4-strip to which it belongs, and analogously for the bonds in a 5-strip. Thus for
each configuration ω we have obtained a collection of clusters of A and B type and
such that two different clusters with a piece of common border are of different type.
CA(ω) and CB(ώ) are the number of A-clusters and β-clusters in ω, respectively.

We consider a finite interval of the chain of the form [L_,L+], with
L- 5^0 <L+, and such that the number of sites is even.

For concreteness, let us suppose first that the number of sites (L+ — L_ + 1) is
even. Then, the boundary strips are either both of the A or both of the B type;
suppose they are of the A type. Recall that we then have free boundary conditions
for the ^-clusters and wired boundary conditions for the ^-clusters (wired indepen-
dently at the left and at the right boundary) in the space (horizontal) direction. In
the time (vertical) direction the boundary conditions are periodic. Call everything
connected to the leftmost ^-cluster the "outside." Then each loop in ω unambigu-
ously encloses a domain and has the complement of that domain as its outside,
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i.e. every loop in ω is the outer boundary of exactly one domain and except for the
"outside," each domain has a loop as its outer boundary.

Therefore the following relation holds:

/per(ω) = Q(ω) + CB(ω)-l. (3.9)

Obviously we would have arrived at the same relation (3.7) if the boundary strips
are of the B type or if the number of sites is odd. Denote by NA(ω) and NB(ω) the
number of activated bonds that occur in ω in the yl-strips and ^-strips, respectively.
Then, with the boundary conditions described above, the following Euler relation
holds (see Lemma 3.3 below):

ω)-NB(ω)=^{(-i)L--(-l)L+}. (3.10)

Using (3.9) and (3.10) we have:

β(ω)-]VB(cα) + /y 4 (co) ί (3 } ̂

The factors UNA(CO) and UNB(CO) can easily be absorbed in the measure p(dω) as a mere
modification of the intensity and the normalization of the Poisson process using
the relation:

(3.12)

for any λ > 0. That completes the proof.

Proof of Theorem 3.1. In Proposition 2. 1 we obtained the following expression for
the partition function of the spin S model with interaction — P(0):

-j pJ(dω)(2S+l)lpef(ω} . (3.13)

We apply the second equality of Proposition 3.2 with tέ = 2S+l. Comparing the
result with (3.6) one then sees that up to a trivial constant ^(S) is equal to the
partition function of the ,4-Potts model in the Fortuin-Kasteleyn representation
with q = (2S + I)2. Taking the logarithm one obtains i) of Theorem 3.1. In the same
way one obtains ii).

We still have to prove the particular form of the Euler relation that was used in
the proof of Proposition 3.2. We will use the following lemma also to determine the
self-dual point of the "continuous time" Potts models.

Lemma 3.3 (The Euler relation). With the prescription of above one has:

ω)~NB(ω) = ̂ {(~l)L'-(-l)L+}. (3.14)

Proof It is obvious that (3.14) holds for the configuration ω that contains no bonds
at all. We now prove that (3.14) is valid in general by showing that for any
configuration ω' obtained from any other configuration ω by removing a bond, one
has E(ω') = E(ω).

Suppose for concreteness that the bond to be removed is in an ,4-strip and call it
b. We divide the neighborhood of b into four regions and label them A1,A2,B1 and
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B2 as shown in Fig. 1. There are two possibilities:

1) In the cases where the domains A1 and A2 are connected with the bond
b present, we must have that after the bond has been removed B1 and B2 are no
longer connected. So in this case removing b leaves the number of .4-clusters
unchanged, but increases the number of ^-clusters by 1. Hence indeed

2) If with b present Al and A2 are not connected, then there at least one of these
two ,4-clusters must be surrounded by a ^-cluster that contains both B^ and B2.
Therefore B1 and B2 will still be connected when b is removed. So, in this case
removing b leaves the number of 5-clusters unchanged and decreases the
number of yl-clusters by 1. Again E(ω') = E(ω).

The Potts models are exactly solvable at their self-dual point in the thermo-
dynamic limit. For quantum spin chains this corresponds to the translation
invariant case where JX = J for all x, and taking the limit β->oo. This relation
follows from the next proposition.

Proposition 3.4. The relation

JH

-τy = q (3.15)
Jy

determines the self-dual point of the continuous time Potts model with partition
function (3.2).

Proof. The statement is a direct consequence of the Euler relation. In Fig. 1 a cer-
tain configuration ω of cuts and bonds is depicted. The clusters consist of the pieces
of vertical strips connected by the horizontal bonds in between. Recall that in the
time direction the boundary conditions are periodic. In the horizontal direction the
clusters at the boundary strips are subject to free boundary conditions. We also
added an extra strip without bonds to the left and to the right of the interval. This is
the situation where Lemma 3.3 holds and the A and the B Potts model are then
exactly each others dual.

Using Lemma 3.3 and (3.12), the expression (3.6) for the partition function of the
A Potts model can then be transformed into the partition function of the B Potts
model with new coupling constants:

^rs = ί PJϊ(dωA)pJ

B

H(dωB)qc^* »•>

- < « * χ » . > . (3.16)

As pq

A (dωA) generates the horizontal and ρq

B

 J (dωB) the vertical bonds of the
5-modeL the condition for self-duality is JH = qJv.

Note that because of the relations between the parameters of the quantum spin
chain and the Potts models, self-duality of the Potts models is equivalent to
translation invariance of the spin chain.

We end this section by deriving an expression for the spin-spin correlation
function of the spin chain under consideration, in terms of the associated random
cluster model (3.6). This random cluster model is a simultaneous realization of the
A Potts model and its dual, the B Potts model. As remarked before, the boundary
conditions are periodic in the vertical direction for both realizations, but at the left
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and right edges one has wired boundary conditions for one and free boundary
conditions for the other realization.

In terms of the random loop model the (imaginary time) spin-chain correlation
function is given by (see (2.9)):

<S3(x, t)S3>(y, s)> =(- l)*-yC(S)Prob((x, ί) is connected by a loop to (y, s)) .

(3.17)

In the random cluster model the loops are viewed as the boundaries between two
domains of opposite type. It is therefore clear that:

, y)) , (3.18)
where, for C = A, B, Jc(x, y) is the indicator function of the event that xc and yc

belong to the same cluster. Here xc = (xc, ί), with xc defined by the requirements
that \x — Xcl=i, and that xc belongs to strip of type C. Note that for any two
space- time points x and y, /^(x, y) is an increasing and IB(x, y) a decreasing
function.

We will often use the notation x~y to indicate the event that x and y are
connected. If x and y have integer space coordinates (i.e. they are on the vertical
lines) connected means connected by a loop or a line in ω. If the space coordinates
of x and y are not integer the notation means that they belong to the same
connected cluster. The event is empty if the two points belong to strips of different
type or if the space coordinate of one of them is an integer and of the other one is
not.

The individual probabilities Prob(x^ and y^ belong to the same cluster), can be
computed in the g-state Potts model (see the proof of Proposition 3.2, where we
applied the Euler relation). So,

<53(x)53(y)X-l)x"^C(S)ProbPotts(x^ and y^ belong to the same cluster) ,

(3.19)

and if \χ — y\ = l and t = s9 we have

<S3(x)S3(;x + l)> = -C(5)ProbPotts(x-iand x+f belong to the same cluster) .

(3.20)

4. Finite Systems and the Thermodynamic Limit

As a first application of the equivalence with the Potts model obtained in the
previous section we now prove some preliminary properties of the spin S model
with interaction — P(0). Except when mentioned otherwise we only assume that the
coupling constants are strictly positive.

Theorem 4.1 (Finite Systems). For each finite interval [L_,L+], the limit

O[L-,L+ ]=lim< >fL_,L + ] (4.1)
/ϊ-»αo

exists, both for the quantum spin chain and for the associated random cluster model.
Furthermore, if the number of sites (i.e. L+— L_ + l) is even, the limiting quantum
state has Stot = 0 and in the random cluster model there are no infinite lines (almost
surely).
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That the finite volume ground state of a finite chain of even length is unique and
is a spin singlet confirms the antiferromagnetic nature of the models. The above
theorem can be viewed as the analogue of the well known result of Lieb and Mattis
[42] for the Heisenberg antiferromagnet for the class of Hamiltonians under
consideration here.

Theorem 4.2 (The Thermodynamic Limit).

1) The finite volume ground states for the quantum spin chains and the probability
measures for the random duster models converge to a well-defined thermodynamic
limit provided the parity of the boundary sites is preserved; i.e. for any local
observable Q the following limits exist:

<β>even= 1ΪΠ1 lim <β>fL_,L + ] , (4.2)
L- -»• — oo,L- even β-+ oo
L+ -> + oo,L + odd

<β>odd= lim lim <β>fL-,L+) , (4.3)
L - -» — oo, L - odd β -> oo
L+ -> + oo,L+even

and with similar limits defining μeven(dω) and μoάd(dω).
2) Therelation between the quantum states and the probability measure of the random

cluster model valid infinite volume (see Sects. 2 and 3) persist in the infinite volume
limit. In particular:

<Sx S,>even(odd)-(-ir-yC(5)Probμeven(odd)((x,0) is connected by a loop to (y, 0)) .

(4.4)

3) For translation invariant couplings the states < >even and < >odd are translates of
each other, and each is invariant under translation of period two, as well as under

global spin rotations.

Remark 4.3. For translation invariant and staggered couplings the states < >even

and < )odd are also ergodic and weakly mixing [21] under even translations. This
fact follows from the clustering relation and the clustering properties of the Potts
model which are implied by FKG arguments (see Sect. 7 (Theorem 7.2)).

The rest of the section is devoted to the proofs of Theorems 4.1 and 4.2.

Proof of Theorem 4.1. Since the arguments are fairly standard we shall be satisfied
with an outline of the proof.

The existence of the limiting quantum state for the finite chains is trivial. For
the random cluster model we can use the one-dimensionality of the system and the
Perron-Frobenius theorem.

If the number of sites in the spin chain (L+ -L+ 1) is even, it follows that if
there is one infinite line, then there must be at least two infinite lines with opposite
parity, i.e. such that at any given time the distance between the two lines is odd. In
the random cluster picture this means that there are two infinite clusters of the
same color (A or B) which is impossible by the theorem of Burton and Keane [12].
Alternatively, one can show by a variational argument that maintaining two
infinite lines of opposite parity in a finite system costs a non-vanishing amount of
free energy per unit of imaginary time.

By construction the state of the spin chain is necessarily rotation invariant and
because there are no infinite lines one easily shows that </(St

3

ot)>=/(0) for any
function/ Hence the state must have Stot = 0.
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Proof of Theorem 4.2. From the FKG structure defined in Sect. 3 it follows that the
measures μ[L-,L+](dω) form a monotone sequence in FKG sense (see Appendix II)
if L- and L+ are chosen such that the boundary strips are always of the same
type (A or B}. The standard argument then guarantees that the thermodynamic
limit converges (see e.g. [1]).

That also for the quantum system the thermodynamic limit converges and
satisfies the relation (4.4) is not immediately evident because local observables for
the quantum chain are typically related to probabilities of a non-monotone and
non-local event, e.g.

χ^y /even

1 C(S) lim Probμ[L L _} ((x, 0) is connected by a loop to (y, 0)) .
L- -* — oo, L- even
L+ -> + oo,L+odd

(4.5)

The event "(x, 0) is connected by a loop to (y, 0)" is non-local and it is non-
monotone because

Probιoops(x an(3 y are connected by a loop)

(XA and yA belong to the same cluster andλ
= Prθbrandom cιusters , u , . , u , , , (4.6)

\xB and yB belong to the same cluster /

is the probability of a non-monotone event since the connectivity of the A clusters
is increasing and the connectivity of the B clusters is decreasing for the order
structure at hand. Therefore we need a separate argument to show that

lim Probμ[L L j((x, 0) is connected by a loop to (y, 0))
L- -> — oo,L- even
L+ -> +oo,L + odd

= Probμeveπ((x, 0) is connected by a loop to (y, 0)) . (4.7)

If (4.7) holds (and also its obvious extensions to probabilities of more general
connectivities of finite sets of sites), the result follows by Proposition 2.1.

For convenience we introduce the following shorthand notation:

ΛM = [-M,M]x[-M,M],

L- -> — oo,L_even
L -> oo = ,

L+ -> +oo,L+odd

AL = Pΐobμ[L L ] ( x is connected by a loop to y) ,

^L,MΞProbμ[L L_ ](x is connected to y in the box ΛM) ,

A^ ΞProbμeven(x is connected by a loop to y) . (4.8)

It is obvious that for each finite L,

LίM, (4.9)
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and also that

x and v are connected to ΛC

M but not
Λ , (4 1Q)to each other by a loop inside AM

For M fixed we take the limsupί,-^ of (4.10). For local events the limsup is
actually a convergent limit. Therefore:

0^1imsupy4L — Probμeven(x and y are connected inside ΛM)
L-»oo

^Probμeven(x and y are connected to ΛC

M but not inside ΛM) . (4.11)

The RHS is monotone decreasing in M. Taking the liniM-^:

O^limsup ΛL~ ̂ oo^ProbμevenCxU and yA belong to two distinct oo clusters) .
L->oo

(4.12)

Since the RHS vanishes, the value of lim supL_> ̂ AL is independent of the sequence
of L's and so the limit exists and equals A^.

5. Absence of Neel Order

An infinite volume ground state of a quantum spin chain is said to be Neel ordered
if

liminf(-l) r<S 0 'S r>>0. (5.1)
r

The aim of this section is to prove that in the spin S model with interaction — P(0)

Neel order does not occur. More specifically we prove the following theorem.

Theorem 5.1 (Absence of Neel Order). For translation invariant or staggered coup-
ling constants the infinite volume ground states <( )even ond {* Xaa satisfy:

0. (5.2)

In absence of Neel order in the ground state of isotropic antiferromagnetic
quantum spin chains is believed to hold quite generally, but a rigorous proof of this
general fact is lacking. More was done for the Heisenberg antiferromagnetic chains:
1) for S=l/2 the exact Bethe Ansatz solution shows no Neel order, and 2) for
general spin, an argument for the absence of Neel order was given in [48] on the
basis of a new correlation inequality (which is further discussed in [49]).

A key role for the argument is played by a result of Gandolfi, Kean, and Russo
[22], whose adaptation to our system takes the following form.

Proposition 5.2. For the wired state of the A Potts model

Prob(within a box of size r, (0, 0) is surrounded by an ^-connected path) —> 1 ,
r-> oo

(5.3)

which holds regardless of q.
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It is easy to see that (5.3) is equivalent to the statement that there is no
^-percolation in the state obtained with the boundary conditions which favor
^4-connections. The reason for that fact is that if the ,4-clusters percolate then, then
any finite region is encircled by ^-connected closed paths which prevent B-
percolation. If there is no ^-percolation in this ^4-preferred state then neither do
B-clusters percolate. The proof of [22] rests on the planar nature of the connect-
ivity graph (i.e. the nearest neighbor nature of the interaction), its reflection
symmetries, and the FKG property.

Proof of Theorem 5.1. Theorem 4.2 permits us to express the expectation values of
any local observable of the infinite spin chain in terms of the random cluster
measures μeven(ίίω) and μ0dd(dω). The correspondence is identical to what Proposi-
tion 2.1 provides for finite systems. In particular, by (2.9):

(- l)r<S0 S,>odd = Prob^_wired((0,0) and (r, 0) are on the same loop) . (5.4)

As the loops are the boundaries of the connected clusters in the equivalent
random cluster model, when two sites x and y are on the same loop then both
XA~VA (in the y4-sense) and XB~JB (in the B-sense). Hence the probability is
bounded by

^ 1 — Prob(within a box of size r,

(0, 0) is surrounded by an ^-connected path)—> 0 , (5.5)
r -> oo

where the last step is by Proposition 5.2.

Let us remark that assuming the validity of the exact results for the Potts
model, absence of Neel order is also implied by the bound on the spin-spin
correlation function in terms of the truncated two-point function of the Potts
model, which is derived in Sect. 7.

6. Dimerization versus Power Law Decay: A Dichotomy

Despite the result of the last section, the models considered here may exhibit
symmetry breaking. However, the symmetry is that of translation, and the phe-
nomenon is caused by dimerization of the spin chain. The main result of this
section is the following dichotomy: for the models considered here, the ground state
either dimerizes (and exhibits spontaneous breaking of the translation invariance),
or the spin-spin correlations have a slow (non-exponential) decay, satisfying

Σl*<S§S*>|=+oo. (6.1)
X

Both possibilities occur (see the discussion at the end of Sect. 7).
A version of this dichotomy was first proved by Affleck and Lieb [7], extending

a result of Lieb, Schulz and Mattis [43]. They prove that the uniqueness of the
ground state implies the existence of low energy excitations (of the order of the
inverse size of the system). The argument in [3] applies only to half-integer
SU(2)-spin chains, and to SU(w)-spin chains with a self-conjugate representation
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acting at a site. Thus, the domains of applicability of our analysis and that of [7]
have some partial overlap, but none includes the other.

We also show that, when translation invariance is spontaneously broken, the
two periodic states are distinguished by the nearest neighbour spin-spin correlation
function. In this sense (and more if one looks into the representation) the states are
dimerized. The phenomenon can also be detected by the long distance behavior of
quantity:

2π yy c3

(9x,y = e1^- \ (6.2)

considered here only for x<yeΊL with x — y odd.
Observables very similar to GXty have been used earlier in studies of ground

states of quantum spin systems (see [7, 25, 36, 47]) and in the computation of the
magnetization of the critical Potts model [9]. In the second part of this section we
introduce the "total spin on half of the infinite chain" as an operator in the GNS
Hubert space of the ground state. This quantity appears to us as of more funda-
mental significance than the string observables &Xty9 and the latter can be expressed
in terms of it. Moreover this new operator serves as a dimerization order parameter
which reveals more clearly the detailed nature of the dimer order.

6.1. The dichotomy. Following is the main result of this section.

Theorem 6.1. For the ground states of the translation invariant spin S model with
interaction — P(0) ((3.1) with JX = J\ the following dichotomy holds:

- either the translation symmetry is spontaneously broken in the infinite volume
ground states

- or the spin-spin correlation function decays slowly (non-exponential) with

Σ|X<«>|= + <». (6.3)
X

In the first case, the symmetry breaking is manifested in the non-invar lance of the
pair correlation:

<S0 S!>even φ <Si S2>even = <S0 ' Sι>odd (6.4)

and also in the string order parameter:

lim <0 0 ,2N-l>even= Km < 0 1 , 2 Λ T > o d d > 0 , (6.5)
N -* oo N-» oo

lim < 0 ι , 2 J V - l > o d d = I™ <^l ,2JV>even = 0 . (6.6)
JV^oo N-^oo

Proof. We again rely on Theorem 4.2 to express the infinite volume state in terms
of the random cluster measures μeven(dω) and μodd(dω). Since the even and the odd
states are translates of each other, it suffices to consider one of them, for concrete-
ness say the odd state.

The physical origin of the dichotomy was outlined in the introduction. The
random cluster representation permits us now to express these ideas in a precise
way.

First we note that the result of [22], on the absence of simultaneous A and
B percolation, implies that the configurations ω contain no infinite lines, i.e. the
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lines (in space-time) along which the spins are correlated occur only in the form of
finite, non-intersecting, closed loops. The most important implication is that at any
given time, the spins are locked into rigidly correlated even clusters, with ΣS3 = Q
within each cluster.

The alternative may now be posed as between the following two possibilities:
the number of loops surrounding each site is either almost surely finite, or it is
almost surely infinite. Equivalently, there either is percolation or no percolation
(and if there is percolation then either A or B percolates, never both, and hence the
translation symmetry breaking). The zero-one nature of these probabilities is due
to the ergodicity of the measures under even translations (Remark 4.3).

In the absence of percolation, by the identity (2.9):

Prob((x,0)~0>,0))
x ̂  0, v ̂  1 x ̂  0, y 2:1

= C(S)Eodd(# connected pairs {(x, 0), (y, 0)},

*^0,y^l)=oo , (6.7)

where Eodd is the expectation with respect to the probability measure μodd.
That the alternative necessitates symmetry breaking can be seen in different

ways: i) via the existence of either A or B percolation, ii) by the distinction between
the two sublattices in the values of a topological index, or iii) via the staggered
values taken by the string order parameter. More explicitly:

i) If (6.1) fails then the origin is surrounded by a finite number of finite loops.
The last of those necessarily touches the infinite cluster. For the random cluster
state corresponding to the spin state < >odd, percolation is possible only for the
^-cluster. (The argument is presented in Sect. 5). It then easily follows that

i YYI ^> 0 if x:r= even H~ 4~
Probodd(x belongs to an infinite cluster) = < 1 . (6.8)

[U ii x = odd+i

A relevant question now is whether the probabilities of these events, which
are expressed purely in terms of the configurations ω, can be expressed in terms
of the expectation values of some spin observables. As we show below, the answer is
- yes!

ii) An alternative way to express the translation symmetry breaking, though
still at the level of the random cluster measure, is by considering the topological
index:

The index is defined only if the number of loops is finite, and it is easy to see that,
when defined, its values alternate (with the overall phase dependent on ω).

iii) We now show that the string order parameter (6.2), which is an observable
of the quantum spin chain, directly detects cluster connectivity (as opposed to loop
connectivity which determines the spin-spin correlation). By an application of
(2.6-7):

α>(0* v) (6.10)

with

loop of ω intersects [x, y] an even number of times] . (6.11)
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We use here the observation that the net flux of any simple loop through an
interval is either zero or ±1. If ω has a loop with a non-zero flux through the
interval [x, y] then the conditional average of &Xty, over the consistent spin
configurations, vanishes. In the other case, Σ^=JCSw =0.

Hence, the string order parameter can be given a neat geometrical meaning:

<$*,>;> = Prob(all loops intersect [x, y] an even number of times)

= Prob(any loop that encloses (x—i, 0) also encloses (y+i, 0) and vice
versa)

= Prob((x—i, 0) and Cv+i, 0) belong to the same cluster) . (6.12)

It immediately follows that <<5^y>=0 if y — x— 1 is odd.
For the odd boundary conditions the percolating cluster can only be of the

A-typε and it is unique. It follows that

lim <0 x,χ+2N+ι>odd= lim Probμodd((x-i 0) and (x-f 27V+f, 0)
N^oo ' JV-+00

belong to the oo cluster)

m2 for x odd

0 for x even '

Equation (6.13) is an explicit proof that the alternative to (6.7) is symmetry
breaking.

Going beyond the last statement, we can also show that the translation
symmetry breaking is necessarily manifested in the nearest neighbor correlations.
By (4.4):

_ , x+1) if x is odd

If μodd(dω)/β(x, x+1) if x is even

_ f f μ0dd(dω)/^(x, * + 1) if x is odd

U μeven(dω)IA(x, x+1) if x is even' (6.14)

where we also used the duality relation.
When there is percolation, y4-clusters percolate in the state μodd but not in the

state μeven The fact that this difference is then detected also at the level of the
nearest-neighbor connections is an implication of the general criterion of the Rising
Tide Lemma, which is derived here in Appendix II. (In the terminology explained
there, Jc(x, y) (with C = A,B) are strictly monotone functions.)

6.2. The dίmerίzatίon order parameter. More can be said about the dimerized state
in algebraic terms, by referring to the Hubert space associated with the ground
states < >even and < >odd via the GNS construction.

In physical terms, when it is correct to view the spins as organized into neutral
clusters it is natural to talk about the total excess spin to the right of x, i.e., the total
spin in half of the chain. This observation explains the following claim, which can
be derived within our representation of the states < >even and < >odd.
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Claim 6.2. Under the condition:

(6.15)

(i.e., the opposite of(6Λ)) the following limits exist

^ = lim Σ e-Λ}y-χ\S* = 1ϊm §*(ε) , (6.16)
ε|0 y>x £-+°

in the sense of strong resolvent convergence of operators in the GNS Hubert space
associated with either < >even or < >odd.

In terms of the random cluster representation:

£χ = Σ sy Itthe lo°P of y intersects (- °°> *]] - (6-17)
y > x

We omit here the proof, except for the comment that what is proven explicitly is
the convergence of the quantities:

<^<£)£>even(odd) (6.18)

for all strictly local spin observables. Equation (6.15) is a natural condition for both
the existence of the limiting operator S% and for the proof of the convergence. The
first statement is the simpler task, e.g., it is easy to see that:

<l^|2>even(odd)^ Σ IX^)! - (6-19)
y>Q

The operator S* is the third component of a vector (under spin rotations), with
5χ and §1 defined analogously. Using the invariance of the states:

<έ?^S*>even(odd) - <P|Sx|2 = 0>even(odd) , (6.20)

where P|sx|2 = 0 is the orthogonal projection onto the subspace with |SX|2 = 0.
The operators thus constructed permit to express the string quantity as follows:

0Xty=:e^(S*-l~s3y) for y>xeZ . (6.21)

Under the condition (6.15), the formula (6.17) for §*, implies the clustering be-
havior:

= 0 > - > 0 (6.22)

for I x — y\ ->oc. Hence, by comparison with (6.13) or directly from (6.17),

= 0 . (6.23)

Thus, the rotation of all the spins to the right of an odd site, by an angle
2kπ/(2S + 1), fe = 1, . . . , 2S, produces a state orthogonal to the ground state < )odd.
The orthogonality expresses the fact that such a rotation will necessarily break an
existing bond. That is not the case for rotations of the spins to the right of an even
site since, within the odd state, there is a positive probability that none of the
clusters within which the spins are correlated are broken by this division.

Remark 6.3. In the above discussion we used percolation ideas to relate the failure
of (6.1) to the positivity of m. For half integer spins, that can be replaced by an
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alternative argument based on the operators Sx, which shows how remarkable is
the fact of their existence. For half integer spins

£ω(ί>l&|ez) = I[w(x,ω)= +1]=0, 1 , (6.24)

where the important observation is the 0-1 property. Therefore, due to the
ergodicity of the state μodd(dώ) under the even translations, for each x:

zyodd = Q, 1 depending on the parity of x . (6.25)

Since,
^ = £*+ι + S* + ι, (6.26)

the projections obey

JV,|e=2 = l-JU+ι | e2. (6.27)

That directly implies the lack of translation invariance, in the following explicit
form:

πi λ —

= (-!)*, (6.28)

where the overall phase was determined by parity considerations.
This line of reasoning is reminiscent of the structural proof, by Aizenman and

Martin [4], of symmetry breaking in one dimensional Coulomb systems. It may be
noted that a string quantity related to the exponent seen in (6.28) was used in the
argument of [7], which was also restricted to half integer spins.

The above argument expresses a different mechanism for dimerization than the
one used in the proof of Theorem 6.1. The restriction to half-integer spin is
compensated by the fact that (6.28) can be extended to a different class of (frustra-
tion free) Hamiltonians for which the percolation picture is not valid, where the
result does hinge on the parity of 2S.

7. Decay of Correlations in the Spin S Model with Interaction —

Some elementary properties of the infinite volume limit of the states < >even and
{ * )odd were discussed in Theorem 4.2. We now present sufficient conditions for the
exponential decay of correlations in these states. The main result is:

Theorem 7.1. If either the A or the B Potts model associated with the ground state of
the Hamiltonian

H=-ΣJXP
(VX + 1, Jx>0forallx, (7.1)

X

has an exponentially decaying truncated pair correlation function (of the Potts
variables), then the limiting states <( )even

 and <( )0dd exhibit exponential decay of
correlations of local observables, and a non-vanishing spectral gap above the ground
state energy.

For a more explicit statement we introduce the following terminology. Let Q be
a local observable of the form

Q = e~tH S ? f l (7-2)
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(any local observable can be written as a finite sum of such products). Then suppQ

(the support of Q) is the set of space-time points {(xh ί)}. We also define supp Q to
be the minimal interval (consisting of points at time t with integer space coordinate)
containing supp Q.

The truncated correlation of two local observables Q and Qr, is defined as
<β;β'> = <fiβ'>-<fi><β'> For tne A Potts model the truncated two-point
function, in a state which is symmetric under permutations of the q values of the
spin, has the random cluster interpretation

, ς -q — 1 ^ y*

= c(q)Prob(xA and y^ belong to the same connected cluster) , (7.3)

where

with a similar relation holding for the B Potts model.

Theorem 7.2. Let < ) denote the expectation in the ground state of a finite chain
containing an even number of sites, or in one of the limiting states < >even or < >odd of
Theorem4.2. ThenJΌr any pair of local observables of the quantum system of the form
(7-2),

Kβ;β'>I^CeCQ. jζ_ minτ c (y ,z) , (7.5)
ygsuppg C = A,B
zesuppQ'

where CQ and CQ> are invariant under space-time translations of the observables. The
relations between the coupling constants of the quantum spin chain and the Potts
models are given in Theorem?).!.

The minimum over the two Potts models in (7.5) is important since it is
expected that in any situation one of the correlation functions vanishes, as
(x — y) -> oo. If that is indeed the case, then the implication is that the limiting states
< >even and < >odd are always clustering and hence pure phases. In the case of
translation invariant or staggered couplings we have the following remark.

Remark 7.3. The following inequality is obvious:

, ,_ t /the connected cluster of xc reaches beyondλ
τ c x, y < φ P r o b . (7.6)

cv '*'- w V a box of size 2 1| xc- yc | | centered at xc / v J

Therefore, whenever one can show that there is no simultaneous percolation of the
A-and 5-clusters, one also obtains

lim min τc(x, y) = 0 . (7.7)
| |x-y | |-*oo C = A,B

In the case of translation invariant or staggered coupling constants the argument of
[22] applies, but we expect that simultaneous A and B percolation is absent under
much weaker conditions.
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The bound (7.5), and some of the arguments used in its derivation are reminis-
cent of the estimate derived in [2] for the quantum Ising model in transverse field.
However, the case considered here is less direct. From (3.18) it is clear that the
spin-spin correlation function of the quantum chain is not equal to the truncated
two-point function of the associated Potts model. Nevertheless the decay rates of
the two are equal (Theorem 7.6).

At the end of this section we discuss some implications for models with
alternating coupling constants.

There are three steps to the proof of Theorem 7.2:

1) When the truncated correlations of quantum spins are transcribed in terms
of the Potts model, we obtain two distinct contributions. The first is easily bounded
in terms of the random cluster model's connectivity function, and the second is a
truncated correlation function of suitable observables of the random cluster model.

2) Using a general domination principle for FKG measures, the latter correla-
tion function is bound in terms of four point functions of the form

</C l(x,y);/c2(u,v)>, (7.8)

where Q are either A or B, and /c(x, y) are indicator functions for the events that xc

and yc are in the same connected C-cluster (for the definition of xc see at the end of
Sect. 3).

3) It is shown that for any combination of CΊ and C2 the truncated correlation
(7.8) is bounded in terms of the connectivity function of the ,4-model. By symmetry,
the same is true for the B-modoi (in any situation, only one of these bounds will
have a non-trivial consequence). The argument is based on a combination of the
FKG inequality and the Markov property of the random cluster measure.

The argument relies on two auxiliary results. The first one, used in step 2, is the
following domination principle for correlation functions with respect to an FKG
measure.

Lemma 7.4 ([46]). For a pair of functions f and g, let F and G be two monotone
functions with which f+ F and g + G are increasing andf— F and g — G are decreasing.
Then the truncated correlations with respect to any measure with the FKG property
satisfy:

<F;G>. (7.9)

The proof is elementary: it consists of two linear combinations of the four
correlation inequalities resulting from the monotonicity of/±F and g±G.

The next Lemma is needed for step 3. It provides an upper bound for the
truncated correlation of two monotone increasing functions of the random cluster
model.

Lemma 7.5. Let l± and I2 be two monotone increasing events for the random cluster
model, which are determined by the A-connected clusters of two non-random sets Dl

and D2. Then:
and D2 are ^-connected) . (7.10)

Proof. The key observation is the following inequality which results from the
combination of the Markov structure and the FKG property of the random cluster
measure:

I2y. (7.11)
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The reason for this inequality is that in the complement of CA[_D^\, the A-
connected cluster of D1? the system can be considered as having free boundary
conditions on the boundary. These boundary conditions mask the positive event l^
which is determined within CA\Ό{\.

The above reasoning was first employed in [13] for the Ising model and similar
arguments have later been used for a variety of other applications.

Using (7.11) and the trivial bound |/ι|:g 1, one then obtains:

(7.12)

Thus,

(7.13)

where the first inequality is just by FKG. That implies the bound stated in the
Lemma for the truncated correlation </x; /2>.

Proof of Theorem 7.2. For convenience, we first carry the analysis for observables
which are products, of the form (7.2), of only S1 and S3 variables at non-coinciden-
tal sites, and break the proof into the steps described above.

1) In terms of the random cluster representation of the spin chains:

ί \ί \
<β; Q'> = Sμ(dω)Eω(QQ')- J μ(dω)Eω(Q) J μ(dω')Eω\Q) . (7.14)

\ / \ /

Therefore

2'>|g lμ(dω)Eω(QQ')-$μ(dω)Eω(Q)Eω(Q')

J μ(dω)Eω(Q)Eω(Q}-( f μ(dω]Eω(Q]} ( j μ(dω')Eω.(Q')

(7.15)

The first term on the right side can be interpreted as the average over ω of the
truncated correlation within the quasi states Eω. The second term is a truncated
correlation function of the random cluster model.

To eliminate the first term we note the factorization property (see (2.37))

') = Eω(Q)Eω(Q') ^ ω does not contain a loop
connecting supp<2 and suppβ' . (7.16)

Using also the bound |£ω(Q)|^S |suppQI, one has

μ(dω]Eω(QQ}-\ μ(dω)Eω(Q)Eω(Qr)

PQΊ ^ prob(x and y are connected by a loop) . (7.17)
xesuppQ
yesuppβ'
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When x and y are connected by a loop then both x^ ~ yA and xβ ~ yβ, where xc ~ yc

is our notation for the event that xc and yc belong to the same C cluster. Thus we
can continue the bound as:

xesuppβ
yesuppζ)'

in prob(χc~yc)

min τc(y, z) . (7.18)
yesuppζ? C = A,B
zesuppQ'

2) In order to estimate the second term in the RHS of (7.15) we invoke Lemma
7.4. For the functions

) = Eω(Q')9 (7.19)

we take

£ J^(x, y)-/B(x, y) (7.20)
x,yesuρρζ)

and

£ J^(x, y)-/B(x, y) . (7.21)
x,yesuppQ' /

That the conditions of Lemma 7.4 are satisfied follows from the following observa-
tions. An elementary change of a configuration ω consists of the addition or the
removal of a single bond. Such a change will either join a pair of loops or cut a loop
into two. lfEω(Q) is affected, the change is by not more than 2JS'|suppβ| . However, the
change is zero unless there is a pair of sites x, yesuppβ whose loops are either
joined or disconnected in the process. In this situation the value of the increasing
function XX5yesuppQ/^(x, y)-/B(x, y) is changed by at least 1.

Applying the Lemma we get:

ί μ(dω)Eω(Q)Eω(Q')-n μ(dω)Eω(Q) V j μ(dω)Eω(Qf)

l(x, y); /Ca(u, v)>| (7.22)
C2 x,yesupp<2

u,vesupp(2'

which concludes the second step of the proof.
3) Our goal now is to estimate the quantities </d(x? y)j ^c2(

u> v)) appearing in
the right side of (7.22). By the "A — B" symmetry, it suffices to derive an estimate in
terms of the ^4-modeΓs connectivity function τA( , ).

The events /c(x, y) are of two possible types:

i) two A-sites, XA and yA, are in the same connected ^-cluster, or
ii) two 5-sites, XB and yβ, are not separated by a connected ^4-cluster (i.e. are

connected by a jB-cluster).

In either case, the events are determined by the A cluster of the set [xc, JC]A
defined by:

[XΛ, y^L = the two point set {x^, y^} , (7.23)

[xB, VβJΛ^the collection of the A sites in the interval joining XB and yB .

(7.24)
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For the application of Lemma 7.5 we define two monotone increasing events as
follows: if Cί=Aput A = IA(x, y) and Dγ = [x^, y^; if d - B put 1^ = 1 -IB(x, y)
and DI = [xβ, y^]^. 1 2 and Z)2 are defined in terms of /c2(u, v) and [uc2, vC2]^ in the
same way. Lemma 7.5 then implies:

I </Cl (x, y); /c2(u, v) > | ̂  Prob( [xCl, yClL - [uCa, vC2L)

^ £ Prob^-z^), (7.25)
ze[x f ι,ucι]/ι
z 'e[ur 2 >vr 2 ]Λ

where we have also used that |<1— 1\\ / 2 >HK/ι; / 2 > l
Interchanging the roles of A and B and using (7.3) one finally obtains the estimate

|</Cl(x, y); /C2(u, v^lgφΓ1 min £ τc(z, z') . (7.26)
C~A,B Z6[Xcι,yCl]c

z'e[u ( 2,vc2]c

Combining the inequalities (7.15), (7.18), (7.22), and (7.26), one obtains the
estimate (7.5), for the case where Q and Q are products of S1 and S3 operators at
distinct sites.

For the general case we use the identity S2 = /[S1, S3] to express the product of
spin operators as a linear combination of products of only S1 and S3. The products
may contain repeated factors. With a trivial modification the argument given
above applies to such products as well.

Proof of Theorem 7.7. Theorem 7.1 is a direct consequence of Theorem 7.2.

It is interesting to consider the implications of the above analysis for the spin
chains with alternating coupling constants

even if x is even
T r j ι ( 1 .2*1)

odd if x is odd

First it should be appreciated that while the spin system's Hamiltonian is only
periodic, the associated Potts models are translation invariant. A great deal is
known about such Potts models (though at varying levels of mathematical rigor),
and our methods allow one to extract from that some relevant information on the
ground states of the quantum spin chains.

For the Potts models it is known that the correlation length is a meaningful
notion, defined by the limit

ξpois = - lim -ί In τc(0, x) . (7.28)
*->oo |x|

The existence of the limit is an easy consequence of the supermultiplicativity (itself
implied by an FKG type argument): τ0(x, z)^τ0(x, y)τ0(y, z), where τ0 = c(^)~1τc,
C = A or B.

Since Theorem 7.2 provides only upper bounds, let us first strengthen the relation-
ship between the long distance behavior of the correlations in the two models.

Theorem 7.6. For the models with alternating coupling constants (7.27): ifξpoiis< oo
then also

| (7.29)
X-+00 |X|

exists and ξPoίi, = ξQS chain
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Proof. Let 0 < m = ξp0lis be defined by the limit (7.28). The theorem will follow from
the following inequalities: for any ε>0 not too large, there exist constants
C + , C _ > 0 such that

for all x large enough. Since the spin-spin correlations are dominated by the
function τ( •), the upper bound is trivial (in fact, an auxiliary argument shows that
C(S)e~m|x| would do). We now provide the argument for the lower bound on the
spin-spin correlation function. For concreteness let us assume that there is no
percolation in the A Potts model.

By (2.8) the problem amounts to estimating from below

P(0, x)ΞΞProb(0 and x are on the same loop) .

We first show that for all small ε>0 and finite D>0 (D will be taken O(l)) the
following quantity satisfies an exponential lower bound as in (7.30):

/there are sites we[( — 4εx)A, 0], t;e[x, (x + 4εx)yl], \

such that u and v are on the same loop and each of
Pε D(0,x)ΞProb

the yl-strips at the edges of the two intervals does not

\contain any bonds at times fe[ — D, D] /

(7.31)

with x odd. As the outer boundary of any ^4-cluster is a loop for the spin chain we
obviously have:

/there is an ,4-cluster intersecting both [ — 4εx, 0] and [x, x + \

4εx] but not [ — 4εx, x + 4εx]c, and each of the v4-strips
Prob

centered at ( — 4εx)yl,^, x — 2, and (x + 4εx)^ does not

\contain any bonds at times ίe[ — D, D] /

and therefore

Prob

I 3 an ^4-cluster connecting [—00, 0] and [x, +00] and each of

the ^-strips centered at ( — 4εx)yl,^, x—i, and (x

does not contain any bonds at times fe[ — D, D]

— Prob(3 an ^-cluster connecting [— oo,0] and [x + 4εx, +00])

— Prob(3 an yl-cluster connecting [—00, —4εx] and [x, +00]) . (7.32)

i) By FKG and translation invariance

an ^4-cluster connecting [ — 00, 0] and [x, +00] and each of \

Prob the τ4-strips centered at ( — 4εx)A,%9 x— i, and

does not contain any bonds at times ίe[ — D, D]



Geometric Aspects of Quantum Spin States 53

g;Prob(3 an yl-cluster connecting [— oo,0] and [x+oo])

x Prob(the v4-strip centered at \ does not contain any bonds at times

and, using (7.28),

Prob[3 ^4-cluster connecting [ — oo, 0] and

[x, + oo])^φΓ1τ^(0,x)^C'έΓ(1+ε)ml*1 . (7.33)

ii) The middle term in (7.32) can be replaced by the straightforward estimate

Prob(3 .^-cluster intersecting both [— oo,0] and [x + 4εx, +00])

^ Σ *A(y,z)
-(! +2ε)m|x | ^ (7.34)

where C">0 depends only on m, and it is assumed that 0<ε<^. By symmetry,
(7.34) applies also to the last term in (7.32). Combining (7.32-33) we obtain the
desired bound for Pε,D(0, x): for some C>0 (depending on D):

In order to complete the proof we have to argue that the exponential lower
bound on P£sjD(0, x) implies a similar lower bound on P(0, x). More precisely, we
use the bound for P£,D((), x), which we only need for "0" even and x odd, to obtain
the desired estimate on P(y, z) with y=—\ or y = 0 and z — x or z = x + l. This
covers all possible combinations of parities for the two sites.

We use Lemma 7.7 given below to show that there is some α>0 such that for
y = — 1 or 0 and z = x or x + 1:

Prob(j; and z are on the same loop|the event described in (

(7.35)

from which the desired bound immediately follows.
The basis for the claim (7.35) are the following three observations:

i) The event described in (7.31) implies the existence of a line (forming part of
a loop) outside of the rectangular neighborhoods #ι = [( — 4εx)^,0] x [ — D, D]
and B2 = [χ, (x + 4εxXJ x [ — D, D], connecting a point of the form (u,s) with
a point (v, £), where we[( — 4εx)A, 0], ι;e[x, (x + 4εx)A~] and 5, t= ±D.

ii) For every pair of points (u, s) and (ι;, ί), on the boundary of the boxes B^ and
B2 respectively (see i)), there is a pair of local events 4 and S2 in the boxes Bl and
B2 such that under 4 (u, s) is connected by a line to ( — 1, 0) or (0, 0), ad libitum, and
under <i2(v, t) is connected with (x, 0) or (x + 1, 0). The events, whose choice depends
on u, 5, v, and ί, are depicted in Fig. 3.

iii) The conditional probability of the above mentioned local events 4 and ̂ 2

occurring together - conditioned on any explicit configuration in the complement
of BI and B2 - is not smaller than e~

maε\x\, for some α>0.

More explicitly, the local events are constructed as follows (see Fig. 3). Assum-
ing the line connecting B1 and B2 (in the complement of B± and B2\ reaches Bl at
the point u0(w, D). The event A(u0) inside Bλ is then described by specifying that in
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t=D

Fig. 3. A schematic representation of the local event $Ί used in the proof of Theorem 7.6. Crossed
areas do not contain any bonds and gray areas contain at least one bond

the vertical strips between u and 0 one sees alternatingly the following picture: in
the first, third, fifth, ... strip, counted starting from u, there is no bond at times
O^ί^D and at least one bond at a time — D^ί^O; in the second, fourth,... strip
there is at least one bond with 0 ̂  t :g D and no bond with — D ̂  t :g 0. The strip to
the left of u is required not to contain any bonds at times — DrgίrgD. It is then
obvious that in the box B1 there will be a line connecting (u, D) and (— 1, 0) and
(0, 0). The case u = 0 is treated by a trivial modification of the above prescription.
The event ^2(^0) in ^2 is defined in a similar way.

Note that the random loop measure μ conditioned on an arbitrary configura-
tion outside any finite domain in space-time is of the form stated in Lemma 7.7. The
function/is the number of loops inside the finite volume taking into account the
connections in the configurations outside, and q = 2S-hi. It is then obvious that
/always satisfies the bounded-gradient condition with a = b=l because the addi-
tion or removal of a single bond can change the number of loops by at most one.

The indicator function of the event <ί i n ^2 is of the form FG with F increasing
and G decreasing.

It is useful to introduce the auxiliary events ^Ί,0,v0> which form a partition of the
event described in (7.31): (u0 = (u, s), v0 = (v, t)} is the "first" pair of points on the top
or bottom boundaries of B^ and B2 connected by a line outside these boxes ("first"
e.g. in lexicographic order). We also define Jmin(max) = min(max){Jeven, Jodd} and
put D = L

The observations i-iii) and Lemma 7.7 then yield for y = ( — 1,0) or (0, 0) and
z = (x,0) or (x+1, 0):

Prob(y and z are on the same loop |the event described in (7.31))

^ Σ Prob(^1(u0)n^2(v0)|^u0,vo)Prob(^Uo, Vo |the event described in (7.31))

Mi Q5 ^ χ £0j 1]]

f p(2S+1)jrmax(ί/ω)I[there is no bond in the strip [0, 1] x [0,1]]
2[ε|Jc|]
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x i f p(25+1)Jmax(dω)I[there is no bond in the strip [0, 1] x [-1, 1]]J

for some α > 0 independent of ε and x. We can now conclude that for ε > 0 small
enough one has

for all x large enough, which is a lower bound of the form (7.30).

In the above argument we use the following lemma, in which we refer to the
order structure on the space of configurations given by the inclusion relation:
ω^ω'iffthe set of bonds in ω contains the set of bonds in ω'. The proof is a rather
standard FKG-type argument, and is therefore omitted here.

Lemma 7.7. Let μ(dω) be a probability measure of the form:

where p^(dω) is a Poisson measure on configurations ω in a finite volume A (in our
case, A is a subset of the space-time), q ̂  1, andf(ω) is a function of bounded gradient, in the
sense that there are constants, a, fc^O such that f+aN is non-decreasing and
f—bN is non-increasing with N(ω) the total number of time-indexed bonds in ω. Then, for
any two functions, F non-decreasing and G non-increasing, which depend on ω in two
disjoint subsets of A (one determining F and the other determining G) one has the following
comparison inequalities, with expectation values with respect to modified Poisson measures:

I μ(dω)F(ω)G(ω)£$ p£J(dω)F(ω)l p\aj (dω)G(ω) ,

J μ(dω)F(ω]G(ω)^ J p\ aj(dω)F(ω) J piJ (dω)G(ω) . (7.36)

Assuming now the validity of all the results on Potts models presented in
references [31, 40, 41, 54] (not all of which have been derived rigorously), we obtain
the following implications.

i) If /even Φ «/odd> the ground state is unique, with exponential decay of correlations
and a spectral gap.
A perturbative version of this statement, for small (or large) enough ratio of the

two couplings, is contained in a theorem of Kennedy and Tasaki [36],

ii) The case Jeven = J0dd corresponds to self dual Potts models, in which case there
is a dichotomy, which we have discussed above in Sect. 6. Its manifestation in
the Potts model language is: at the self dual point there either is a first order
phase transition with coexistence of the ordered and disordered phases, or the
transition is second order - with a unique state at which the correlations decay
by a power law. The threshold value of q is q = 4, which corresponds to S = 1/2.
The implication of the Potts model calculation is:
ii.a For S = 1/2, there is a unique state, but with algebraic decay of correlations

and no spectral gap (Eq. (6.3) is satisfied). For the spin system that was
known independently of the Potts model result, by the Bethe Ansatz
solution and a result of [43].
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ii.b For S> 1/2 the translation invariance is spontaneously broken and there
are two partially dimerized ground states, translates of each other, with
exponential decay of correlations and a non-vanishing spectral gap (the
exact value of the spectral gap can be calculated, see [9, 38, 39]).

iii) In the case S = ^> for weakly staggered coupling constants, JQVQΏ = l+δ,
Λ>dd = 1— <5,0«5<^1, the correlation length is finite but a divergent function of
δ. The conjectured values of the corresponding exponents of the 4-state Potts
model [54], yield the following behaviour for the ground state energy per site
ε and the correlation length ξ:

β-ε0~-|M ξ~\δ\-* (7.37)

(up to logarithmic corrections).

This behavior of the spin \ Heisenberg antiferromagnetic chain with alternating
coupling strengths was first obtained by Cross and Fisher in their study of the
spin-Peierls transition [15]. It has the implication that when the elastic deforma-
tions of the underlying lattice are taken into account, the ground state of spin-
i Heisenberg antiferromagnetic chain develops the spin-Peierls instability. (For
a related rigorous result, see e.g. [34]).

Appendix I. Quasi-State Decomposition for Quantum States

Often, basic properties of the state of a quantum system are elucidated by presen-
ting it as a convex combination of states with a particularly simple structure. In this
work we find it useful to consider a broader class of affine decompositions - into
convex combinations of what is called below quasi-states. These are linear func-
tionals which are required to meet the positivity requirements (which are part of
the definition of a quantum state) only in their restrictions to certain Abelian
subalgebras.

Quasi-state decompositions made already an implicit appearance in the dis-
cussion of the itinerant ferromagnetism in reference [3]. The utility of such
decompositions there, stems from the fact that the ferromagnetic (or antiferromag-
netic) properties of a system with rotation-invariant spin-spin couplings can be
expressed through the correlation functions of a commuting family of the spin
variables (e.g., {σ^} with x the site index and 3 referring to the third component of
the Pauli spin matrices). The structure of the restriction of the state to such families
is made particularly transparent by decomposing it into a convex combination of
states in which the correlations are either "0 or 1," in the sense that spins are either
locked in a parallel (or antiparallel) state, or are completely independent. This is
also the major characteristic of the Fortuin-Kasteleyn representation of the Ising
model [19,18].

The purpose of this section is to formulate this notion, and discuss some of its
general properties in the context of a simple example.

La Definition of Quasί-States

Definition 1.1. Let ̂  be a sub-algebra of observable s of a quantum system. A densely
defined linear functional p (providing the expectation value for observables) is called
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a quasi-state relative to jtf, and we will say that it is well adapted to stf, if p is:

i) normalized: p(fl)=l, (I.I)

ii) positive on jtf, i.e. for each bounded Aestf, p(A*A)l^Q . (1.2)

The property of states which is not required of quasi-states is the general
positivity, i.e., the unrestricted validity of (1.2).

For finite dimensional quantum systems, the observables form matrix algebras,
and the linear functionals take the form:

p(A) = ΊτQA9 (1.3)

where Q is a corresponding density matrix. When s# is the maximal-Abelian
algebra of matrices which are diagonal in a certain common basis {|αΛ>}, the
conditions on Q under which p is a quasi-state relative to jtf are: i) Trβ = 1, and ii)
Q has non-negative diagonal elements,

<oUβlO^O f o r n = l , . . . . (1.4)

The last requirement is considerably weaker than the condition ii') β^O (as
a matrix) needed for p to be a state.

Remark 1.2. At this point it is natural to ask whether (1.4) has any ^-independent
content. The answer is rather negative: any hermitian matrix with Trβ ̂ 0 satisfies
(1.4) in some basis.

As we shall see, in certain situations a convex decomposition of a state into
quasi-states (relative to a naturally relevant algebra), provides a great deal of
insight into a state's structure. Such decompositions take the form:

P=ΣPnQn (1.5)
n

with the Qn quasi-states relative to a common algebra, and pn weights satisfying:

pn^0, Σί>π = l . (1.6)
n

Lb. An Elementary Example. As the simplest demonstration of the notion intro-
duced above, consider the system consisting of two spin- 1/2 objects, with the
spin-spin ferromagnetic interaction:

H=-σ1 σ2. (1.7)

The ground state of the related antiferromagnetic Hamiltonian ( — H) is given by
the rank-one projection

Po = |0><0| (1.8)

onto the single state (|0> = (|i, ~i> - 1 -£, %»l^2\ where the total spin is S = 0. In
this state one can safely say that σ1 = — σ2, e.g.,

TrP0(5i + 52)
2 = 0 . (1.9)

The ground state of the ferromagnet is slightly less elementary. It has the three-
fold degeneracy of the space on which S=l. The corresponding projection is
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PI = Ά — PQ = S (S takes here only the values 0 and 1), and the (normalized) state
operator is

6 + =is. (Lio)
While the spins are as parallel as the uncertainty relations allow, it is not true that
^-52 = 0. In fact,

(31-a2)
2 = l>Q. (1.11)

The fact that except for the "zero-point fluctuations" the spins are basically aligned,
is easily seen in the following quasi-state decomposition of the ferromagnetic
ground state:

) , (1-12)
where T=2S— 1 is the exchange operator (7]α, b> = |b, α>; a,b=±).

Two basic observations here are:

- For any non-zero vector nelR3 both ^1 and ^Γare quasi-state operators
relative to the Abelian algebra jz/n generated by {<?! n, σ2 n}. The former is
actually a state operator.

- On any of the Abelian factors «$/„, the quasi-states corresponding to ^H and to
\T represent two simple alternatives. In the first state, <?! n and σ2 n form
a pair of uncorrelated variables (taking the values ±\ independently of each
other), whereas in the quasi-state %T, σ x n and σ2 n are locked together.

By the rotational symmetry, it suffices to derive these statements for n = (0, 0, 1),
within the standard Pauli spin matrix representation, which makes the first state-
ment really obvious. For the second we note that the restriction of Ύι(^T)A to
y4e«ί/(o,o,i) is determined by only the diagonal elements of iΓin the basis which
diagonalϊzes {σ?,σi}. That diagonal part of ̂ Γis i(|i,i><ϋ| + |~i, -i><-ί,

— 2 1). In particular, it follows that the quasi-state \ ̂ yields the following ferromag-
netic analog of (1.9):

σ2)
2 = 0 . (1.13)

Thus, insofar as the restriction to j/n is concerned, the ground state of
the quantum ferromagnetic Hamiltonian is equivalent to a positive temperature
state of a classical ferromagnet, and the decomposition (1.12) is identical to the
Fortuin-Kasteleyn random cluster decomposition of the latter.

I.e. Words of caution. Some notes of caution are due here. The lack of full
positivity implies that quasi-states may lack some of the properties which are
familiar for the expectation value functionals < > associated with regular states,
such as:

i) v4^0=><τl>^0, (1.14)

ii) <v4> rg \\A \\ (the supremum norm of A) , (I 15)

iii) <^*^>-0-><^B>-0 for any (bounded) B . (1.16)

In fact, the quasi-state operator \T provides us with the following "counter-
examples":

i) TriTΠσ! -σ2)
2 -!]=-!, while (^ -σ2)

2 -1^0, (1.17)

ii) Tri7t2-(31-σ2)
2] = 2,whae p-^-σ,)2!! = 1 , (1.18)
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and

iii) Tri7I(j?-σ!)2 = 0,yetTri7Iσ?-σi){Γ|-i,i><-i Ji |}[=l]Φθ. (1.19)

These elementary assertions follow from (1.13) and the observation that
2-(σ1-σ2)

2 = 2S-l=±l.
Nevertheless, the restriction of a quasi-state to any of the algebras for which it is

well adapted is free of the above "pathologies." In particular, the three principles
(L14)-(L16) are satisfied as long as A and B are restricted to any common £/n.

One may also note that while a quasi-state is not fully characterized by its
restriction to a single Abelian factor, in the above case the operator T is uniquely
determined by its rotation in variance and the values of Ύr^TA for

Appendix II: Strictly Monotone Observables for Gibbs-Fields and the Rising Tide
Lemma

The FKG structure of the probability measures μeven(dώ) and μ0dd(dω) is quite
essential for our analysis in Sects. 4-7. Here we provide some details concerning
this structure. We also introduce the notion of weak strict monotonicity and prove
the Rising Tide Lemma which was needed in Theorem 6.1 to show that breaking of
translation invariance (μeven =t= μ0dd) implies staggered behavior of the nearest neigh-
bor spin-spin correlation «SJC Sx + 1>e v e n ( o d d )Φ<Sx + 1 S J C + 2>even(odd))

Recall from Sect. 3 the definition of the partial order on the set of configurations
ω = (ωA, ωB\ with ωA(B} the set of ,4(£)-bonds labeled by space-time points. The
partial order is defined by declaring

ω :<ω' if ωA ID ω'A and ωB <= ω'B . (Π.l)

That leads to the notions of monotonicity of functions and domination of
measures: i) A function /is called monotone increasing if

/(ω) ̂  f(ω'} for all ω < ωf . (11.2)

ii) A probability measure μ(dω) is said to be dominated by another probability
measure v(dω), denoted as μ(dω)<v(dω\ if

f(ω)^l v(dω)f(ω) for all monotone increasing /. (II.3)

This structure is useful in a number of ways.

1) Fortuin, Kasteleyn and Gίnibre [20] provide a general criterion, under
which a probability measure would have the property:

J μ(dω)f(ω)g(ω)^$ μ(dω)f(ω) J μ(dω)g(ώ) (IL4)

for all monotone increasing/ and g. The FKG condition is satisfied by the random
cluster measures (see [1]).

2) For μ satisfying (II.4), the probability measures conditioned on the config-
uration in the complement of a finite volume, are monotone in the sense:

ΊEμ( \ωΛ<)<JEμ( \ω'Λc) for all ωΛc<ω'Λc . (II.5)

3) There exist domination relations among the random cluster measures cor-
responding to Potts models with various values of q(q=l corresponding to



60 M. Aizenman, B. Nachtergaele

independent percolation). Applications of these relations can be found in [19, 20,
18] and [1].

4) Of particular interest in this work is the domination relation

d(dω) , (II.6)

which follows by a simple limiting argument from (II.5).

The last relation includes the statement <S0 Sι>odd^<S0 Sι>even Our goal
now is to explain why whenever the two states are different, the inequality holds
in the strict sense. A key role in the argument is played by Lemma II.2,
whose name draws on the observation that a rising tide lifts all the ships in the
harbor.

It is useful to introduce the notion of strict monotonicity.

Definition 11.1. Let Jί be a set of probability measures on a configuration space
Ω with an order structure as above. A monotone increasing function on Ω is strictly
increasing in the weak sense with respect to Jί (for short Jί -strictly increasing), if

J μ(dω)/(ω)<J v(dω)f(ω) for all μ, veJί, μ<v and μφv . (II.7)

The difference between the two random cluster measures is due only to the
boundary conditions (pushed to infinity). They share, however, a common rule for
the finite volume conditional distributions. (A phenomenon exhibited also by
the family of the Gibbs equilibrium states at a first order phase transition.) In the
terminology discussed in [23] the measures have the same set of specifications.

Lemma II.2 (The Rising Tide Lemma). Let Jί be a family of probability measures
with common specifications y = {Έ( jω^)}^. A sufficient condition for a function f to
be Jί-strictly monotone increasing is that beyond some finite volume A0 the condi-
tional expectation is strictly monotone increasing with respect to the boundary
conditions:

ΊS,(f\ωΛ*)<1E(f\ω'Λc) (II.8)

for all A => ΛQ and all pairs of boundary conditions such that

and ω

where the last inequality means that the induced conditional expectations are not
identical.

Remark U.S. For a given set of specifications, the relevant notion of boundary
conditions consists of the equivalence classes of {ω^} defined by

ωΛ^ω'Λc iSΈ.( \ωA') = Έ.( \ω'Λ<). (11.10)

It is easy to see that for the random cluster model the equivalence class of boundary
configurations is determined by specifying the connectivity relations of the bound-
ary sites via the connecting paths in Ac. (Obviously many configurations in the
complement of A would be equivalent.)

Proof of the Lemma. Let μ and veJί,μ<v. Then, by the general result of Holley
([32]), there is a coupling p which is a probability measure on the space of pairs
{(ω, ω')} with marginals μ and v which is supported on pairs with ω<ω'. Using
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first the conditional expectation formula and then the coupling, we have:

= lp(dωλ*xdω'Λ.)(E(f\ωΛ<)-E(f\ω'A.)) . (11.11)

Assuming the measures are different, there is some finite volume A =3 Λ0 for which
p assigns a positive measure to pairs of configurations which are inequivalent as
boundary conditions in Λc. Since the integrand in (11.11) is strictly positive at such
points, and is non-negative in general, it follows that v(/) — μ(/)>0.

Lemma II.3. For the random duster model, for any x, yeZ x IR, the random variable
IA(x, y) satisfy the criterion of the Rising TideLemma 77.2. (Theset ΛQ can be taken as
any box with x and y in its interior.)

Proof. Let A be a finite box containing x and y in its interior, and let ω
Then each of these configurations induces a partition of the ,4-sites on the
boundary of A into clusters connected in the exterior. The relation between the
configurations means that the boundary partition corresponding to ωΛ< is a refine-
ment of that corresponding to ω^. The difference in the conditional expectations of
IA (x, y) is the result of two effects: i) the induced measures in A are different, and ii)
the finite volume conditions under which x and y are connected are different (since
ω' provides a better connected boundary). Denoting by IωΛc and lω'Λc the corres-
ponding indicator functions (of only ωΛ)9 we have:

= E(Iωv(x,

y w.r.t. ωΆc and x^y w.r.t. ω^)|ω^) . (11.12)

When the two configurations are not equivalent then, due to the strict positivity of
the measure, the last term is strictly positive.

In this paper the Rising Tide Lemma was applied in Sect. 6. We expect it to be
of interest also in various other situations where the FKG structure is of relevance.
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