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Abstract: For a positive integer / divisible by 8 there is a (bosonic) holomorphic
vertex operator algebra (VOA) VΓl associated to the spin lattice Γ/. For a broad
class of finite groups G of automorphisms of VΓl we prove the existence and
uniqueness of irreducible g-twisted F^-modules and establish the mo^ular-invari-
ance of the partition functions Z(g, h, τ) for commuting elements in G. In particular,
for any finite group there are infinitely many holomorphic VOAs admitting G for
which these properties hold. The proof is facilitated by a boson-fermion corres-
pondence which gives a VOA isomorphism between Vpl and a certain fermionic
construction, and which extends work of Frenkel and others.

1. Introduction

For the purposes of explaining our results we assume that the reader is familiar
with the basic notions of vertex operator algebra (VOA) and twisted modules, as
expounded, for example, in [FLM2, FHL, FFR and D2]. More details about these
and related ideas are also presented in Sect. 2 below.

In this paper we shall be concerned primarily with two VOAs. The first of these
is the VOA VL constructed in the usual way [FLM2] from the root lattice L of type
DI. If 9 is the simple Lie algebra of type Dl and g the corresponding affine Lie
algebra, then g has just four level one standard modules, and in [FFR] they are
constructed in the fermionic picture. They are denoted CM°(Z+i), CM1(Z+i),
CM°(Z), CMl(Έ) to indicate that they are constructed as (even or odd) subspaces
of certain Clifford modules. The first of these spaces is in fact a VOA isomorphic to
VL. Here and below we use the notation CM (Z\ r = Q,l,Z = ZorZ+^to denote
these modules.

The second VOA of interest to us is that constructed from the spin lattice Γh

namely the lattice spanned by the weights of an irreducible spin representation of g.

1 Supported by NSA grant MDA904-92-H-3099.
2 Supported by NSF grant DMS-9122030.
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If I is divisible by 8 then Γj is an even, self-dual lattice, so that the corresponding
VGA VΓl is holomorphic [Dl].

We will show that the space V=CM°(Z + ̂ ) 0 CM°(Z) can be turned into
a VOA so that there is an isomorphism of VOAs

φ:VΓl^V. (1.1)

We call (1.1) the boson-fermion correspondence as it is an extension of the map
studied by Frenkel [F] at the level of Kac-Moody algebras.

The major results of the present paper constitute in some sense, an equiυarίant
generalization of (1.1), and are essentially as follows: for a broad class of
finite groups G of automorphisms of either V or VL we prove the existence
and uniqueness of irreducible g-twisted modules (#eG) and we establish
the modular-invariance of the corresponding partition functions. We empha-
size that though G is not the most general finite automorphism group,
the restrictions placed on G concern its action on V and do not restrict the nature
of G itself. Indeed given any finite group G, there are infinitely many VOAs V
(or VL) which satisfy our assumptions. So for any finite group G we will have
rigorously constructed infinitely many G-orbifold theories for which modular-
invariance is established.

We should add that although the ^-twisted modules in question are most easily
constructed in the fermionic picture, the vertex operators are best studied in the
bosonic picture. Thus the equivariant versions of (1.1), which allow us to pass
between the two points-of-view, is a critical component of our method.

For instance, as an example of giving the right answer to the wrong question (!),
we construct infinitely many holomorphic VOAs which admit the Monster M as
automorphisms, and are such that orbifolding by the Monster yields partition
functions which satisfies Norton's axioms [M3, Appendix]. That we cannot solve
the problem for the Moonshine module itself is a reflection of the fact that the
corresponding twisted sectors are not understood (cf. [Tu]).

Let us now give a more precise explanation of our results. Each CMr(Z) is
built from an affinization of a space fF~(C2/ carrying a non-degenerate sym-
metric bilinear form <•,•>. The group GL (/, C) acts on W and preserves a polariza-
tion of W. Furthermore, GI(/,C) acts on the VOA CM°(Z+i) as a group
of automorphisms. For each g<=GL(l, <C) of finite order we show how to con-
struct four g-twisted fermionic spaces CMr(Z, g) and we prove that they are, up
to isomorphism, the unique irreducible 0-twisted modules for VL = CM°(Z+^).
Moreover the space V(g) = CMQ(% + ̂ g)®CMEg(%,g) will turn out to be the
unique irreducible 0-twisted F-module in case / is divisible by 8. Here εg = Q or
1 depends on g.

Specializing slightly, if we take g = SL(l, (C) then we can take the map (1.1) to
be g-equivariant. There is a bosonic construction of a ^-twisted VΓl-module
which turns out to be an untwisted space VΓl +0 , where Γlg is a spin
lattice associated with g and βeQ ® Γlίθ. Then (1.1) generalizes to a boson-fermion
map

φ: VΓlιβ+β§-+V(g) (1.2)

which is a C(g)nSL(l,(C) equivariant identification of the irreducible ^-twisted
F-module in the bosonic and fermionic pictures. Furthermore, a second group



Nonabelian Orbifolds and Boson-Fermion Correspondence 525

element h induces natural isomorphisms

(1.3)

Naturally, there are analogous results for the irreducible g-twisted modules of
FL = CM°(2ζ+i) in the bosonic and fermionic pictures.

We now specialize further, by taking G<SO(l, IR) to be a finite group still
preserving the polarization of W. Under further mild assumptions on the action of
G on W we study the partition functions Z(g,h, τ). Here, g.heG are commuting
elements and Z(g, h, τ) is the trace of h on the 0-twisted F-modules V(g) graded by
conformal weight with an overall grade-shift determined by the central charge. In
case I is divisible by 24, we show that Z(g, h, τ) is a modular function, and more
precisely satisfies the conditions (which one expects in general)

Z(g, h, yτ) = σ(y~\ g, h)Z(gahc, gbhd, τ) (1.4)

for all ye{ )eS£(2, TL). Here σ(y~l,g,h) is a certain root of unity and τe

{zeC|imz>0}. We emphasize that G can be an arbitrary finite group, so that (1.4)
amounts to a proof of modular-invariance for arbitrary finite groups (acting on
W in the prescribed manner) of the corresponding fermionic orbifold.

There are corresponding results for the partition functions Zl(g, h, τ), 1 ̂  i ̂  4 of
the four ^-twisted CM°(2£ +^-modules CM(Z, g). Briefly, if H is the space spanned
by the holomorphic partition functions Z(g,h, τ) above, and if H0 is the four-
dimensional SL (2, Z)-module afforded by the characters of CMr(Z) [KP] then the
space spanned by the Z l ( g , h, τ) turns out to be equivalent, as SL (2, 2£)-module, to
the tensor product H®HQ.

The proof of modular-invariance is based heavily on the paper [M2].
The spaces constructed there, without the benefit of Lie theory, turns out to be
just the spaces V(g) above, and this observation was a strong motivating factor
for us. The work of Tsukada [T] was similarly motivated, so that there is a
small overlap with his paper. However, he is mainly concerned with superalgebras,
as are Feingold et al in Chapter 3 of [FFR]. Namely, CM°(Z+i) θ CM^Z + i)
is a vertex operator superalgebra, and one can show that CM°(Z+^, g) © CM1

(Z + i,0) is an irreducible ^-twisted module and CM°(Z, g)@ CMl(%, g} is
an irreducible 0z-twisted module, where z = diag(—1,. . . , — l)eS£(/5 (C). But
the analogue for VOAs seems more difficult, and explains why the maps (1.1), (1.2)
are important for us.

The paper is organized as follows: in Sect. 2 we review some definitions,
together with a rigorous discussion of projective actions on twisted-modules. In
Sect. 3 we construct certain twisted modules in the bosonic picture, whilst in Sect.
4 the analogous construction in the fermionic picture is carried out. Actually, in
Sect. 4 we only work at the level of twisted Kac-Moody modules. It is not till Sect.
5 that we are able to establish the full boson-fermion correspondences for the VO A
VL. Section 6 takes up the same question, but now for the holomorphic VOA V\
Sect. 7 deals with modular-invariance.
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2. Vertex Operator Algebras and Modules

In this section we review the definitions of vertex operator algebras and modules.
We define inner automorphisms of a VOA and discuss so-called standard proper-
ties of rational VOAs.

A vertex operator algebra (or VOA) is a Z-graded vector space V—^\n^jVn

such that dim Vn < oo and Vn = 0 if n is sufficiently small, equipped with a linear
map

v^Y(Ό9z)= Σ V""1 feeEndF) , (2.1)
ne%

and with two distinguished vectors \eVQ,ωeV2 satisfying the following conditions
for u,veV:

unv = 0 for n sufficiently large; (2.2)

7(l,z)=l; (2.3)

] and Iim7(t;, z)l = t> (2.4)
z->0

zo

o ) v , z 2 ) (2.5)

(Jacobi identity) where δ(z) = Σn<=zzn *s ̂ e algebraic formulation of the (5-function
at 1, and all binomial expressions are to be expanded in nonnegative integral
powers of the second variable;

[L (m), L (rc)] = (m — ή)L (m + n) +—(m3 — m)^m+n> 0(
rank ^) (2.6)

for m,neZ, where

I(n) = G)n+1 forneZ, i.e., 7(ω,z)= ^Z(φ~w~2 (2.7)

and
rankFeQ; (2.8)

)ϋ = nt? = (wtφ for veVn(neZ); (2.9)

z) . (2.10)
αz

This completes the definition. Note that (2.6) says that the operators L (n) generate
a copy of the Virasoro algebra, represented on V with central charge rank V. We
denote the vertex operator algebra just defined by (F, 7, 1, ω) (or briefly, by V). The
series 7(u, z) are called vertex operators.

Now suppose that (Vi} Yi9 lh ω, ) are vertex operator algebras, z=l , 2.
A homomorphism from FΊ to F2 is a linear map/: V^-^V2 such that/(l!) = l2,

Jι) = ω2 and

)/ (2.H)
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for all υεVi. If/is invertible, or if in addition (Fi, 7 l 5 I l 9 ωι) = (F2, Γ2, 12, ω2), we
call / an isomorphism or automorphism respectively.

Let # be an automorphism of the VOA V of order N. Following [FFR] and
[D2], a g-twisted module M for V is a Q-graded vector space M = Y[nG<$Mn such
that dim Mn < oo and Mn = 0 for n is sufficiently small. Moreover there is a linear
map

(ι;,z)= £ i^-"-1 (vneEndM) (2.12)
πe£z

satisfying axioms analogous to (2.2)-(2.3) and (2.5)-(2.10). To describe these, let
η = e2m/N ancj set vJ={VEv\gV = ηJυ^ Q^j^N—l. Thus we have a direct sum
decomposition

V= Yl Vj . (2.13)
eZ

Then we require that for u,veV, weM,

(2.14)
n<=j/N + %

unw = Q for n sufficiently large; (2.15)

r,(M=i; (2.16)

Z0 / \ -Z0

ι / ίz — z ^1/]V\
= ̂ 2"1τ; Σ OPT 1 i/N ^^(^^oXz2). (2.17)

Finally, (2.6)-(2.10) go over unchanged except that in (2.9) we replace v by weM.
This completes the definition. We denote this module by (M, Yg\ or briefly by M.

Remark 2.1. In view of (2.13) and the linearity of Yg, we may replace (2.17) by the
version in which u lies in an eigenspace Vk. Then (2.17) takes a simpler form

zo

~K/N

Remark 2.2. Taking g= 1 in the foregoing, we obtain the definition of a F-module
in the precise sense of [FLM2].

Suppose that (Mh Yt) are two ^-twisted modules for the VOA F, i=l,2.
A homomorphism from Mv to M2 is a linear map/: Mt->M2 which satisfies

/71(ϋ,z) = 72(t;,z)/ (2.19)

for all veV. One can define the notions of g-twisted submodules, irreducible
g-twisted module, isomorphism of g-twisted modules etc., in the obvious way. One
writes /: (Ml9 Y1)^(M2, 72), (M1? Y1)^(M2, Y 2 ) .
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Let V be a VOA with automorphisms g, h and with g of finite order, and let
(M, Yg) be a 0-twisted module for V. We can twist M by h in the usual way to obtain
an h~ 1gh-twistQd module for V\ the resulting module is denoted by (h°M,hYg). By
definition, the underlying space h°M is the space M itself and if VE V we define

hYg(v9z) = Yg(hv,z). (2.20)

One readily calculates that this indeed turns h°M into an h~1gh-modu\e for V.
We define an automorphism ft of F to be an inner automorphism in case the

following condition holds: for each irreducible F-module (M, y x ) we have
(M, yj^AoM^yi). Obviously, the set of all inner automorphisms of V is a sub-
group of the full group of automorphisms of F, which we denote by Inn(F).

It is an important, though standard, consequence that there is a projective
representation of Inn(F) induced on each irreducible F-module, and it will be
worthwhile to recall the construction here. Let /zelnn(F) with (M, Y J an irreducible
F-module. By definition there is an invertible linear map φ(h): M->M satisfying

for all veV. Then φ(h)~1φ(g)~lφ(gh) commutes with all YI(V,Z) and hence is
a scalar c(g,h) since (M, YJ is irreducible. So φ(gh) = c(g,h)φ(g)φ(h) for all
g, /zelnn(F), which is precisely the condition for the map g*-*φ(g) to be a projec-
tive representation of Inn(F) corresponding the class of the 2-cocycle c(g, h) in

The notion of complete-reducibility of g-twisted modules being self-evident, we
say that a VOA V is rational in case it has only a finite number of (isomorphism
classes of) irreducible modules and if every F-module is completely reducible; and
V is called simple if V is itself an irreducible F-module. We call V holomorphic if V is
simple, rational and if V is the unique irreducible F-module. Clearly, any automor-
phism of a holomorphic VOA is inner.

We list next so-called "standard" properties of rational VO As and their twisted
modules. Some of these are explicitly or implicitly in the literature and we are
confident that they should hold in general; others are more speculative. In any case,
we will show that the VOAs which we study in this paper do indeed enjoy these
properties.

For the property SH1-SH3 we assume that V is a holomorphic VOA and G is
a finite group of automorphisms of V (necessarily inner).

SHI: For each gεG there is a unique irreducible ^-twisted module for V, call it
M(g).

This being the case, the argument following (2.21) applies to the centralizer of g,
CG(g\ and shows that it has a projective representation on M(g)9 which we denote
by h \-+φ(h) as before for heCG(g).

SH2: For ft e CG(g) define

Z(g, ft, τ) = tr(Φ(h)qL(V-c/24)\M(g] = q-c/24 £ tr(0(ft), M(g)n)<f , (2.22)
neQ

where τ is in the complex upper-half plane, q = e2πιτ and c — rank V. Then Z(g, h, τ)
is a modular function on some congruence subgroup of the modular group.

To clarify what (2.22) means, note that CG(h) acts projectively on each M(g)n

(via the same 2-cocycle). Thus really Z(g, h, τ) is defined only up to a choice of some
root of unity.
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SH3: If g, heG commute then for any y = l ) in the modular group SL(2, Έ)
we have \c d/

Z(g, ft, yτ) = (τ(Γ1, 9, h)Z(gahc,gbhd, τ) (2.23)

for some root of unity σ ( y ~ 1 , g, h).
This is the axiom of Norton (cf. [M3, DGH]).
Now take V to be a rational VOA with G a finite group of inner automorphisms

of V. The first two properties generalize SHI:

SRI: Suppose that V has exactly N (isomorphism classes of) irreducible modules.
Then for geG,V has exactly N irreducible 0-twisted modules.

SR2: The irreducible 0-twisted modules can be indexed (Ml(g\ Yg ) , . . . ,
(MN(g\ Yg) in such a way that for all heG we have

(hoM^Y^Mty-igh), Π-vO - (2 24)

Once again this would yield a projective representation of CG(g) denoted by

SR3: Let Z\g, h, τ} = tγ(φ(h)qL(Q}-c/24)\Ml(g} as in (2.22). Then Z\g, h, τ) is a modu-
lar function.

SR4: There is an integer / such that whenever g,heG commute and γ = l I lies

in the principal congruence subgroup Γ(l) of SL (2, Z), then (2.23) holds for
Z^g.h.yτ). Moreover for general γeSL(2,Z) and each i there are coefficients
dij depending on y, g and h such that

Z'(0, ft, y τ) = Σ flyZ^(flfβftc, gbhd, τ) . (2.25)
j = ι

These are the main properties we shall consider in this paper, but there are
a number of other closely related to these: for example the relationship between the
fixed-point VOA VG and the ^-twisted F-modules, the relationship with the
quantum double DG, and the precise nature of the representation of Γ on the space
of functions Z l ( g , h, τ). For these and other aspects of the theory see, for example,
[DVVV, Bal-Ba2].

It is useful to formulate certain properties of twisted modules in terms of
operator- valued rational functions. Let S denote the set of nonzero linear poly-
nomials in variables z± and z2:

S = {cz1+dz2|c,d6C,|c| + |d|Φθ}c:C[z1,z2] (2.26)

and consider the subring C[z1,z2]lS of the field of rational functions <C(z1 ?z2)
obtained by localizing at S. Let ( i ι i 2 ) be a permutation of {1, 2}. We define a map

ι ί l ίa: <C[z1? z2]s ->€[[>!, zΓ1,^, zί1]] (2.27)

such that each factor (c/z^ + d/z^)"1 of

/(z l5 z2) = 0(z1, z2)/zI 2Π(c/z/1 -hd/z/2), g(zl9 z2)6C[z l9 z2]

is expanded in nonnegative integral powers of the variable zί2. Clearly, the maps
iiliz are injective.
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Let V be a VOA and g be an automorphism of V of order N. Let M be
a 0-twisted F-module. Set

Λ f ' = Π M * , (2.28)
neQ

the direct sum of the dual spaces of the homogeneous subspaces Mn of M. Denote
by < , > the natural pairing between M and M'. Note that for w'eM', weM and

z"1] . (2.29)

The following proposition can be found in [D2]:

Proposition 2.3. Let w'eAf, weM, iJeZ, ueV\ veVj .

(1) (rationality of product) The element

<w',7(W,z1)7(ι;,z2)w>zΓzi/N

involves only integral powers of z^ and z2 and lies in the image of the map ι12:

<w', Y(u,Zi)Y(υ,z2)Wyz^^N = ι12f(Zl,z2) , (2.30)

where the (uniquely determined) element /e<C[zl5 z2]s is of the form

f(z1,z2) = g(zlfz2)/zr

1z2(z1-z2)
1 (2.31)

for some 0eC[zj, z2] and r, s, teZ.

(2) (commutativity) We also have

<w', Y(v,z2)Y(u,Zl)Wyz^zJ

2

/N = ι21f(Zl,Z2) , (2.32)

that is

"7(w, zι)7(ι?, z2)zΓ4/JV agrees with Y(υ, z2)Y(u9 z^zfzf ,

as operator-valued rational functions." Π

3. Bosonic Realizations of Vertex Operator Algebras and Their Twisted Modules

In this section, we first recall the construction of VOAs associated with even
lattices. We then introduce certain automorphisms of these VOAs and construct
the corresponding twisted modules.

We are working in the setting of [FLM2] and [DL1]. Let L be a lattice of rank
/ for some positive integer / with a symmetric, nondegenerate integral bilinear form
< , •> such that <α, α>e2Z, that is, L is even. Let L be the canonical central
extension of L by the cyclic group <±1>: 1-><±1>-»L^»L -> 1 with the commu-
tator map φ, β) = ( - l)<α' β> for α, βeL. Set h - (C (g) ZZ and extend the form < , •>
from L to h by CD-linearity. Viewing h as an abelian algebra, denote by
h = h ® C [ί, t ~ 1 ] 0 Cc the corresponding affine Lie algebra. Then
h+ =f|w^oh ® Λ fi~ =Π«<oh ® ?" are subalgebra of h. Consider the induced h-
module

M(l)= £/(fi) ® c/tf- eco<C^S(fi-) (linearly) , (3.1)
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h+ acting trivially on C and c acting as 1; U( ) denotes universal enveloping
algebra and S( ) denotes symmetric algebra. We shall write α(rc) for the operator
α (x) tn for αeh and nεTL.

Form the induced L -module

€{L} = C[r]®<c[± !]€-€[£] (linearly), (3.2)

where <C( ) denotes group algebra and — 1 acts on C as multiplication by — 1. For
αeL, write ι(ά) for a® 1 in C{L}. Then the action of L on <C{L} is given by:
a ι(b) = ι(ab) and — 1 ι(b) = — ι(b) for α, bεL . Also define an action of h on C{L}
by:

h ι(a) = (h,άyι(a) (3.3)

for hεh. We shall use commuting formal variables z, z0, z1? z2. Define an operator
z"by

zh.ι(ά) = z<h>ά>ι(ά) . (3.4)

The untwisted space associated with the lattice L is defined to be

FL = M(l)®cC{L}~S(ίir)®(C[Z] (linearly), (3.5)

Then L, h, h and zh (hεh) act naturally on VL by acting on either M(l) or C{L } as
indicated above.

We shall next define the untwisted vertex operator Y(v, z) for vεVL. For αeh set

α(z)=Σ«(Φ'"~1 (3-6)
neZ

We use a normal ordering procedure, indicated by open colons, which signify that
the enclosed expression is to be reordered if necessary so that all the operators α(n),
(αeh, n <0), aεL are to be placed to the left of all the operators α(n), zα (αeh, n ̂
before the expression is evaluated. For aεL, set

Y(ι(a\ z) = Y(a, z) =: Jί̂ )-^)^1) .̂ ? (

using an obvious formal integration notation. Let aεL, α1 ? . . . , αkeh, w l 5 . . . ,
Z (n f>0) and set

= α 1 (-n 1 ) . . .α J k (-n J k )- ϊ (α)6F L . (3.8)

We define

l ' " ( α ' 2 ) : (3 9)

This gives us a well-defined linear map

FL->(EndFL)[[z]],

t>ι-»y(0,z)= X v-"-1 , feeEndFJ . (3.10)
«eZ

We call Y(v, z) the untwisted vertex operator associated with υ.
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Let {jβ1? . . . , βι} bean orthonormal basis of h. We set ω = i£|=1 /?,( — l)2eFL.
We also set l = ι(V)eVL. For the next result, see [Bo, FLM2]:

Theorem 3.1. The space (VL, Y, 1, ω) is α vertex operator algebra.

Remark 3.2. If L is a root lattice of a Lie algebra g of type A, D or E then g can be
identified with (VL)^ = {veVL\L(Q)v = v} (which is a Lie algebra with respect to
bracket [u, V} = UQV) by sending xeg to x(— l)z(l).

Recall the affine Lie algebra

, (3.11)

whose bracket is given by

[w®ίm,D(χ)ίM]-[u,t;]®r+ n + c<M,ί;>δm + π ,o (3.12)

for w, i eg and m, neZ. For xeg, set

x(z)= ^ (x®tn)z~n~1 .
n<=Z

Then the map x(z) f— > 7(x( — l)ι(l), z) and c H> 1 provides an irreducible representa-
tion for the affine Lie algebra g on VL and VL~L(ΛQ) is called the fundamental
representation (see [DL1]).

Set h(Q = Q(χ) zZc=h. Recall that the dual lattice L° of L is defined to be
L° = { jβeh| < jS, L> ciZ} cliQ. Let αeh^. Then there exists a smallest positive inte-
ger N such that <α,L>c=^Z. We define an element gαeGZ,(FL) determined by

® ι(α)) (3.13)

for weS(ίr) and aeL. We have the following relations:

9,β(n)g^=β(n) ΐorβεh,neZ, (3.14)

g^g-^z^ ϊorβeL, (3.15)

for aeL . (3.16)

Proposition 3.3. (1) gα is an automorphism of the vertex operator algebra VL of
order N.
(2) g<χ = gβfor a, βehQ if ami onΓy if a — jβeL°. Γ/iws HQ/LO can be regarded as
a subgroup of the autrmorphism group of VL.
(3) If g is an automorphism of VL such that g(u (g) ι(a)) = ηa(u ® z(a)), w/zere na is
a root of unity depending only on a for all ueS(h~) and aeZ, then there exists aeliQ
so that g = gχ.

Proof. The first two assertions follow from the definition of vertex operators (3.6),
(3.7), (3.9) and the relations (3.14)-(3.16). The third assertion is true because L is
a finite-generated free abelian group. Π

Let βeliQ such that a — βeL°. Let VL+β be VL as vector spaces. We shall define
an action of VL on Vι+β by using so-called "shifted vertex operators" introduced in
[L] (also see [T]). The actions of L and h(n) for /ιeh and OφneZ are the same as
before, but we define new actions of h = h(Q) and zh as follows:

h u ® ι(a) = <ft, ά + βyu® ι(a\ zh u® ι(a) = z<Λ °+βy u (g) ι(a) (3.17)
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for weM(l) and aeL . Denote by Yβ(u, z) the corresponding operator for ue VL and
call it a shifted vertex operator. Then we have a linear map:

Ό^Yβ(υ9z)= £ vnz-n-l(υneEnάVL+β). (3.18)

Let L° = Ui€L°/L (L + λi) be a coset decomposition such that λ0 = 0.

Theorem 3.4. Let α and β be as before. Then

(1) The space (VL+β, Yβ) is an irreducible ga-twisted VL-module.
(2) The spaces (VL+χ._^ 7;_._α)/or ίeL°/L are the unique irreducible ga-twisted

VL-modules up to isomorphism.

Proof. For (1) it is sufficient to prove the relations (2.14) and (2.18). For /ceZ the
eigenspace of gα with eigenvalue ηk is

k
Pl = C-span{u®i(a)|weS(fi~) 5aeL such that <α, a}= — modZ} . (3.19)

Thus YI._X(V,Z) has the expansion (2.14) for veV^ Let u = u* ® z(0)eF£, v = v*
® ι(b)e VL. Using the proof of Theorem 8.8.22 of [FLM2] or the proof of Theorem
5.1 of [DL1], we obtain the desired identity (2.18). The proof of the second
assertion in case α = 0 is given in [Dl], and the proof for arbitrary α is similar. We
refer the reader to [Dl] for more details. Π

Next we recall some definitions and results about twisted affine Lie algebras
(see [K and LW]). Let g be a finite-dimensional Lie algebra with a nondegenerate
invariant bilinear form < , •> and g be an automorphism of g of order N. Set
Qk={xε$\gx = ηkx} for keTL. Then 9 = 91 Θ Θ &v For xeg, write X(^ for the
component of x in gfc. The ^-twisted affine Lie algebra is defined to be

§[?]=Σ9.®ί" / w®Cc (3.20)
rceZ

with bracket

[x(m),j;(n)]-[x,3;](m + n) + m<x,};>^m+π,oc, [c,g[0]]=0. (3.21)

where x, yeg, m, rce^Z, x(m) = X(mjv) ® ίm, y(n) = y(HN) ® ίw. If g is semi-simple and
g is an inner automorphism of g then g[g] is isomorphic to g. Set

x(z)= Σ x(n)z~n-^ . (3.22)
ne^Z

The following lemma can be verified by a straightforward calculation:

Lemma 3.5. For xeg f e, yeg,

-k/N / \ a / / \ - f c / N /

.D

(3.23)

Remark 3.6. Let g be as in Remark 3.2. Then 0α is an automorphism of the Lie
algebra g and the vertex operators 7;vι_α(ι;, z) provide an irreducible representation
for g[0α] with x(z) = 7;vι_α(x(-l)ι(lj,z) and c=l.
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Finally we discuss the g-graded dimension of VL+β for βeliQ . Let M = Y\ Π£Q Mn

be a graded module for the Virasoro algebra

Vir = C-span{ZM,c|rceZ} (3.24)

such that c acts as a scalar ce(Q and L0(v) = nv for πeQ and veMn. The ^-graded
dimension of M is defined to be

chqM = tΐ(qL°-c/24) = q-c/24 £ (dimMM)<f . (3.25)
neQ

Recall that ω=i]Γ[ = 1 &(- l)2eFL. It is well-known that

L(V)=τ Σ A(0)2+ Σ Σ βt(-n)βi(n) (3.26)
^ i = 1 ί = 1 H > 0

and that

[L(Q)9Vn]=-nΌn (3.27)

for ι>e(KL)ι and πeQ. In particular,

[L(0),φ)]=-nα(n) (3.28)

for αeh. Then from (3.17) we see that for v = %ι( — nι). . .ctk( — nk)(S) ι(a)eVL+β (cf.
(3.8)),

. (3.29)

Set

' a> / 2. (3.30)

Proposition 3.7. The graded-dίmensίon ofVL+β is chq Vι+ , ι

Then from (3.29) we have the following proposition:

L+,\ι

4. Fermionic Construction of Vertex Operator Algebras and Modules

In this section, we consider certain automorphisms of finite order of the Lie algebra
of type DI and construct the corresponding twisted modules both for Djυ and for
a certain related VOA.

First we review the fermionic construction of the Lie algebra of type Dt (see
[FFR] for example). Let ( , •) be a nondegenerate symmetric bilinear form on
A ~ (C2Z, with A = A+ © A~ a polarization into maximal isotropic subspaces. Then
the Clifford algebra C(A) is the associative algebra with 1, generators A and
relations ab + ba = (a, b)ί for a, be A. Setting :ab:=^(ab — ba\ the span of all such
elements in C(A) is closed under brackets and forms a Lie algebra g of type Dt. If
x=\a1a2'., y=:b1b2: then

[x, y] =(al9 b2):a2b1: + (a2, b1):a1b2:-(a1, bί):a2b2:-(a2, b2):albl : (4.1)

and the invariant form is

(x, y) = (al9 62)(α2, b,)-(aί, bl)(a2, b2) . (4.2)



Nonabelian Orbifolds and Boson-Fermion Correspondence 535

For geGL(A + } = GL (I) we have an obvious action of g on A ~ (regarded as the
dual space of A + ) by (g')"1- Then g (—»(#, ( g 1 ) ' 1 ) is a representation of GL(A + )
which preserves the bilinear form ( , •). Thus GL(l) is embedded into SO (21) and
acts on C(A) as algebra automorphisms, and we always take GL (I) to act on A and
C(A) in this manner. Let G be a finite subgroup of GL(l}. For geG of order JV, let
{^1,0, . . . , aι, g} be a basis of ^4 + such that η = e2m/N and

9^i,g = ηnι'9^,g , (4.3)

where n^eZ for 1 ̂ i^l; let {α ̂ , . . . , α*^) be a dual basis of 4~ so that (α^,
a*β) = δi,j Then

K^"""1-'*** (4 4)

*g: 1
By identifying ί̂  with f)* via ( , •) we may choose
and {/ij5 0 =:αf) ga*g: 1 1 ̂  ι ̂  /} is an orthonormal basis of a Cartan subalgebra l)g of g.

to be a fundamental system of roots. Then J + = {ft/ > ^ + ft/ j ^ |z<7} is the set of
positive roots, and

(4.5)

is the corresponding root lattice. The weight lattice (or dual lattice) is

L°g = {xlhltg + - +xlhιίg\xie$Z and Σ^eZ} . (4.6)

The sublattice

f M l
Γu = Z-span^,Σ-Λfc,^ (4.7)

I k = ι z J

of L°9 is called the s/?m lattice and is a self dual even lattice if 8 | / (see [S]). For
convenience, we shall omit the index g if 0=1. For example, we shall write
βt = α/ j ι , 0* = ̂ ι The next result is easy.

Lemma 4.1. (1) Lei geGL(l). Then g ( : a b : ) = : g ( a ) g ( b ) : f o r α, fce^l defines an auto-
morphism of Q.
(2) // 0eG, then g(:aiίgaj^:) = ηni'd+nj'9: aiίgajίg:9 g(.alga*g') = ηni>v~n*>J\ai^a*g\,
g(:a*ga?g:) = η-ni><>-n*>J: α^αj^:. /n particular, g\^ = id.
(3) 7?ίe vector h\^g+ +h^g = h1-\- -\-hiis independent of g. Π

Let 0eG have order JV. Set

, (4.8)

for keZ. Then ^4 = φ/^ez/NZ A, & For αe^ write α(/c) for the component of a in Ak, g

We also set

)=ΣAΛ.β®?IN (4-9)
«eZ

and πe^Z, denote α(wJV) ® ί"~1/2 by α(n — 1/2) in A(Z+i, 0) and α(f l jv) ® ί"
by α(n) in ^1(Z, g). Then A ( Z 9 g ) for Z = Z+i or Z has a Q-gradations (weight
gradation) given by:

wtα(n)=-n. (4.10)
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Extend the form ( , •) to A(Z, g) by

(a(m)9b(n)) = (a9b)δm+nt(> (4.11)

for a, be A, m, nejj% + ̂  or j^TL. Set

(where A^2 g is understood to be 0 if N is odd) and

Then A(Z9 g) = A + (Z, g)®A'(Z, g) is a polarization. As before we denote by
C(A(Z, g)) the Clifford algebra with 1, generators A(Z9 g) and relations

a(m)b(n)-\-b(n)a(m) = δm + nf 0(a, b) . (4.14)

Let C+ (A(Z9 g)) be the subalgebra of C(A(Z, g)) generated by A + (Z, g), and form
the induced module

CM(Z,g) = C ( A ( Z , g ) ) ® c + ( A ( z , g ) ) ( E l z t g ^ A ( A ~ - ( Z 9 g ) ) , (4.15)

where Clz?^ is a one-dimensional C + (^4(Z, ^))-module such that A + (Z, g) annihi-
lates lZίg and 1 acts as the identity. The symbol A( ) denotes the exterior algebra.
Then CM(Z, g) is an irreducible module for C(A(Z, g)) and it decomposes into even
and odd parity subspaces

CM(Z, 0) = CM°(Z, g) ® CMl(Z, g ) , (4.16)

where there are linear isomorphisms.

CM°(Z,#)~/leven(.4~(Z, 0)), CM1(Z,g)^Aoάd(A'(Z,g)) . (4.17)

Remark 4.2. We endow CM(Z, g) with a Q-gradation as follows:

wtl z >0 = cz,g, wt(a(n)ύ) = wta(n) + wtu (4.18)

for aeA, ne^Ίί and ueCM(Z, g\ where

1 ^ A λ 2

- - . - _ .- i f z^

i v ίk ιγ +

(4.19)

The reason for choosing this gradation will be explained later.

Remark 4.3. Let geG. If heCG(g) then h preserves each A^g and thus acts on
A(Z,g)by

ha(n) = (ha)(n) . (4.20)

Note that this action preserves the Q-gradation of A(Z, g) and the form (4.11). Then
there is a unique action of CG(h] on CM(Z, g) such that

(4.21)



Nonabelian Orbifolds and Boson-Fermion Correspondence 537

Evidently h preserves the Q-gradation of CM(Z, g\ whence, CM(Z, g) is a Q-
graded CG(g)-module.

For aeA, set

on and

a(z) =

a(z)=

on CM(2£, Define a normal ordering: :

a(m)b(n)

:a(m)b(n):=

if m<n

$(a(m)b(n)-b(n)a(m)) if m = n

— b(n)a(m) if m>n .

Then :α(w)b(w):=-:b(n)0(w):. Define linear functions ι/^z? g: g— ><C by

f(fc/N-l/2)(α,fe) i f / c φ O
^Zβ(tι) = Γ
^Z''V ^ (0 if fc = 0

and

k/N(a, b)

0

if k/N<l/2

if k/N=l/2

(4.23)

(4.24)

(4.25)

(4.26)

(k/N-l)(a,b) if k/N>l/2

where u=\ab\e§ with aeAk,g and beAm^g and 0^/c, m^N.

Lemma 4.4. The functions ψ are well-defined.

Proof. It is enough to show that ψ(:ab:) = ψ( — :ba:). If (α, fc) = 0, this is clear, so
without loss of generality we can assume that aeA^g and b = Aύ-k,g If fc = 0 then
Ψz,g( ab:) = ψz,g( — ' ba:) = Q. If A:ΦO then ιl/Ztg(:ab:) = (k/N — l/2)(a,b) and
\l/z,g(-' ba:)= -((N-k)/N-l/2)(b, α), as desired. Similarly for 1/^4. Π

For w=: set

(4.27)

on CM(Z, 0). Then 7(w, z) is well-defined and for r = 0, 1, CM(Z, 0)r is invariant
under the component operators of F(w, z). Next we show that the operators Y(u, z)
provide a representation of g[0] on CM(Z, g). Since the arguments for Z = Z and
Z=^ + Z are essentially the same we only give the proof for the former case, so
from now we assume that Z = Z.

For α.beA and m, ne^Z define the contraction

α(m)b(n) =α(m)b(n)-:α(m)b(n): . (4.28)

We also have an analogous notation α(z1)b(z2). Recalling (4.22), set

α±(z)= X α^z-^^-hiαίOJz-1/2 . (4.29)
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For 0 ̂  k ̂  N — 1 define a function

7l/2-k/Nzk/N~l/2 if fcφQ

(4 30)I / 1/2 -1/2 , ,_-l/2_l/2\ f 7,_A '
2v^ι ^2 ~r ^ 1 ^2 ' —

The following lemma is straightforward.

Lemma 4.5. Zef aeAk and be A. Then

( LΛ/fc( z i ' z 2)
Zl-Z 2

(4.31)
αnrf

b(z2)a(z1) =[b + (zl\ α(z2)]+ =(α, &) —— . Π (4.32)

In general, for α l 5 . . . , αkeyl and n 1 ? . . . , nke—— % define

if nι ̂  . . . ^ nfc and n{ φ 0 and

:<Ml)(«σ(l)) -

for σeSfc. We also define

ασ(1)(0) . . . aσ(k)(0) .
KσeSk

If nγ ̂  . . . ^ w t < 0 = ni+ 1 = . . . =nj<nj+ι^ . . . ^ nΛ, define

flι(wι) - α f (n f ) : f l/+ι(0) . . . aj(0):aj+1(nj+ί) . . . ak(nk) .

The following lemma is a direct consequence of the definition of normal ordering
and the contraction, and is sometimes referred to as the Wick theorem [W].

Lemma 4.6. Let alίa2,b1, b2eA and m1 ? m2 ? π1 ? n2e^7L. Then

: α1(m1)α2(m2) : : bl(nl)

+ αι(m1)fe2(w2) '.

r.a2(m2)b2(n2):-a2(m2)b2(n2) : <

2(m2)b2(n2) . Π

From Lemmas 4.5 and 4.6 we have:

Lemma 4.7. Let aίEAj>g,a2eAk9g with 0^j,k^N—l and b^ί

( ! ) : <

. f , v x Λ L x v Jk(zl> Z2)
+ (a29bί):a1(z1)b2(z2):
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/ 7(z l fz 2)

. / f c ( Z j , Z 2 )

-L( h V h ^fj(z^z2)fk(Zl9Z2)+ (aί9b2)(a29bί) _^ 2

-ία 6 )(a b ^/Xz^z2)Λ(^ι^2)

(2) :bι(z2)b2(z2)::α1(z1)α2(z1):=:αι(z ί)α2(z1)b1(z2)&2(z2):

. / / ( Z 1 » Z 2 )

z2-zl

/J(z1 ;z2)/ f c(z1,z2)
i / x o I I

Set «=:«!&!:, v=:b1b2 :eg. Using (4.27) we have

1 1

ft2)(α2, fcι)/7 (z1? z2)/ fc(z l9 z2)

-(α1? &ι)(α2, b 2 ) f j ( z ί 9 z 2 ) f k ( z ί 9 z2)

-Z2 Z 2 -Z l y

1 1

i-z,)2 (z2-z02

1 1
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The following relations about ^-functions are well known (see, for example,
[FLM2]):

Thus

j + k

\Z2

where

-(M, t;)/χzl9 z2)/fc(z1? z2)z2ί—-δ( —) .
^1 \Z2/

Lemma 4.8.

or equίvalently,

+ k

N

j + k

Proof. There are three cases: (1);ΦO, kφO, (2)7ΦO, fe = 0, (3)7 = fc = 0. Since the
proofs are similar we only deal the first. Then

z,. z2

and
—

The result follows. Π

Finally from Lemmas 3.5 and 4.8 we have
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Theorem 4.9. The spaces CM(Z, g) are $[g~]-modules on which u(z) acts as Y(u, z)
(weg) and c acts as 1.

This theorem in the case g = 1 can be found in [F, FF and FFR]. Following the
arguments in [F and FF] we next show that CM°(Z, g) and CMί(Z,g) are
irreducible §[#]-modules. For u, t eg define a new normal ordering

u(m)υ(n) if m<n

:u(m)v(n):= %(u(m)υ(n) + v(n)u(m)) if m = n (4.33)

v(n)u(m) if m>n .

For 1 ̂  i, 7 ̂  /, set

Then xt-7-^ is a root vector with root hitg + hjt g, xf*g is a root vector with root
— hί^g — hj^g, and xg ̂  is a root vector with root hίίg — hjfg for iή=j.

Lemma 4.10. For i^i^l, we have

(1) hitg(z1)hitg(z2)=:hitβ(zι)hίtg(z2)
(2) X i i , g ( z ί ) x * ? g ( z 2 ) = : x i i ί g ( z ί ) x * ? g ( z 2 ) : .

Proof. (1) follows from the commutator relation

for m, πeZ. For (2) note that [x ί ί f^,x**^]=0 and <x»,^5x**β> = 0. Thus [xίί,^(m),
x* f*(n)]=0 and (2) follows. Π

Set

Ditβ(z)=Σ Σ^n-mYa^^n^n^/^at^m-n-n^/NYz^-2 . (4.35)
mεZnEZ

Then we have

Lemma 4.11. For l ^ i ^ / ,

(1) : h i ^ ( z ) h ί , g ( z ) : = - : a ί ί g ( z ) a i ί g ( z ) a f , g ( z ) a f , g ( z ) : + D ί , g ( z ) .
(2) :xa ̂ (z)x^(z):-:αI ̂ (z)αί^(z)αI%(z)α^(z): .

Proof. Since the proof for Z = Z and Z = TL +-J are similar we only give the details
for Z = Z. Firse let 0<niίg<N. From Lemma 4.7, we have

Zi — z2

^zύa*^
Then the result follows by taking the limit as Z!~>z2. The case n ί > f f = 0 can be
treated similarly. Π

Recall the constant cZtθ from (4.19), and set

I,,(Z) = c z , 9 z- 2 -D ί , ί ? ( Z )- Z - 1 / J i > ! ,(z)= X Li9(φ-»-2 . (4.36)
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From Lemma 4.11 the component operators L{ g(n) preserve any submodule of
CM(Z,0).

This fact will be crucial in proving that each CMr(Z, g) is irreducible. We also
set

Lg(z}= Σ Li,9(z)= £ Lβ(n)z-"-2 . (4.37)
( = 1 neZ

Proposition 4.12. For l gi, '^l, k, meZ, ne — Z, pe— 2 and Meg we have:
2N N

(1) [Iί,,(/c),aΛ,(n)]= -δu(n
(2) [I ,. ,(fc), a* ,(n)] = - δt, j(n + fc/2)aj ,(k + n).
(3) [£,(*),

( 4 ) ί L g ( k ) , g 9

Proof. Again we only prove the proposition for Z = Έ. In this case ne—Z and

(4.38)

Noting that [:aiίg(q + nitg/N)a*g(k-q-niίg/N):,aitg(n)'] = Q if <? + n ί t β/N φ n + k,
we obtain:

as desired. If f φj, clearly, Z f 5(fe) and α,- β(n) commute. The proof of (2) is identical.
(3) and (4) follow from (1) and (2). Π*

Now we are in a position to prove the following theorem:

Theorem 4.13. The §[g]-modules CMr(Z,g) are irreducible ifl>\.

Proof. As we have already pointed out, the component operators Litg(n) preserve
each g [g]-submodule of CMr(Z, g). Recall (4.34) and let i φy. Then ψ%t g(xfj) = 0 (see
(4.25)) and Y(xiJ9 z)=:aiίg(z)a*g(z): (see (4.27).) From Proposition 4.'l2 (1) we get

/N:aitg(zz0)aj,g(z) : (4.39)

and its component operators a^g(m)aftg(n) preserve irreducible submodules. Sim-
ilarly for the operators ait g(m)aft g(n), a*g(m)a*g(n). It being clear that CM°(Z, g)
and CM1(Z, g) are irreducible under these operators, the proof is complete. Π

Remark 4.14. Theorem 4.13 was proved for 0 = 1 in [F and FF]. In [FFR] the
action of § is extended to an action of

such that (CM°(i + Z), 7, li+z, ω) is a simple VGA, where

ω= JL(-2)lz + i=i X (αf(-3/2)αI (-l/2) + αί(-3/2)αf(-l/2))lz+i . (4.40)

Moreover, the four spaces CMr(Z) are irreducible CM°(i + Z)-modules.
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Remark 4.15. Recall from (4.21) the action of G on CM(Z). Then gu(z)g~ 1 =(gu)(z)
for ueg. Since CM°(Z + Ί)) is generated by g (regarded as a weight one subspace of
CM°(Z+i)) in the sense of [FHL] (also see [DL1]), the relation gY(u9 z)g~1 =
Y(gu, z) holds for arbitrary HeCM°(Z+i). That is, G is a group of automorphisms
of the VGA CM°(Z+i).

Finally we justify the weight gradation of CM(Z, g) introduced in Remark 4.2
by using the operator Lg(0) to compute the graded-dimension of chqCMr(Z,g).
From (4.35)-(4.37) we find that

(4.41)

It turns out that the weight of lz? g defined in (4.18) is precisely the L^(0)-eigenvalue:

Lg(Q)lz,g = cZtβlZtβ. (4.42)

Also from Proposition 4.12,

[L,(0),α(m)]=-mφι) (4.43)

for aεA and me^yZ. Thus the weight gradation of CM(Z, 0) coincides with the
£0(0)-eigenspace decomposition. Now from (4.15), (4.17), (4.42) and (4.43) we conclude:

Proposition 4.16. The graded-dimensions of CMr(Z, g) are given by.

(1) Take 0^nitg<N for i =l,. . . , /. If some nii9 = 0 ,

i = l n > 0

Π

+(-1)r Π Π(1-^~
\ i = l n > 0

(2) Take - N/2 <, nit g^ N/2. If some n^g = N/2,

t = l

Π Π
2+π) . π

ί = l

5. Boson-Fermion Correspondences

We have constructed irreducible §[#]-modules CMr(Z, gf) for ^eG in the last
section. In this section we shall realize these modules as VLg+^ g+βg constructed in
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Sect. 3, where βge(hg)<§ depends on g and λ^geLQ

g for z = 0,1, /— 1, / (see (5.2) and
(5.3) below). We then establish the isomorphisms between these modules - the
boson-fermion correspondence. Realizing G as a group of automorphisms of the
VOA FL, we show that CMr(Z, g) are irreducible ^-twisted modules of the VOA
CM0(^ + 2) via the boson-fermion correspondence.

Since geG is an inner automorphism of g, the g-twisted affine algebra g[#] is
isomorphic to g (see [K]). Moreover, we see the four level 1 standard modules as
CJVF(Z, g) for r = 0, 1 and Z = Z, TL + ̂  in the fermionic picture by Theorem 4.13.
On the other hand, there are also four level 1 standard g[g]-modules from the
bosonic picture in Sect. 3. For geG we define a number εg as follows

ΓO if dim]!Γjc<jv/2 ^k,g ^s even

£0~Λ ~ ' (5-1)
(1 otherwise .

Set

where nitβ is as in (4.3) with N>nl9g^ - - - ^w/,^^0. Then g — βgis an automor-
phism of VLg by Proposition 3.3 (1). By identifying the weight 1 subspace (VLg)ι of
VLg with g, the restriction of g_β to (VL )χ is g (see Remarks 3.2 and 3.6). According
to Theorem 3.4 there are four irreducible g_β -twisted VL -modules VL +λ +β (for
i = 0, !,/—!, /) which are also the level 1 standard g [^-modules, where

λι-ι,g = -(hlίg+ +V2, 0 + ̂ -1,0-^,0) 9

4* = 2(Λι.*+ ' ' ' +^-2,0 + ̂ -1,0 + ̂ ,0) . (5.3)

Recall that, as vector spaces, VL +χ +β =VL . Set

λιg+βg (5.4)

for cίίgeLg for i = 0, 1, / — 1, / so that

^0,0= Σ hitg-εghιtg9 Cι,<, = c0)ί7, c l _ l f f l = 0, clί9= -2zghgJ . (5.5)

Also set/0t, = lz+i,,, Λ,,-^,, (-1/2) if w^O^L^ai.^/N-S^) if w^O,
fι-ι,g = a?tg( — nι/N) and/ I j g = lz^. We have the following boson-fermion corrres-
pondence:

Theorem 5.1. There are unique isomorphisms of §[g]-modules σg:

*(

VL+λLg+βg^CM£«(

such that

σgx(z)σ~ 1 = x(z) (5.6)
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for xeg,

*A*=Λ, <5 7)
for i = 0, 1, /— 1, / if ε^ = 0 and

<rgbitg=fi,g(i = Q, 1), σgbl-ltg=fltg9 σgblt9=fl-ιtg , (5.8)

if £g= 1, where εg + r is fαfcen modulo 2.

Proof. We shall prove the theorem by giving explicit isomorphisms between § and
§[0] so that 5ί?ί7 and/i^ are highest weight vectors with the same highest weights
for ι = 0, 1, /—I, /. It is well-known that the level 1 standard g-modules are
parametrized by four dominant integral weights λ = λίtgeί)^ for ί = 0, 1, /— 1, / such
that the highest weight of g-module, viewed as a linear form on fyg ® (Cc c g, is given
by λ, sending c to 1. We denote the corresponding level one standard g-module by
z(U).

The first isomorphism φ± from g to g[g] is given by:

c i— >c ,

xϋ, 0(m) ̂  χy, 0 (m + "i, g/N + "j, 0/N) '

xg , g(m) h^ xg f g(m + n f > g/ΛΓ - n,-, g/N) + (5t , jδmt 0 n f, g/iVc ,

xtfβ(m) ^ x?j*9(m - nit g/N - njt g/N) . (5.9)

for meZ. Recall from Remark 3.6 that the action of g[#] on VLg+λιg+βg is given by
x(z) = 7^ +0 (x, z). In particular, the action of fyg is given by (3.17). ίt is straightfor-
ward to check the following for k = l— 1, /:

.* = Φι^ for i<J >
if 60 = 0 ,

if ε=l .

for αeί)^. The same relations hold f o r f k t 9 with k = l— 1, / by using (4.27). That is,
fc/^ ^ and fkt g are highest weight vectors with the same highest weights for k = I — 1, /.
This proves the theroem in these cases. In particular,

Similarly for the remaining cases. But this time use the isomorphim φ2 from g to
given by

ij, g (m + ni/N + n'j, g/Nϊ >

g(m + ni/N ~ "'I, 9/N} + ̂ i, j°m, 0 "ί, g/Nc ,

xS^(m) ^xtfg(m-nίtg/N-n'j.g/N) . (5.10)

for me Z where n^ ^ = nit g if n ί f g < N/2 and n , g = nίίg — N if n ί f ^ ̂  N/2. In these cases
the results are:

f o r f c = 0, 1.
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Corollary 5.2. We have the following q-ίdentities:

for z = 0, 1 and

Proof. From Remarks 3.2 and 3.6, formula (3.27), Theorem 5.1, it is enough to
prove that wt bif g = wt σ^b^ g) for i = 0,1, / — 1, /. Now a straightforward calculation
of weights of these vectors gives the result. Q

Recall that L =L ± is the root lattice of g corresponding to the identity automor-
phism. Our next goal is to realize G as a group of automorphisms of VL so that
VL +λ +β will be an irreducible g-twisted FL-module. The main idea is to identify
VL with VLg as vertex operator algebras. Let τg: VLg-^CM°(Z-\-^) be the unique
g-module isomorphism such that

on CMQ(7L+^) for xeg. We also assume that b0tί = l. Then τί=σί. More precisely
we have:

for xt.eg and m^TL. Since both VLg and CM°(Z + i) are VOAs (see Theorem 3.1 and
Remark 4.14) it is natural to expect that τg is an isomorphism of VOAs. Note that
the Virasoro element of VL is given by

and the Yirasoro element of CM°(Z+i) is ω given in Remark 4.14. We still denote
by ωg the image of τ^(ω^) in CM°(Z+^), that is

ω, = ̂  Σ ^(-l)
Z f c = l

Lemma 5.3. The element ωg is independent of g, that is, ωg = ω.

Proof. Note that

™9=-\ Σ (αfc%(-3/2K,(-l/
Z k = l

Now the result follows. Π

Remark 5A. Since both VLg and CM°(Z +%) are generated by g which is the weight
one subspace in the sense of [FLM2], we see that τg is an isomorphism of VOAs.
Clearly, the VGA structure of CM°(Z+i) is independent of geG. We identify
VL with VL via τ~lτ±.
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Recall from Remark 4.15 that G acts on CM°(Z+i) as a group of VGA
automorphism. Thus G acts on VL by

g(x1(mί) . . . xk(mk)l) = (gx1)(mί} . . . (gxk)(mk)l (5.14)

(for X eg and m^TL) as a group of automorphisms of VL. That is, gY(v, z)g~1 =
Y(gv, z) for geG and we VL. Moreover, using the identification of VL with VLg and
Theorem 3.4 we have:

Proposition 5.5. The spaces VLg+λιg+βg (for i= 0, 1, /— 1, /) are irreducible g-twisted
VL-modules and are unique up to isomorphism.

Now we return to the fermionic picture. Set

M, = CM(Z+i g) 0 CM(Z, g) . (5.15)

We can define a linear map

where we use Yg(u,z) for we^ to denote Yλιg+βg(u,z) on FLfl+;,ι9+^ for i = 0, 1,
/ — I , / (see (3.18)). By Remark 3.6, Theorem 5.1 and Proposition 5.5 we have

Proposition 5.6. The space (Mg, Yg) is a g-twίsted CM°(Έ+ ̂ -module and the four
spaces CMr(Z, g) are the unique irreducible g-twisted CM°(% + ̂ -modules.

Recall from 4.3 that CG(g) acts on A(Z, g), CM(Z, g) such that ftlz> g = lZtg and
that ha(z)h~ l=(ha)(z) for heCG(g) and aεA. Also recall (2.20).

Theorem 5.7. Let g, heG. Then there exists an invertible linear map
φ(h): Mh-ιgh-*Mg such that φ(h)(CMr(Z, h~1gh)) = CMr(Z, g) and that

φ(h)Yh->gh(u, z)φ(hΓ1 = Yg(hu, z) (5.17)

for weCM°(Z+i). In particular, φ(h) gives an isomorphism of h~ Λ gh-twisted
CM°(Z ^-modules CMr(Z, h~lgh) andh°CMr(Z, g). In the case hεCG(h), we may
take φ(h) = h and (5.17) becomes

hYg(u,z)h~l = Y g ( h u , z ) . (5.18)

Proof. First we define the map φ(h). Recall A(Z, g) and A±(Z, g) from (4.9) and
(4.13). Define an invertible map φ(h) from A(Z, h~^gh] to A ( Z , g ) by:

φ(h)(a(n)) = (ha)(n) (5.19)

for a(n)εA(Z, h~lgh), where aeA and neQ. Then φ(h) preserves the polarization
φ(h)A±(Z, h~1gh) = A±(Z, g). If we extend φ(h) to an algebra isomorphism from
C(A(Z9 h~lgh}} to c(A(Z, g)) then this induces an invertible linear map

φ(h): CM(Z, h~ lgh) -> CM(Z, g)

such that φ(h)CMr(Z, h~1gh) = CMr(Z, g). In fact, φ(h) has the following explicit
action:

. . . (hak)(nk)lZtβ (5.20)
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for a^A and ^eQ. Now it is clear from (4.27) and Theorem 4.9 that (5.17) holds for
ue g (which is identified with the weight one subspace of CM(2£+^)).

Next we prove (5.17) for arbitrary weCM°(Z+^). The idea of the proof is to
prove that Yg(u,z) can be expressed in terms of Yg(v,z) for t eg. For u =
x(-n)( = x(-n)lz+i)eCM°(Z+i) with neZ positive we rewrite

u=L(-l)n~1x(-l) . Then

1 '
Now let u = x( — n) ωeCM°(Z + ̂ ) for some w. We also assume that xec^ . Then
from the 0-twisted Jacobi identity (2.18) we have

zo

~ l / N l l z 0 ) ^ z 2 ) . (5.21)
Z2

Multiplying (5.21) by ZQ n and taking ResZo we get

d

= (Zl -z2)-"7β(x(-1), Zl)F>, z2)-(- I)"(z2-Zl)-"7(w, z2)F9(x(-1), Zl) .

(5.22)

Now we multiply (5.22) by z'i/iVzJί/Λr and take ResZl to obtain

(5.23)

Thus yg(h(x( — rc)w), z) can be expressed by the operators Yg(hx(— 1), z), Yg(hw9 z)
and Yg(h(x( — rc-h/c)w), z) for /c>0. Similarly, 7/Γιj7/2(x( — rc)w, z) can be expressed by
the operators 7/ί-ι(?/l(x(— 1), z), 7/1-ι^/J(w, z) and ίVV,(x( —w + fc)w, z) for fc>0 with
the same relation. This shows that if (5.17) holds for w and x( — n + fc)w (k > 0) then
(5.17) also holds for x( — n)w.

Let u = x±( — nι) . . . Xj( —ns)eCM°(Z+i) for ^-homogeneous x^eg and nt>Q.
Now it is straightforward to show by induction on 5 and n^ that (5.17) holds for u.
The other assertions are clear. Π

Corollary 5.8. CM°(Z -hi) is a rational VOA, G is a group of inner automorphisms of
CM°(2£+i), and properties SRI, SR2 of Sect. 2 are satisfied (where all projective
representations are ordinary linear representations). Π
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Using the isomorphism σg of Theorem 5.1 and the invertible map φ(h) of
Theorem 5.1 we define an invertible linear map φ(h) from VL] , ; + A Λ i h+βt > , to

VL +; +β f o r i = 0, ! , / - ! , / b y ' " '' ' ' * ?

•k S T/-,, 0 I-/J0 ' ' ' •'

f o r w e + l + Then f o r «eFL ,

This concludes the proof of

Proposition 5.9. Lei g,heG. Then there exists an invertible linear map φ(h):

for i = 0, 1, / — I ,

φ(h}Yh-lgh(u, z)φ(h)-1 = 7g(/iM, z) (5.24)

/or ueVL.In particular, φ(h) gives an isomorphism ofh~ ^^gh-twisted VL-modulesfrom
VLh-lgh+λίίh-,gh+βh-,gh toh°VLg+λitg+βg. In case heCG(h), we may take φ(h) = hand (5.24)
becomes

hYg(u,z)h-l = Yg(hu,z). (5.25)

Moreover, there are commuting diagrams:

φ(h) I j φ(/

ff, 7,) _% (M,,

6. Twisted Modules for VΓl

In this section we shall continue our discussion in Sects. 4 and 5 with / divisible by
8. We realize G as a group of automorphisms of the holomorphic vertex operator
algebra VΓl such that V Γ l g + β g is the unique irreducible 0-twisted module. Using
the boson-fermion correspondence we get a holomorphic vertex operator
algebra CM°(Z+i) 0 CM°(Z) and its unique irreducible 0-twisted module
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In this section we assume that G is a subgroup of SL (/, 1R). The following lemma
then is obvious.

Lemma 6.1. If ηn\ . . . , ηnι are the eigenvalues of geG on A + , then n^ + - +

Recall from (4.7) that Γlg=Lgv(Lg + λlg). Then VΓlg=VLg© VLg+λlg. From
Proposition 4.1 (3) we know that λltg = λl9 that is, λlef}geGΓl .̂ Let agefltg such
that άg = λι. Since ι(ag)eVL which is identified with VL, we can assume that
ι(ag) = ι(a2) (where again we write a = a±). Then ι(ag] is a highest weight vector of
VLg+λl. For#eGset

V(g) = CM°(Z + i g) ® CM*»(TL, g}®Ng, (6.1)

where εg is defined in (5.1) and Ng = C is a one-dimensional CG(g)-module affording
the linear character

χ,(Λ) = det(Λ|θk^/^ί)-1 = e2πί<Λ.c"o-+eA.> (6.2)

for heCβ(g) (see (5.5) for the notation co, g). In other words we modify the action of
CG(g) on CMe«(Z,0) 63; χ^. In particular F(l) = CM0(Z+i)0 CM°(Z). From
Propositon 5.1, we have a unique cj-module isomorphism τg: VΓl g — V ( \ ) such that

, τg(ι(ag)) = lZίβ and τ^7(w, z)τ~1 = Y(σίu9 z) for

Proposition 6.2. TTiere zs an identification of VOAs τ"1!!: VΓl~VΓlg such that
VL=Vιg (^ before) and VL+λ=VLg+λlg with ι(a) = ι(ag\

Proof. As in Remark 5.4, τ = τ\τ~ 1 is a J^-module isomorphism from F/^ to Vγl . In
particular, we have the identification of VOAs VL and VLg. It is enough to prove
that

τY(u9z)τ~1 = Y(τu9z) (6.3)

ϊorueVL+χr Let L/" be a vertex operator algebra. The following skew-symmetry is
well known (see, for example, [FHL]):

-Z)M! (6.4)

for w/eί/. Let veVLg=VL. Since τ \ γ L = id, we see that

τr(M,z)τ" 1t; = τ7(«,z)t; = τ^(-1)zy(t;, -φ-^(-1)z7(t;, -z)φ) .

On the other hand,

7(φ),z)t; = ez'(-1)z7(ί;5 -z)τ(w) .

That is, τ7(w,z)τ~1ι; = 7(τ(M)5z)ί;. Since ^eFL is arbitrary, (6.3) holds on VL for

Next let veVL +^. Then 7(w, z)τ 1(^)eFL[[z, z *]] which is τ-invariant. So
we must prove the following relation:

7(w, z)τ~1(ι;) = 7(φ), z)v . (6.5)

Note that

Y(ι(ag\z) = E~(-λhz)E + (-λhz)agz
λl , (6.6)
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where

(6.7)
n>0

for βe\)g (cf. (3.7)). Then

and (6.5) holds for u = ι(a) and v = ι(ag). Let xeg. Then

Y(x(- 1), zOrίφ), z2)ι(α) = 7(x(- 1), z^I^α,), z2)z

Using commutativity (2) of Proposition 2.3, we find that

Y(ι(a\ z2)Y(x(- 1), z!)Ka) = Y(ι(aβ\ z2)Y(x(- 1), zJ

or equivalently,

Y(ι(a\ z2)Y(x(- 1), zJτ-l(ι(a)) = Y(τ(ι(ag)9 z2)Y(x(- 1),

Now by induction on k we see that (6.5) holds for u = ι(d) and v = xί(n1)
- - Xk(nk)ι(ag) for x Ecj and n^TL. That is, (6.3) holds for u = ι(ά). An argument
similar to that in the proof of Theorem 5.7 show that (6.3) holds for all ue
VL+λl. D

By Proposition 5.9, G acts on VΓl in such a way that 0(1) = 1, gι(a) = ι(a) and
gY(u, z)g~1 = Y(g(u\ z) for geG and ue VL. By the identification VΓl= VΓl g given in
Proposition 6.2, we see that g = gβq. By Proposition 3.3 (1), we have

Proposition 6.3. G is a group of automorphisms of Vrl .

Since Γt g is a self-dual lattice (that is, Γ/° ^ = Γz> ^), by Theorem 3.4 (2), 7Γ; ̂ ^ is
the unique irreducible g-twisted VΓl g-module. Again by Proposition 6.2 we have:

Theorem 6.4. The space Vrl g+χg is the unique irreducible g-twisted Vp -module. Π

Next we shall establish a result analogous to Theorem 5.7 for the VOA VΓl. In
order to do this we have to study the action of G on the element ι ( c 0 ί g ) e V L g (see
(5.5)) in more detail.

Lemma 6.5. Let g, heG such that h(a^h-ιgh) = affg ifεg=l. Then

where λ(>^)eHί(G9(C*) is a l-cocycle such that λ(g, h) = χg(h)'1 ifhεCG(g) .

Proof. First let ε^O. Then 6/,-i^ = 0. Let l^s^ί (necessarily even) such that
^ί, g for 1 ̂  i ̂  s is a complete list of nit g ̂  N/2. Since dim ̂  k > N/2 A^ g = dim Σk>Nβ
Ak^h-ighi ni,h~lgh for l^ί^s is a complete list of niίh-ιgh^N~~/2. Thus

ϊ(co,») = μ^i2,^(-l) . - - xs-ι5ίg(-l)ι(l) , (6.8)

where μ^eC* and x ί j ?^ is defined in (4.34). Applying σx given in Theorem 5.1 to
z(c0,0), we find that

(7ι(ι(c0,,)) = μgflι f,(-l/2) . . . αs.,(-l/2)lz+ieCM(Z+i) . (6.9)

We have the same expression for σι(ϊ(co,/ryz)) with μ^ and α f > & replaced by
μ^-i^ and α/^-i^ respectively. Note that hA^^lgh = ̂ g for fe = 0, . . . , A/"— 1, and
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that ΛάimΣk-£NβAktg (Σ/c^JV/2^,0) is one-dimensional. We define λ(h9g)eC* by
the following formula:

hσ1(ι(cQ,h->gh)) = λ(g,h)σ1(ι(cQ,g)) . (6.10)

It is straightforward to verify that λ(g, h) has the desired properties. Similarly for
ε,= l. D

Let g^heG. From Proposition 5.9 we have an invertible map φ(h) from
Fn*-^+Ar'** to VΓι.β+β, such that Φ(h)bv,h-lgh = bQ,g,φ(h)blh-ιgh = σ-1hσgbl,g (cf.
(5.20)) and that φ(iι)Yh-ιgh(u, z)φ(h)~ί = Yg(hu, z) for ueVL. It is natural to expect
that the last inequality holds also for all veVΓl. For this purpose we now modify
φ(h) in the following way:

φ(h)\y = φ(h\ φ(h)\γ =φ(h)λ(g,hΓ1 (6.11)
Lh-'qh + Ph-'gh ^ /r > + *•!, h~'gh + Ph lgh

We have:

Theorem 6.6. Let g, heG. Suppose that h(a*h-ί

gh) = a*gifεg=l (note that ^h~lgh = ̂ g\
Then

φ(h)Yh-ίgh(u, z)φ(hΓ l = Yg(hu, z) (6.12)

on Vrlg+βgfor ueVrt In particular, φ(h) gives an isomorphism of h~ 1 gh-twisted
modules V Γ l , , , + «, lt~h°VΓl +β.1 l,h~lgh f rh~lgh 1l,g^Pg

Proof. Clearly, (6.12) holds for ueVL. We only need to prove the theorem for
uEVLg+χr We first deal with the case εg = Q. Take u = ι(a) = ι(ag)eVL+^r Since
λl(- ί)e VL and hλt(- l) = λ(- 1), from <p(h)Yh-igh(h(-l), z)φ(hΓ ' = Yg(h(-l), z)
we see that φ(h)λι(m)φ(h)~ i=λl(m) for meZ. Recall (3.17) and (3.18). Then as in the
proof of Proposition 6.2 we have

^

From Lemma 6.5, we have

φ(Wh-*gh(ιM> z)φ(h)~ l =λ(g, h)Yg(ι(c^g\ z) .

Since h(c^h-ιgh(-\]) = c^g(-V) in FL, we see that

(cf. (6.7)) and that

on VΓl+βg. Thus

φ(h) (ι(agc0, g)) =

where we identify ι(ag)eVΓl with b^g introduced in (5.4). On the other hand,

7,(/zφ,),z)V* = ̂ (Φ^^

That is,
1b0,g = Yg(hι(ag\z)bθ9g. (6.13)
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We already know from the proof of Theorem 5.7 that for any veVL+^r Yg(hv, z)
(resp. Yh-ιgh(v,z)) can be expressed in terms of Yg(hx,z] and Yg(hι(ag\z) (resp.
Yh-lgh(x,z) and Yh-^h(ι(ag\z)) for xeg. Also φ(h)Yh-ιgh(x,z)φ(hΓi = Yg(hx,z).
Thus (6.13) is true with ι(ag) replaced by any veVL+^l . Again as in the proof of
Proposition 6.2 we use commutativity to show that (6.13) holds with b0fg replaced
by any veVLg+βg. Similarly for veVLg+λl+βg.

The argument for εg=l is similar to that for εg = 0 if we notice that

φ(h)c0t gb = λ(h, 0)c0, gbφ(h)

as operators on V Γ l g + β g , where beLg such that b = 2hLg (cf. (5.5)). Π

Using the isomorphism σg between VΓl and V we define a linear map
7: F-»(End F)[[z, z"1]] by Y(u, z) = σ1Y(u, z)σϊί. For geG we also have a linear
map Yg: F-+(End F(#))[[z1/jv, z~1/N]] by Yg(u, z) = σgY(σϊ\ z)σg

l. We immedi-
ately have:

Theorem 6.7. (1) The space (F, 7, lz+λ,ω)isaholomorphicVOΔisomorphictoVrl

Moreover, G is a group of automorphisms of V.

(2) For gεG the space V(g) is the unique irreducible g-twisted V-module.

(3) Let g, /ιeG and assume that h(a*h-ι h) = a* g if εg=l. Then there exists an
ίnvertible linear map φ(h)from V(h~^gh) to V(g) such that for ueV ,

1 = Yg(hu,z) . (6.14)

In particular, φ(h) gives an isomorphism of h~ l gh-twisted V-modules V(h~lgh)~
h V(g). D

7. Modular Invariance

In this section we assume that / is divisible by 24, and we let V= V (1) be the
holomorphic VOA constructed in the last section. We have previously considered
finite subgroups G<GL(l) acting on V as described above (see in particular the
paragraph following (4.2). In this section we always assume that
G<SΌ(/,lR)<GL(/)? in which case the action of geG on A is via the diagonal
embedding g f—> (g, g). Furthermore we assume the G fixes a non-zero vector of A +.
We may now apply Theorem 6.7. So G is a group of automorphisms of V and for
each geG we have a representation of CG(g) on the unique irreducible ^-twisted
F-module V(g). We will also be concerned with the VOA CM°(Z+i) for which
analogous statements hold thanks to Corollary 5.8.

The goal of this section is to establish the modular invariance properties SH2
and SH3 for F, and SR3 and SR4 for VL. In fact a rather stronger formulation of
SR4 will be established. As we have mentioned in the introduction, the assumption
that 241 /, rather than just 81 / which we have assumed up till now, is made mainly so
that the results of [M2] can be quoted directly. We leave it to the reader to
reformulate the results of [M2] so that only the condition 81 / is needed. The results
of [M2] are used heavily throughout this section.

In order to deal with V and its ^-twisted modules V(g\ the main problem is to
identify V(g) with the graded space denoted by 2tfg in [M2], So let us consider the
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underlying linear space of V(g). Using (6.1) and (4.17) we have

A - ( Z 9 g ) ) 9 (7.1)

where εg is as in (5.1) and where Ng is the one-dimensional CG(#)-module affording
the character χg(6.2). Of course V(g) is also graded as in Remark 4.2, and we shall
return to this in due course.

Now from (4.12) we have for g of order AT,

where Sg is shorthand for £M/]V_ 1/2 <o^n,g ® t(n/N~1/2) and by convention Aΰ/2 =0
if N is odd.

Now CG(g) acts on AN/2ίg via the diagonal embedding CG(g)-*SO(Aΰ/2,g)^
SO(AN/2ίg) and hence (see Lemma 2.2 of [M2]) lifts to an embedding
CG(Q)-* Spin (AN/2tg). Then it is well-known that the spaces yieven(^4^/2^),
Λod<i(Aχ/2>g) are just the two half-spin modules for Spm(AN/2ίg) which we denote by
^1/2,0? ^ ΐ / 2 , 0 to conform (more or less) to the notation of [M2]. Thus we may
rewrite the first summand of (7.1), considered as a graded CG(#)-module, as

Λ+ A even/o \ /χ\ A — Λ θ d d / 0 \ (Ί ^\Δl/2,gΛ (ύgί^Δi^^Λ (δg) . ( / . Z )

For ge G the function B(g) is defined in [M2] as follows:

B(g)=^Σ B2(k/N)dimA+g , (7.3)
^ k = o

where g has order N and B2(x) is the second Bernoulli polynomial defined by
B2(x) = x2-x+l/6.

Lemma 7.1. We have

if Z = Z

if Z
_

Cz" ί/Z4

Proof. By (7.3) we get

B(g) = ί/2 Σ
fc = 0

= 1/2 X ((fc/JV-l/2)2-l/12)dimΛ+.β
k = 0

= c z. f-//24.

using (4.19) for Z = Έ. The case Z = TL + 1/2 is proved similarly. Π

Remark 7.2. By Proposition 4.12 (4), the Virasoro algebra is represented on each
CMr(Z, g), hence on V(g\ with central charge /.

According to the general principle of (2.23), for modular invariance consider-
ations we should grade Sg in (7.2) positively by replacing t ~ 1 by q and incorporate
the L (O)-grading of Remark 4.2 (cf. (4.37) and (4.38)) as well as an overall grade shift
by q~l/24. After doing this, we find using Lemma 7.1 that the (shifted) g-grading of
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the space (7.2) may be presented as

gΛ
M(8g}} (7.4)

as a g-graded CG(#)-module. This is precisely the first summand of the space 3?g of
Theorem 10.2 of [M2].

We turn our attention to the second summand of (7.1). First suppose that Γis
a CG-module with a one-dimensional trivial G-submodule, say T— 1®U. Then
there are isomorphisms of (graded) G-modules

A*ven(T)~Λodά(T)~Λ(U) . (7.5)

As A ~ ( Z , g ) = Ao,g®(Σn<0An9g(S)tn/N) (see (4.13) and as A^g has a non-trivial
CG(#)-invariant by hypothesis then (7.5) applies to the action of CG(g) onA~(%, g).
The upshot is that as graded CG(#)-module the space Ng®Λ£9(Λ~(Z, g)) is inde-
pendent of the sign εg, and with an obvious formalism we may write this latter
space as l/2Ng®A(A~(Έ,g)).

Arguing as before, we have

(7.6)

where A0>g is the spin module for Spin(^L0^) and Tg = ̂ n<^An^® tn/N. Moreover
the character χg of CG(g] used in (6.2) is seen to be precisely the character denoted
by Λ(#, •) in [M2] (see in particular Lemma 8.2 loc cit). Finally, if we again
incorporate the ^-grading and the shift by q~l/24 we obtain, using Lemma 7.1, the
space

^qB(β}Nβ®A0,g®Λ(Tβ), (7.7)

which is precisely the second summand of the space denoted 2tfg in [M2]. Conse-
quently we have shown:

Proposition 7.3. Let 3eg be the q-graded C G(g)-module of Theorem 10.2 o/[M2]. Then
Jtifg is isomorphic, as graded C G(g)-module, to the irreducible g-twisted V-module
V(g) graded by the conformal weight together with an overall graded shift ofq~l/24.

Let us write q~24/l V(g) for the g-graded ^-twisted sector, and for h e CG(g) set

Z(g, h, τ) = g~z/24(graded trace of h on V(g)) .

Because of Proposition 7.3 we can apply Theorem 10.2 of [M2] to conclude

Theorem 7.4. For the holomorphic VOA V and the group G<SO(l, 1R) described
above, properties SH1-SH3 hold. In particular we have the relation

Z(g, h, yτ) = σ(y~\ g, h)Z((g, h)γ, τ) (7.8)

for a certain i-cocycle σ of Γ = SL(2, TL\ Thus σ satisfies for y 1 ? γ 2 eΓ, gh = hg:

σ ( y ι y 2 , 9, h) = σ ( y ι , ( g , h)y^> 1)σ(y2, g, h). Q

Now we turn our attention to the CM°(Z +^). In this case there are, for geG,
exactly four irreducible g-twisted modules CMr(Z, g) for r = 0, 1 Z = TL or TL +\ and
SRI, SR2 hold (cf. Corollary 5.8). We are going to show that SR3, SR4 of Sect.
2 also hold. To be more precise, let H be the vector space with basis indexed by the
functions Z(g, h, τ) of the VOA V. Then H affords a representation of SL (2, TL} via

γ : Z ( g , h, τ)\-+Z(g, h, yτ)
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by (7.8). Next note that if (2.25) is to hold in general, then in particular we have

ZUl,rτ) = ΣαyZ'(U,τ), (7.9)

where in (7.9) Z'(l, 1, τ) is just the character of the i th irreducible
module. In the case of affine Kac-Moody algebras this action of the modular group
on the space of the irreducible characters is understood [KP]. In particular, if we
order the irreducible CM(Z+i)-modules as follows: CM°(Z+i),

'0 -1

1 0
), CM^(TL). Then the matrix representations S =

are as follows:

A i i

and T=

S =
i -i -i

τ=

/ i
0

0

\°

0

-1

0

0

o\
0

0

V

(7.10)

We shall prove this below, but it is well-known. Let H0 be the four-dimensional
space affording this representation of SL(2,Z). We shall prove

Theorem 7.5. The representation of SL(2,Z) on the space of functions Z l ( g , h , τ )
associated with G and CM°(Z +i) is the tensor product H®H0 of the "holomorphic"
space HofV and the space of characters HQ.

This means that if y e SL (2, TL} and y is represented on H0 as the 4 x 4 matrix
(my), then

)=Σ mijZJ(gΛhc,gbhd,τ). (7.11)

Since σ is a 1-cocycle it is enough to establish (7.11) for S and Γas they generate
SL(2,Έ). Establishing (7.11) is easy for y = Γ, and we leave this to the reader in
order to concentrate on the case y = S.

We introduce the linear transformation z of A which acts as — 1. Of course z is
not an element of our group G, nevertheless z induces an automorphism of
CM(Z+^) which we still denote by z. From (4.18) the following is clear:

CZ,g = CZ+±,gz - (7.12)

Unlike the proof of Theorem 7.3, the proof of Theorem 7.5 does not follow
immediately from [M2], so we must adopt an approach which is less direct. We will
establish that the last two columns of the S-matrix in (7.10) are correct, that is we
have

(7.13)

where i = 3 or 4, so that Z l ( g , h , τ ) corresponds to the graded trace of h on
CMr(TL, g) (recall that the isomorphism of CM°(Z, g) and CM^Z, g) as graded
CG(0)-modules was established prior to Proposition 7.3).

First from (7.6), Z l ( g , A, τ) = 0 precisely when h has an eigenvector in A0,g with
eigenvalue — 1, that is when <#, Az> fixes a non-zero vector of A. But then of course
g'1 fixes a non-zero vector of the ( — l)-eigenspace of h of A and so again
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2 ? ^) and CMl(7L+^,h] are isomorphic <g>-modules. So in this case
both sides of (7.13) are equal to 0. So we may assume that hz fixes no non-zero
vector on A0t9.

Now use (7.7) to get

2Z\g9 h, τ) = qB^trNg(h)trAθg(h)(tmcQ h on Λ(Tg))

with A(Tg) = A(£n>QAn,gq
n/N) (Λf Border of g). To compare with [M2], let (xi9 yt)

be such that (e2πlXί, e2πiyι) are the simultaneous eigenvalues of (g, h) on A with
i^ 1. Then the trace of h on A(Tg) is equal to

Π Π (l+qn + Xje2πίyj)(\+qn + ί-χJe-2πiyj} .
0,«eZ (Xxj ^l/2

* Π Π (l+qne2πίyj)(l+qne-2niyj)

2 ( X j } Π (l + qn+Xje2πiyj)(l + q»+ί-χ>e-
2πiyj) .

n^O

• Π »7(τΓV/12 Π (H-eV^Jil+e'e'2""')-
x j = 0 n > 0

If we replace h by hz then all the signs in the brackets change from + to — . Then if
we compare with Eqs. (5.6), (5.7), (6.1) of [M2], we see that the whole product is
equal to

in the notation of Chapter 6 [loc cit]. Using (7.3) we have established the equality

2Zί(#, Λ, τ) = trNg(h)trAθg(h)fA(g, hz, τ) . (7.14)

we are going to use Theorem 6.2 of [M2]. It tells us that

fA(g, hz, Sτ) = c(S~ \ (g, hz})t(S~\ (g, hz))fA(hz, g, τ) (7.15)

(since c and t are 1-cocycles - see Lemma 5.3 and Theorem 5.7 of [M2]). Moreover,
we similarly get

fA(hz,g~1

9τ) = qB(hz) [] Π (^-qn + x'Je2πίy^(i-qn + 1~x'je-2πίy'J) .
0<x^l/2 1^0

• f] Π(l-qne2πiy'*)(l-qne~2πiy'j)9 (7.16)
x'j = 0 n>0

where (e2πix'j , e2πiy'J) are simultaneous eigenvalues for (hz, g ~ 1 ) on A with 0 < xj ̂  1.
Next note that from Lemma 7.1 and (7.12) we get

) = B(h2)/2-B(h).

Then (7.16) is equal to

(7.17)
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as we see by the argument leading to (7.2). But z acts as 1 on AΪ/2,h
 and —1 on

Aϊ/2,h (unless this latter space is 0), so (7.17) becomes

Putting everything together, we obtain:

Z*(g9 h, Sτ)=l/2tτNg(h)tτΔθg(h)c(S-\ g9 hz)t(S~\ g, hz)

iτΔιi2h(g-^zΓ\Z\h,g-\τ}-Z2(h,g-\τ)} (7.18)

that is, (7.13) is correct up to a constant which we still need to identify. One can
calculate it directly from (7.18) and [M2], but it is enough to observe that it must be
as desired because by Theorem 7.4 we have

Z1(g,kSτ) + Zi(g,h,Sτ) = σ(S-1,g,h)(Z1(h,g-1,τ) + Zί(h,g-\τ)). (7.19)

Now (7.13) follows, and Theorem 7.5 follows from this and (7.18).
Finally, we consider the so-called 1-loop characters. For g e G let α^ range over

the irreducible characters of CG(g). For the holomorphic VOA V we can decom-
pose the (grade-shifted) irreducible 0-twisted module q~l/24V(g) into irreducible
CG(#)-submodules. So formally we get

where φΛ (q) is the "graded multiplicities," or 1-loop character, corresponding to
(x,g. One expects that φΛ (q) is the character of an irreducible V G-module, but this is
unknown. Elementary character theory yields

heCG(g)

so the 1-loop characters form a basis of H if we choose (as we do) representatives
g of each conjugacy class of G.

Similarly in the case of the VOA CM°(Z+i) we get 1-loop characters

i 1 V i

\^G(9)\ heCG(g)

for i= 1, 2, 3, 4 in an obvious sense.
Define a hermitian form < , > on either H or H®H0 by taking the φα or

0«ί to be an orthonormal basis.

Theorem 7.6. The representation ofSL (2, Έ] on either H or H®H0 is unitary with
respect to <( , ), and moreover, Tίs diagonal and S symmetric if they are represented
as matrices with respect to the basis of l-loop characters.

Proof. By Theorem 9.1 of [M2] we find that the 1-cocycle σ(y ~ \ g, h) is symmetric
if γ = S. Moreover σ(T~ *, g, h) is independent of h.

Using these facts, the theorem can be established on a purely group-theoretic
basis by several applications of the orthogonality relations. We omit details as the
result is also discussed, in greater generality, in Sect. 4.b. of [DVVV]. Π



Nonabelian Orbifolds and Boson-Fermion Correspondence 559

References

[Bal] Bantay, P.: Orbifolds and Hopf algebras. Phys. Letter B 245, No. 3, 4 (1990)
[Ba2] Bantay, P.: Orbifolds, Hopf algebras, and the Moonshine module. Letter Math. Phys.

22, 187-194 (1991)
[Bo] Borcherds, R.E.: Vertex algebras, Kac-Moody algebras and the Monster. Proc. Natl.

Acad. Sci. USA 83, 3068-3071 (1986)
[DVVV] Dijkgraaf, R., Vafa, C, Verlinde, E., Verlinde, H.: The operator algebra of orbifold

models. Comm. Math. Phys. 123, 485-526 (1989)
[DHVW] Dixon, L., Harvey, J., Vafa, C., Witten, E.: Strings on orbifolds I, II. Nucl. Phys. B 273,

678 (1985); Nucl. Phys. B 274, 285 (1986)
[DGH] Dixon, L., Ginsparg, P., Harvey, J.: Beauty and the beast: Superconformal symmetry

in a Monster module. Commun. Math. Phys. 119, 285 (1988)
[Dl] Dong, C.: Vertex algebras associated with even lattices. J. Algebra 161,245-265 (1993)
[D2] Dong, C.: Twisted modules for vertex algebras associated with even lattices. J. Algebra

164 (1994)
[DL1] Dong, C., Lepowsky, J.: Generalized Vertex Algebras and Relative Vertex Operators.

Progress in Math. Boston: Birkhauser, vol. 112, 1993
[DL2] Dong, C., Lepowsky, J.: The algebraic structure of relative twisted vertex operators.

To appear
[F] Frenkel, I.B.: Two constructions of affine Lie algebra represntations and boson-

fermion correspondence in quantum field theory. J. Funct. Anal. 44, 259-327 (1981)
[FF] Feingold, A.J., Frenkel, I.B.: Classical affine Lie algebras. Adv. Math. 56, 117-172

(1985)
[FFR] Feingold, A.J., Frenkel, I.B., Ries, J.F.X.: Spinor construction of vertex operator

algebras, triality and Eg\ Contemp. Math. 121, (1991)
[FHL] Frenkel, I.B., Huang, Y.-Z., Lepowsky, J.: On axiomatic approaches to vertex oper-

ator algebras and modules. Preprint, 1989; Mem. Am. Math. Soc. 104, (1993)
[FLM1] Frenkel, I.B., Lepowsky, J., Meurman, A.: Vertex operator calculus. In: Mathematical

Aspects of String Theory, Proc. 1986 Conference, San Diego, ed. by Yau, S.-T.,
Singapore: World Scientific, 1987, pp. 150-188

[FLM2] Frenkel, I.B., Lepowsky, J., Meurman, A.: Vertex Operator Algebras and the Monster.
Pure and Applied Math. 134, London-New York: Academic Press, 1988

[K] Kac, V.G.: Infinite-dimensional Lie algebras, 3rd ed., Cambridge: Cambridge Univ.
Press, 1990

[KP] Kac, V.G., Peterson, D.H.: Infinite-dimensional Lie algebras, theta functions and
modular forms. Adv. Math. 53, 125-264 (1984)

[L] Lepowsky, J.: Calculus of twisted vertex operators. Proc. Natl. Acad Sci. USA 82,
8295-8299 (1985)

[LW] Lepowsky, J., Wilson, R.L.: The structure of standard modules, I: Universal algebras
and the Rogers-Ramanujan identities. Invent. Math. 79, 199-290 (1984)

[Ml] Mason, G.: G-elliptic systems and the genus zero problem for M24. Bull. Am. Math.
Soc. 25, No. 1, 45-53 (1991)

[M2] Mason, G.: Hecke operators and conformally-invariant orbifold models. To appear
[M3] Mason, G.: Finite group and modular functions. Proc. Symp. in Pure Math. 47,

181-210 (1987)
[S] Serre, J.P.: Cours d'arithmetique. Presses Universitaries de France, 1970
[T] Tsukada, H.: Shifted vertex operator algebras and G-elliptic systems. J. Math. Phys.

33, 2546-2556 (1992)
[Tu] Tuite, M.: Monstrous Moonshine from orbifolds. Preprint, DIAS-STP-90-14

Communicated by G. Felder






