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Abstract: For a positive integer [ divisible by 8 there is a (bosonic) holomorphic
vertex operator algebra (VOA) V7, associated to the spin lattice I',. For a broad
class of finite groups G of automorphisms of ¥V, we prove the existence and
uniqueness of irreducible g-twisted ¥--modules and establish the mogular-invari-
ance of the partition functions Z(g, h, t) for commuting elements in G. In particular,
for any finite group there are infinitely many holomorphic VOAs admitting G for
which these properties hold. The proof is facilitated by a boson-fermion corres-
pondence which gives a VOA isomorphism between ¥, and a certain fermionic
construction, and which extends work of Frenkel and others.

1. Introduction

For the purposes of explaining our results we assume that the reader is familiar
with the basic notions of vertex operator algebra (VOA) and twisted modules, as
expounded, for example, in [FLM2, FHL, FFR and D2]. More details about these
and related ideas are also presented in Sect. 2 below.

In this paper we shall be concerned primarily with two VOAs. The first of these
is the VOA 7V} constructed in the usual way [FLM2] from the root lattice L of type
D,. If g is the simple Lie algebra of type D, and § the corresponding affine Lie
algebra, then § has just four level one standard modules, and in [FFR] they are
constructed in the fermionic picture. They are denoted CM°(Z +3), CMY(Z +3),
CM®(Z), CM'(Z) to indicate that they are constructed as (even or odd) subspaces
of certain Clifford modules. The first of these spaces is in fact a VOA isomorphic to
V.. Here and below we use the notation CM"(Z), r=0, 1, Z=Z or Z +% to denote
these modules.

The second VOA of interest to us is that constructed from the spin lattice I,
namely the lattice spanned by the weights of an irreducible spin representation of g.
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If | is divisible by 8 then I’ is an even, self-dual lattice, so that the corresponding
VOA V7, is holomorphic [D1].

We will show that the space V=CM°(Z+%) ® CM°(Z) can be turned into
a VOA so that there is an isomorphism of VOAs

b V-V . (1.1)

We call (1.1) the boson-fermion correspondence as it is an extension of the map
studied by Frenkel [F] at the level of Kac-Moody algebras.

The major results of the present paper constitute in some sense, an equivariant
generalization of (1.1), and are essentially as follows: for a broad class of
finite groups G of automorphisms of either ¥ or V', we prove the existence
and uniqueness of irreducible g-twisted modules (geG) and we establish
the modular-invariance of the corresponding partition functions. We empha-
size that though G is not the most general finite automorphism group,
the restrictions placed on G concern its action on ¥ and do not restrict the nature
of G itself. Indeed given any finite group G, there are infinitely many VOAs V
(or V) which satisfy our assumptions. So for any finite group G we will have
rigorously constructed infinitely many G-orbifold theories for which modular-
invariance is established.

We should add that although the g-twisted modules in question are most easily
constructed in the fermionic picture, the vertex operators are best studied in the
bosonic picture. Thus the equivariant versions of (1.1), which allow us to pass
between the two points-of-view, is a critical component of our method.

For instance, as an example of giving the right answer to the wrong question (1),
we construct infinitely many holomorphic VOAs which admit the Monster M as
automorphisms, and are such that orbifolding by the Monster yields partition
functions which satisfies Norton’s axioms [M3, Appendix]. That we cannot solve
the problem for the Moonshine module itself is a reflection of the fact that the
corresponding twisted sectors are not understood (cf. [Tu]).

Let us now give a more precise explanation of our results. Each CM"(Z) is
built from an affinization of a space W~C?' carrying a non-degenerate sym-
metric bilinear form (-, ->. The group GL (I, C) acts on W and preserves a polariza-
tion of W. Furthermore, GL (I, C) acts on the VOA CM°(Z+%) as a group
of automorphisms. For each geGL (], €) of finite order we show how to con-
struct four g-twisted fermionic spaces CM"(Z, g) and we prove that they are, up
to isomorphism, the unique irreducible g-twisted modules for V,=CM%(Z +%).
Moreover the space V(g)=CM%Z+%, g) ® CM*(Z, g) will turn out to be the
unique irreducible g-twisted V-module in case [ is divisible by 8. Here ¢,=0 or
1 depends on g.

Specializing slightly, if we take g=SL (I, C) then we can take the map (1.1) to
be g-equivariant. There is a bosonic construction of a g-twisted V-module
which turns out to be an untwisted space Ir, ., where I, is a spin
lattice associated with g and feQ ® I'; ,. Then (1.1) generalizes to a boson-fermion
map

¢ Vr 48,2V (9) (1.2)

which is a C(g)nSL (I, €) equivariant identification of the irreducible g-twisted
V-module in the bosonic and fermionic pictures. Furthermore, a second group
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element h induces natural isomorphisms

Vrl,g‘l'ﬁg B V(g)
h L (1.3)
Vrl,h"gh+Bh"gh - V(h— lgh)

Naturally, there are analogous results for the irreducible g-twisted modules of
V. =CM°(Z +%) in the bosonic and fermionic pictures.

We now specialize further, by taking G<SO(l, R) to be a finite group still
preserving the polarization of W. Under further mild assumptions on the action of
G on W we study the partition functions Z(g, h, 7). Here, g, he G are commuting
elements and Z(g, h, 1) is the trace of h on the g-twisted V-modules V'(g) graded by
conformal weight with an overall grade-shift determined by the central charge. In
case [ is divisible by 24, we show that Z(g, h, 1) is a modular function, and more
precisely satisfies the conditions (which one expects in general)

Z(g, h,yv)=a(y™, g, h Z(g°K", g°h", 7) (1.4)

for all ye(a b)eSL (2, Z). Here o(y~1, g, h) is a certain root of unity and te
c

d
{zeC|imz>0}. We emphasize that G can be an arbitrary finite group, so that (1.4)
amounts to a proof of modular-invariance for arbitrary finite groups (acting on
W in the prescribed manner) of the corresponding fermionic orbifold.

There are corresponding results for the partition functions Z'(g, h, 7), 1 i< 4 of
the four g-twisted CM °(Z +%)-modules CM(Z, g). Briefly, if H is the space spanned
by the holomorphic partition functions Z(g, h, ©) above, and if H, is the four-
dimensional SL (2, Z)-module afforded by the characters of CM"(Z) [KP] then the
space spanned by the Z(g, h, 7) turns out to be equivalent, as SL (2, Z)-module, to
the tensor product H ® H,.

The proof of modular-invariance is based heavily on the paper [M2].
The spaces constructed there, without the benefit of Lie theory, turns out to be
just the spaces ¥ (g) above, and this observation was a strong motivating factor
for us. The work of Tsukada [T] was similarly motivated, so that there is a
small overlap with his paper. However, he is mainly concerned with superalgebras,
as are Feingold et al in Chapter 3 of [FFR]. Namely, CM%(Z +3) ® CMY(Z +%)
is a vertex operator superalgebra, and one can show that CM%(Z +3%, g) @ CM!
(Z+%,9) is an irreducible g-twisted module and CM°(Z, g) ® CM*(Z, g) is
an irreducible gz-twisted module, where z=diag(—1,..., —1)eSL(l, C). But
the analogue for VOAs seems more difficult, and explains why the maps (1.1), (1.2)
are important for us.

The paper is organized as follows: in Sect. 2 we review some definitions,
together with a rigorous discussion of projective actions on twisted-modules. In
Sect. 3 we construct certain twisted modules in the bosonic picture, whilst in Sect.
4 the analogous construction in the fermionic picture is carried out. Actually, in
Sect. 4 we only work at the level of twisted Kac—-Moody modules. It is not till Sect.
5 that we are able to establish the full boson-fermion correspondences for the VOA
V1. Section 6 takes up the same question, but now for the holomorphic VOA 7;
Sect. 7 deals with modular-invariance.
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2. Vertex Operator Algebras and Modules

In this section we review the definitions of vertex operator algebras and modules.
We define inner automorphisms of a VOA and discuss so-called standard proper-
ties of rational VOA:s.

A vertex operator algebra (or VOA) is a Z-graded vector space V=]]nczVs
such that dim¥,< oo and V,=0 if n is sufficiently small, equipped with a linear
map

V—(EndV)[[zz7']],
vY (v, 2)=Y v,z "' (v,€EndV), 2.1
nelk

and with two distinguished vectors 1€V, weV, satisfying the following conditions
for u,veV:

u,v=0 for n sufficiently large; (2.2)

Y(1,2)=1; (2.3)

Y(v,2)1eV[[z]] and lirr(l)Y(v, Z)l=v; (2.4

z—
zgla(z‘““>Y(u, 2)Y (@ zz)—2515<22—21>Y(v, 2)Y (4, 2,)
Zg —Zo
—z 15(“2“) Y (Y (4, 20)0, 25) 2.5)
2

(Jacobi identity) where 6(z) =) ,.z 2" is the algebraic formulation of the é-function
at 1, and all binomial expressions are to be expanded in nonnegative integral
powers of the second variable;

[L(m), L(n)]=(m—n)L(m+n) +1—12(m3 — M) 0y p, o(rank V') (2.6)
for m, neZ, where
L(n)=w,+, forneZ, ie, Y(w,z)=) L(n)z™""? 2.7
and neZ
rank VeQ@ ; (2.8)
L(Oyw=nv=(wtv)v for veV, (neZ); (2.9)
ﬁY(v, z)=Y({L(—Dv,z). (2.10)
dz

This completes the definition. Note that (2.6) says that the operators L (n) generate
a copy of the Virasoro algebra, represented on ¥ with central charge rank V. We
denote the vertex operator algebra just defined by (¥, ¥, 1, w) (or briefly, by V). The
series Y (v, z) are called vertex operators.

Now suppose that (V;,Y;,1;,, w;) are vertex operator algebras, i=1,2.
A homomorphism from V; to V, is a linear map f: ¥; -V, such that f(1,)=1,,
flw1)=w, and

Y10, 2)=Y2(f (), 2)f (2.11)
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for all ve V. If fis invertible, or if in addition (V, Y {, 11, @) =(V3, ¥ 2, 15, w,), we
call f an isomorphism or automorphism respectively.

Let g be an automorphism of the VOA ¥V of order N. Following [FFR] and
[D2], a g-twisted module M for V is a Q-graded vector space M =nneQ M, such
that dim M, < oo and M, =0 for n is sufficiently small. Moreover there is a linear
map

V—(End M)[[z'", 27 V]],
voY,,2)= ), v,z "' (v,6End M) (2.12)
netz
satisfying axioms analogous to (2.2)—(2.3) and (2.5)—(2.10). To describe these, let

n=e"N and set V/={veV|gv=nv}, 0Sj<N—1. Thus we have a direct sum
decomposition

v=T1 v'. (2.13)
jeZ/NZ

Then we require that for u, veV, we M,

Yv,2)= ) vz "' forvel/; (2.14)
nej/N+Z
u,w=0 for n sufficiently large; (2.15)
Y,(1,2)=1; (2.16)
zala(“““)Yg(u,zl)YAv, zz)—z515<22_21)yg<u, 2) Y 21)
Zgp —Zo
.1 (zq—2z)'N .
—aty 3 (e . 1)
jeZINZ Z3

Finally, (2.6)—(2.10) go over unchanged except that in (2.9) we replace v by we M.
This completes the definition. We denote this module by (M, Y ,), or briefly by M.

Remark 2.1. In view of (2.13) and the linearity of ¥,, we may replace (2.17) by the
version in which u lies in an eigenspace V'*. Then (2.17) takes a simpler form

26 0 22V Y (1, 20) Y (0, 22) — 25 10| 2L )Y (0, 25) Yy 21)
4 —Z

0 0

_ —~K/N —
=z;1<zl Z°> 5(21 Zo)Yg(Y(u,zo)v,zz), (2.18)

Zy Z3

Remark 2.2. Taking g=1 in the foregoing, we obtain the definition of a V-module
in the precise sense of [FLM?2].

Suppose that (M, Y;) are two g-twisted modules for the VOA V, i=1,2.
A homomorphism from M, to M, is a linear map f: M;— M, which satisfies

fY1(v,2)=Y,(v, 2) f (2.19)

for all veV. One can define the notions of g-twisted submodules, irreducible
g-twisted module, isomorphism of g-twisted modules etc., in the obvious way. One
writes f: (M1, Y1)>(M,,Y,), (M, Y{)~(M,,Y,).
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Let ¥ be a VOA with automorphisms g, h and with g of finite order, and let
(M, Y,) be a g-twisted module for V. We can twist M by h in the usual way to obtain
an h™ 'gh-twisted module for V; the resulting module is denoted by (he M,,Y,). By
definition, the underlying space ho M is the space M itself and if ve V' we define

WY (v, 2) =Y 4(hv, z) . (2.20)

One readily calculates that this indeed turns koM into an h~'gh-module for V.

We define an automorphism & of ¥ to be an inner automorphism in case the
following condition holds: for each irreducible V-module (M, Y;) we have
(M, Y )~(hoM,,Y ). Obviously, the set of all inner automorphisms of ¥ is a sub-
group of the full group of automorphisms of ¥, which we denote by Inn(V).

It is an important, though standard, consequence that there is a projective
representation of Inn(¥) induced on each irreducible V-module, and it will be
worthwhile to recall the construction here. Let heInn(V) with (M, Y ) an irreducible
V-module. By definition there is an invertible linear map ¢(h): M — M satisfying

dMY (v, 2)p(h)" ' =Y (hv, 2) (2.21)

for all veV. Then ¢(h)” '¢(g) '¢(gh) commutes with all ¥ (v, z) and hence is
a scalar c(g, h) since (M, Y,) is irreducible. So ¢(gh)=c(g, h)p(g)¢(h) for all
g, helnn(V'), which is precisely the condition for the map g + ¢(g) to be a projec-
tive representation of Inn(V') corresponding the class of the 2-cocycle ¢(g, h) in
H?*(Inn(V), C*).

The notion of complete-reducibility of g-twisted modules being self-evident, we
say that a VOA V is rational in case it has only a finite number of (isomorphism
classes of) irreducible modules and if every V-module is completely reducible; and
V is called simple if V is itself an irreducible V-module. We call V holomorphic if V is
simple, rational and if V is the unique irreducible V-module. Clearly, any automor-
phism of a holomorphic VOA is inner.

We list next so-called “standard” properties of rational VOAs and their twisted
modules. Some of these are explicitly or implicitly in the literature and we are
confident that they should hold in general; others are more speculative. In any case,
we will show that the VOAs which we study in this paper do indeed enjoy these
properties.

For the property SH1-SH3 we assume that 7 is a holomorphic VOA and G is
a finite group of automorphisms of V' (necessarily inner).

SH1: For each geG there is a unique irreducible g-twisted module for V, call it
M(g).

This being the case, the argument following (2.21) applies to the centralizer of g,
Cq(9), and shows that it has a projective representation on M(g), which we denote
by h +— ¢(h) as before for he Cg(g).

SH2: For he Cg(g) define
Z(g, h, ) =tr(p(W) g O~ | yy=q 9> ZQ tr(¢(h), M(g),)q" ,  (2.22)

where 7 is in the complex upper-half plane, g =e*™* and ¢ =rank V. Then Z(g, h, 7)
is a modular function on some congruence subgroup of the modular group.

To clarify what (2.22) means, note that Cg(h) acts projectively on each M(g),
(via the same 2-cocycle). Thus really Z (g, h, ) is defined only up to a choice of some
root of unity.



Nonabelian Orbifolds and Boson-Fermion Correspondence 529

SH3: If g, he G commute then for any y=<a 2> in the modular group SL (2, Z)
we have ¢

Z(g, h,yt)=0(y"", g, N Z(g°h, g"h", 7) (2.23)

for some root of unity a(y "1, g, h).

This is the axiom of Norton (cf. [M3, DGH]).

Now take V' to be a rational VOA with G a finite group of inner automorphisms
of V. The first two properties generalize SH1:

SR1: Suppose that ¥ has exactly N (isomorphism classes of) irreducible modules.
Then for geG, V has exactly N irreducible g-twisted modules.

SR2: The irreducible g-twisted modules can be indexed (M'(g),Y}),...,
(M™(g), YY) in such a way that for all heG we have

(ho M (g).nY g) ~(M'(h™ " gh), Y- 1g1) - (2.24)

Once again this would yield a projective representation of Cg(g) denoted by

h i ¢(h).

SR3: Let Zi(g, h, t)=tr(¢p(h)g“ @ ~*)| pry as in (2.22). Then Z'(g, h, 1) is a modu-
lar function.

. . b\ ..
SR4: There is an integer I such that whenever g, he G commute and y = (Z d> lies

in the principal congruence subgroup I'(l) of SL(2,Z), then (2.23) holds for
Z'(g, h, yt). Moreover for general yeSL(2,Z) and each i there are coefficients
a;; depending on y, g and h such that

N
Zg, h,yt)= Y a;Z'(g°h", g"h%, 1) . (2.25)
j=1
These are the main properties we shall consider in this paper, but there are
a number of other closely related to these: for example the relationship between the
fixed-point VOA V¢ and the g-twisted V-modules, the relationship with the
quantum double DG, and the precise nature of the representation of I' on the space
of functions Z(g, h, 7). For these and other aspects of the theory see, for example,
[DVVV, Bal-Ba2].
It is useful to formulate certain properties of twisted modules in terms of
operator-valued rational functions. Let S denote the set of nonzero linear poly-
nomials in variables z; and z,:

S={czy+dz;|c,deC,|c|+]|d| 0} = C[z4, z,] (2.26)

and consider the subring C[z,, z, ], of the field of rational functions C(z,, z,)
obtained by localizing at S. Let (i;i,) be a permutation of {1, 2}. We define a map

Lijiy- (E[Zl,zz]sﬁ(lj[[zl,zfl,zz, 22_1]] (2.27)
such that each factor (¢;z;, +d;z;,) ' of
f(z1,22)=9(zq, Zz)/ZiZI—I(ClZi1 +d12i2)» 9(z1, 22)eC[zy, 25 ]

is expanded in nonnegative integral powers of the variable z;,. Clearly, the maps
1;,i, are injective.
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Let ¥ be a VOA and g be an automorphism of V of order N. Let M be
a g-twisted V-module. Set

M =] My, (2.28)
ne®

the direct sum of the dual spaces of the homogeneous subspaces M, of M. Denote
by {-,-) the natural pairing between M and M'. Note that for w'e M’, we M and
veV’ (j=0,...,N—1),

W, Y(0,2)wdz/MNeC[z,z71] . (2.29)
The following proposition can be found in [D2]:
Proposition 2.3. Let w'eM’, weM, i,jeZ, ucV:,veV’.
(1) (rationality of product) The element
W', Y (4, 2,)Y (v, z)wd ziN 29N

involves only integral powers of z, and z, and lies in the image of the map 1,,:

w', Y (u, z0) Y (v, Zz)W>Zi/NZ£/N =1,f(21, 2,) , (2.30)
where the (uniquely determined) element feC[zy, z, |, is of the form
(21, 22)=9(zy, 22)/21 25 (21 — 22)' (2.31)

for some geCClzy,z,] and r, s, teZ.
(2) (commutativity) We also have
W', Y (v,2,) Y (u, Z1)W>Zi/NZ£/N=lz1f(Z1, Z3) (2.32)

that is

“Y(u, z1)Y (v, 2,)2 NN agrees with Y (v, z,)Y (u, z0)2IN N,

as operator-valued rational functions.” []

3. Bosonic Realizations of Vertex Operator Algebras and Their Twisted Modules

In this section, we first recall the construction of VOAs associated with even
lattices. We then introduce certain automorphisms of these VOAs and construct
the corresponding twisted modules.

We are working in the setting of [FLM2] and [DL1]. Let L be a lattice of rank
I for some positive integer / with a symmetric, nondegenerate integral bilinear form
{-,+> such that (o, a)>e2Z, that is, L is even. Let L be the canonical central
extension of L by the cyclic group { +1): 1-(+1) - L > L — 1 with the commu-
tator map c(a, f)=(—1)*# for «, peL. Set h=C ® L and extend the form {-,->
from L to h by C-linearity. Viewing h as an abelian algebra, denote by
h=h®C[t,t '1® Cc the corresponding affine Lie algebra. Then
h* =]],20h® ", h™=]],<oh ® " are subalgebra of h. Consider the induced h-
module

M()=Uh)® yg+ ¢ coC=Sh™) (linearly), (3.1)
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h™ acting trivially on € and ¢ acting as 1; U(-) denotes universal enveloping
algebra and S(-) denotes symmetric algebra. We shall write a(n) for the operator
a ® t" for ach and neZ.

Form the induced £-module

C{L}=C[L]1® ¢c[+nC~C[L] (linearly), (3.2)
where C(-) denotes group algebra and —1 acts on € as multiplication by —1. For
aeL, write 1(a) for a® 1 in C{L}. Then the action of L on C{L} is given by:
a l(b)—l(ab) and —1-1(b)= —1(b) for a, beL. Also define an action of h on C{L}
by:

h-1(a)=<h,ayi(a) (3.3)
for heh. We shall use commuting formal variables z, zq, z{, z,. Define an operator
Z" by

2 (a)=z"P1(a) . (34)
The untwisted space associated with the lattice L is defined to be
Vi=M(1)® ¢C{L}~Sh")® C[L] (linearly), (3.5)

Then L, h, h and 2" (heh) act naturally on ¥, by acting on either M(1) or C{L} as
indicated above.
We shall next define the untwisted vertex operator Y (v, z) for ve V. For aeh set

a(z)=Y, a(mz""* (3.6)

neZ

We use a normal ordering procedure, indicated by open colons, which signify that
the enclosed expression is to be reordered if necessary so that all the operators a(n),
(xeh, n<0), aeL are to be placed to the left of all the operators «(n), z* (xch, n>0)
before the expression is evaluated. For ael, set

Y(i(a), 2) =Y (a, z) = eJ@E@-aO0:="") g a (3.7)

using an obvious formal integration notation. Let aeL, a, . . ., u€h, ny, . . ., me
Z (n;>0) and set

v=oy(—nyg) ... u(—m)®ia)
=o(—ny)...om(—m) -a)eVy . (3.8)
We define

1 [\ 1 [\
Y(l?, Z)=. <m<£) O(I(Z)) . <‘(n—k—_‘—1)—'<a> OCk(Z)> Y(a, Z): . (39)

This gives us a well-defined linear map

Vi—(EndVi)[[z]],
v-Y(,2)= ) v,z "', (v,eEndV;).  (3.10)
neZ

We call Y (v, z) the untwisted vertex operator associated with v.
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Let { B1,. .., B} be an orthonormal basis of h. We set w=%Zﬁ=1 B(—1)eV,.
We also set 1=1(1)e V. For the next result, see [ Bo, FLM2]:

Theorem 3.1. The space (V, Y, 1, ) is a vertex operator algebra.

Remark 3.2. If L is a root lattice of a Lie algebra g of type 4, D or E then g can be
identified with (Vy); ={veV|L(0)v=v} (which is a Lie algebra with respect to
bracket [u, v]=uyv) by sending xeg to x(— 1)i(1).

Recall the affine Lie algebra

§=g®C[t,t" ']+ Cc, (3.11)
whose bracket is given by
" v®"]=[u,v] @ t" "+ c<u, V) Spmsn o0 (3.12)

for u, veg and m, neZ. For xeg, set

x(z)= Z x®tz " !
neZ

Then the map x(z) — Y (x(—1)1(1), z) and ¢ — 1 provides an irreducible representa-
tion for the affine Lie algebra § on ¥, and Vy~L(A,) is called the fundamental
representation (see [DL1]).

Set hg=Q ® zLch. Recall that the dual lattice L° of L is defined to be
L°={peh|{B,L>cZ}chq. Let achq. Then there exists a smallest positive inte-
ger N such that {a, LY = %Z. We define an element g,e GL (V) determined by

9o ® 1(0)) ="V (u @ 1(a)) (3.13)
for ueS(h™) and acL. We have the following relations:
g.B(n) gy t=pn) for Beh, neZ , (3.14)
g.2Pg; ' =2F for el , (3.15)
guagy t=e**D g for ael . (3.16)

Proposition 3.3. (1) g, is an automorphism of the vertex operator algebra Vi of
order N.

(2) gu=gp for o, Behg if and only if a—peL®. Thus hg/L° can be regarded as
a subgroup of the autrmorphism group of V.

(3) If g is an automorphism of V such that g(u ® 1(a))=1.(u ® 1(a)), where n, is
a root of unity depending only on a for all ueS(h™) and aeL, then there exists achg
so that g=g,.

Proof. The first two assertions follow from the definition of vertex operators (3.6),
(3.7), (3.9) and the relations (3.14)—(3.16). The third assertion is true because L is
a finite-generated free abelian group. []

Let Behg such that o —feL’. Let V;, ] be V', as vector spaces. We shall define
an action of ¥, on V7 , g by using so-called “shifted vertex operators” introduced in
[L] (also see [T]). The actions of L and h(n) for heh and 0+neZ are the same as
before, but we define new actions of h=~h(0) and z" as follows:

heu®ua)=<h a+p u®ia), z"-u®ia)=z**Pu®i@  (3.17)
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for ue M(1) and aeL. Denote by ¥ p(u, z) the corresponding operator for ue V', and
call it a shifted vertex operator. Then we have a linear map:

Vi—(End V) [z, 27N,
vYg(,2)= Y, v,z " 'v,eEnd ¥V ,p) . (3.18)
nesZ
Let L°= U ez (L4 4;) be a coset decomposition such that 1q=0.
Theorem 3.4. Let o and f be as before. Then

(1) The space (Vi g, Y p) is an irreducible g,-twisted V -module.
(2) The spaces (Vi 4 ),—a» Y ;,—4) for ieL°/L are the unique irreducible g,-twisted
Vi -modules up to isomorphism.

Proof. For (1) it is sufficient to prove the relations (2.14) and (2.18). For keZ the
eigenspace of g, with eigenvalue r* is

V¥ =C —span{u®1(a)|ueS(h™), aeL such that (a, d}z%modl} . (3.19)

Thus Y;,_4(v, z) has the expansion (2.14) for veVf. Let u=u* ® 1(a)eV§, v=0*
® 1(b)e V. Using the proof of Theorem 8.8.22 of [FLM2] or the proof of Theorem
5.1 of [DL1], we obtain the desired identity (2.18). The proof of the second
assertion in case o =0 is given in [D1], and the proof for arbitrary « is similar. We
refer the reader to [D1] for more details. []

Next we recall some definitions and results about twisted affine Lie algebras
(see [K and LW]). Let g be a finite-dimensional Lie algebra with a nondegenerate
invariant bilinear form {.,-» and g be an automorphism of g of order N. Set
ar={xeg|gx=n*x} for keZ. Then g=g; @ - - - @ gy. For xeg, write x( for the
component of x in g,. The g-twisted affine Lie algebra is defined to be

§lgl=3 . ®t"" ® Cc (3.20)

neZ
with bracket

Lx(m), y(n)1=[x, yJ(m+n)+m<x, y)dm+n.o¢, [c,8[g11=0.  (3.21)

where x, yeg, m, ne§Z, x(m) =Xy @ ", y(n)= Yy @ t". If g is semi-simple and
g 1s an inner automorphism of g then §[g] is isomorphic to §. Set
x(z)= Y x(n)z™""'. (3.22)
nexZ
The following lemma can be verified by a straightforward calculation:

Lemma 3.5. For xegy, yeg,

e -t () o2t {(2) To(2)) o
Z, Z, 0z1\ \ 2, Z3

(3.23)

Remark 3.6. Let g be as in Remark 3.2. Then g, is an automorphism of the Lie
algebra g and the vertex operators Y, _,(v, z) provide an irreducible representation
for §[g,] with x(z)=Y, _,(x(—1)1(1), z) and c=1.
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Finally we discuss the g-graded dimension of ¥ . 4 for fehg. Let M =] | ,cq M,
be a graded module for the Virasoro algebra

Vir=C—span{L,, c|neZ} (3.24)

such that ¢ acts as a scalar ceQ and L y(v)=nv for ne®@ and ve M,. The g-graded
dimension of M is defined to be

chyM =tr(gro= Y=g~ Y} (dim M,)q" . (3.25)
ne@Q
Recall that w=4Y"1_, B:(—1)>e¥y. It is well-known that
1
L(O)_— Z Bi(0)* + Z Y. Bi(—=n)Bi(n (3.26)
i=1n>0
and that
[L (O), Un] = —hv, (327)
for ve(Vy), and ne@. In particular,
[L(0), a(n)]= —na(n) (3.28)

for ach. Then from (3.17) we see that for v=0;,(—ny). . .ou(—m) @ Ha)eVp (cf.
(3.8)),

LOv=(n+ - m+ia+p a+pv. (3.29)
Set
n@)=q"** 1 (1—q"), Orip@)= Y q*»"*. (3.30)
n>0 ael+f

Then from (3.29) we have the following proposition:

Or45(q)
n(q) -

Proposition 3.7. The graded-dimension of Vg is ch,V;,p= O

4. Fermionic Construction of Vertex Operator Algebras and Modules

In this section, we consider certain automorphisms of finite order of the Lie algebra
of type D, and construct the corresponding twisted modules both for D) and for
a certain related VOA.

First we review the fermionic construction of the Lie algebra of type D, (see
[FFR] for example). Let (-,-) be a nondegenerate symmetric bilinear form on
A~C*,with A=A ® A~ a polarization into maximal isotropic subspaces. Then
the Clifford algebra C(A4) is the associative algebra with 1, generators A and
relations ab+ba=(a, b)1 for a, be A. Setting :ab:=%(ab— ba), the span of all such
elements in C(A) is closed under brackets and forms a Lie algebra g of type D,. If
X=a,a,:, y=bib,: then

[x, y1=(ay, by):aby:+(as, by):a;by:—(ay, by)asby—(as, by):aiby 1 (4.1)

and the invariant form is
(x, y)=(ay, bs)(a,, by)—(ay, by)(a,, by) . 4.2
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For ge GL (A" )= GL(I) we have an obvious action of g on 4~ (regarded as the
dual space of A") by (g')"'. Then g (g, (g")" ') is a representation of GL(A™)
which preserves the bilinear form (-,-). Thus GL (/) is embedded into SO(2/) and
acts on C(A) as algebra automorphisms, and we always take GL (/) to act on 4 and
C(A) in this manner. Let G be a finite subgroup of GL (/). For ge G of order N, let
{ai,4.  .a,} be a basis of A" such that n=e*"/N and

ga;, g= 77"" a, g (43)

where n; ,€Z for 1<i<I; let {af,,. .. ,a,’f‘g) be a dual basis of A~ so that (a; 4,
af;)=0;; . Then

gat,=n~"at, (44)

and {h; ;=a; 4af ,:]1<i<1} is an orthonormal basis of a Cartan subalgebra b, of g.
By identifying b, with b} via (-,-) we may choose

o, g=hi g=hy g o sy g=hi1 g—hy g1 =M1 g+h g}

to be a fundamental system of roots. Then A, ={h; ,+h; ,li<j} is the set of
positive roots, and

LQ=Z-Span{hi,gih],g|1éiajél}Cg 4.5)
is the corresponding root lattice. The weight lattice (or dual lattice) is
L3={x1h1,g+ R +th1,glxie%z and ZX;EZ} . (4.6)
The sublattice
'
Iy ,=Z—span {Lg, Y ’ihk,g} (4.7)
k=1

of L is called the spin lattice and is a self dual even lattice if 8|/ (see [S]). For
convenience, we shall omit the index g if g=1. For example, we shall write
a;=a; 1, af =af;. The next result is easy.

Lemma 4.1. (1) Let ge GL(I). Then g(:ab:)=:g(a)g(b): for a, be A defines an auto-
morphism of g.

(2) If geG, then g(a;,a; 4)=n" " a; 045 40, gCa;gafy)=n"s""0ra; ,af,:,
g(afjar,y=n""0""eak a¥ . In particular, g|y, =id.

(3) The vector hy 4+ - -- +h g=hy+ - -- +h,is independent of g. [

Let ge G have order N. Set
Af ={acA* |ga=n'a}, A=A+ A, (4.8)

forkeZ. Then A= @kez/m Ay, 4. For ae A write ag, for the component of ain 4, ,
We also set

1
A(Z +=, g)z N A, NI A(Z,g)= Y A, , @tV (4.9)
2 neZ neZ

For ae 4 and neyZ, denote ayy, ® "~ '? by a(n—1/2) in A(Z +3, g) and agy, ® 1"
by a(n) in A(Z, g). Then A(Z, g) for Z=Z +% or Z has a Q-gradations (weight
gradation) given by:

wta(n)=—n. (4.10)



536 C. Dong, G. Mason
Extend the form (-, ) to A(Z, g) by
(a(m), b(n))=(a, b)om-+s, o (4.11)

for a,be A, m,netZ +4% or +7Z. Set

1 +
A<Z+§’ g) =Alpg+ Y A @0 (4.12)
n—420
(where AR, . is understood to be 0 if N is odd) and
AZ, g =Afyj+ Y. Ay g®1" (4.13)
nz0

Then A(Z,9)=A"(Z,9)® A~ (Z, g) is a polarization. As before we denote by
C(A(Z, g)) the Clifford algebra with 1, generators A(Z, g) and relations

a(m)b(n)+b(n)a(m)=3,4n, o(a, b) . 4.14)
Let C* (A(Z, g)) be the subalgebra of C(A(Z, g)) generated by A*(Z, g), and form
the induced module

CM(Z, 9)=C(A(Z, 9)) @ c+uz g Clz, = A(A(Z,9)) , (4.15)

where €1, , is a one-dimensional C*(A(Z, g))-module such that A (Z, g) annihi-
lates 1z 4 and 1 acts as the identity. The symbol A(-) denotes the exterior algebra.
Then CM(Z, g) is an irreducible module for C(A(Z, g)) and it decomposes into even
and odd parity subspaces

CM(Z,9)=CM°(Z,9)® CM*(Z, g), (4.16)
where there are linear isomorphisms.
CM®(Z, g)=A"NA"(Z,9)), CM'(Z,g)=A"YA"(Z,9)). (4.17)
Remark 4.2. We endow CM(Z, g) with a Q-gradation as follows:
wtl; ,=cz 4 Wtla(m)u)=wta(n)+wtu (4.18)

for ac A, nesxZ and ue CM(Z, g), where

1 kN2 kKN? o .
-2—0 Z N dlmAk,g‘I" Z N I—N dlmAk’g lf Z=Z+§
1

o ] Tosk<y N<k<
RER (3-3) dimac it 7=2
N A k, 1 = .
20§k<N N 2 ?

(4.19)
The reason for choosing this gradation will be explained later.

Remark 4.3. Let geG. If heCg(g) then h preserves each AF , and thus acts on
A(Z, g) by

ha(n)=(ha)(n) . (4.20)

Note that this action preserves the Q-gradation of A(Z, g) and the form (4.11). Then
there is a unique action of Cg(h) on CM(Z, g) such that

helzy=1z4 ha(m)h™'=(ha)(n) . 4.21)
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Evidently h preserves the @Q-gradation of CM(Z, g), whence, CM(Z, g) is a Q-
graded Cg(g)-module.

For ae A, set

a(z)= Y a(n—i)z"" (4.22)
nexZ 2
on CM(3+1Z, g) and
a(z)= Y a(m)z "2 (4.23)
nesZ

on CM(Z, g). Define a normal ordering:-:

a(m)b(n) if m<n
sa(m)b(n):={i(a(m)b(n)—b(n)a(m)) if m=n (4.24)
—b(n)a(m) if m>n.

Then :a(m)b(n):=-:b(n)a(m):. Define linear functions ¥ ,: g—C by

Wz, o) = { gk/N e h) i: I:g (4.25)
and
k/N (a, b) if k/N<1/2
Vg1, ,)={0 if K/N=1/2, (4.26)

(k/N—1)(a,b) if k/N>1/2
where u=:ab:eg with ae 4, , and be4,, ,and 0=k, m=<N.
Lemma 4.4. The functions  are well-defined.

Proof. 1t is enough to show that Y (ab:)=y(—:ba:). If (a, b)=0, this is clear, so
without loss of generality we can assume that ae 4, and b=Ay_, ,. If k=0 then
Yz 4(ab:)=yz (—:ba:)=0. If k+0 then v ,(ab:)=(k/N—1/2)(a,b) and
Yz, 4 —:ba)=—((N—k)/N—1/2)(b, a), as desired. Similarly for t//z+%. O

For u=:ab:egq set
Y (u, z)=a(z)b(z):— Y z(u)z~* (4.27)

on CM(Z, g). Then Y (u, z) is well-defined and for r=0,1, CM(Z, g)" is invariant
under the component operators of Y (u, z). Next we show that the operators Y (u, z)
provide a representation of §[g] on CM(Z, g). Since the arguments for Z=Z and
Z =%+7Z are essentially the same we only give the proof for the former case, so
from now we assume that Z="7Z.

For a, be A and m, ne#Z define the contraction

a(m)b(n) =a(m)b(n)—a(m)b(n): . (4.28)
%/—J
We also have an analogous notation a(z,)b(z,). Recalling (4.22), set
H—_} .
at(z)=Y am)z"""124+4a(0)z" 2. (4.29)

nz0
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For 0£k< N —1 define a function

f( ) {Zi/Z—k/Nzlzc/N—l/Z if k=1=0 (4 30)
Z1,25)= .
I e o 2y i k=0
The following lemma is straightforward.
Lemma 4.5. Let ac A, and be A. Then
Zy,2
a()b(z) =[a* (1), bz)] =a* (21)b(z) + b(zs)a () = (a by 2L 22)
— Z1—2Z3
4.31)
and
Z1,2
b(zz)a(zy) =[b"(z1), a(z2)]+ =(a, b)M. O (4.32)
— 22—

1
In general, for a,...,a,€A and nq,. . ., nkeml define

:al(nl) e ak(nk):=a1(n1) . ak(nk)
ifn < ... £ngand n;#0 and
L o) (Mo(1) - - - Ao(a) =(— 1) 2 ay(ny) . . . ax(m):

for oeS;. We also define

1
1a,(0) ... ak(O):=E Y as1)(0) . . . ap0) .

oeSy
Ifn ... Em<0=my 1= ... =nj<n 1 = ... <n, define
say(ng) . a(m)i=as(ng) ... a(n):a;+10) . .. a;0):a;41(j41) - .. anlmy) -

The following lemma is a direct consequence of the definition of normal ordering
and the contraction, and is sometimes referred to as the Wick theorem [W].

Lemma 4.6. Let a;,a,, b, b,eA and m;, m,, ny, n,esZ. Then
sayg(my)az(my)::by(ny)by(ny):=:a;(my)ax(my)by(ny)by(ny):

+ay(my)by(nz) 1a(my)by(ny):+asz(my)by(ny) :ay(my)ba(ny):
%(__J kﬂ'_—‘}

—ay(my)by(ny) :a,(my)by(ny): —as(my)by(ny) cay(my)by(ng):
- N

+c:1(m1)b2(n2J)c:2(m2)b1(nL) _fli(ml)bl(n1j)ﬂz2(mz)b2(”j) . O

From Lemmas 4.5 and 4.6 we have:
Lemma 4.7. Let a;€A4; 4, a,€ Ay g with 0<j,k<N—1 and b;, b, A. Then
(1) :a1(z1)az(z1)::b1(22)ba(22) = a1(21)a2(z1)b1(22)b2(22):
+(ay, bz)iaz(zl)bﬂzz)i%(lzl_’TZ;)
Sie(z1,22)

(a2, by): a1(21)ba(z2)
1742
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fJ(Zl Z3)

—Z

ﬁc(zlaz2)

)
f}(zlazl)ﬁt(zl’ZZ)
(21—22)2
fj(Zl’ZZ)ﬁc(Zl’ZZ)

(21—22)2 ’
(2) :b1(22)b2(22) 1 ay(z1)az(zy) =i ay(z1)az(z1) by (22)ba(22)
f;(zh Zz)
—Z1
fi(z1, 22)
2721
f;(ZhZZ
—21
ﬁc(zl’ZZ
Zp—1Z1
f}(zl’ZZ ﬁc(zlrzZ)
(22—21)2

f;(zl 25) filz1, Zz)

(21 —22)2

—ax(z1)by(z2):(ay, by )

—(az, by):a:(z1)by(z5):

+(ay, by)(az, by)

—(ay, b1)(az, by)

—(ay, by):ax(z1)by(z2):

—(az, by):a(z1)by(z2):

+(ay, by):ax(z1)by(z,):

+(az, by):ay(z1)by(z5): ———

+(ay, b2)(az, by)

—(ay, b1)(az, by) O

Set u=:aiby:, v=:bb,:€g. Using (4.27) we have

1
[Y(uazl)aY(U:ZZ)]Z(alabZ):aZ(Zl)bl(ZZ):fj(zl»22)< ! + )

Z1—Zy Z2—23

1 1
+(az,bl)ia1(z1)b2(zz)1ﬁc(21>22)(21_ + )

Zy Z3—Z

1 1
—(anb1)3a2(21)b2(22)3ﬂ(21,Zz)( + )

Z1—22 2221

1 1
—(azab2)5a1(21)b1(22)3ﬁc(21>Zz)< + )

Z1—2Zp Zp—1Z;

1 1
+(as, ba)(az, by) fi(z1, 22) fulz1, 22)<(zl ) —(22_21)2>

1 1
_(01,171)((12,bz)fj(zl’zz)fk(zl,zz)< - > .

(21”22)2 (22_21)2
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The following relations about d-functions are well known (see, for example,
[FLM2]):

(z1—23) '+ (z2—21) ' =25 10(z21/22)

0
(z1—22) 2 —(z,—21) 2= —22_16‘—5(21/22) .

Z1

Thus

(Y (u, z1), Y (v, 2) =25 <?>_T5<E—I>Y([u, vl z2)+ (%),
where
j+k
"N
(*)= <§—:) 22_2(5<§—:>((a1, by)Ya, g(azby )+ (as, b)Yz, g(3a1bz )

—(as, b)Yz, g(3 azb;:)—(az, ba)Yz, g(3 a;by:))

0 1
—(u, ) f(z1, 22) fillz1, 22) 22 16—215<Z—> .

22

Lemma 4.8. We have

— v)zglbi—l((j—j_

( 1>> ’
Z2
jtk

[Y(u 1), Y (0, 22)] =25 <j~>—5<§> Y ([u, v], z,)

2

jtk
6 1 N 1
().

Proof. There are three cases: (1) j+0, k=0, (2) j*0, k=0, (3) j=k=0. Since the
proofs are similar we only deal the first. Then

jtk )
()=t m(%) ) ZZ_Zé(%) <J—-]‘{]—k— 1>—(u, v) filz1, 22) fulz1, 22) 22 1%5(;—:) ,

and

or equivalently,

jtk

fzn 22 e, z»z;lf—a(z—l)=zgli<<ﬁ>‘Ta<ﬂ>>
0z; \z3 0z1\\ 2z, Z,

jl’f
Y PR R LA VEAA R ES
& <1 N )(Zz> 5<22>'

Finally from Lemmas 3.5 and 4.8 we have

The result follows. [
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Theorem 4.9. The spaces CM(Z, g) are §[ g]-modules on which u(z) acts as Y (u, z)
(ueg) and c acts as 1.

This theorem in the case g=1 can be found in [F, FF and FFR]. Following the
arguments in [F and FF] we next show that CM%Z,g) and CM*(Z, g) are
irreducible §[ g]-modules. For u, veg define a new normal ordering

u(m)v(n) if m<n
su(m)o(n):={ 3u(m)o(n)+ov(n)u(m)) if m=n 4.33)
v(n)u(m) if m>n.
For 1<i,j<1, set
Xij g =i g0j, g5 X5 g=10; ga% 41, xFX =af a¥ . (4.34)

Then x;; , is a root vector with root h; ,+h; ,, x}¥*, is a root vector with root
—h; ,—h; 4, and x% , is a root vector with root h; ,—h; , for i#j.

Lemma 4.10. For 1Zi<I, we have
(1) hi g(z0)hi, o(z2) = by, g(21) By, 9(22)34‘(21—22)_2 s
(2) X, g(z0)xEHy(22) =0 X35, y(21) X% (22) -
Proof. (1) follows from the commutator relation
[hi g(m) hi g(n)]=m6m+n .0

for m, neZ. For (2) note that [x; ,, x¥%]1=0 and {(x; 4, x%%>=0. Thus [x;, ,(m),
x%*(n)]=0 and (2) follows. [

Set

D (2)= Y Y (n—m):a; J(n+n; ,/N)a¥,m—n—n; ,/N):z"™ 2. (4.35)

meZ neZ

Then we have

Lemma 4.11. For 1Zi<],

(1) thi, 4(2)h;, (2) = = ay, y(2)a, o(2)af y(2)al (2):+ Dy, 4(2) -

() xu, (2)xE7(2) =t ai, o (2)a;, o(2)af (z)af 4(2) .

Proof. Since the proof for Z=Z and Z =Z +4 are similar we only give the details

for Z=Z. Firse let 0<n; ,<N. From Lemma 4.7, we have

thy, 9(21)hi, g(ZZ) =, g(Zl)ai, g(ZZ)a?jg(Zl)a?:g(ZZ) :

fn,,g(zl,Zz) fN—n,.vg(ZuZz)
Z1—2Zy

+:a;, 4(z1)af 4(22)
Z1—22

= a;, 4(z2)a¥ 4(z1):

—(ni,o/N=1/2): 0, o(22)af (22) = (1)2—n; o /N) 4y, y(z1)af 4(21): .
Then the result follows by taking the limit as z; »z,. The case n; ,=0 can be
treated similarly. [
Recall the constant ¢z, , from (4.19), and set

Li,g(z)zcz,gz—z— ,g(z)—hz—ih,,g(z)zZLig(n)z—"-z. (4.36)
neZ



542 C. Dong, G. Mason

From Lemma 4.11 the component operators L; ,(n) preserve any submodule of
CM(Z, g).

This fact will be crucial in proving that each CM"(Z, g) is irreducible. We also
set

1
Lg(z)zAZILi, /(2)= Zzl,g(n)z—”‘2 i 4.37)

1 1
Proposition 4.12. For 1<i, j<1, k, meZ, neﬁl, peNZ and ueg we have:

(1) [L;, y(k), aj, y(n)]1= —6;, j(n+k/2)a;, ,(k+n).
(2) [L, 4(k), af y(n)]= —6;, j(n+k/2)ak ,(k+n).
(3) [Ly(k), u(p)]= —pu(k+n)

@) [Ly(k), L y(m)]=(k—m)L ,(k+m) Jré(k3 —K)0gm,0-

. o . 1
Proof. Again we only prove the proposition for Z=7Z. In this case neNZ and
Li,g(k)zék.ocl,g+ Z (k/2—q—mn;, 4/N):a; 4,(q+n; g/N)afy(k—q—ni-y/N): .
qeZ

4.38)

Noting that [:a; 4(q+n; ,/N)a¥ ,(k—q—n; 4/N):, a; ,(n)]=0 if g+n; ,/N+n+k,
we obtain:

LLi, (k) @i, o()]=—(n+k/D)[: a;, J(n+K)aF o(—n):, a;, y(n)] = —(n+k/2)a;, [(k+n),

as desired. If i £}, clearly, L; ,(k) and qg;, ,(n) commute. The proof of (2) is identical.
(3) and (4) follow from (1) and (2). [

Now we are in a position to prove the following theorem:
Theorem 4.13. The §[ g]-modules CM"(Z, g) are irreducible if > 1.

Proof. As we have already pointed out, the component operators L; ,(n) preserve
each §[ g]-submodule of CM"(Z, g). Recall (4.34) and let i +j. Then ¢z 4(x%) =0 (see
(4.25)) and Y (x;;, z) = a;, ,(z)a¥ 4(z): (see (4.27).) From Proposition 4.12 (1) we get

25l OY (x5, z)e L @20 =z8dN: g, (220)a; 4(2) : (4.39)

and its component operators a; ,(m)a¥ ,(n) preserve irreducible submodules. Sim-
ilarly for the operators a; ,(m)a¥ ,(n), af ,(m)a} ,(n). It being clear that CM°(Z, g)
and CM*(Z, g) are irreducible under these operators, the proof is complete. []

Remark 4.14. Theorem 4.13 was proved for g=1 in [F and FF]. In [FFR] the
action of § is extended to an action of CM°(% + Z):

Y:CM°G+7Z) — (EndCM(Z))[[z 2z ']]
such that (CM°(3+7Z), Y, 1, 4, ) is a simple VOA, where

w=L(—2)IZ+é=%.Z (a¥(—3/2)ai(—1/2)+a;(—3/2)af(— 1/2))lz+% . (440

Moreover, the four spaces CM"(Z) are irreducible CM°(3 + Z)-modules.
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Remark 4.15. Recall from (4.21) the action of G on CM(Z). Then gu(z)g ™! =(gu) (z)
for ueg. Since CM°(Z + %)) is generated by g (regarded as a weight one subspace of
CM°(Z +4%)) in the sense of [FHL] (also see [DL1]), the relation g¥ (u, z)g ' =
Y (gu, z) holds for arbitrary ue CM°(Z +%). That is, G is a group of automorphisms
of the VOA CM°(Z +1%).

Finally we justify the weight gradation of CM(Z, g) introduced in Remark 4.2
by using the operator L ,(0) to compute the graded-dimension of ch,CM"(Z, g).
From (4.35)—(4.37) we find that

L,0)=cz 4— iil n;l (n+mn; 4/N):a; J(n+n; ,/N)aF (—n—n; ,/N):. (4.41)
It turns out that the weight of 1, , defined in (4.18) is precisely the L ,(0)-eigenvalue:
L0z ,=cz 412, . (4.42)

Also from Proposition 4.12,
[L,(0), a(m)]= —ma(m) (4.43)

for acA and mesyZ. Thus the weight gradation of CM(Z, g) coincides with the
L ,(0)-eigenspace decomposition. Now from (4.15), (4.17), (4.42) and (4.43) we conclude:
Proposition 4.16. The graded-dimensions of CM'(Z, g) are given by:

(1) Take 0=n; ;<N fori=1,..., 1 If some n; ;,=0,

Ch CMr(Z g _qczg—1/24H n +q—n.,g/N+1+n)(1+qnl,g/N+n);

i=1n>0

ifall n;, , %0,

1 1
ch, CM'(Z, g) =5q°xs"P* <ﬂ [T (g 1)1 gV
=1n>0

+(—1)’<IL[ (1_q~n,,g/N+l+n)(1_qnw/N+n)> .

i=1n>0

(2) Take —N/2=n; ,<N/2. If some n; ;=N/2,

i=1n>0

CthMr<Z +%, g>=—%qcl+l/2,y_l/24 l_[ l_[ (1 +q—n,,q/N+1/2+n)(1 +q":.g/N+1/2+") ;
ifall n; ,#£N/2,

1
CthMr(Zﬁ-%, ) % 1/24<1_[ 1_[ 1+q~n,'g/N+1/2+n)(1+qn,.g/N+l/2+n)
i=1n>0
1

+(_1)rn O(I_qfn,.g/N+l/2+n)(1+qn,~,y/N+1/2+n) . O
i=1n>

5. Boson-Fermion Correspondences

We have constructed irreducible §[g]-modules CM"(Z, g) for geG in the last
section. In this section we shall realize these modules as V. ; g, constructed in
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Sect. 3, where B,e(h,)q depends on g and 4; ,eLj for i=0,1,1—1,1 (see (5.2) and
(5.3) below). We then establish the isomorphisms between these modules — the
boson-fermion correspondence. Realizing G as a group of automorphisms of the
VOA V,, we show that CM"(Z, g) are irreducible g-twisted modules of the VOA
CM®°(Z +%) via the boson-fermion correspondence.

Since g€ G is an inner automorphism of g, the g-twisted affine algebra §[g] is
isomorphic to g (see [K]). Moreover, we see the four level 1 standard modules as
CM"(Z,g) for r=0,1 and Z=7Z, Z+4 in the fermionic picture by Theorem 4.13.
On the other hand, there are also four level 1 standard §[g]-modules from the
bosonic picture in Sect. 3. For ge G we define a number ¢, as follows

0 if dim At . is even
sg={ Lisny Ao . (5.1)
1 otherwise .
Set
1 1
Bg= —_— Z ni’ghi,g'*'aghl’gebg . (52)
N
where n; , is as in (4.3) with N>ny ,= --- =n, ,20. Then g—f, is an automor-

phism of V;, by Proposition 3.3 (1). By identifying the weight 1 subspace (V,), of
Vi, with g, the restriction of g_4, to (V7,)y is g (see Remarks 3.2 and 3.6). According
to Theorem 3.4 there are four irreducible g4 -twisted V; -modules Vi ;. 4, (for
i=0,1,1—1,1) which are also the level 1 standard §[ g]-modules, where

lo,g=0, j‘l,g=h1,gs

1
/11—1,g=5(h1,g+ R P e T

1
/q-l,gzz(hl,g'i' o +hl~2,g+hl—1,g+h1,g) . (53)

Recall that, as vector spaces, V7 s ,+p,=VL, Set
bi,g=1(ci, )€V 11,45, (54)
for ci,geLAg for i=0,1,1—1,1 so that

Co.g= Z hi,g—gyhl’ya C1,4=Co, g El~1,g=03 c—l,gz_z‘c‘yhg,l‘ (5.5)
n; 42 N/J2

Also set fo, g =1, 4.4 f1,g=01,4(=1/2) if n; =0, f; ;=a,,4(n/N—3/2) if n, *0,
fi-1,4=af ,(—m/N) and f; ,=1z 4. We have the following boson-fermion corrres-
pondence:

Theorem 5.1. There are unique isomorphisms of §[ gl-modules o,:

2 2
VL+/1,_g+ﬂg = CMeg(Z3 g) s VL+11~1.g+ﬂg /‘\“/CM1+6g(Z5 g)
such that

1 1
VL+5ngM°<Z+—, g) R VL+11,,,+[395CM1<Z+—,g> ,

o,x(z)a; ' =x(2) (5.6)



Nonabelian Orbifolds and Boson-Fermion Correspondence 545

for xeg,
gbi, =l g (5.7)
fori=0,1,1—1,1if ,=0 and
o-gbi,g::fi,g(izoa 1)> ngl—l,gzﬁ,g: ngl,g:fl—l,g > (58)
if e,=1, where g,+r is taken modulo 2.

Proof. We shall prove the theorem by giving explicit isomorphisms between § and
gLg] so that b; , and f; , are highest weight vectors with the same highest weights
for i=0, 1, I—1, I It is well-known that the level 1 standard §-modules are
parametrized by four dominant integral weights A=4; ,eb} for i=0, 1, 1—1, I such
that the highest weight of g-module, viewed as a linear form on §, @ Cc < g, is given
by 4, sending ¢ to 1. We denote the corresponding level one standard §-module by
L(1,2).
The first isomorphism ¢, from § to §[ ¢g] is given by:

crHc,
Xij, o(M) > Xij, g (M1, o/N +n; 4/N),
x5, o(m) > xfi g(m-+ny o/N —n;, o/N)+ 0, j0m, ot o/Nc
x55(m) = xEX (m—n; ,/N —n; ,/N) . (5.9)

for meZ Recall from Remark 3.6 that the action of g[g] onVy 4, B is given by
x(z)=Y,, +p, z). In particular, the action of b, is given by (3. 17) Ttis straightfor-
ward to check the following for k=1—1, I:

d)l(xij,g(O))bk g =, (xlj g(o))bk g:d)l(xll g(l))bk,y‘_:o’ fori<j,
¢ (o‘)bk g </1k g o‘>bk g if 8920
Gr()bi— 1, 4=t g Ob1—1 4o P1(@)Dy g =< A1, g 00l , g=1.

for ael,. The same relations hold for f; , with k=I[—1, | by using (4.27). That is,
by, , and f; , are highest weight vectors with the same highest weights for k=1—1,1.
This proves the theroem in these cases. In particular,

VL9+/11~1+ﬁg :CMI*'%(Z, g):L (1’(1 _89)11_ 1, g+89/11, 9) >
Vitiv g, XCM(Z, g)~L(1, gh1—1, g+ (1 —£5) 4, ) -

Similarly for the remaining cases. But this time use the isomorphim ¢, from § to
§lg] given by

¢,

Xij, (M) = X5, o (m+n;/N +n ,/N),

x5 gm) = xE (mAni/N—nj ;/N)+0; ;0 oni, 4/Nc,
xi*,(m) - x5 (m—n; ,/N —nj ,/N) . (5.10)

for meZ where n; ,=n; ,ifn; ;<N/2and n; ,=n; ,—N if n; ;= N/2. In these cases
the results are:

Vi tip, ~CMMZ, g)~L(1, )
for k=0,1. O
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Corollary 5.2. We have the following g-identities:
0r. .
/v+)~.'.y‘lrﬁa(q) — Chq CMI(Z’ g)
n(q)

for i=0, 1 and

OL) + 4 +5,0) + ( 1

gt Ai-1 g 5061 1+¢

—Lrhnt el —ch CM 2] Z+_’g>’
’1(‘1)l ¢ 2

0. IC) ( 1

Agt A, /3 q €,

—rr et —ch,CM%{ Z +—, g) .
n(q) ! 2

Proof. From Remarks 3.2 and 3.6, formula (3.27), Theorem 5.1, it is enough to

prove that wtb; ,=wta,(b; ,)fori=0,1,1—1, . Now a straightforward calculation

of weights of these vectors gives the result. []

Recall that L=L { is the root lattice of g corresponding to the identity automor-
phism. Our next goal is to realize G as a group of automorphisms of V, so that
Vi,+4.,+p Will be an irreducible g-twisted ¥, -module. The main idea is to identify
V. with ¥, as vertex operator algebras. Let t,: ¥, »CM®(Z+7%) be the unique
g-module isomorphism such that

1,1=1

T,x(z)t,

—x(z) (5.11)

on CM°(Z +%) for xeg. We also assume that by _; =1. Then t, =0,. More precisely
we have:

Z+y

T(x1(my) .. xe(m))=x1(my) . . . xk(mk)ler% (5.12)

for x;eg and m;eZ. Since both V;  and CMP®(Z +%) are VOAs (see Theorem 3.1 and
Remark 4.14) it is natural to expect that 7, is an isomorphism of VOAs. Note that
the Virasoro element of V, is given by

1 1
wy=3 L b =12

and the Virasoro element of CM%(Z + %) is w given in Remark 4.14. We still denote
by w, the image of t,(w,) in CM°(Z +3), that is

1 1
wgzzkz I o(— 111, ,€CM°(+ ). (5.13)
=1

Lemma 5.3. The element w, is independent of g, that is, w,= w.
Proof. Note that

1 1
Wy=—7 2 (@ o(—=3/Dar, o —=1/2)+ar, o(—3/2)af (= 1/2) i1z -
k=1

Now the result follows. [

Remark 5.4. Since both ¥, and CM°(Z +3%) are generated by g which is the weight
one subspace in the sense of [FLMZ2], we see that 7, is an isomorphism of VOAs.
Clearly, the VOA structure of CM°(Z +4%) is independent of geG. We identify
Ve with ¥, via 74 1y,
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Recall from Remark 4.15 that G acts on CM%(Z+3%) as a group of VOA
automorphism. Thus G acts on ¥V, by

gx1(my) ... xi(m)1)=(gx1)(my) . . . (gxi) ()1 (5.14)

(for x;eg and m;eZ) as a group of automorphisms of V. That is, g¥ (v, z)g "' =
Y (gv, z) for ge G and ue V.. Moreover, using the identification of ¥, with V and
Theorem 3.4 we have:

Proposition 5.5. The spaces V., +p, (fori= 0,1,1—1,1) are irreducible g-twisted
Vi-modules and are unique up to isomorphism.

Now we return to the fermionic picture. Set
M,=CM(Z+%,9)®CM(Z,g) . (5.15)
We can define a linear map
CM(Z +%)—>(End M,)[[z*/N, 2z~ VN]]
v Y, (u, 2)=0,Y, (01 '(v), 2)a, ' =0,Y ,(z, ' (v), z)a, ',  (5.16)

where we use Yy(u, z) for ueV;  to denote Y, p,(u,z) on Vg 4, 4p, for i=0, 1,
I—1, 1 (see (3.18)). By Remark 3.6, Theorem 5.1 and Proposition 5.5 we have

Proposition 5.6. The space (M,, Y,) is a g-twisted CM°(Z +%)-module and the four
spaces CM'(Z, g) are the unique irreducible g-twisted CM°(Z +%)-modules.

Recall from 4.3 that Cgs(g) acts on A(Z, g), CM(Z, g) such that hl; ,=1; ,and
that ha(z)h™! =(ha)(z) for he C¢(g) and ae A. Also recall (2.20).

Theorem 5.7. Let g, heG. Then there exists an invertible linear map
P (h): My-144—> M, such that ¢(h)(CM"(Z, h™ 'gh))=CM"(Z, g) and that

(MY g0, 2) $(h) ™" =Y, (hu, 2) (5.17)

for ueCM®Z+%). In particular, ¢(h) gives an isomorphism of h™'gh-twisted
CM®(Z +%)-modules CM"(Z, h™ *gh) and he CM"(Z, g). In the case he Cs(h), we may
take ¢p(h)=h and (5.17) becomes

hY ,(u, 2)h ™ =Y, (hu, ) . (5.18)

Proof. First we define the map ¢(h). Recall A(Z, g) and A*(Z, g) from (4.9) and
(4.13). Define an invertible map ¢(h) from A(Z, h~1gh) to A(Z, g) by:

¢(h)(a(n))=(ha)(n) (5.19)

for a(n)e A(Z, h™'gh), where ae A and ne@. Then ¢ (h) preserves the polarization
¢(h)A*(Z, h~'ghy= A*(Z, g). If we extend ¢(h) to an algebra isomorphism from
C(A(Z, h™'gh)) to c(A(Z, g)) then this induces an invertible linear map

¢(h): CM(Z, h™'gh) > CM(Z, g)

such that ¢(h)CM"(Z, h~1gh)=CM"(Z, g). In fact, ¢(h) has the following explicit
action:

¢p(h)(a(ny) . .. ak(nk)lz,h“gh)=(hal)(”1) ce (hak)(nk)lZ,g (5.20)
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for a;e A and n;e Q. Now it is clear from (4.27) and Theorem 4.9 that (5.17) holds for
ueg (which is identified with the weight one subspace of CM(Z +%)).

Next we prove (5.17) for arbitrary ue CM°(Z +%). The idea of the proof is to
prove that Y,(u,z) can be expressed in terms of Y,(v,z) for veg. For u=
x(—n)(=x(—n)lz+%)e CM°(Z+%) with neZ positive we  rewrite
u=gmyL(—1)""'x(—1) . Then

1 d n—1
Y(x(—n), Z)=W<E> Y(X(— 1), Z) .

Now let u=x(—n)- we CM°(Z +%) for some w. We also assume that xeg;. Then
from the g-twisted Jacobi identity (2.18) we have

2515<zlz—022) Y, (x(— 1), 21)Y o0, z»—zglé(

Z2—21

=z;1 (iﬂ>_i/N5<le_Z°> Y ,(Y(x(—1), zo)W, 25) - (5.21)

Z2

>Yg(ws ZZ')Yg(x(_ 1)3 Zl)

Multiplying (5.21) by z, " and taking Res, we get

()
z; ! Z &((ﬂ)ﬂl\’&(%))Yg(x(—n+k)w, Z5)

k=0 k! Zy
=(21—22) "Y y(x(=1), 21) Y (W, 22) = (= D)"(z2—z1) " "Y (W, 22) Y y(x(—1), z1) .
(5.22)
Now we multiply (5.22) by z{"z; /" and take Res,, to obtain
Yy(x(—n)w, z,)
()
i/N _g> z. \"iN [
- ~1( 21 1 Z1 Z _
= —Res;, {22 <22> kéo pr <<22) 5<22>>Yg(x( n+kw, z,)
2, \i¥
+ <‘Z—2> (21 —z2) " "Yy(x(—1), z1) Yy(w, z3)
—(=D"z2—z24) "YW, 22) Yy(x(— 1), Z)} : (5.23)

Thus y,(h(x(—n)w), z) can be expressed by the operators Y, (hx(—1), z), ¥ ,(hw, z)
and Y, (h(x(—n+k)w), z) for k> 0. Similarly, Yj,-14,(x(—n)w, z) can be expressed by
the operators Yj-1g4(x(—1), 2), Y -140(W, 2) and Yj,-14(x(—n+k)w, z) for k>0 with
the same relation. This shows that if (5.17) holds for w and x(—nr+ k)w (k> 0) then
(5.17) also holds for x(—n)w.

Let u=xy(—ny) . .. x)(—n)e CM°(Z +%) for g-homogeneous x;eg and n; >0.
Now it is straightforward to show by induction on s and n, that (5.17) holds for u.
The other assertions are clear. []

Corollary 5.8. CM°(Z +%) is arational VOA, G is a group of inner automorphisms of
CM®(Z +3%), and properties SR1, SR2 of Sect. 2 are satisfied (where all projective
representations are ordinary linear representations). []
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Using the isomorphism ¢, of Theorem 5.1 and the invertible map ¢(h) of
Theorem 5.1 we define an invertible linear map ¢(h) from Vit
I/Lg_",)_“g_‘_ﬁg fOl‘ 1:0, 1, l—l, l by

pMw=0," (o) 1n(w)

Then for ueVv, ,

in=tgn T Bimigh to

for we I/La"'}'l,h' ‘gh+ﬁh"gh °

PM)Y g, 2)(h) ™ (W)= (W)Y g1, 2) 01 G(R) ™ ag(w)
=(h)oy 3 Y h-1gn(o1 1, 2)P(h) ™ oy (w)
=0, ' ¢M)Y -gn(01u, 2)p(h) ™ a,(W)
=0, 'Y (hou, z)a,(W)
=0, 'Y (o1hu, z)a,(w)
=Y, (hu, z)(w) .
This concludes the proof of

Proposition 5.9. Let g, heG. Then there exists an invertible linear map ¢(h):

VLIr'gh+1y,h"gh*‘/}h"gh - VL9+Aw+ﬂg
for i=0, 1, I—1, | such that

()Y -1gulu, 2)$(h) ™! =Y,(hu, 2) (5.24)

for ueV,. In particular, ¢p(h) gives an isomorphism of h™ *gh-twisted Vi -modules from
VLh,,thl ot By, O ho Vi, 45, ,+p, In case he Cg(h), we may take ¢p(h)=h and (5.24)
becomes '

hY J(u, 2)h ™t =Y, (hu, z) . (5.25)
Moreover, there are commuting diagrams: '

(Hh_lgh’ Yh"gh) M (Mh"gh, Yh"gh)
¢(h)l ld)(h)

(Hg, Ygq) % (Mg, Yq)

——

where

H,= @ VLg+Z,,g+ﬂg :
i=0,1,1—1,1

6. Twisted Modules for V7,

In this section we shall continue our discussion in Sects. 4 and 5 with [ divisible by
8. We realize G as a group of automorphisms of the holomorphic vertex operator
algebra Vr, such that Vr, . p, is the unique irreducible g-twisted module. Using
the boson-fermion correspondence we get a holomorphic vertex operator
algebra CM°(Z+3)® CM°%Z) and its unique irreducible g-twisted module
CM*(Z+%, ) ® CM(Z, g).
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In this section we assume that G is a subgroup of SL ([, R). The following lemma
then is obvious.

Lemma 6.1. If n™,...,n™ are the eigenvalues of geG on A", then ni+ --- +
n,=0modN.

Recall from (4.7) that I ;=L ,0(L,+ 4, ,4). Then Vp =V, @V, ¢y, , From
Proposition 4.1 (3) we know that 4, g—/l,, that is, 4 eﬂgeGF . Let agef’ such
that a,=4,. Since 1(a )eVL which is identified w1th Vi, we can assume that
1(a})=1(a*) (Where again we 'write a= a;). Then 1(a,) is a highest weight vector of
Vi, 4+ For geG set

V(g)=CM°(Z+3%,9) @ CM™Z,g9)®N,, (6.1)

where ¢, is defined in (5.1) and N,=C is a one-dimensional C¢(g)-module affording
the linear character

xg(h)=det(h|g k;N/zAI)_ 1 _ p2mid By, Co, g+ &5, 4> (6.2)

for he Ca(g) (see (5.5) for the notation Co, ¢). In other words we modify the action of
Cg(g) on CM*(Z, g) by y,. In particular V(1)=CM%Z+%) ® CM°(Z). From
Propositon 5.1, we have a unique §-module 1somorphlsm 4. Vr,,~ V(1) such that
,(1)= 1Z+l P rg( (a,))=1z,, and 1,Y (u, z)1, ' =Y (01u, z) for ueVL

Proposition 6.2. There is an identification of VOAs 1, 'ty: Vp >V, such that
Vo=V, (as before) and Vi 1 ; =V 3, , with 1(a)=1(a,).

Proof. Asin Remark 5.4, =17, ! isa V;-module isomorphism from V. to Vr,, In
particular, we have the identification of VOAs V7 and V7. It is enough to prove
that

Y (u,z)t 1 =Y(tu, 2) (6.3)

forueV,,,. Let U be a vertex operator algebra. The following skew-symmetry is
well known (see, for example, [FHL]):

Y (uy, 2)uy =€V (uy, —2)uy (6.4)
for u;eU. Let veV, =Vy. Since |y, =id, we see that
tY (u, 2)1 Yo=1Y (u, 2)v=1e" VY (0, —2)u=e" VY (v, —2)1(u) .
On the other hand,
Y (t(u), z)v=e*"V2Y (0, —2)7(u) .

That is, tY (4, z)t~ 'v="Y (t(u), z)v. Since ve V|, is arbitrary, (6.3) holds on ¥ for
ue VL+)., .

Next let veV, ;. Then Y (u, z)t~'(v)eV[[z, 2z ']] which is t-invariant. So
we must prove the following relation:

Y(u, z)t " Hv)=Y (t(u), 2)v . (6.5)
Note that
Y (i(a,), 2)=E (=44, 2)E* (= Ay, 2)agz" (6.6)
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where

Ei(ﬁ,Z)=eXp<Z ﬁ(in)f/(in)) (6.7)

n>0
for peb, (cf. (3.7)). Then

Y(a), 2t i(ag)=E " (— A, 2)z% M (a?) = Y (1(ay), 2)1(ay)
and (6.5) holds for u=1(a) and v=1(q,). Let xeg. Then

Y (x(—1), 20) Y (@), z2)u@) =Y (x(—1), 2,) Y (i(ay), 22)1(ay) .
Using commutativity (2) of Proposition 2.3, we find that

Y((a), 22) Y (x(—1), z;)u(@) =Y (uay), 22) Y (x(— 1), z1)u(ay) ,

or equivalently,

Y (i(a), )Y (x(=1), )t (@) = Y (z(i(a,), 22) Y (x(—1), z1)u(ay) -

Now by induction on k we see that (6.5) holds for u=i(a) and v=x;(n;)

. x(me)1(a,) for x;eq and n;eZ. That is, (6.3) holds for u=1(a). An argument
similar to that in the proof of Theorem 5.7 show that (6.3) holds for all ue
Vigr, O

By Proposition 5.9, G acts on Vp, in such a way that g(1)=1, gz(a)—z(a) and
gY(u, z)g~ ' =Y (g(u), z) for ge G and ue V. By the identification V= Vr,,given in
Proposition 6.2, we see that g=gg . By Proposition 3.3 (1), we have

Proposition 6.3. G is a group of automorphisms of Vr,.

Since I'; 4 is a self-dual lattice (that is, I'; ;=1 ), by Theorem 3.4 (2), Vr, 45, 18
the unique irreducible g-twisted V;, -module. Again by Proposition 6.2 we have:

Theorem 6.4. The space Vr, 4 ;, is the unique irreducible g-twisted V -module. []

Next we shall establish a result analogous to Theorem 5.7 for the VOA 7. In
order to do this we have to study the action of G on the element 1(co, ;)€ (see
(5.5)) in more detail.

Lemma 6.5. Let g, he G such that h(aj,-,,)=af, if ¢,=1. Then
hl(CO, h“‘gh)z/’{(g: h)l(c(),g)
where A(+,-)e H'(G, C*) is a 1-cocycle such that (g, h)=y,(h)~" if he C¢(g)

Proof First let ¢,=0. Then &,-1,5,=0. Let 1<s=I (necessarily even) such that
,for 1<i<sis a complete list of m;, , = N/2. Since dim ) > v A¢ y=dim} ;> y >
Ak h-ghs M, h-1gn for 1<i<s is a complete list of n; -1, = N/2. Thus

UCo,g) = HgX12,4(—1) - - Xgo 15 4(—11(1) , (6.8)

where pu,eC* and x;; , is defined in (4.34). Applying ¢; given in Theorem 5.1 to
1(co, 4), we find that

01((Co, )= Hettr, o(—1/2) . . . ag o(—1/D)15,,€CM(Z +3) . (6.9)

We have the same expression for o(i(co, n-144)) With p, and a; , replaced by
Un-1gn and a; -1, respectively. Note that hAy -10= A, , for k=0,. .., N—1, and
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that A%™Y o v 2 Ak g Qk=nj2 Ak, ¢) is one-dimensional. We define A(h, g)e C* by
the following formula:

ha 1 (1(co, n-1gn)) = A(g, )1 (1(co, ,)) - (6.10)
It is straightforward to verify that A(g, h) has the desired properties. Similarly for
g=1. O

Let g, heG. From Proposition 5.9 we have an invertible map ¢(h) from
Vrl'h,,gh+lgh_,gh to Vrl,y+Bg such that (f)(h)bg,h—lgh=b0,g, ¢(h)b1,h-lgh=0'g_ lhO'gbl,g (cf.
(5.20)) and that ¢(h)Y - 1gu(u, 2)p(h) ™' =Y ,(hu, z) for ue V. It is natural to expect
that the last inequality holds also for all ve V. For this purpose we now modify
¢(h) in the following way:

oWy, =9t oM, =¢mieh . (61D

We have:

Theorem 6.6. Let g, he G. Suppose that h(af'y-1g1) = ai , if ¢,=1 (note that &-1,,=¢,).
Then

P(MY - 1gn(, 2)p(h) ™ =Y y(hu, 2) (6.12)

on Vr, +p, for ueVr,. In particular, ¢(h) gives an isomorphism of h™gh-twisted
modules VF;,;.-ngh+ﬁh~-g;.2h° V4B

Proof. Clearly, (6.12) holds for ueV;. We only need to prove the theorem for
uely,, i We first deal with the case ¢,=0. Take u=1(a)=1(a,)eV,;,. Since
J(—1)eVy and hi(—1)=A(—1), from @(h)Y p-1gn((—1), 2)@(h) "' =V (A(~1), 2)
we see that ¢(h)4,(m)@(h)~* = A(m) for meZ. Recall (3.17) and (3.18). Then as in the
proof of Proposition 6.2 we have

@)Y h2g1 (1(ap-1g 2)@(h) ™ bo, g =E~(— Ay, 2)2% %0t B2 (mYu(ay-+gnato, n-11)
€ VL5+,1,+,/35 .

From Lemma 6.5, we have

O(M)Y j1gn(t(co, ), 2)@(h) ™ =g, WY 4(t(co,g), 2) -
Since h(Co, n-1gn(—1))=Co, ,(—1) in V7, we see that

(R E*(—Co,h-1gn, 2)@ ()~ ' = E*(—Cp 4 2)
(cf. (6.7)) and that
@(h)co, h-1gn (W)~ =g, h)co 4

on ¥r 4, Thus

@(h) (1(a4c0,4)) = @(h) (= 1) ™ %02¢q by

':(_ 1)<lh C_O,y>i(g, h)cO, g(p(h)(bl, y)= l(ach, g) s
where we identify 1(a,)e Vr, with b, , introduced in (5.4). On the other hand,
Y y(hi(ag), 2)bo, g =Y 4(1(ay), 2)bo, 4= E~ (— ki, 2)z¢% st P0u(ageq g)eVL, 4 104, -

That is,

PM)Y j-1gn(1(ag), 2)@(h) ™ bo, =Y y(h1(ay), 2)bo, , - (6.13)
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We already know from the proof of Theorem 5.7 that for any veV;,;,, Y (hv, z)
(resp. Yjy-144(v, 2)) can be expressed in terms of Yy (hx, z) and ¥ (hz(ag), z) (resp.
Yin(x, z) and Yj-1g((ay), 2)) for xeg. Also @(h)Yj-1g(x, z)cp(h) '=Y,(hx, z).
Thus (6.13) is true with 1(a,) replaced by any veV, ., . Again as in the proof of
Proposition 6.2 we use commutativity to show that (6.13) holds with b,, , replaced
by any veVy g, . Similarly for veVy ;) 1p,-

The argument for g,=11s similar to that for &,=0 if we notice that

@(h)co, b= A(h, g)co, ;bep(h)
as operators on V., ., where beL, such that b=2h, , (cf. (5.5). O

Using the isomorphism o, between Vp, and ¥V we define a linear map
Y: V—(End V)[[z,z 1] by Y(u, z)=0,Y (4, z)o1 *. For ge G we also have a linear
map ¥,: V—(End V(g))[[z"/N, z7"N]1] by Y,(u, 2) =0, (01 *u, z)o, *. We immedi-
ately have:

Theorem 6.7. (1) The space (V, Y, 1, Lp @ w) is a holomorphic VOA isomorphic to Vr,.
Moreover, G is a group of automorphzsms of V.

(2) For geG the space V(g) is the unique irreducible g-twisted V-module.

(3) Let g, he G and assume that h(al n-ign) =a; , if eg=1. Then there exists an
invertible linear map ¢(h) from V(h™'gh) to V(g) such that for ueV ,

(MY y-1gi(u, 2)p(h) ™ =Y 4(hu, 2) . (6.14)

In particular, @(h) gives an isomorphism of h™*gh-twisted V-modules V(h™ *gh)~
he¥(g). O

7. Modular Invariance

In this section we assume that [ is divisible by 24, and we let V=V (1) be the
holomorphic VOA constructed in the last section. We have previously considered
finite subgroups G <GL (1) acting on V as described above (see in particular the
paragraph following (4.2). In this section we always assume that
G<SO(I,R)<GL(l), in which case the action of geG on A4 is via the diagonal
embedding g+ (g, g). Furthermore we assume the G fixes a non-zero vector of A™.
We may now apply Theorem 6.7. So G is a group of automorphisms of ¥ and for
each geG we have a representation of Cs(g) on the unique irreducible g-twisted
V-module ¥ (g). We will also be concerned with the VOA CM°(Z +%) for which
analogous statements hold thanks to Corollary 5.8.

The goal of this section is to establish the modular invariance properties SH2
and SH3 for 7, and SR3 and SR4 for V;. In fact a rather stronger formulation of
SR4 will be established. As we have mentioned in the introduction, the assumption
that 24|/, rather than just 8|/ which we have assumed up till now, is made mainly so
that the results of [M2] can be quoted directly. We leave it to the reader to
reformulate the results of [M2] so that only the condition 8|/ is needed. The results
of [M2] are used heavily throughout this section.

In order to deal with V and its g-twisted modules ¥ (g), the main problem is to
identify ¥ (g) with the graded space denoted by 5, in [M2]. So let us consider the
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underlying linear space of ¥ (g). Using (6.1) and (4.17) we have

V(g)zA(’(A_(Z +1,

> g>>®Ng®/1%(A_(Z, 9) (7.1)

where ¢, is as in (5.1) and where N, is the one-dimensional Cs(g)-module affording
the character y,(6.2). Of course V'(g) is also graded as in Remark 4.2, and we shall
return to this in due course.

Now from (4.12) we have for g of order N

- 1 - even O - o
AW(A <Z+5,g))=Aeve"<A~/z,g)A RS A (Af2,5) AW,

where S, is shorthand for )’ v 1 /5 < 4u,y ® "V~ 1/? and by convention Ay, =0
if Nis odd

Now Cg(g) acts on Ay, , via the diagonal embedding Cs(g9)—>SO(Ay)2,4)—
SO(Ay;z,,) and hence (see Lemma 2.2 of [M2]) lifts to an embedding
CG(g)—>Sp1n(AN,2 ¢)- Then it is well-known that the spaces A°"(Ayz,,),
A"dd(A N/2,4) are just the two half-spin modules for Spm(AN,Z ;) which we denote by
A1,2 P A7)2,, to conform (more or less) to the notation of [M2]. Thus we may
rewrite the first summand of (7.1), considered as a graded C;(g)-module, as

AT12,g A7 (Sg) @ A1)2,44°%(S,) - (7.2)
For g e G the function B(g) is defined in [M2] as follows:

n—1

Blg)=3 T Ba(/N)dim AL, 13)

where g has order N and B,(x) is the second Bernoulli polynomial defined by
By(x)=x%—x+1/6.

Lemma 7.1. We have
_{B(g) if Z=7Z
2.9 1/24_{%B(g2)—B(g) it Z=Z+1/2"
Proof. By (7.3) we get

B(g)=1/2 Nf (k?/N2—k/N+1/6)dim A,
k=0

=12 Nf ((k/N—1/2)2—1/12)dim 4;,

k=0
=CZ,9— 1/24 )
using (4.19) for Z=Z. The case Z=7Z+1/2 is proved similarly. []

Remark 7.2. By Proposition 4.12 (4), the Virasoro algebra is represented on each
CM"(Z, g), hence on V(g), with central charge L

According to the general principle of (2.23), for modular invariance consider-
ations we should grade S, in (7.2) positively by replacing ¢ ~! by q and incorporate
the L (0)-grading of Remark 4.2 (cf. (4.37) and (4.38)) as well as an overall grade shift
by g~ "2%, After doing this, we find using Lemma 7.1 that the (shifted) g-grading of
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the space (7.2) may be presented as
gD (AT AN () A1 12,0 4°(S,) (7.4)

as a g-graded Cg(g)-module. This is precisely the first summand of the space ), of
Theorem 10.2 of [M2].

We turn our attention to the second summand of (7.1). First suppose that T is
a €CG-module with a one-dimensional trivial G-submodule, say T=1@® U. Then
there are isomorphisms of (graded) G-modules

ATy~ ATy~ A(U) . (1.5)

As A(Z,9)=A0,,® (D<o An, "N (see (4.13) and as A, , has a non-trivial
C¢(g)-invariant by hypothesis then (7.5) applies to the action of C;(g) on A™(Z, g).
The upshot is that as graded Cs(g)-module the space N,®A*(A™ (Z, g)) is inde-
pendent of the sign ¢,, and with an obvious formalism we may write this latter
space as 1/2N,®@ A(A™(Z, g)).

Arguing as before, we have

AAZ, g))>A0,,® ATy) » (7.6)

where 44 is the spin module for Spin(4,,,) and T,=Y,, .o 4, ,® t"~. Moreover
the character y, of C¢(g) used in (6.2) is seen to be precisely the character denoted
by A(g,-) in [M2] (see in particular Lemma 8.2 loc cit.). Finally, if we again
incorporate the ¢g-grading and the shift by ¢ ~"/?* we obtain, using Lemma 7.1, the
space

1
EqB(g)Ng®A0,g®A(7;) 5 (77)

which is precisely the second summand of the space denoted 5, in [M2]. Conse-
quently we have shown:

Proposition 7.3. Let 5, be the g-graded C (g)-module of Theorem 10.2 of [M2]. Then
H, is isomorphic, as graded Cg(g)-module, to the irreducible g-twisted V-module
V(g) graded by the conformal weight together with an overall graded shift of g~ "**.

241

Let us write g~ **"' V' (g) for the g-graded g-twisted sector, and for he Cg(g) set

Z(g, h,t)=q "**(graded trace of h on V(g)) .
Because of Proposition 7.3 we can apply Theorem 10.2 of [M2] to conclude

Theorem 7.4. For the holomorphic VOA V and the group G<SO(l, R) described
above, properties SHI-SH3 hold. In particular we have the relation
Z(g, h,yD)=0(y" ", g, W Z((9, )y, ) (7.8)

for a certain 1-cocycle o of ' =SL(2, Z). Thus o satisfies for yy,y,€ I, gh=hg:

6(y172, 9 W=0(y1,(g, h)yzNo(y2,9,h). O

Now we turn our attention to the CM °(Z +4). In this case there are, for g€ G,
exactly four irreducible g-twisted modules CM"(Z, g)forr=0,1 Z=Z or Z +% and
SR1, SR2 hold (cf. Corollary 5.8). We are going to show that SR3, SR4 of Sect.
2 also hold. To be more precise, let H be the vector space with basis indexed by the
functions Z(g, h, t) of the VOA V. Then H affords a representation of SL (2, Z) via

y:Z(g, h,t)>Z(g, h, y7)
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by (7.8). Next note that if (2.25) is to hold in general, then in particular we have
Zi(l’ 17 VT):Z aljZJ(l, 1’ T) H (79)
j

where in (7.9) Zi(1, 1, 1) is just the character of the i™ irreducible CM(Z +%)-
module. In the case of affine Kac—Moody algebras this action of the modular group
on the space of the irreducible characters is understood [KP]. In particular, if we
order the irreducible CM(Z +%)-modules as follows: CM*(Z +3%), CM*(Z +1%),

0 —1 11
CM%Z), CM*(Z). Then the matrix representations S =( { 0) and 7= ( 0 1)

are as follows:

33 3 3 1 000
O R 0 -1 00
s=(? T . 1| r= (7.10)
2 -7 2 —1 0 10
3 -3 -3 3 0 001

We shall prove this below, but it is well-known. Let H, be the four-dimensional
space affording this representation of SL(2,Z). We shall prove

Theorem 7.5. The representation of SL(2,Z) on the space of functions Z'(g, h, 7)
associated with G and CM °(Z +%) is the tensor product H® H, of the “holomorphic”
space H of V and the space of characters Hy.

This means that if ye SL (2, Z) and y is represented on H, as the 4 x 4 matrix
(m;;), then

4

ZHg, h,yt)= ) myZ'(g°h*, g°h?, 1) . (7.11)

j=1
Since ¢ is a 1-cocycle it is enough to establish (7.11) for S and T as they generate
SL(2,7Z). Establishing (7.11) is easy for y=T, and we leave this to the reader in

order to concentrate on the case y=S.
We introduce the linear transformation z of A which acts as — 1. Of course z is
not an element of our group G, nevertheless z induces an automorphism of

CM(Z +%) which we still denote by z. From (4.18) the following is clear:

Cz,g——'Cz+%,gZ . (712)

Unlike the proof of Theorem 7.3, the proof of Theorem 7.5 does not follow
immediately from [M2], so we must adopt an approach which is less direct. We will
establish that the last two columns of the S-matrix in (7.10) are correct, that is we
have

. 1
Z(g, h, SI)=§0(S“1, g, M(Z'(h, g™ 1) =Z2(h,g™ ", 7)), (7.13)

where i=3 or 4, so that Zi(g, h, 1) corresponds to the graded trace of h on
CM'(Z, g) (recall that the isomorphism of CM°(Z, g) and CM*(Z, g) as graded
Cs(g)-modules was established prior to Proposition 7.3).

First from (7.6), Z (g, h, t)=0 precisely when h has an eigenvector in 4, , with
eigenvalue — 1, that is when < g, hz) fixes a non-zero vector of A. But then of course
g~ ! fixes a non-zero vector of the (—1)-eigenspace of h of 4 and so again
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CM°(Z+%,h) and CM Y(Z +%, h) are isomorphic {g)-modules. So in this case
both sides of (7.13) are equal to 0. So we may assume that hz fixes no non-zero
vector on Ag,,.

Now use (7.7) to get

2Z(g, h,1)=q"@try (h)try, (h)(trace h on A(T,))

with A(T)=A() 45 04n9""") (N =order of g). To compare with [M2], let (x;, ;)
be such that (e2™*i, ¢2™¥+) are the simultaneous eigenvalues of (g, h) on 4 with
0<x;=<1. Then the trace of h on A(T}) is equal to

l_[ (1+qn+x,e27tiyJ)(l+qn+l—x,e—2n:iyj).

n20,neZ 0<x;<1/2

H 1—[ (1+qn82m'yj)(1+qne-2m’yj)

n>0,neZ x;=0

zn(r)zzq—l/zszz(xj) )

[T #@ 2q"2B) [T (L+g" e ) (1+¢" 1 %e ™ 2m) |

0<x;£1/2 n20
B H },,(,L.)—qu/lz I_[ (1+q"QZT[iyj)(l+qne_2"iy1) )
xj=0 n>0

If we replace h by hz then all the signs in the brackets change from + to —. Then if
we compare with Egs. (5.6), (5.7), (6.1) of [M2], we see that the whole product is
equal to

g, B f4(g, bz, <)
in the notation of Chapter 6 [loc cit]. Using (7.3) we have established the equality
2Zg, h,t)= try, (h)trg, ,(h) fa(g, hz, 7) . (7.14)
we are going to use Theorem 6.2 of [M2]. It tells us that
falg, hz, ST)=Ff4((hz, g~ ")S ™1, St)=c(S, (hz- g~ ")) 't(S, (hz, g~ "))~ fulhz, g, 7)
ie.,
falg, hz, ST)=c(S™ ", (g, h2))t(S™ ", (g, hz)) fu(hz, g, ) (7.15)

(since ¢ and ¢ are 1-cocycles — see Lemma 5.3 and Theorem 5.7 of [M2]). Moreover,
we similarly get

fA(hZ,g_l,T)'—_qB(hz) I—[ l"[ (l_qn+x}elniy,')(1_qn+1—x}e~2niyj)‘

0<xj<1/2 n20

. n l_[ (l_qneZniy})(l_qne—Zniy}), (716)

xj=0 n>0

where (e2™7, 2™¥3) are simultaneous eigenvalues for (hz, g ') on 4 with 0<x;< 1.
Next note that from Lemma 7.1 and (7.12) we get

B(hz)=B(h?)/2—B(h) .
Then (7.16) is equal to
qB®I2=E W (trg=17 on Ag,)=try, (g 'z) H(trg~ 'z on CM(Z+3%,h)), (7.17)
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as we see by the argument leading to (7.2). But z acts as 1 on 47, , and —1 on
A7)z, (unless this latter space is 0), so (7.17) becomes

tra,, (g '2) HZ hg 1) —Z*(hg 1 1)) .
Putting everything together, we obtain:
Z'(g, h, St)=1/2try_(h)trs, (R)c(S™1, g, hz)t(S™', g, hz)
tra,,, (g7 2) " (Z (g ' 1)~ 2Z%(h g™, 7)) (7.18)

that is, (7.13) is correct up to a constant which we still need to identify. One can
calculate it directly from (7.18) and [ M2], but it is enough to observe that it must be
as desired because by Theorem 7.4 we have

ZYg, h, SO+Z'(g, h,S)=0(S" ", 9. )(Z'(h,g" ', 1)+ Z'(h,g" !, 7)) . (7.19)

Now (7.13) follows, and Theorem 7.5 follows from this and (7.18).

Finally, we consider the so-called 1-loop characters. For g € G let o, range over
the irreducible characters of C¢(g). For the holomorphic VOA 7 we can decom-
pose the (grade-shifted) irreducible g-twisted module g~ 7?#V (g) into irreducible
Cs(g)-submodules. So formally we get

q—l/24 V(g)= @ag(ag@) d)ag(q)) P

where ¢, (g) is the “graded multiplicities,” or 1-loop character, corresponding to
og. One expects that ang(q) is the character of an irreducible ¥ -module, but this is
unknown. Elementary character theory yields

bo (@)= Z(g. h 1) ay(h)

e [Co(D)] neCaiey

so the 1-loop characters form a basis of H if we choose (as we do) representatives
g of each conjugacy class of G.
Similarly in the case of the VOA CM°(Z +3) we get 1-loop characters

1 . -
ZYg, h h
Co@)] w20 D%

¢i,(q)=

fori=1, 2, 3, 4 in an obvious sense.
~ Define a hermitian form < -, - > on either H or H® H, by taking the ¢ag or
;g to be an orthonormal basis.

Theorem 7.6. The representation of SL(2, Z) on either H or H® H , is unitary with
respect to { +, - >, and moreover, T is diagonal and S symmetric if they are represented
as matrices with respect to the basis of 1-loop characters.

Proof. By Theorem 9.1 of [M2] we find that the 1-cocycle a(y ™ ?, g, h) is symmetric
if y=8. Moreover (T~ 1, g, h) is independent of h.

Using these facts, the theorem can be established on a purely group-theoretic
basis by several applications of the orthogonality relations. We omit details as the
result is also discussed, in greater generality, in Sect. 4.b. of [DVVV]. [
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