
Commun. Math. Phys. 163, 217-244 (1994) Communications ΪΠ

Mathematical
Physics

© Springer-Verlag 1994

Selberg Trace Formula for Bordered Riemann Surfaces:
Hyperbolic, Elliptic and Parabolic Conjugacy Classes,
and Determinants of Maass-Laplacians

Jens Bolte1, Christian Grosche2*
1 ILInstitut fur Theoretische Physik, Universitat Hamburg, Luruper Chaussee 149, D-22761
Hamburg, Germany
2 Scuola Internazionale Superiore di Studi Avanzati, International School for Advanced Studies,
Via Beirut 4,1-34014 Trieste, Italy

Received: 24 August 1992/in revised form: 22 October 1993

Abstract: The Selberg trace formula for automorphic forms of weight meZ, on
bordered Riemann surfaces is developed. The trace formula is formulated for
arbitrary Fuchsian groups of the first kind with reflection symmetry which include
hyperbolic, elliptic and parabolic conjugacy classes. In the case of compact bor-
dered Riemann surfaces we can explicitly evaluate determinants of Maass-
Laplacians for both Dirichlet and Neumann boundary-conditions, respectively.
Some implications for the open bosonic string theory are mentioned.

I. Introduction

Spectral theory of automorphic forms has recently seen some activity in the
physical literature, due to its importance in string theory. This theory originates
from the work of A. Selberg [50], where the famous so-called "Selberg trace
formula" was first presented. Other classical contributions are due to Hejhal [32,
33] and Venkov [56, 57]. String theory gave new interest in this work, first to refine
the Selberg trace formula further in order to calculate determinants of Laplacians
on Riemann surfaces, and second to develop other versions of the Selberg trace
formula. Here the generalization to the fermionic- (super-) string theory was most
important, leading to a formulation of a trace formula on super Riemann surfaces,
the Selberg super trace formula [8, 25-27].

Because the original contribution of Selberg was founded in the field of number
theory, physicists only lately acknowledged its value in periodic orbit theory as
founded by Gutzwiller [30, 52] (see also Albeverio et al. for a thorough mathemat-
ical treatment of a particular system [1]), who rediscovered the Selberg trace
formula years later within his formalism [31], and in quantum field theory on
Riemann surfaces, i.e. the Polyakov approach [17-19, 47] to (bosonic-, fermionic-
and super-) string theory. In the perturbative expansion of the Polyakov path
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integral one is left with a summation over all topologies of world sheets a string can
sweep out, and an integral over the moduli space of Riemann surfaces. This picture
is true for bosonic strings as well as for fermionic strings. The partition function for
open as well as closed bosonic strings corresponding to a topology without
conformal Killing vectors (DΉoker and Phong [17,19]) turns out to be

l o ) " 1 ) / 2 , (1.1)

where Pγ and Ao are the symmetrized traceless covariant derivative and scalar
Laplacian with Dirichlet boundary-conditions, respectively, and dμWP is the Weil-
Petersson measure. D denotes the critical dimension which equals 26 for the
bosonic string. For the fermionic-, respectively the super-string all quantities have
to be replaced by their appropriate super versions, and the critical dimension is
D = 10.

The calculation of determinants of Laplacians on Riemann surfaces is due to
several authors. Let us mention the evaluation of these determinants in terms of
Selberg zeta-functions by e.g. Bolte and Steiner [11], DΉoker and Phong [18,19],
Efrat [21], Gilbert [23], Namazie and Rajeev [44], Sarnak [49], Steiner [53], and
Voros [58], and in terms of the period matrix and theta-functions, e.g. Alvarez-
Gaume et al. [3] and Manin [40]. Let us note that the Selberg zeta-function
approach enabled Gross and Periwal [28] to show that the bosonic string per-
turbation theory is not (Borel-) summable and hence not finite.

In the perturbative expansion of the bosonic string [17,19,47] the classical
Selberg trace formula could be applied [23,44,53] in a straightforward
way, whereas the perturbation theory for the fermionic string required the intro-
duction of the Selberg super-trace formula. Here Baranov, Manin et al. [8]
originally started this activity, and it was further developed by Aoki [4] and
Grosche [25-27].

It was mainly the closed bosonic string that was dealt with and for which the
perturbation theory for scattering amplitudes was developed quite comprehen-
sively, whereas the open bosonic string took somewhat longer to be developed,
starting with the pioneering work of Alvarez [2], and until now seems not as well
developed as the former one.

The Polyakov path integral approach does not cause too much difficulties, see
e.g. Blau et al. [9,10], Bolte and Steiner [12], Burgess and Morris [14], Carlip
[15], Dunbar [20], Jaskόlski [35], Luckock [38], Martίn-Delgado and Mittel-
brunn [41], Ohndorf [45], Rodrigues et al. [16,48], and Wu [59].

There are (at least) two possibilities to express the scalar determinant: either by
the period-matrix and theta-functions, or by appropriately chosen Selberg zeta-
functions for the corresponding Dirichlet or Neumann boundary-value problems,
respectively. The former approach was discussed by Bolte and Steiner [13],
Burgess and Morris [14], Dunbar [20], Losev [37], Luckock [38], Martίn-
Delgado and Mittelbrunn [41], and Mozorov and Rosly [43] for multiloop
expressions. The latter case was treated by Blau et al. [9,10], and Bolte and Steiner
[12,13].

Of course, while dealing with open strings one has to distinguish Dirichlet and
Neumann boundary-conditions, respectively. In particular, relations between the
determinants detzl^ and det'zl^0 corresponding to Dirichlet and Neumann
boundary-conditions on the bordered surface Σ, and the determinant of the scalar
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Laplacian det 'J j for the doubled (closed) surface Σ could be derived, i.e.

det 4*> det '4 N ) = d e t ' ^ . (1.2)

For automorphic functions (i.e. automorphic forms of weight m = 0) the Selberg
trace formula for bordered Riemann surfaces already exists and almost the entire
theory is due to Venkov [56, 57], see also [55] and the particular case for
PSL (2, Έ) [54], and Guillope [29]. Independently, later on a more simple version
of the Selberg trace formula for bordered Riemann surfaces was developed by Blau
and Clements [9] and Bolte and Steiner [13].

In this article we want to develop the Selberg trace formula on bordered
Riemann surfaces for automorphic forms of weight m, meZ. In doing so we bring
together results of Hejhal, who has developed the Selberg trace formula for
automorphic forms of weight m on closed Riemann surfaces, with those of Venkov,
who has set up the trace formula for automorphic functions on bordered Riemann
surfaces. This merge seems still to be missing and appears to be interesting in its
own in the theory of automorphic forms and number theory; and it turns out to be
useful in string theory, because we are able to calculate determinants of Maass-
Laplacians on bordered Riemann surfaces which are needed in the string path
integral.

Our paper is organized as follows. In the second section we shortly describe
how to construct a bordered Riemann surface and its double, respectively, and we
refer to some results of Venkov concerning the relevant conjugacy classes of the
Fuchsian groups on bordered Riemann surfaces. Also the Selberg operator on the
involuted surface is explicitly constructed.

In the third section the Selberg trace formula for automorphic forms of weight
m, meΈ, is explicitly calculated, first for hyperbolic conjugacy classes only, and
then incorporating elliptic and parabolic conjugacy classes.

In the fourth section we calculate determinants of Maass-Laplacians on
bordered Riemann surfaces. They will be expressed in terms of the Selberg zeta-
function on bordered Riemann surfaces. Since this Selberg zeta-function was
thoroughly studied by Venkov [56], we rely on his results and rather do not
explicitly recall them.

Dirichlet as well as Neumann boundary-conditions will be considered in the
discussion of determinants of Maass-Laplacians on bordered Riemann surfaces.

All principal results will be stated as theorems.
The last section is devoted to a summary and a discussion of the results. These

concern the determinants [det {P\ P1)]1/2 = det (i Δ[+)) and det (i A 0) in terms of the
Selberg zeta-function and their growing behaviour for increasing genus, from
which follows that the bosonic string theory for closed as well as open strings
diverges; furthermore we shortly mention the form of WeyΓs and Huber's law for
bordered Riemann surfaces as they can be derived from the trace formula.

In Appendix A we provide some results concerning the analytic properties of
the Selberg zeta-function on bordered Riemann surfaces, where we generalize some
results of Venkov, and in Appendix B an important integral is evaluated.

II. Bordered Riemann Surfaces and Conjugacy Classes

1. Automorphic forms on bordered Riemann surfaces. Let Σ be a closed Riemann
surface of genus g, and du. . . ,dm conformal, non-overlapping discs on Σ. Then
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Σ:=Σ\{dί9. . . ,dm} is a bordered Riemann surface with signature (g, n).
Ci = ddi(i=l,. . . ,n) are the n components of dΣ. Now one takes a copy JΣ of Σ,
a mirror image, and glues both surfaces together along dΣ and dJΣ, giving the
doubled surface ί : = I u / I . Furthermore Σ = Σ/J, and Σ is a closed Riemann
surface of genus g = 2g + n — 1. The uniformization theorem for Riemann surfaces
states that Σ is conformally equivalent to Γ\U with the universal covering
£/=<C, (C, J f, and Γ a discrete, fixed-point free subgroup of the conformal auto-
morphisms of U. For either g^2, or bordered Riemann surfaces with g^.2,
the relevant universal covering is the Poincare upper half-plane Jf = {z = x + \y \
^>0,xeIR} endowed with the hyperbolic metric ds2= (dx2 + dy2)/y2. Hence,
Σ may be represented as Σ = Γ\J^, where Γ is a Fuchsian group, i.e. a discrete
subgroug of PSL(2,1R). Σ and Σ may be represented as fundamental polygons
3F and 3F, respectively, tesselating the entire Poincare upper half-plane by means of
the group action.

Until now we have only considered strictly hyperbolic Fuchsian groups Φ. In
this paper we also want to consider groups f which contain elliptic and parabolic
elements, but nevertheless possess the above described symmetry.

Let us denote by s the number of inequivalent elliptic fixed points and by K the
number of inequivalent cusps. v7- denotes the order of the generators of the elliptic
subgroups Rj c f (1 ̂ j^s); this means that Rvf= 1 for (1 ̂  j^s, 1 < v,< oo).

If f contains no elliptic elements, i.e. no yet has a fixed point on Jf, Γ\ j f is
a regular surface. If, however, elliptic elements are present in f, Γ\#? will onlyJiave
a manifold structure outside the respective fixed points. Including these turns f\ J f
into an orbifold. Despite this slight complication any f\Jίf, irrespective of a pos-
sible existence of orbifold-points, will in the following be called a hyperbolic
surface.

On a regular hyperbolic surface the conjugacy classes {y}f of hyperbolic yeΓ
are in one-to-one correspondence with the closed geodesies on Σ and we denote by
lγ the length of the closed geodesic on Σ related to {γ}t The norm Nγ of a hyperbolic
element yeΓ and the length ly are related by Nγ = elγ. This one-to-one correspond-
ence is no longer true if elliptic elements are present. However, the norms Nγ of
conjugacy classes in f are still properly defined, and we use sometimes the notion
"lengths of closed orbits" and "norms of conjugacy classes" irrespective of a pos-
sible existence of such orbifold points, keeping in mind that "norms of conjugacy
classes" is the more correct one.

In order to construct a convenient fundamental domain and representation of
the involution J on it, one takes, according to Sibner [51] and Venkov [56], Σ as
a symmetric Riemann surface with reflection symmetry </. Then β may be chosen
as the interior of a fundamental polygon in 2tf with 4g + 2n — 2 -h 2(s + K) edges, and
area [33, p. 2]

J (2.1)

The fundamental polygon # is chosen to be symmetric with respect to the
imaginary axis. That is, we can translate the polygon β in such a way that the side
across which J> is a reflection, say the boundary curve cn, runs along the y-axis in
the Poincare upper half-plane. Here J takes on the form

J\z-*-z. (2.2)
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The other sides are among the edges of the fundamental polygon. This choice of
ϊβ is adopted for convenience and in no way reduces the generality of our
considerations.

Now let f be a Fuchsian group for the doubled surface Σ, and Γ a SL(2, IR)
such that Γ = f /{± 1}. Let χ: Γ-• [/(I) be any multiplier system with χ( -1) = e" i π m

[32, p. 357]. χ (y) will also be denoted by χ r We define (meΈ)

x fcz + d\m/2 ( cz + d\m (a b\ -

\cz + dj \\cz + d\J \c dj

Obviously we have

j{yσ9z)=j(γ,σz)j(σ,z), Vy,σef . (2.4)

We define automorphic forms f(z) of weight m to be <C-valued functions on
Jf7 having the property

f(yz) = x7J(y,z)f(z), Vyef. (2.5)

The set of such diίferentiable automorphic forms will be denoted by C°°(χ, m), and
if 2(χ, m) then is the space of square integrable automorphic forms, i.e.

dV(z)\f(z)\2<^ dV{z)J^-. (2.6)
y

We consider the operator Dm= — y2(dχ + dy) + imydx acting on C°°(χ, m). There
exists a (unique) self-adjoint extension of this operator on if 2(χ, m) which we also
denote by Dm and which is known as the Maass-Laplacian. For a general Fuchsian
group of the first kind Dm has a discrete and a continuous spectrum. If f\3tf is
compact, however, there is only a discrete spectrum. In case of a non-cocompact
Fuchsian group it is not known in general whether Maass-Laplacians have
infinitely many eigenvalues. Only for arithmetic Fuchsian groups the discrete
spectra are known to be infinite, see e.g. [56].
We now introduce the point pair invariant

k(z,w) =
w-z\ml2 ( \z-w\2

-w

\w-z\J \3(z)3(w)

for some ΦeC2(IR) for z, weJf. k(z, w) has the properties

* i^d-, (2.7)

k(z,w) = k(w,z),

k(γz, γw)=j(γ, z)k{z, w)j~1(γ, w) (2.8)

for all yef. We introduce the automorphic kernel by [32, p. 360]

K(z, w) = 1 X χ?

mj(7, w)fc(z, r w ) , (2.9)
L
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and the factor "1/2" is included because yeΓ runs through y and — y, respectively.
The automorphic kernel has the properties

K(γz, σw) = χΐj(γ, z)K(z, w)]-1^, ^)Xam (2.10)

for all y9σef. This construction of the automorphic kernel is valid for arbitrary
Fuchsian groups.

In the theory of symmetric spaces it is convenient to consider the following
isomorphic model of Jf. One defines the positive definite symmetric matrices

If geSL(2, R), the group action has the form

(2.12)

where g* is the transpose of g. In this model it is easy to implement the involution
J in terms of the matrix

where J is viewed as an element in GL(2, R)/{±1L}.
We define even and odd automorphic forms, respectively, by having the

property [/eJS?2(χ,m)],

f{Sz) = χ(S)f{z)9 (2.14)

where we have extended the multiplier system χ from Γ to Γ\JΓJ by setting:
χ(yJί) = χ{y)χ{*f) for yeΓ. We have χG/) = + 1 for Neumann, and /(«/)= — 1 for
Dirichlet boundary-conditions.

It is well-known [32] that any eigen-function φeC2(Jt) of Dm, Dmφ = λφ, is also
an eigen-function of the integral operator Z,

{Lφ)(z)=μV{w)k(z9w)φ{w) = Λ(λ)φ(z) . (2.15)

A (λ) only depends on Φ, m and λ. On the doubled Riemann surface Σ, i.e.
concerning the Fuchsian group Γ, we are lead to a natural definition of the Selberg
integral operator L+ acting on even and odd/eif 2(χ, m), respectively, as follows

= l- f dV{w)K{z9 w)f{w)±l- J dF(w)lC(z, -w)/(w), (2.16)

with the ± -sign for Dirichlet and Neumann boundary-conditions on dΣ, respec-
tively. Therefore we obtain for the automorphic kernel the expression

κ+(z, w)=i Σ tf;(y,w)fc(z,yw)±j Σ x?J(y> -w)/c[z?y(-w)]. (2.iη
4 4
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In case f is strictly hyperbolic, i.e. besides the identity it contains only hyperbolic
elements, it is known [32] that the trace of the Selberg operator L is given by

tr(Z)= J dV(z)K(z9 z)=Σ h(pn) , (2.18)
j? n = 0

where Λ(λn) = A(p% + %) = h(pn). One now obtains the following

Theorem 2.1 [32, p. 448, 50, 56, p. 76]. The Selberg trace formula for automorphic
forms of weight meΈ on compact Riemann surfaces has the form

cosh u

Here on the left-hand side n labels all eigenvalues λn = \ + pi of Dm, where only one
root pn is counted. h(p) is an even function in p and has the properties

i) h(p) is holomorphic in the strip | 3 ( p ) | ^ i + ε, ε>0.
ii) h(p) has to decrease faster than \p\~2 for p-» + αo.

iii) g(u) = π~1 ^ h(p) cos (πp)dp.

Let us note that the first term on the right-hand side in the trace formula of
Theorem 2.1 can also be written as

sinh(2πp)

cosh(2π/?) + cos(πm)

(2.20)
Γj

- 2 n - l ) Λ - ( m - 2 n -

where [m]: integer part of m.

Φ(x) is the kernel function of the operator valued function h(^jD~-\\ where
Dm denotes the Maass-Laplacian. Φ(x) and g(u) are connected through

00 / Γ 4- ?i rnsh ^ \ m / 2

t\ml2

)

with 2(w) = gf(«), where w = 4sinh2f. β(w) can also be expanded according to [32,
p. 384] (w^O)

Let us denote by K the number of inequivalent cusps of f (i.e. the number of zero
interior angles of the fundamental polygon β). To each cusp there is associated an
Eisenstein series

φ , s , α ) = Σ fiyz) (2-24)
reΓ.\Γ
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l9 α = l , . . . ,fc, with Γα being the stabilizer of the cusp α. In the
spectral decomposition of Dm on J£?2(χ, m) these Eisenstein series span the continu-
ous spectrum.

Let us now restrict to Dirichlet boundary-conditions. In this case only the odd
automorphic forms survive in the spectral expansion of the automorphic kernel.
A glance on the continuous spectrum shows that the Eisenstein series e(z, 5, α) drop
out, according to a result of Venkov [56, p. 121]. In the case of Dirichlet boundary-
conditions we are thus left with the spectral expansion of the automorphic kernel in
odd discrete eigen-functions Ψn on Jf7,

KD(z9 w) = Σ h(pn)Ψn(z)Ψn(w) . (2.25)
n

In the case of Neumann boundary-conditions both the discrete and continuous
spectrum contribute to the spectral expansion of the automorphic kernel. Using
even eigen-functions Φn and Eisenstein series e(z, s, α), respectively, we get

1 0 0 K / 1 \ / i \

+ — J dph(p) Y e\ z ,- + ip, α I e I w,- + ip, α ) . (2.26)
4 π -oo α=l \ 2 / V 2 /

Let us denote the composition of a y e f and Jby p = yJ An order to investigate
the various conjugacy classes for the formulation of the Selberg trace-formula for
bordered Riemann surfaces, we have to distinguish the original conjugacy classes
which appear already for closed Riemann surfaces from the additional conjugacy
classes of the yJ. The new conjugacy classes can be characterized by their traces.
We consider first compact Riemann surfaces, i.e. compact polygons as fundamental
domains. The case of closed Riemann surfaces gives us hyperbolic and elliptic
conjugacy classes which correspond to |tr(y)| > 2 and |tr(y)| <2, respectively. Let us
denote by #ePSL(2, IR) some arbitrary element. As it turns out we have to consider
two cases for conjugacy classes of the p's. The first is for tr(p)Φ0. The relative
centralizer Γp of p then is of the form

b

Q _ ° _ Λ (mod±l), (2.27)

where we define Γp:={yef\y~1py = p}, and the relative conjugacy classes by
{p)p:={pfefj'\pf = y~1py, yef}.Γp consists of hyperbolic elements and the iden-
tity, and since Γ is discrete it is generated by a single hyperbolic element. The
second case is given by tr (p) = 0. Then the relative centralizers consist of elements of
the form

ί ° Λ P2 = ( ° ! dX (mod + 1). (2.28)
ΰ c J \ —a U /

ρ2 is an elliptic element of order two. Thus Γp consists of hyperbolic, elliptic and the
identity element. However, due to the construction p\p2(neΈ) we see that we can
generate infinitely many elliptic conjugacy classes, which is impossible, since Γ is
discrete. Therefore the relative centralizer of p with tr(p) = O consists either of
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hyperbolic elements and the identity or by a single elliptic generator of order two.
The explicit computation reveals that for cocompact groups only the former case is
possible, the latter leading to a divergency.

The conjugacy classes of pefj> can therefore be distinguished in two ways
[9,13] according to their squares ρ2ef. Let pef be primitive, that is not a positive
power of any other element of TJ. Then

i) p = ph pfe{Ci}f, Ϊ = 1, . . . , n. The {Cjf are the conjugacy classes of the C{ in
f which correspond to the closed geodesies ct on Σ.

ii) p = ρp, pi being a primitive element in f and

Thus it follows that the sum over conjugacy classes for pefj is divided into first
the conjugacy classes of the Q in f, which correspond to the closed geodesies ct on
Σ, and second into conjugacy classes such that for all pefj there is a unique
description y = k~1p2n~ίk(neΊN), for ρefj> inconjugate and primitive, and ke
Γp2\f. In the notation of Venkov [56] the relative conjugacy classes with tr(p) = 0
correspond to the case i), and the relative classes with tr(p)φθ correspond to ii). In
this case P(p) = ρ2 generates the relative centralizer Γp, whereas this is generated by

) = P(y]ί) = y in the former case. Also, for any y under consideration with
O, [yJyJ) is hyperbolic.

In addition, we call a relative conjugacy class {p}f primitive if it is not an odd
power of any other relative class {p')f.

Let us continue by considering a non-compact fundamental polygon with
corresponding non-cocompact Fuchsian group Γ. Besides the already known
relative conjugacy classes of p e Δ / there appear additional classes with tr(p) = 0 for
which the relative centralizers Γp are generated by single elliptic elements of order
two. These have been excluded in the cocompact case. For each such p = yJ there
then exists an element gePSL(2, IR) having the properties

(2.29)

(2.30)

where α ^ l . These classes play the role of the parabolic classes in the clas-
sical Selberg trace formula. Evaluating all contributions, we can write down the
following

Theorem 2.2 [56, p. 137]. The Selberg trace formula for automorphic functions
(m = 0) obeying Dirichlet boundary-conditions on arbitrary bordered Riemann sur-
faces (therefore including hyperbolic, elliptic and parabolic conjugacy classes) is given
by.

Σ Hpn)=^P J pt*ήhπph{p)dp + Σ Σ

y 1 » cosh[π(l-2k/v)p]

4 8 v s i n ( * π / v ) c o s h πf p

y Z ^g[(fci)^] y y k(f(klc,)
Li L / I ^ U l / L JL\7 „ λj ZJ

tr(p)Φ0 Z C O S n 2
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I (2.31)

L tr(p) = O

where λn=^ + p2 on the left runs through the set of all eigenvalues of the Dirichlet
Laplacian (m — 0), and the summation on the right is taken over all primitive conjugacy
classes {R}p with tr (R) < 2, {y}p with | tr(γ)| > 2, and {ρ}p, tr(p) Φ 0. The lengths lCι are
twofold degenerate, since Q and Cf 1 both have to be included into the sum. a(p) and
v(p) denote specific quantities appearing for the conjugacy class of pef;fp>elu

tr(p) = 0, and will be explained later on in the derivation of Theorem 3.2. Ψ(z) = Γ' (z)/
Γ(z) is the logarithmic derivative of the Γ-function.

The test function h must satisfy the following properties:

i) h(p) is an even function in p,
ii) h(p) is analytic in the strip | 3 ( p ) | < %

iii) h(p) has to decrease faster than \p\~2 for
some ε>0 ?

2. The Selberg operator on the doubled Rίemann surface. We return with our
discussion to the Selberg operator (2.16) with the automorphic kernel (2.17). We
consider the second term with an odd automorphic function φ

i f dV(w)K(z,Jw)φ(w)

4 Σ X? ί dV(w)j(γ, -w)Λ[z,y(-w)]φ(w)
4 γeΓ &

=1 Σ X7 $ dV(-w)j(y,W)k(z,γw)φ(-w)
4 γeΓ f

= -7 Σ X7 ί dV(-w)j(γ, w)k(z, w)χ;mj-1(γ, w)φ(w)
4 γeΓ *

= - J dV(w)k(-z^ (2.32)

due to the property k(z, Jίw) = k(J'z, w). Therefore we have obtained for an odd
automorphic function the following identity:

(2.33)
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Now let φ be an eigen-function of the operator Dm

Dmφ = λφ , (2.34)

then we have (/leR)

λφ = Dmφ = D-mφ , (2.35)

since Dm = D-m, and it follows that if φ is an eigen-function of Dm with eigenvalue A,
then φ will be an eigen-function of D _ m with the same eigenvalue. Therefore also

1 1

"2 2

(2-36)

Dm has a purely discrete spectrum with λ1^λ2^,. . . , λn^co (w->oo) and only
finitely many eigenvalues are negative. We expand the automorphic kernel accord-
ing to

K(z, w)=Σ Λ(λn)φn(z)φjw). (2.37)

Hence we get for the trace

i oo

t r (L. )=- Σ IΛiλJ + Λ'iλn)-], (2.38)
1

and there remains the question of the relation between A and A'.
We consider the Selberg operators Z,(+) corresponding to the Maass-

Laplacians D±m. Then we are given the eigenvalue problems L^φ± =
Λ + (λ + )φ + , and seek for the relation between Λ+ and v4_. As is well-known [32,
p. 364-9] we have

Λ+(λ + )=$ dV(z)k+(i,z)g+(z), (2.39)

where g+ is an eigen-function of Dm on the entire Jf (for the explicit evaluation take
e.g. g(z) = [3(z)Y). The function A depends on k, respectively Φ, and on m. L (_ } is
defined in the same way as L ( + ) by replacing + -> — in (2.39) and λ is an eigenvalue
of Dm and D_ w , see (2.33, 2.34). The functions g± are solutions of the differential
equations

D±mg±(r) = λg±(r) (2.40)

and depend only on r = |w|, where w = (z-i)/(z + i), ze^f [32, pp. 366-8; 22,
pp. 304-5]. Here

^±m= - τ ( l ~ r ) I Sf+-dr+-jdφ I ± i - ( l - r ^ ) δ ( / ) - - m z ( l - r ) . (2.41)

Since D + mg + (r) depends only on m2 but not on m, we obtain g + (r) = g- (r) and thus

)= J dF(z)fc_(i,z)0_(z) = Λ_(λ) - (2-42)
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Therefore the spectrum of Dm depends only on |m| and we conclude Λ-(λ) = Λ + (λ);
hence Λ(λ) = Λ'(λ% and we have found that an odd eigen-function of Dm is also an
eigen-function of L. We get

- ) = Σ Λ(λn). (2.43)
« = 1

This now yields with the usual identification %

tr(Z_)= £ Λ(λn)= £ I
n = l ι

= 7 Σ x 7 m

- 7 Σ 17 ί ^^W7(79 -^)Λfe 7(-^)] (2 4 4 )

The first term is already know from the usual Selberg trace formula for closed
Riemann surfaces [cf. (2.19), Theorem 2.1]. In the next chapter we are going to
calculate the second one.

III. The Selberg Trace Formula for Bordered Riemann Surfaces

1. The fundamental domain β is compact. For convenience we set p = yJ> and use
the classification_of the inverse-hyperbolic transformations according to peΓJ,
respectively, p2eΓ. We obtain

yeΓ β

= Σ X?j$dV(z)j(p,z)k(z,pz)=: £ A(p)
jF peΓJ

=ΣΣ A(P2

P

k+ι)+ΣΣΣ
pp k = 0 ί=l Pι k = 0

We now get

Σ Σ A(p2k+ί)

= Σ Σ

= Σ Σ
{p)yeΓp2\

= Σ Σ
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= Σ Σ X?i2k + 1)Jΰ Σ ί dV(z)j(p2k+\z)k(z,p2k+1z)

= Σ Σ Xpi2k+1)x7 J dV(z)j(p2k+\z)k(z,p2k+ίz)
{p}k = O Γp2\j?

= ΣΣ x7i2k+1)X™Bk(p). (3.2)

By an overall conjugation we can arrange that p2z = Nz, therefore pz = λ/ΪV( — z).
This yields

Bk(p)= J dV(z)j(p2k+ι,z)k{z,p2k+ιz)
Γp2\j^

N dv °° i

= H ί dx*|>, Ai*+ϊ(-2)]

~ 2 cosh*'

with the abbreviation u = (2k + 1) In χ/ΪV = (k +^) ίp2 and g(u) as in (2.21). In order to
finish the computation for compact domains we have to consider elliptic elements
in the trace formula. They can be parameterized by matrices of the form

\ sm φ cos φ )

such that we obtain

zsmφ + cos φ

The relevant contribution in the trace formula has the form

J dV(z)K(z,z)=ΣxR ί dV(z)k(z9Rz)j{R9z)
{R} rR\je

= Σ - ί dV(z)k(z9 Rz)j(R, z)=: Σ A(R) (3.6)
{R} v ye {R}

with v the order of the element ReΓ. The evaluation of the relevant terms can be
found in Hejhal [33] and the result is

• m 'ι(m-l)φ oo p(m-l)u/2/pM (*2iφ\
lXf ^ ( * (3.7)2vsmφ J^ y v cosh u + cos (π-2φ)

Therefore we have derived the following
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Theorem 3.1. The Selberg trace formula on compact bordered Riemann surfaces for
automorphic forms of weight m obeying Dirichlet boundary-conditions is given by

: v-1 m/cpi(m-l)fcπ/v oo fy(m-ί)uf2(faμ_f3t2ikπ/\\

4 fR\ k=i vsin(fcπ/v) _J

C

Here we /zαt e abbreviated X " = 1 ' c , = ^ ^(p) ί S α ^ even function in p with the

corresponding g(u) given in (2.21) and has the properties

i) h(p) is holomorphic in the strip |3(p)| ^ i + β, ε>0.
ii) h(p) has to decrease faster than \p\~2 for /?->±oo.

Note that for Neumann boundary-conditions the last three terms change their
signs. D

2. The fundamental domain £F is non-compact. To evaluate the trace formula in the
case when also parabolic conjugacy classes are present we recall the enumeration
before Theorem 2.2. In order that the regularization of the terms which corres-
ponds to the parabolic conjugacy classes is actually possible we require the
following property of the multiplier system:

z-.= Σχs= Σ xΐ ( 3 9 )
{s} {p};Γp..n

tr(p) = O

We include all relevant conjugacy classes. There are the hyperbolic ones {y}f, the
inverse hyperbolic ones {yJ>} f, tr(y^) =t= 0, the elliptic ones {^}f? the parabolic ones
{5}f, tr(S) = 2, and the inverse elliptic ones {y</}f? tr(y,/) = O. Following Venkov
[56, p. 132] we hence have to consider

= \ ί Σ [fc(z,yz)-fc(z,pz)]dF(z)
β {y}

^ WX7 ί dV(z)k(z,yz)

ί dV(z)k(z9Rz)
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Σ x\
M

tr(β)φθ

" f dV{z)k(z,

) A,
Σ

{p};Γp h y p

tr(p) = O

5Cpm ί k(z,
)

pz)dV{z)

^ lim J

Σ kfry'^Sγ'z)- Σ XP Σ /c(z, y'~ V * ) j , (3.10)

tr(p) = 0

with some properly defined compact domain <FY depending on a large parameter
7, and where the sum is taken over all hyperbolic conjugacy classes {y}, elliptic
conjugacy classes {R} and parabolic conjugacy classes {S} in JΓ, over all relative
non-degenerate classes {yj} with tr(y</)Φθ, and all relative conjugacy classes
{yj^} with tr(yj^) = O. Parabolic transformations have the form

s=(o
For the sake of clarity, let us recapitulate some calculations of Hejhal [33, pp. 406].
We consider

0 ^ 0

00 / 2 itί \ m / 2

f — — Φ(u2)du
J V2 + 1W/

ί2 — \υ\
J —-Γ- Φ(M2)lnudu + O ( F ' 1 / 2 ) . (3.12)
o \2 + iu/

Here C = 0.577215665. . . denotes Euler's constant. By means of the relations
(2.21, 2.22), Λγ(S) can be reformulated in the following form:

(3,3)
-π/2 V coshω-hsmφ / sinhω

where we have abbreviated sinhω = 2/y/w, coshω = -̂ /(w + 4)/w. The φ-integral
can be evaluated by a contour integration [33, pp. 408] and one finally obtains by
taking into account all inequivalent parabolic conjugacy classes,

UdV{z) Σ Σ kfrV'Syz)
έ {S} yeΓ(S)\Γ

|tr(S)| = 2 ^

4π
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As we know from the discussion in Sect. II, there may be some ρefj>, trp = O,
such that the relative centralizer Γp is generated by an elliptic element of order
two. We now want to deal with these p. First we assume that in (2.30) g = t2,
that is

- α " 1 θ ) ( m o d ± 1 ) ' ( 3 ' 1 5 )

with some α^ 1, is the elliptic generator of order two of Γp. We therefore have to
consider

f k(z,pz) = \Γp\ J k(z,pz), (3.16)

where \ΓP\ = order [Γp] = 2, which yields an additional factor 1/2.
For a properly defined asymptotic expansion of the corresponding integral we

remove from Jf two regions, denoted by Bί(Y) = {zeJί?\x^Y} and B2(Y) =
yaB1(Y\ respectively, i.e. we consider [56, p. 134]

^-B1(Y)-B2{Y) . (3.17)

Since we have the entire domain 3F taken into account, we must in the sequel
consider the domain B{Y)KJJB{Y\ First let us insert a n — 0 "parabolic term" into
the automorphic kernel to study the k(z, — z)-behaviour in the integral; this gives
the integral

1 f_if/2 dtdv /2 + i /Λm/2

\ J *(*, -iidVuJ-Ά- I dtdyί2_^ft\ φ{ή
B(Y ^ ^ ^

4 JIY y ίJi\2-iJl

=:A,(Y)

dί / /ί-2i\

1/

m/2

=:A2(Y)

By a similar argument as for the previous integral one obtains by making use of the
relations (2.21, 2.22) that [33, pp. 399-400]

Aί(Y)=j(lnY-lna)g(0). (3.19)

Using elementary partial integration it follows further that

A (3.20)
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with the quantity A3 given by

1 _ ? dt

o y/t \2-iv

/ί

" \m/2

^ , / c o s 2 φ \ Ί ±
Z ^ r ) 2ln2 + ln 1+ , 2

Ψ \dφ
-π/2 \ coshω +sinφ J |_ \ smh ωy J

1 ™ 7/ λ

 π/

Γ

2 /s inhω + i c o s φ V , / , c o s 2 φ \ J J L / Λ ^ 1 Λ- — ft dwQ'(w) j - ^ - f In 1 + — f # , (3.21)
4π o _J

π/2 \ coshω + smφ / \ smh2ω/

where ω is the same quantity as defined in (3.13). The last integral is evaluated in
Appendix B. We then obtain for the sum A1 +A2,

1 00

4 π J 0 0

 P P'

To finish the discussion we have to consider

J k(z,pz)dV(z), (3.23)

for some appropriate geSL(2, R) (see (2.30)). According to Venkov [56, pp. 136],
this has the consequence that the asymptotic behaviour in the limit 7->αo is
changed such that the integral (3.18) is calculated with respect to the variable vY
instead of Y. The fixed number v is denoted by v(p). Similarly, a is denoted by a(ρ).
Therefore we must multiply the result of (3.19) by qijF) which denotes the number
of classes {p}f having the property tτ(y*f) = 0and Γp being generated by an elliptic
element of order two. Because we know that all terms in the trace formula must be
finite we deduce from a comparison of (3.14) and (3.18) and q(β) = 4k. Thus we
have proven the following
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Theorem 3.2. The Selberg trace formula on arbitrary bordered Riemann surfaces
for automorphic forms of weight m obeying Dirichlet boundary-conditions, meZ, is
given by

: v — 1 pi(m—l)/cπ/v oo

Σ Σ r I
e(m-l)ul2(eu_e2ikπ/η

cosh u + cos [π — 2 (fcπ/v)]

£(0)
2 1 Σ tf -κln2 — +?Λ(0)

l - c o s h ^ ) d M . (3.24)
2 V 2

h(p) denotes an even function in p with the corresponding g(u) given in (2.21) and has
the properties

i) h(p) is holomorphic in the strip | 3 ( p ) | ^ 2 + ε? β>0.
ii) h(p) has to decrease faster than \p\~2 for p-» + oo.

Note that for Neumann boundary-conditions the inverse-hyperbolic terms change
their signs. In this case, however, the parabolic terms are quite different, due to the
additional presence of the continuous spectrum represented by Eisenstein-series, see
e.g. Ref [32]. D

IV. Determinants of Maass-Laplacians

In this section we are going to calculate determinants of Maass-Laplacians on
bordered Riemann surfaces. Some examples of calculations of the scalar determi-
nant are due to Bolte and Steiner [13] and Blau et al. [9,10]. In particular, we
calculate the determinant of the operator Ai

ϊ^
) = Dm + m(m± 1), because Δ{

m

t) is the
relevant operator in string theory. First we only consider the case where the
Fuchsian group f is strictly hyperbolic, since then it is known that the discrete
spectrum of Dm (and of Δ^) is infinite and no continuous spectrum appears. We
denote the omission of zero-modes by primes and define the determinants by the
zeta-function regularization, i.e. we set

det'«±>):=exp --r?*
ds s = O

1

•* \ s ) o

(4.1)

(4.2)
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Here N{^] denote the numbers of respective zero-modes. In the case of Dirichlet
boundary-conditions no zero-modes are present, and we discuss this case first.
With the heat-kernel function Λ(p) = e - ^ 2 + i ) we determine g(u) = e~u2/4rt't/4/^/4πt
and consider the trace formula (3.8) for this test function. We split up ζm(s)
into a term ζj(s) corresponding to the first summand on the r.h.s. of (3.8),
a term ζΓ(s) corresponding to the second, fourth and fifth summand, and a term
ζg(θ)(s) corresponding to the last summand, respectively. We then find by means
of (3.8)

CH0)=-φnZ(m+l). (4.3)

Here we have introduced the Selberg zeta-function for bordered Riemann surfaces
and Dirichlet boundary-conditions according to [56, p. 139] as

Z(s) = Π Π [ l - χ y

m e - / ( s + f c ) ]

I

xΠ Π ίΠ Π ί ^χp

I I 11 I i m -l
{p}pk = O \L-XpQ

n oo / -j

xΠ Π d r e - l c , ( s + k ) ) , (4-4)
and use has been made of the identity

{p}

/ -j \2(- l ) f e

)

I _γmQ-lp(s + k)

= y y ym2(-DΛ y

£_j _̂j Λ/ V / ^j

oo v m(2k+l) v m s

together with the expansion

l n i ± ^ = 2 V ί- . (4.6)

We have adopted the notation of Venkov [56] for the Selberg zeta-function on
bordered Riemann surfaces with some small modifications, e.g., the definition of
Venkov differs by a power of two. The analytical properties of this zeta-function are
shortly discussed in Appendix A. The term in the trace formula proportional to g(0)
gives the contribution

C(θ)(0)=4(m+1). (4.7)
o

The term ζI(s) corresponding to the zero-length contribution has been calculated
in [11]. One has only to replace (g — l) = srf/4n-+s/(&)/in in the relevant
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formulae. Therefore we obtain for the determinant of the operator A^ for meΈ,

_ 4

+ £ (m-2n-l)\n(mn + m-n2-n)\ . (4.8)

Here empty sums are understood as to be ignored and [x] is the integer part of x.
ζ'{ — 1) denotes the derivative of the Riemann-zeta-function ζ(s) at 5= — 1. The
cases m = 0, 2, respectively, reduce to

^ ^ Γ ^ l | (4.9)

. (4.10)

Note that the construction of the Selberg zeta-function on bordered Riemann
surfaces guarantees that in the case of Neumann boundary-conditions the power of
the terms involving the inverse-hyperbolic conjugacy classes change their signs,
such that the product of the determinants of Dirichlet and Neumann boundary-
conditions, denoted by superscripts D and N, respectively, just give in a natural
way the determinant of the corresponding operator on the Riemann surface Σ,
denoted by the superscript Σ9 i.e.

{^J> £ Hi' (4.Π)
where Zf is the Selberg zeta-function on the entire Riemann surface Σ.

Note that for m = 0 in (4.9-4.11) one must take Z(l) for Dirichlet boundary-
conditions, and Z'(l) for Neumann boundary-conditions. The difference is caused
by the existence or absence of a zero for Z(s) at 5=1 in the Neumann- and
Dirichlet-case, respectively. In the Neumann-case the zero at s = 1 corresponds to
the zero-mode of the Laplacian, which must be subtracted in the definition of the
determinant. In the Dirichlet-case neither a zero of Z(s) nor a zero-mode of the
Laplacian exists.

As already mentioned in Sect. II it is not clear for a general non-cocompact
Fuchsian group f that the operator Dm on J2?2(χ, m) has infinitely many eigen-
values. In fact, for non-arithmetic groups a conjecture by Phillips and Sarnak [46]
says that this will not be the case. One therefore is confronted with the problem of
defining a suitable zeta-regularized determinant of Dm (or of Λ{^]). If a continuous
spectrum is present one can apply quantum mechanical scattering theory, and one
finds that the relevant S-matrix (see e.g. [21, 56]) has poles in the complex s-plane
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for 0<9ί(s)<l/2 corresponding to scattering resonances (for some explicit
examples see e.g. Koyama [36]). By the Selberg trace formula one can conclude
[56] that the total number of eigenvalues and resonances with (3(s))2^A grows
asymptotically like s/(^)λ/4π for Λ-»oo, and thus is infinite. Conventionally [21],
one therefore defines the spectral zeta-function ζm(s) by an inclusion of the
resonances in addition to the eigenvalues. It then turns out that the relation
(4.11) remains valid. There do indeed occur complicated constants (depending
on the topology of Σ) multiplying the Selberg zeta-function, but the relevant
contribution, which is not constant on the respective Teichmϋller space of quasi-
conformal deformations of Σ, is determined by the Selberg zeta-function; and
this is also the information needed for the application of determinantal formulae in
string theory.

V. Discussion and Summary

In this paper we have studied the Selberg trace formula on bordered Riemann
surfaces for automorphic forms of weight m, meΈ. Our paper is thus a merge of the
work of Hejhal and Venkov, and a generalization of Bolte and Steiner, who have
studied the Selberg trace formula for automorphic forms of weight m on closed
Riemann surfaces and for automorphic functions (i.e. for weight zero) on bordered
surfaces, respectively. Our fundamental results are the trace formulae (3.8, 3.24) as
formulated in Theorems 3.1 and 3.2, where we first included only hyperbolic and
inverse-hyperbolic conjugacy classes, and then all possible conjugacy classes for
bordered Riemann surfaces, i.e. elliptic as well as parabolic ones.

By means of this trace formula we could derive determinants of Maass-
Laplacians on bordered Riemann surfaces in terms of the Selberg zeta-functions on
these surfaces. This could be done for Dirichlet (4.8) as well as Neumann boundary-
conditions, and a fundamental relation connecting both was derived (4.11). These
expressions have previously not been available, due to the lack of the relevant trace
formula, cf., Refs. [9, 13]. Of course, the reasoning of Gross and Periwal [28] on the
divergence of the perturbation expansion concerns only closed bosonic strings, but
it is reasonable to expect that their arguments are not altered considerably in our
case.

The growing behaviour of the string integrand, which depends via the scalar-
and vector-Laplacian determinants on the Selberg zeta-functions, in our case
sJZ(\) and y/Z(2), respectively, can be kept under control in such a way, that at
most an exponential behaviour appears. The blowing up of the bosonic pertur-
bative string theory, both for closed and open string, is eventually due to the
factorial growths of the volume of the moduli space for increasing genus. Let us
further note that the study of trace formulae in general can also be useful in the
theory of quantum chaos [5-7,42]. We have not discussed in detail the analytic
properties of the Selberg zeta-function on bordered Riemann surfaces (cf. [56]), but
it is well-known that these functions have a so-called "trivial" and "non-trivial"
structure. The nontrivial structure stems from the eigenvalues of the Maass-
Laplacians on the corresponding Riemann surfaces. In general one finds these
zeros on the critical line 9ί(s) = 1/2. The trivial structure is due to the zero-length
term and the elliptic and parabolic conjugacy classes. The zero-length term usually
generates zeros of a particular multiplicity ocs/(^)9 which is only altered (reduced)
by the presence of elliptic conjugacy classes. The parabolic conjugacy classes,
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however, generally introduce an additionally analytical structure, e.g. poles might
appear. This is the case both for closed and bordered Riemann surfaces. Let us
finally note that from the explicit form of the trace formula (3.24) WeyΓs law for the
Dirichlet boundary-value problem can be derived. It reads [56, p. 143]

JV p 2 + - ~ — κ — p 2 - — p\np+—- p + O[ f - , (5.1)
y 4/ 4π F 2π 2π \\np J

with the quantity c(JΓ) defined in Appendix A. N(λ) denotes the number of eigen-
values of Dm not exceeding λ. Notice that Dm is defined by using the Poincare
(hyperbolic) metric on the doubled surface. Analogously, Huber's [34] law can be
derived, giving for the number Ny(L) of closed geodesies on the bordered surface
with lengths up to a given value L the estimate

Ny{L)~Έi{L)~e

τ. (5.2)

These results can e.g. be achieved by means of the test-function h(p) =
cos(pL) Q~t(p2+i) in the relevant trace formula.

Summarizing our results, we have contributed to the theory of automorphic
forms as well as to the theory of open strings by explicitly evaluating and discussing
the relevant determinants in the Polyakov path integral in terms of Selberg
zeta-functions.
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Appendix A

We cite some results from the study of the analytic properties of the Selberg
zeta-function. The analytic properties are studied by choosing a particular test-
function in the trace formula. It is also possible to derive these properties by
introducing the determinant [53] which for m = 0 is given by

@i(z) = det(-Δi + z ) , (A.I)

where ί = D, iV, A denotes Dirichlet, Neumann boundary-conditions, or the deter-
minant on the entire domain Σ, and formulating the Selberg zeta-function in terms
of this determinant, i.e. [53, 58]

Z(5) = 5(s- l )^[5(5- l ) ] [ (2π) 1 " s e e + 5 ( 5 ~ 1 ) G(5)G(5+l) ]^ ( # ) / 2 π (A.2)

with C = i + i l n " 2 π - 2 £ ' ( - l ) . The obvious relation @D(z)@N(z) = @Δ(z) is, of
course, fulfilled for all z and can be obtained via the regularization

( A 3 )

(compare also [53, 58]), and where yt is a generalized Euler constant for Riemann
surfaces [13, 53]. This shows again (4.11).
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The study of the analytic properties of the Selberg zeta-function is due to e.g.
Bolte and Steiner [13], Hejhal [32], McKean [39], Steiner [53] and Venkov [56],
the case of bordered Riemann surfaces was studied in [13, 56]. We treat the general
case covered by Theorem 3.2 and use the test-function

M p ' s ' b ) = ( ^ F T ? - ( ^ i ^ 7 ' < A 4 >

which fulfills the requirements of Theorem 3.2 if 9ί(s), ${(b)> 1. One finds

{ fc) ( ( s 1 ) N ( d i ) l " 1 )2 7 ^ ) " ( s " 1 ) N - e " ( d " i ) l " 1 ) ( A 5 )

We consider the definition of the Selberg zeta-function on bordered Riemann
surfaces (4.4), which generalizes the definition of Venkov [56] for mφO. Then one
derives the following

Theorem A.I (compare Venkov [56, p. 139] for m = 0). The Selberg trace formula
for the Selberg zeta-function on bordered Riemann surfaces and Dirichlet boundary-
conditions has the form:

v - l j oo Γe-2i(fcπ/v)(Z+l/2-m/2) Q2i(kπ/v)(l+ 1/2 +m/2)

~l {Ί}p Λ = i vsin(fcπ/v) z tΌ |_ s + l-m/2 s + l + m/2

(A.6)

with some constants const 1 > 2 •

In the evaluation of the various integrals some results of Hejhal [33, p. 435] have
been used. The zero- and pole-structure can be read off:

Theorem A.2 (Venkov [56, pp. 142]). Z(s) for bordered Riemann surfaces and
Dirichlet boundary-conditions is a meromorphic function of seC of order equal to
two.

The zeros of the function Z(s) are at the following points:

i) Nontrivial zeros: on the line 5R(s)= 1/2, symmetric relative to the point s= 1/2,
and on the interval [0,1], symmetric to the point s= 1/2. Call these zeros Sj. Each
Sj has multiplicity equal twice the multiplicity of the corresponding eigenvalue
Ej of the operator Dm of the corresponding Dirichlet boundary-value problem,
Ej = i + pj and Ej runs through the entire spectrum of Dm.
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ii) Trivial zeros:
1) at the points s= — Z + m/2, ίeN 0 ) with multiplicity φN-ι given by

A ' 7

π V 2 J {R}Pk=i vsm(fcπ/v)

2) αί the pomίs s= — I —m/2, / e N 0 ) wϊί/i multiplicity φN-ι given by

^ g ^ Σ vsin(/cπ/v) (A 8)
3) at the points s = ίeN with multiplicity φNι = 2κ.

iii) Z(s) has poles at the points
1) 5 = /, leΈ, with multiplicity ΦPt = 2κ.
2) s= — I, 1 = 0,1, 2,. . . , with multiplicity φPι = 2κ.
Notice that for m = 0 the zeros of iil), ii2) and the poles of iii2) combine to zeros
with multiplicity

The full picture of the zero and poles, of course, emerges by combining iil) and iii),
i.e. there remain only poles at s= —I, ZeN0. iVoίe, m particular that if no elliptic
and parabolic terms are present, Z(s) has, of course, no poles, and no zero ats=l;
this is in contrast to the Selberg zeta-function on a closed Riemann surface, where
the zero at s=l stems from the one-fold zero-mode of the Maass-Laplacian. Π

Theorem A.3 (Venkov [56, p. 143]). The functional equation for the Selberg zeta
function on bordered Riemann surfaces and Dirichlet boundary-conditions has the
form

Z(l-s) = Z{s)ψ(s) (A.10)

with the function Ψ(s) given by

v-l i s-\

1 {}„*=! v sin (/cπ/v) i

oo Γ~
e-2i(fcπ/v)(Z+l/2-m/2) β - 2i(fcπ/v) (Z+ 1/2 -m/2)

s + l-m/2 + s-/+(m-3)/2
- 2i(tπ/v)(I + 1/2 + m/2) g - 2i(kπ/v) (( + 1/2 + m/2) "

s + ί+(m-1)/2 s-l-(m-3)/2
dt}, (A.11)

where the tan πί-5 respectively the cot πt-term must be taken whether m is even or odd,
and the constant c{^} is given by

Σ

MΛ-4

D

(A.12)
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Appendix B

We consider the integral

241

4π 0

The integral /(w) is defined by

Λ4= ~ J dwβ'(w)/(w)=/- J dwQ(w)Γ(w) .
4π 4π4π

(B.I)

- π/2 \ c o s n ω + s i n Φ

Now we perform in /(w) the transformation t = tanφ which yields

t2 + h2\ ( l\ -\-t2-\-\a \m at
) = SR f In L

.-co v i

with the abbreviations α=l/sinhω, b2 = a2 + l and taking positive square roots.
Let us consider the contour integral

with(bα=l,b)

(B.4)

and a contour C running along the real axis from — R to + R, and a semi-circle
with radius R closing the contour in the upper half-plane. Then

iR_es/(z) = π ln(l + bα) + i | (B.6)

with no contributions coming from the m-dependent power term. As one can show,
the integral over the semi-circle vanishes in the limit R->oo, the JΛ

R-integral then
gives

(B.7)
» ]n(t + iba){ y/ΐ+? + ia\m_ Γ . ^ . ^ . π i

— ^— v dt = π\ l n ( l + f o α ) + i -
-co 1 + ί2 Kby/ΰ^ + atJ L 2 J/ 2 J

Finally we take real parts for ba = 1 and ba = b, respectively, with the result

(B.8)

Therefore

=i J
Q(w)dw

f f
^ + 4 + 2^/^74 4 o

1 » «
= - f gr(«)tanh-du

4 4

(B.9)
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Here use has been made of the integral [24, p. 356]

e~oo ~~μx

ί
0 coshx \ 2

and β(x) is the β-function defined by [24, p. 945]

Ύ\Ί
(B.11)

Insertion into (3.18) yields the result of (3.22).
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