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Abstract: We study the global behaviour of static, spherically symmetric solutions
of the Einstein-Yang-Mills equations with gauge group SU(2). Our analysis results
in three disjoint classes of solutions with a regular origin or a horizon. The 3-spaces
(t = const.) of the first, generic class are compact and singular. The second class
consists of an infinite family of globally regular, resp. black hole solutions. The third
type is an oscillating solution, which although regular is not asymptotically flat.

1. Introduction

The interest in the study of solutions of the coupled Einstein-Yang-Mills (EYM)
equations has recently received considerable impetus by the discovery of a class of
nonsingular ("particlelike") [1] and nonabelian black hole solutions [2, 3]. The results
of Bartnik and McKinnon obtained by numerical integration indicate the existence of
a discrete family of globally regular, static, spherically symmetric solutions of a SU(2)
Yang-Mills field coupled to gravity. The members of this family can be characterized
by the number n of zeros of the gauge potential W parametrizing the spherically
symmetric ansatz. For each value of n > 0 there seems to be exactly one regular
solution.

The first rigorous existence proof of a globally regular solution with one zero was
given in [4]. More recently it has been extended to both globally regular [5] and black
hole solutions [6] with an arbitrary number of zeros.

In the present paper we classify the global behaviour of solutions regular at the
origin r = 0 or with a horizon at some rh and find in both cases three different
classes. The first class contains the generic solutions describing singular space-times
of the "bag of gold" type [7] with compact 3-spaces. Next there are the globally
regular, resp. black hole solutions with an arbitrary n. Finally there are oscillating
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solutions which may be considered as limits of regular solutions when the number of
zeros goes to infinity. This type of solution has not been considered previously.
Geometrically it describes a non-singular globally hyperbolic space-time without
boundary, which is not asymptotically flat. The analysis of this solution provides
interesting asymptotic statements for regular solutions with a large number of zeros.
Based on this classification we present an existence proof of globally regular and
black hole solutions for any n as well as of the oscillating solutions.

In Sect. 2 we derive the basic equations together with the relevant boundary
conditions. In Sect. 3 we present numerical results for solutions with n < 10 and
establish some remarkable empirical relations for their parameters. In Sect. 4 we prove
the local existence and analyticity of solutions at the singular points r = 0, r = oo, and
r = rh. In Sect. 5 we demonstrate some useful properties of the Yang-Mills equations
in flat space. In Sect. 6 we analyze the global behaviour leading to the classification
of solutions. In Sect. 7 we prove the local existence of oscillating solutions and
derive their asymptotic behaviour. In Sect. 8 we prove the global existence of regular
solutions for any n as well as of the oscillating solution. In Sect. 9 we prove the
existence of black hole solutions for any n and rh > 0 as well as of the oscillating
solutions. Finally in Sect. 10 we explain the numerically found behaviour of solutions
for large n (n > 4).

2. Ansatz and Field Equations

We are interested in static, spherically symmetric solutions of the EYM equations. In
this case the metric tensor of this space-time can be parametrized as [8]

ds2 = e2^R)dt2 - e2xmdR2 - τ\R)dΩ2 , (1)

where dΩ2 = dθ2 + sin2 θdφ2. As long as -rn ^ 0 the function r(R) can be chosen
as coordinate. This is true in particular near r = 0 if the origin is a regular point and
near r = oo if the space is asymptotically flat. It turns out to be convenient to express
the line element in the form

dr2

ds2 = A2(r)μ(r)dt2 - - — - r2dΩ2 . (2)
μ(r)

The most general static, spherically symmetric ansatz for the SU(2) Yang-Mills field
W£ can be written (in the Abelian gauge) as [9]

W° = (0,0,4,), W? = (φuφ2,0), (3a)

os0). (3b)

Clearly the above ansatz (3) is form invariant under gauge transformations around the
third isoaxis, with Ao, Ax transforming as [7(1) gauge fields and (φlf φ2) as a doublet.

The reduced EYM action can be explicitly written as I where a prime denotes -r- 1:
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and G, resp. g denote the gravitational, resp. gauge coupling constant. By exploiting
the U(l) gauge invariance of the ansatz (3) one can set e. g. φ2 = 0. Then it follows
from the field equations that Ax(r) = 0 (assuming that φx φ 0). This way one is
left with only two functions, Ao and φv It is known [10] that there are no regular
asymptotically flat solutions, nor black holes with Ao φ 0 apart from the Reissner-
Nordstr0m (RN) ones. Therefore we shall restrict ourselves to the case Ao = 0. The
EYM action for this simplified ansatz yields (with W = φλ)\

S = - I drA(r)[-^(μ + rμf - 1) + \ (μWa + v)] , (4)
J L2G g2\ ) \

where

V = (1 ~ 2 r T
 ) (5)

Rescaling the variable r —> and S —>• gVGS removes the dependence on G
9

and g from S. The field equations derived from the resulting action are

(6a)

(6b)

(6c)
T

Note that Eqs. (6ab) are decoupled from Eq. (6c) for the metric function A(r).
Sometimes it is convenient to express μ in terms of the "mass" function ra(r)

through μ(r) = 1 — 2m(r)/r. In the present context m(r) represents the mass contained
in a sphere with radius r. For asymptotically flat spacetimes it tends to the total mass
M of the solution. The function m obeys the equation

and hence increases monotonously as long as μ > 0.
The field equations (6) have obvious singular points at r = 0 and r = oo as well

as for points r0, where μ(r0) = 0. Regularity at r = 0 of the configuration desribed by
Eqs. (2, 3) requires μ(r) = 1 + O(r2), W(r) = ±1 +O(r\ and A(r) = A(0) + O(r2).
Since W —> —W can be achieved by a gauge transformation we choose W(0) — 1.
Similarly we assume A(0) — 1 since a rescaling of A corresponds to an irrelevant
rescaling of the time coordinate. Inserting a power series expansion into Eq. (6) one
finds

W(r) =\-br2 + O(r4) ,

μ(r) = 1 - 4b2r2 + O(r4) , (8)

A(r) = 1 4- 4b2r2 + O(r4) ,

where 6 is an arbitrary parameter.

Similarly assuming a power series expansion in - at r = oo for asymptotically flat

solutions one finds lim W(r) = {±1,0}. It will be shown in Sect. 6 that W(oo) = 0
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cannot occur for globally regular solutions and therefore we ignore this case for the
moment. For the remaining cases one finds

(9)

r 4

where M is the mass of the solution in units of gMn = -H=.

Solutions of Eq. (6) stay regular at a point rh, where μ(rh) = 0 if

μrh p -^μhρ p , ^ ( i Q )

with

W! =
h ii1 r 2

(Π)

For rh fixed there is one adjustable parameter Wh analogous to the parameter b at
r = 0. If rh and Wh are chosen such that μ'h > 0, the surface r = rh describes
a regular event horizon. Asymptotically flat solutions with this behaviour are black
holes and we will therefore refer to Eqs. (10,11) as "black hole boundary conditions."

3. Numerical Results

In this chapter we give a short overview of some results obtained by numerical
integration of Eq. (6). By using a suitably desingularized version of Eq. (6) (see
Eq. (22)) we were able to start the numerical integration (an adaptive step size Runge-
Kutta method) exactly at r — 0.

Our numerical analysis clearly indicates that the generic solution with the initial
conditions (8) at r = 0 develops a singularity at some point ro(6), where μ tends
to zero, W(r0) stays finite but W'(r0) diverges. If b <C 1 then W(r0) < - 1 and
r 0 > 1, on the other hand if b > 1 then W(r0) « 1 and r 0 <C 1. To obtain a regular
solution this singularity has to be avoided by a suitable "tuning" of the parameter b.
As the value of b increases from 0 to ^ 0.24, the position of the singular point, ro(6),
moves inwards up to a turning point, rt ~ 10 and then starts to move out without
any apparent limit as b increases further up to bx w 0.45. Fine tuning the parameter
b allows to increase the region where W stays close to —1 before W starts to run
away towards large negative, resp. positive values for b < 6 l s resp. b > bλ, eventually
leading to a zero of μ. The value b{ corresponds to the globally regular solution with
one zero of W found by Bartnik and McKinnon [1]. Then as b grows from bx to
b2 « 0.65 the same phenomenon takes place with a turning point rt « 70, except that
now W has two zeros and W(r0) > 1. For b2 one obtains another globally regular
solution with two zeros of W. This behaviour of ro(6) repeats itself in the intervals
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(bn, bn+ι) with rt rapidly increasing and bn accumulating at b^ « 0.706. For b>boo

the solution becomes singular already for rQ < 1.
The minimum of the function μn(r) decreases rapidly (and moves towards r « 1)

as n increases, making the numerical integration more and more difficult. The mass,
Mn, starts at Mι « 0.83 and converges rapidly to 1 with increasing n. Furthermore
some of the zeros rnk of Wn(r) accumulate around r = 1, while the outermost
zero at r n n moves further and further out. For large n one can clearly distinguish
three regions: the inner region r < 1, where Wn(r) for increasing n approaches a
non-trivial limit W^ir) with zeros accumulating at r — 1; the small-field region
1 < r <C rn n , where VFn(r) is small and oscillates; and the asymptotic region r ^> 1,

where μn(r) « 1 and (— l) n W n (r) is a universal (n independent) function of — , with

cn being the coefficient in the expansion (9). Since the zeros of Wn accumulate at
r — 1 for n ^> 1 an essential singularity of the limiting solution, W^ir) is likely to
occur. In Sects. 7 and 8 we shall prove the existence of such a limiting solution and
analyze some of its properties. For r > 1 this limiting solution seems to be W^ = 0,
corresponding to the extremal RN black hole,

Ξ 0, A(r) = 1, μ(r) = (1 - - ) 2 . (12)

In the following we present some data of the numerical solutions and exhibit some
of their remarkable properties for large values of n. The last entries in Tables 1 and
2 correspond to the limiting solution (W^ir), μ^ir)).

Table 1. Parameters of the globally regular solutions (Wn,μn)

n

1

2

3

4

5

6

7

8

9

10

oo

K

0.45371627277

0.65172552552

0.69704005033

0.70487847794

0.70616866087

0.70637932997

0.70641368476

0.70641928597

0.70642019917

0.70642034805

0.70642037705

0.82864698216

0.97134549426

0.99531647219

0.99923619279

0.99987546806

0.99997969696

0.99999668991

0.99999946034

0.99999991201

0.99999998565

1

C
n

0.893382

8.86389

5.89323 10
1

3.66335 10
2

2.25189 10
3

1.38174-10
4

8.47562 10
4

5.19852 10
5

3.18867 10
6

1.95572 10
7

-

Mmm

0.2424

0.03506

0.002974

0.0002530

5.6090- 10~
5

3.3251 10~
5

2.3565 10~
6

1.8580- 10-
7

4.0140-10-
8

2.3651 10~
8

0

From Tables 1 and 2 one can already deduce some features of the behaviour of
the parameters bn, M n , c n, and the location of the zeros rn k of Wn for large n. Let
us define

1Φ
1-M,n + l

C n+1 r,n+l,π-H
(13)

and list these Δ's in Table 3.
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Table 2. Location of the zeros rn

n

1

2

3

4

5

6

7

8

9

10

oo

1.54567

1.10010

0.98983

0.96900

0.96551

0.96493

0.96484

0.96482

0.96482

0.96482

0.96482

3.69573

1.66635

1.15086

1.02679

1.00369

0.99982

0.99919

0.99909

0.99907

0.99907

14.1647

3.67658

1.66962

1.15222

1.02778

1.00461

1.00073

1.00010

0.99998

77.0184

14.0019

3.67610

1.66970

1.15225

1.02780

1.00464

Zeros of W
n

462.179

76.0503

13.9977

3.67609

1.66971

1.15225

2824.58

456.281

76.0251

13.9975

3.67609

17314.8

2788.44

456.127

76.0244

106194.

17093.2 651351.

2787.50 104834. 3995185.

Table 3. Quotients of parameters for consecutive solutions

n

1

2

3

4

5

6

7

8

9

4.6203

5.8308

6.0836

6.1255

6.1324

6.1335

6.1336

6.1335

6.1325

5.9800

6.1181

6.1318

6.1334

6.1337

6.1337

6.1336

6.1333

6.1315

9.9217

6.6486

6.2162

6.1471

6.1359

6.1340

6.1335

6.1338

6.1333

2.3910

3.8327

5.4373

6.0009

6.1114

6.1301

6.1331

6.1336

6.1337

On the basis of Table 3 we establish the following empirical asymptotic formulae
for 6n, M n , and cn:

bn = boo- 2.186 e~nθί, Mn = 1 - 1.081 e~na , cn = 0.2595 ena , (14)

where a ~ 1.814, resp. ea « 6.134. We should like to mention at this point that a
somewhat different empirical mass-formula was given in Ref. [1]. These empirical

formulae and the value a = —=. « 1.8138 will be explained in Sect. 10.
v 3
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4. Local Existence

In Sect. 2 we have stated necessary conditions for solutions regular at the singular
points r — 0, r — oo, and μ = 0. Here we shall prove the local existence and
analyticity of such solutions. For r = 0 this has been already proven in ref. [4],
but we feel that it is worth to present our proof since it is an application of the
standard technique to linearize differential equations at a singular point [11, 12]. A
number of general theorems allows to relate the asymptotic behaviour of solutions
near the singular point to that of the linearized system. The regular solutions lie on
the "stable manifold." Below we give a version of such a theorem taking into account
some special properties of Eq. (6). It permits to parametrize the family of regular
solutions by parameters determined at the singular point and yields the analyticity of
the solutions in r and these parameters.

Proposition 1. Consider a system of differential equations for n + m functions
u = (uv...,un)andυ = (υι,...,υm) ,

diL dv

with constants Xi > 0 and integers μi,vi>_\ and let W be an open subset of Rn such
that the functions f and g are analytic in a neighbourhood of t = 0, u = c, v = 0
for all c G W. Then there exists an n-parameter family of solutions of the system (15)
such that

ut(t) = c% + O(ί"*) , Vi(f) = O(f<), (16)

where u^t) and v^t) are defined for c G W, \t\ < to(c) and are analytic in t and c.

Proof Following the standard procedure [11] p. 330ff, we convert the differential
Eqs. (15) with boundary conditions (16) into integral equations and seek a solution
through successive approximations. Starting with u^ = c, v^ — 0 we define

Jo (17)
ft

/

JoJo

Due to the assumed analyticity of / and g one can easily estimate these integrals and
deduce that there exists a to(c) > 0 such that for \t\ < to(c) the u(n\ υ(n) converge to
a solution and that this solution is analytic in c and t.

Remark. Prop. 1 implies in particular the standard result [11] of the analyticity of the
stable manifold, i.e., that in a neighbourhood of the singular point t = 0 the v% can
be expressed as analytic functions of t and the u%.

Proposition 2. There exists a one-parameter family of local solutions of Eqs. (6a, b)
near r = 0 analytic in b and r such that

W(r) = 1 - br2 + O(r4) ,

μ(r) = 1 - 4b2r2 + O(r4) .

Proof Introducing

1 — W μW 1 — μ
Wλ = r , WΊ = , Wτ = ^ —
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Eqs. (6a, b) can be written as

rw[ = —2wx — w2 + r2hx , rw2 = —2wx — w2 + r2h2 ,

rw'3 = -3w3 + Aw\ + 2w\ + r2h3 ,

where hi are polynomials in w, r 2, and —. Next we substitute

wx=ux+vx , w2 = -2ux + vx , tί;3 = 2v2 + 2(2ti2 - υ2) , (21)

and find
τu\ = r2fx , r < = -3v t + r 2

Λ , (22)

where fλ and ^ are polynomials in u, v, r2, and —. According to Prop. 1 there exists

a one-parameter family of solutions such that

Proposition 3. There exists a two-parameter family of local solutions of Eqs. (6a, b)
1.
r

W(r) =

(24)

near r = oc analytic in c, M, and - such that

These are the only solutions with \W\ —> 1, rW —> 0, and μ —> 1 as r —> oo.

Proof Let us assume that VF —> 1 as r —• oo (the case W —> — 1 follows trivially
from the symmetry of the field equations (6)) and introduce

s = - , wι=r(l-W), w2 = r2μW , w3 = r(l - μ) . (25)

Then the field equations can be written as ( with / ' = -4

sw[ = —wι + w2 + sfej , 51̂ 2 = 2^2 — 2tί;2 -f- sh2 , 5^3 = s3h3 , (26)

where /ι2 are polynomials in w, s, and - . Similarly to the case above when r —> 0

we substitute
ii^ = i^ + Wj , w2 = ux — 2υι , w3 = τx2 , (27)

and find
i 2 = S3 f2 , Sl?ί = — 3^ ! + SQγ , (28)

n u, υ, s, an

a two-parameter family of solutions such that

The nonlinear terms in Eq. (26) are such that s2hι, s2h2, and s4h3 are polynomials in

sw, s, and — and vanish for su> —̂  0. Uniquen

solutions must lie on the stable manifold [11].

where /̂  and ^ are polynomials in u, υ, s, and —. According to Prop. 1 there exists

Uι=c + O(s) , w2 = 2M + O(s3) , ^ = 0(5) . (29)

te

sw, s, and — and vanish for su> —̂  0. Uniqueness is implied by the fact that bounded
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Proposition 4. There exists a two-parameter family of local non-degenerate black
hole solutions of Eqs. (6a, b) satisfying the boundary conditions (10,11) defined for
rh > 0, Wh such that μ'h > 0, and \r - rh\ < po(rh, Wh) and analytic in rh, Wh,
and r.

Proof. Introducing p = r — rh as new independent variable as well as

uγ(p) = r , u2(p) = W ,

we find (with f' =

, Λ μ , Λ μW (30)

ρux= p , pu2 = p— ,
wι (31)

pw[ = - ^ + F (ΐx) + ^ ( w , iϋ) ,

where hτ are polynomials in — , — , u, and w and

,.2 _ i \ 2

(32)

Next we substitute

^ = vi + F 2 (33)

and find

Pvi = -Vi+pg^v) , (34)

where gi are polynomials in — , — , u, and v. According to Prop. 1 there exists a

two-parameter family of solutions such that

ux = rh + p , u2 = Wh + O(p) , v = O(/9) , (35)

defined for r^ > 0, and P ^ such that μ'h > 0.

Remark. The regularity of A(r) can, in all these cases, be easily deduced integrating
Eq. (6c) with an additional free parameter (initial value).
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5. Flat Space Solutions

As already discussed in Sect. 2, for regular solutions μ tends to 1 at the singular points
r = 0, resp. r = oo. Hence we expect that in a neighbourhood of these points the
YM-potential W is well described by the solutions of the flat-space YM-theory with
the field equation

W»=W(W2

2-
l). (36)

Therefore we first study the solutions of this comparatively simple second order
equation. Although most of their qualitative features are known [13,14] we recall
and also prove them as they will be frequently needed throughout the paper.

Introducing the "time"-coordinate τ = lnr we obtain the autonomous form

W - W(W2 - 1) = W , (37)

that may be viewed as describing the motion of a particle in the potential V =
—(W2 — l)2/4 under the influence of a "negative friction" due to the term W.
Correspondingly the "energy" of the particle

E = -W2 - -(W2 - I)2 (38)

grows in time according to E = W2.
The global features of the solutions of Eq. (37) are best illustrated in a phase-space

diagram displaying the integral curves of the vector field X = (W, W(W2 — 1)4- W)
in the (W, VF)-plane (Fig. 1). This vector field has three singular points at (0,0)
and (±1,0). Linearization at these points exhibits the former one as a focal point
with the eigenvalues λ = (1 ± iV3)/2 and the latter as saddle points with the
eigenvalues λ = 2 and λ = — 1. Since all the eigenvalues have non-vanishing real
parts the phase-flow of Eq. (37) is topologically equivalent to that of the linearized
equations in a neighbourhood of the singular points (compare [12] p. 48). That implies
in particular that from each saddle-point there emerge two separatrices describing the
stable (λ = — 1) and unstable (λ = 2) manifolds of the flow. Specializing the results of
Props. 2 and 3 to μ = 1 it turns out to be possible to parametrize the stable and unstable
manifolds in the form W = ±(1 - c e " r + O(e~2 r)) and W = ±(1 - be2τ + O(e4 r))
respectively.

Closer analysis reveals that the stable manifold has a branch spiralling into the
fixed point (0,0) and one running off to infinity. Both branches of the second separatrix
run away to infinity. The asymptotic solution close to the fixed point (0,0) is of the
form

W(r) = Cel2T sin (^-r + θ\ . (39)

The global behaviour of the phase flow is described by

Proposition 5. i) Trajectories of Eq. (37) staying bounded for r —-> oo have to run
into one of the saddle points along the separatrix corresponding to the stable direction
(λ = -1).
ii) Trajectories staying bounded for r —> —oo have to run either into (0,0) or to

one of the saddle points along the separatrix corresponding to the unstable (λ = 2)
direction.
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Fig. 1. Phase-space diagram for Eq. (37), showing the separatrices and some selected trajectories

iii) All remaining trajectories run to infinity within finite time τ with the asymptotic
behaviour

W(τ) =
T — T

(40)

Proof, i) and ii) are a consequence of the theorem of Poincare-Bendixson [12] p. 29,
since there are no periodic orbits. For the proof of iii) we rewrite Eq. (37) as the
phase-space equation

dW W(Wi-l)

dW W ( '

Without restriction we may assume \W\ > 1. Putting W = (W2 — l)υ and
x = ln(W2 — 1) we obtain from Eq. (41),

v
(42)

From this form it is not difficult to see that v2 —>• r for x —>• oo and hence

W2 —>• (W2 — I) 2 for large W leading to the asymptotic behaviour claimed in iii).

According to Prop. 5 solutions regular at r = 0 have to start at one of the saddle
points, say (1,0) and follow the separatrix corresponding to λ = 2. Close to the
singular point W behaves as W(r) — 1 — br2 + O(r4) as described in Prop. 2. For
b < 0 the solution runs to infinity along the upper branch of the separatrix, for b > 0
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the solution follows the lower branch. Numerical analysis shows that this curve cuts
the line W = - 1 at W « -2.327. Without the use of numerics, using Eq. (37)
it is straightforward to show that this curve stays above its tangent at the saddle
point as long as W > — 1. Once W < - 1 the solution cannot turn back and tends
monotonously to infinity within finite time f. Numerically we found that W diverges
for

The observation that solutions regular at r = 0 run off to infinity is in accordance
with the known result that there are no non-trivial globally regular, static solutions of
the pure YM theory [15].

Since the singular points of Eq. (37) are non-degenerate the flow of X is
structurally stable [12], i.e., the phase flow in a bounded region changes continuously
with a small perturbation. This will become relevant, when one takes into account the
effects of the gravitational field leading to a perturbation of the form (\δ\ <C 1)

W - W(W2 - 1) = (1 + δ)W . (44)

Such perturbations leave the fixed points invariant, but modify the r-dependence of
the solutions. The relevant properties of the solutions of the perturbed equation is
expressed in the

Proposition 6. Solutions ofEq. (44) with \δ\ <C 1 have the properties:
i) Solutions staying bounded have to run into one of the singular points as in the

unperturbed case.
ii) Solutions coming close enough to one of the saddle points (±1,0), but missing it,

leave the strip \W\ < 1.
iii) Close to the saddle points (±1,0) the solutions can be parametrized in the form

W{τ) = ±(1 - c(r)e~r ~ b(r)e2τ) (45)

with slowly varying functions b and c.

Proof i) and ii) are immediate consequences of the structural stability of the vector
field X (compare [12] p. 40) and Prop. 5. The last property follows from the
topological equivalence between the vector field corresponding to Eq. (44) and its
linearization [12] p. 48.

6. Global Behaviour

Let us now turn to the analysis of the global behaviour of the solutions of the full
EYM equations (6). In view of the physical interpretation we shall limit ourselves to
solutions regular at r — 0 or with black hole boundary conditions at r = rh. When
we say that some property holds for all r in this context we always mean for r > 0,
resp. for r > rh.

Our analysis will reveal that in general the coordinate r is not suitable to describe
the full global geometry of the solutions, because it becomes stationary at some
point. This will manifest itself as a zero of μ and a singularity of W'. It is possible
to remove this "coordinate singularity" by using a different independent variable.
Before introducing this new variable we state some useful properties of the solutions
as functions of r.



Static Spherically Symmetric Solutions of the Einstein-Yang-Mills Equations 153

Proposition 7. As long as μ(r) > 0 the function W(r) can have neither maxima in
the regions W > 1 and 0 > W > — 1 nor minima for W < — 1 and 0 < W < 1.
The only solutions with extrema of W at W = 0, ±1 at some regular point r > 0 are
those with constant W.

Proof This follows immediately by putting W1 = 0 in Eq. (6a).

Corollary, (i) If\W(ro)\ > 1 andW(ro)W'(ro) > 0 for some r0 then \W(r)\ > I for
all r > r0.
(ii) IfW has only a finite number of zeros and \W{r)\ < 1 for all r > r0for some r0

then lim W(r) exists, since W(r) will be monotonous for r large enough.
r—>oo

Proposition 8. If μ(r0) < 1 for some r0 then μ(r) < 1 for all r > r0.

Proof Putting μ(r) — 1 in Eq. (6b) one gets μ'(r) < 0, showing that μ cannot cross
1 from below.

Proposition 9. As long as 0 < μ < 1 the solutions are regular functions of r.

Proof. Let us take some finite interval / = [rQirλ) and assume that the solution is
regular in /. We will show that the solution stays regular (i.e., finite) also at rx. From
μ(rλ) > 0 we get

rλ > 2m{rx) >2 μW'2 dr . (46)
Jr0

According to the assumption μmin = min(μ : r e I) > 0, hence

γ

W'2 dr < —±- . (47)
</rn

From this we conclude that A(rλ) is finite. Furthermore using the Schwarz inequality
it follows that W(rx) is finite. Integrating Eq. (6a) we also get the finiteness of Wf(rx).

In order to desingularize the equations when μ(r) —> 0 we shall go back to the more
general parametrization (1) of the metric considering r as a function of a coordinate
r defined through dr — rNdτ with N = ^JJi. Thus the metric takes the form

ds2 = A2N2dt2 - r2(r)(dr2 + dΩ2) . (48)

In addition we introduce U = NW and

n = ^ ( 1 + N2 + 2U2 - (W2 - l ) 2 /r 2 ) . (49)

The significance of the combination K is that it stays finite when iV tends to zero for
growing r in spite of its vanishing denominator and allows to desingularize Eq. (6)
for N —> 0. Using K the equations can be written in the form (with' = d/dτ)

r = rN, (50a)

W = rU , (50b)

k = 1 + 2U2 - κ2 , (50c)

N = (Λ _ N)N - 2U2 , (50d)

W(W2 - 1)
U = — - (K - N)U , (50f)

r
(AN) =(κ- N)AN . (50g)
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In the following we interpret K as an additional dependent variable and Eq. (49) as a
constraint on the initial data that is, of course, preserved by the differential Eq. (50).

It is now obvious that for finite r these equations are no more singular for N = 0.
The only possible singularities occur for r = 0 or when some of the dependent
variables diverge.

Since JV < 1 for the type of solutions considered, we have ln(r(τ)/r(τ0)) < τ — r0.
For solutions regular at r = 0 the variable r behaves like r ~ lnr for r —• 0, i.e.,
T —> — oo, and

φ) = 1 + 2b2r2 + O(r4) . (51a)

For black hole solutions we may choose r = 0 at the horizon; then r ~ y/r — rh and

κ(τ) = -+O(τ). (51b)
r

Applying Prop. 1 to u(τ) = (r, W, KN — U2), and v(τ) = lu,κ—ψ) we see that r,

W, N, U, and K — - are analytic functions of r, rh, and VF^ for all r sufficiently
small, r^ > 0, and Wh including the case r\ < (W% — I ) 2 where W(r) is not analytic
and the solution does not describe a regular horizon.

Important bounds on K are expressed by the

Lemma 10. i) If κ(τQ) > 1 for some τ 0 then κ{τ) > 1 for all r > τ 0.
ii) Ifκ(τ0) + ̂ (TQ) < 2/6>r wwg r 0 rÂ Λ «(τ) + N(τ) < 2 for all r > r0.

iii) // Λ(T0) + A^(τ0) > 2 for some τ0 then κ(τ) + JV(τ) < 2 + efor any e > 0
enough r.

Proof i) Put ξ = ί ^ j with 1 > ξ(τ0) > 0, then
Kι T 1

ξ = -2ξ + ( l - O 2 ^ 2 > - 2 ξ , (52)

and therefore 1 > ξ(r) > e"2^""7^^^) > 0.
ii) Put η = K + N - 2, then

ή = -η-^η2- l(κ - N)2 < -η , (53)

and therefore η(τ) < e~(τ~To)η(τo) < 0.

iii) This follows from ή < —^η2 for η > 0.

In view of their behaviour near r = 0 we see that for regular solutions one has
1 < K < 2 for all r and for black holes 1 < K < 2 + e for sufficiently large r (as
long as N > 0).

Proposition 11. 7/" | W(τ")| > 1 for some r then N has a zero for some finite value τ0,
resp. r0, with finite W(τ0) and U(τ0).

Proof Put T = (W2 - l)/r, then

f = 2WU -NT , f7 = WΓ - (« - iV){7 , - (54)
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and thus for any e > 0

(ln\TU\)>2V2\W\-κ>2V2-2-e (55)

for large enough r, using Lemma 10 and WU > 0 for \W\ > 1 (compare Prop. 7).

It follows that we can find some τx such that \TU\ > —τ= for r > τx and hence

T2 + 2U2 > 2. The field equation (50d) for N can be written as

N = i ( l - N2 - T 2 - 2f/2) (56)

and thus N < — ^ for r > τλ. In view of this inequality we conclude that N must
reach the value 0 for some finite value τ 0 . From the definition of r we get r > lnr,
which implies that r 0 = r(τ0) is finite as well.

Since K is bounded according to the preceding lemma it follows from Eq. (50c)
that U2 is integrable and hence W is bounded. Finally U is bounded due to Eq. (49).

Proposition 12. If \W\ < 1 and W > 0 for all r > 0 then N has a zero for some
finite value τ0, resp. r0.

/. Assume N(τ) > 0 for all r. From Eq. (50) we get

(ANU) = W(W2 - \)AN/r (57)

and hence
2

implying that W is monotonously decreasing and therefore lim W(τ) exists.
r—>oo

Furthermore

— 1W
—dτf < oc . (59)

Hence there is some constant c such that

(60)ί rNU2dr < -c ί War' < c
Jτ0 Jτ0

implying the boundedness of m and consequently lim N(τ) = 1. From Eq. (50) we

get

-ηrrdτ < oo (61)

o

and thus lim A(τ) exists. Using again Eq. (58) we see that lim U(τ) exists and is

zero, because W has a limit. This implies

ί
J — c

contradicting the assumptions.
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From Props. (11) and (12) we learn that for solutions extending to r —> oc the
function W must remain between ±1 and have at least one zero. Later we shall
demonstrate that for any such solution W can only have a finite number of zeros and
necessarily tends to ±1 for r —• oo.

Assume we start with either regular boundary conditions (8) for r = 0, or with
black hole boundary conditions (10,11) for a horizon at r = rh, or just with any
regular initial data with r > 0 , iV > 0, κ>\ and integrate Eq. (50) towards increasing
r. Then there are three possible cases:

i) N(τ) has a zero at r = τ 0 .
ii) N(τ) > 0 for all r and r(r) tends to infinity,

iii) N(τ) > 0 for all r and r(τ) remains bounded.
In the following we will study each of these cases in more detail.

Case i. N(τ) has a zero at r = τ 0 . Let r0, Wo, Uo, κ0 denote the values of r,
W, U, K at r = τ 0 . Case i is the generic one in the sense that a sufficiently small
change in the initial data does not change the type of the solution but only leads to
slightly changed values of τ 0, r0, Wo, Uo, and κ0.

First we observe that WQ and UQ cannot both be zero since then N(τ) would be
identically zero. If Uo Φ 0 then

W(τ0 + σ) = Wo + roUoσ + O(σ2) ,

N(τ0 + σ) = -2t/ 2 σ + O(σ2) , (63)

r(τ0 + σ) = r 0 — r^Ό^σ1 + O(σ3) ,

whereas for Ϊ7O = 0 and Wo ^ 0

1 + O(σ4) , (64)

2r0

In both cases r(τ) has a maximum and N(τ) changes from positive to negative values
at r = r 0 .

Since κQ is finite due to Lemma 10 the constraint (49) implies

(W2 — I) 2 = r 2 ( l + 2?7Λ) (65)

and hence either

< 1 , r 0 = " υ < 1 , (65a)

or

(65b)

The sets of (r0, Wo) values satisfying these conditions are depicted as regions A and B
of the (r, W) half plane in Fig. 2. The complementary region C contains the allowed
(rh, Wh) values for black hole boundary conditions (compare Eq. (11)).
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Fig. 2. Regions of the (r, W) half plane:
A and B contain the (r0, Wo) values for case i where N(τ) has a zero,
C contains the allowed (rh, Wh) values for black hole boundary conditions

It follows from Eq. (50) that f = rN is negative and monotonously decreasing for
r > τ0. Hence r will decrease and become zero within a finite r-interval provided
the other quantities remain bounded.

The "energy" (38) is monotonously decreasing for r > τ0 since

= -(κ- 2N)W2 (66)

and has the value - ^ at r0. Therefore \W0\ > 1 (\W0\ < 1) implies \W\ > 1

(\W\ < 1) for all r > r0.
In order to desingularize Eq. (50) for r —>• 0 we introduce yet another dependent

variable

(67)

and replace Eqs. (50d-f) by

(rN)' = κ,rN - 2rU2 ,

U = X - KU ,

λ = (3W2 - 2U2 - l)U ,

(rAN)' = KTAN ,

(68a)

(68b)

(68c)

(68d)

again preserving the constraint (67). It is now obvious that Eqs. (50a-c, 68) are no
more singular for r = 0.

Proposition 13. For solutions of Eqs. (49, 50) with a zero of N(τ) at r = τ 0 there
exists a r{ > τ0 such that r(r{) = 0 and W, U, rN, K, λ, and rAN remain finite for
T < τx, with

U(τx) = ±W(rι) , rN(τλ) = ±(1 - W2^)) , (69)

where the upper sign applies for \W\ > 1 and the lower one for \W\ < 1.

Proof As already mentioned f is negative and monotonously decreasing for r > τ0

and hence will become zero within a finite r-interval provided the other functions
remain bounded.
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In order to demonstrate the boundedness of W we consider an interval τ <τ <rλ

with f > T$ such that r > 0 and rN < 0. In this interval re and |riV|-e are bounded
and monotonous for all e > 0 and therefore their derivatives are absolutely integrable,
i.e.,

jr*\N\dτ <oo, f -l^dr < oo , J-JL~-dτ < co . (70)

Since either \W\ < 1 or \W\ > 1 in the whole interval we need only consider the
case \W\ > 1. Using the Schwarz inequality it follows from (70) that / |/7||iV|~e<iτ
and hence / |VF||riV|~e<iT is finite for 0 < e < 1. Integrating by parts we find

w _ r w , 2tΛ ., w _ r w , ,
\rNYy '

Since the r.h.s. is bounded and both terms on the l.h.s. have the same sign W\rN\~e

is bounded. The constraint (49) implies |WV| < \W2 — 1| and hence W must be
bounded.

Now we know that W and hence rN is bounded. Next we use the differential
equation

W(W2 - 1)
(reU) = K

 χ_e—- - {K - (1 + e)N)reU . (72)

A linear differential equation of the form x = a — bx has the explicit solution

= e- c ( r ) (z(f)+ / a(τ;)ec(τt)dτ^ with c(r) = ί b(τ')dτ' , (73)

that remains bounded if \a\ is integrable and b > 0. Thus reU is bounded for e > 0 and
consequently | Un \ is integrable for any n > 0. Finally it follows from the differential
Eqs. (50c, 68b-d) that «, λ, rAN, and U are bounded and rAN > 0.

The relations (69) are a consequence of the constraints (49) and (67).

It follows from the form Eq. (48) of the metric that the t = const, hypersurfaces
are compact in this case. Expressing the 3-metric in isotropic coordinates yields a
conformal factor that vanishes at the point corresponding to the zero of r at τx. Hence
the geometry is singular at this point ("bag of gold" [7]).

Case ii. N(τ) > 0 for all r and r(r) tends to infinity. This case describes the
discrete family of asymptotically flat solutions found by Bartnik and McKinnon [1]
as well as their black hole counterparts [2, 3].

Proposition 14. // N(τ) > 0 for all r and lim r{τ) = oo then the solution is a

member of the two-parameter family described in Prop. 3 with N —• 1 and W —>• ± 1 .

Proof. The strategy is to reduce the problem to the pure YM Eq. (37) by first showing
that TV and K tend to one for r —> oo.

First we show that U tends to zero for r —• oo. We distinguish the two cases that
W has only a finite number of zeros, resp. W has zeros for arbitrarily large r. In the
first case we know from Prop. 7 that U cannot change sign for sufficiently large r.
Continuing as in the proof of Prop. 12 we conclude that m is bounded and N —* 1 for
r —> oo. Since in addition W tends to some limit for r —> oo we get lim U(τ) = 0.
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In the second case we can find a sequence τk —> oc with rk = r{τk) —> oo and
U(τk) = 0. Integrating the equation for NU we get

In order to show that this implies lim U(τ) = 0 we require a positive lower bound
r—*oo

for N. This follows from

2/dV - N2 - 1 + ( V Γ 7 ^ = 2C/2 > 0 (75)

rι

and Lemma 10, yielding su 14

4N - 3N2 - 1 + e > 0 (76)

for any e and large enough τ, thus N > ^.

Next we consider the Eq. (52) for ξ — , « and see that ξ tends to zero for

r —> oo, i.e., lim «(τ) = 1. From the Eq. (49) we derive lim N(τ) = 1.
r—>oo r—>oo

In the limit N = K = 1 the Eqs. (50b, e) for W and £/ take the form of Eq. (37),
which we have already discussed. Putting δ(τ) = 2N — K — 1 we may rewrite
Eqs. (50b, e) in the form (44) considering 6(τ) as a small externally given perturbation
of the vector field X. Proposition 6 implies that the solution has to tend to one of the
saddle points. Since δ tends to zero for r —>• oo it finally follows from Prop. 3 that
the solution is a member of the two-parameter family described there.
Remark. This proposition implies in particular that there are no solutions with W —> 0
for r —• oo, providing a simple proof of a theorem by Galtsov and Ershov [16,10].

Case iii. N(τ) > 0 for all r and r(τ) remains bounded. We shall prove that
r, W, U, N, and K have a limit for r —• oo.

Proposition 15. IfN(τ) > Ofor all r and r(r) remains bounded then r —» 1, W —> 0,
J7 —•> 0, JV —> 0, α«<i /ς —•>• 1 /or r —> oo. Furthermore W has infinitely many zeros.

Proof. We first observe that r is monotonous and bounded and therefore has a limit
r0. Similarly m has a limit since it is monotonous and N > 0 implies m < ί.
Consequently N has a limit that must vanish since otherwise r could not be bounded.
Next we use the constraint (49) to write the "energy" (38) in the form

r2

E = (1 + N2 - 2κN) (77)
4

and observe that E is monotonously decreasing for large r (such that N < | ) and

r2

tends to — -P-. Therefore E (Eq. (66)) and hence U2 is integrable and lim K = 1.
"̂ r—>oo

In the limit TV = 0, K = 1 the Eqs. (50b, e) lead to

W - W(W2 - 1) - -W , (78)

i.e., the "time-reversed" form of Eq. (37). Putting δ(τ) — K — IN — 1 and replacing r
by - r we may again rewrite Eqs. (50b, e) in the form (44). It follows from Prop. 11
that \W\ < 1 for all r. Prop. 6 implies that the solution has to tend to one of the
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critical points. Since W = ±1 is incompatible with E < 0 this can only be the focal
point W — U = 0 and therefore r 0 = 1 (compare Eq. (65)).

To show the existence of infinitely many zeros we consider the "phase function"

(79)
VV -h ZVV

satisfying the equation

(AC - 1 - 2N)WW - W4

W2 _j_ ww -

The Schwarz inequality allows to estimate

ψ ^ -^=W2. (81)

The r.h.s. tends to zero and hence φ diverges for τ —• oo.

We can formulate the main result of this chapter in

Theorem 16. Any solution of Eq. (50) regular at either r = 0 or at a horizon r = rh

belongs to one of the three classes, whose properties are described in Props. 13, 14,
and 15.

Case iii corresponds to a new type of solutions, which may be considered as the
limit of case i when τ 0 —• oo and (W0,£70) —> (0,0). Since these solutions have
infinitely many zeros we call them oscillating. They will be further studied in the
following chapter.

7. Oscillating Solutions

We shall first estimate the asymptotic behaviour for r —> oo of the oscillating
solutions. Then we shall establish the local existence of these solutions at r = oo
(r = 1) with the previously found asymptotic behaviour.

In order to estimate the behaviour of W, U, . . . for large r we use an approximate
form of Eq. (50) (with all non-leading terms neglected) and ignore, for the moment,
the constraint (49). From Eqs. (50b, e) we get

— (r) = Cxe~2T sin ί -γT + θ ) , (82a)

U(τ) = Cxe~iT sin ( ^-τ + y + 0 I , (82b)

with some constants Cx and 0. Next we use Eqs. (50d, a) to get

N(r) - C2e
T + -C\e~τ fl - 4= cos(\/3r + 0 + 20)) , (82c)

Inr(r) = C3 + C2e
r - ^ C f e ^ f 1 - 4= cos(>/3r + φ + J + 20)) , (82d)

2 V y 7 ^ '
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1 — 3λ/3i
where eιφ = γ=— and C2, C3 are again constants. Finally we use Eqs. (50c, f)

2 γ 7
to get

\e~r

- C 5 e τ , (82g)

= 1 + C\e~r (l + i cos(\/3r + 20)) + C 4 e- 2 r , (82f)

with two more constants C4 and C5, where C4 could be neglected at this point since
it is multiplied by e~ 2 r but will be needed later on.

Clearly we must choose C2 — 0 to achieve that N tends to zero for r —• oo and
C3 = 0 in order to approximately satisfy the constraint (49). Note, however, that the
constraint is also (approximately) satisfied for finite r with C2 ψ 0 as long as C2e

τ

is of the same order as C\e~τ. If C2 > 0 then N remains positive for r > 1, whereas
N has a zero at some finite r and r < 1 if C2 < 0.

Proposition 17. i) TTiere exists a five-parameter family of local solutions of Eq. (50)
swc/z that N(r) > Ofor all r and r(τ) remains bounded. They are defined for sufficiently
large r and can be parametrized in the form (82) with the constant parameters θ and
Ci replaced by functions ofτ. For r —> oo the functions 0(τ), Cx(τ), C3(r), α«<i C5(r)
/zαve limits, whereas e2rC2(τ) and e~τC4(τ) tend to zero.
ii) Among these solutions there is a four-parameter family satisfying the constraint
(49).

Proof i) Inserting the ansatz (82) into Eq. (50) we obtain differential equations for
the functions 0(τ) and C^r):

θ = e~r/o , (83a)

Cι=e-rCJι , (83b)

(e 2 rC 2) ' = 2e 2 r C 2 + e~ τ / 2 , (83c)

#3 = e ~ 2 T / 3 > ( 8 3 d )

(e- τ C 4 ) = - e ~ τ C 4 + e~τf4 , (83f)

C5 = e - r C 5 / 5 , (83g)

where the fi are homogeneous polynomials of degree 1 or 2 in C 2 , er(/^ — 1), e r JV,
and eτVF2 with bounded coefficients, i.e., they are uniformly bounded if Cl9 e2rC2,
C3, e~ r C 4 , C5 are bounded and r is sufficiently large. Using again the textbook
result [11] p. 330 we conclude that there exists a five-parameter family of solutions
of Eq. (83) such that 0, C 1 ? C3, and C5 have a limit whereas e 2 r C 2 and e~τC4 tend
to zero for r -^ oo. These solutions are characterized by arbitrary initial values of 0,
Cj, C3, C4, and C5 for some sufficiently large r; the initial value of C2 is determined
by the other initial data.
ii) Inserting the ans&tz (82) into the constraint (49) we find that C3 must vanish at
least as e~2τ. Therefore we can choose arbitrary initial values for 0, C 1 ? C4, and C5

and satisfy the constraint by a suitable choice of the initial value for C3.

It is instructive to describe the geometry corresponding to the oscillating solution.
The asymptotic line element takes the form

ds2 = C]e2τdt2 - dτ2 ~ dΩ2 . (84)
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Introducing the new coordinate σ = C 5 " 1 e~ r the above line element (84) becomes:

σι

which is the metric of the direct product of a two-pseudosphere and a two-sphere.
The t =const. hypersurfaces of the solution are non-compact. Asymptotically they

become cylinders (Rι x S2) exactly as those of the extremal RN solution near the
horizon. Since W and W tend to zero for τ —> oo the asymptotic form of the Yang-
Mills field is also that of the extremal RN solution. Observe, however, that for the
oscillating solution A diverges for r —> oo while A = 1 for the RN metric.

8. Globally Regular Solutions

In Sect. 4 we have stated the existence of a one-parameter family of local solutions

of Eq. (6) regular near r = 0 and parametrized by 6 = — ^ W"(0) (compare Prop. 2).
In Sect. 6 we have introduced an equivalent system of differential Eqs. (50), where

the parameter 6 is determined by lim — = —2b. Moreover we have shown that
T—>• — o o r

there are only three possible cases for the global behaviour of these solutions:
i) N(r0) = 0 for some τo; W(r) has a singularity at r = r 0 due to the choice of r

as coordinate.
ii) N > 0 for all τ and r —> oo for τ —> oo. These are the globally regular solutions,

iii) TV > 0 for all r and r —> 1 for r —* oo; W(r) oscillates (has infinitely many
zeros).

It is now natural to investigate which of these three cases occurs for which values
of b. It is convenient to further partition the set of b values according to the number
of zeros of W as follows: For case i we denote by Singn, n = 0,1,2,... the set of
all fe's such that \W0\ > 1 and W has n zeros and by Sing^ the set containing all 6's
such that I Wo\ < 1 irrespective of the number of zeros of W. These are all open sets
since W cannot have double zeros due to Prop. 7. For case ii we denote by Regn,
n = 0,1,2,... the set containing all 6's such that W has n zeros (Bartnik-McKinnon
type solutions). Finally we denote by Osc the set containing all 6's for case iii.

For b < 0 the function W is monotonously increasing and Prop. 11 implies that
N(τ0) = 0 for some τ 0, i.e., all negative numbers are contained in Sing0. For b = 0
we get the trivial solution with W = N = 1 that might be considered as the zeroth
member of the family of globally regular solutions, i.e., 0 e Reg0. In the following we
assume b > 0. First we shall show that if b is either sufficiently small or sufficiently
large then N(τ) vanishes at some τ 0 and W is monotonously decreasing. For b <C 1
we find Wo <C — 1 and r 0 > 1, whereas for 6 > 1 we find 1 — Wo ^C 1 and r 0 <C 1.
In other words all sufficiently large positive 6's are in Sing^ and all sufficiently small
positive 6's are in Singj. Next we shall analyze how the behaviour of the solution can
change with varying 6 and conclude that all the sets introduced above are nonempty.
In particular there must be (at least) one bn G Regn for each nonnegative integer n
and (at least) one 6^ e Osc.

We start with the simplest case |6| <C 1:

Proposition 18. If b > 0, resp. 6 < 0 is sufficiently small then W is monotonously
decreasing, resp. increasing and N(τ0) = 0 for some τ 0. The values of r, W, and U
at τ 0 diverge for b —» 0.
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Proof. Substituting the rescaled variables r —» | 6 | ~ 2 r and U —> \b\2U into Eq. (50)
we find that (50c, d) are replaced by the explicitly 6-dependent equations

k= \+2\b\U2 -κ2 , (86a)

N = (κ- N)N - 2\b\U2 , (86b)

and the initial condition lim — = τ2 becomes 6-independent. When b = 0 then
T—> — 00 '

K = N = 1 and therefore VF satisfies the pure YM Eq. (37). According to Prop. 5
and the subsequent discussion the solution starts from the saddle point W = 1,
W = 0, follows the unstable manifold and eventually diverges at the finite value
r — f (compare Eqs. (40, 43)).

Small values of b lead to a perturbation of this solution that is small as long as

/ \b\U2dτ' < 1. Nevertheless |6 |"2r (i.e., r before rescaling), \W\, and \b\τ\U\
—00

reach values > 1 choosing, e.g., τ « f — |6|~ 7 with ^ < 7 < i . Then Prop. 11
implies a zero of JV.

Remark. A similar argument has been used in Ref. 4 to show that W(r) monoto-
nously decreases to —1 for sufficiently small values of b.

Supplementing the proof of Prop. 18 by a somewhat more quantitative analysis
one finds

r 0 « f |6 |-\ , \W0\ « 2-έ 3* r j , |t/0 | « 2~i 3* r | , κ0 w 2 , (87)

in good agreement with numerical results.
Next consider the other extreme case b ^> 1:

Proposition 19. If b is sufficiently large then W is monotonously decreasing and
N(r0) = Ofor some τ0. The values of the other variables at τ 0 are

( 8 8 a )

(88b)

(88c)

(88d)

w/ί/z some constants f > 0, Ό < 0, α«d 1 < £ < 2.

/Vtftf/. Introducing T = 2—^— and substituting the rescaled variable r —> ί into

Eq. (50) we find that Eqs. (50b, e) are replaced by the explicitly 6-dependent equations

f = 2U - NT , (89a)

r 2 T 2 \

) T ( N ) U ( 8 9 b )

and the initial condition lim — = - 2 becomes 6-independent.
r—> — oo '
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For -r = 0 these equations are the same as Eq. (54) with W replaced by 1. Hence
the argument used in the proof of Prop. 11 applies and we can conclude that there is
a τ 0 such that N(τ0) = 0. The values of r, T, U, and K at τ 0 are finite and satisfy the
relation T2 = 1 + 2U2 due to the constraint (49).

Small values of Ύ- lead to a small perturbation of this solution.

Remark. A quite different argument has been used in Ref. 4 to show that W(r)
monotonously decreases but remains positive as long as μ > 0 for all b > 1. Due to
Prop. 12 this also implies that N(r) has a zero whereas r, W, and U remain finite.

From numerical integration we find f « 0.47, U « —0.93, and R « 1.53.
Next we assume the set Regn is nonempty for some n, choose a bn e Regn, and

analyze the behaviour of solutions for b near bn.

Lemma 20. Given bn E Regn for any n then all b values in a sufficiently small
neighbourhood ofbn are in either Regn, or Singn, or Sίng n + 1 .

Proof. For n = 0 this result and b0 = 0 follow from Props. 11, 12, and 18.
According to Prop. 14 the solution for b — bn, n > 0 is continuous in r for all

r with (W,rU,N,κ) -> ((-l) n ,0,1,1) for r -> oo. Props. 2 and 9 imply that the
solutions are continuous in b and r. For any e > 0 we can therefore choose η > 0
and r 2 > r2 > 1 such that for all 6 £ [bn — η, bn + η] W has n zeros for r <rλ and
W, rU, N, and « differ from their asymptotic values by less than e for rx < r < r2.
Moreover 1 — N and n — 1 remain small as long as \W\ <C \/r and \rU\ <C ŷ *-
Hence (VF, W) is near the fixed point ((—l)n,0) for rx < r < r2 and satisfies the
perturbed Yang-Mills equation (44) with \δ\ <̂C 1. According to Prop. 6 there are three
possibilities for r > rx,b fixed, and e sufficiently small:
a) the solution hits the fixed point as r —> oo,
b) {—\)nW reaches the value 1 for some f and exceeds that value for r > f,
c) {—l)nW has a maximum for some f and turns back towards —1.
In the last two cases the solution closely follows the unstable manifold of Eq. (37)
for r > f as long as \W\ ^C y/r. In particular W is monotonous for r > f. Hence
all points in a sufficiently small neighbourhood of bn are contained in either Regn

(case a), or Singn (case b), or Singn + 1 (case c).

For b near bn we can parametrize the solution in the form

U(r) = ( - l ) n (-2b{0)r + c{Q)r~2) , (90)

N(r) = 1 - 1

where 6(0), c(0), and M ( 0 ) are analytic functions of b and r that are approximately
r independent as long as W, rU, N, and K are close to their asymptotic values
(compare Prop. 6). We can choose η > 0 and rx > 1 such that ^ ( Γ J ) > 0 and
|5C0)(r*1 )| <C c^ir^r^3 for \b — bn\ < η. For case a discussed above we define b = 0,
for case b we define b = 6(0)(f) < 0, and for case c we define b = 5(0)(f) > 0. For
case a and b and r > r the solutions are close to those for \b\ <C 1 discussed in
Prop. 18 with b playing the role of b.

Our numerical results indicate that b is strictly increasing with b. This "transver-
sality property" would imply that the number of zeros of W increases from n for
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b < bn to n -f1 for b > bn. Since we were not able to prove transversality we have
to use a different argument leading to a weaker result.

For b = bn the functions 6(0), c(0), and M ( 0 ) have a power series expansion at
r = oo

5<°> = O(r~4) , c(0) = cn + Ofr" 1) , M ( 0 ) = M n + C^r"1) , (91)

i.e., this solution is the member of the family discussed in Prop. 3 with (c, M) =
(c n ,M n ) . This two-parameter family of solutions can again be written in the form
(90) with b{oo\ c(oo), and M ( o o ) functions of c,_M, and r. For (c, M) close to (cn, M n )
and r fixed and sufficiently large the relation b{oo) = /(c ( o o ), M ( o o )) defines an analytic
function /, describing the stable manifold (compare the remark after Prop. 1). For b
sufficiently close to bn the difference

Δφ) = Φ>φ) - /(c(0)(6), M(0)φ)) (92)

(for the same value of r) is analytic in b and vanishes for b = bn.

Lemma 21. Given the function Δφ) defined above then there exists a neighbourhood
ofb = bn that contains no zeros of Δ except b = bn.

Proof Assume there are other zeros of Δ in every neighbourhood of bn, i.e., the zeros
of Δ accumulate at bn then Δ must identically vanish in the largest interval where
the function Δφ) remains analytic. An endpoint of that interval is, however, again
in Regn and hence Δ is analytic in a neighbourhood of that endpoint. Consequently
Δφ) must vanish for all finite b in contradiction to Prop. 18 and 19.

Combining the results of Lemma 20 and 21 we obtain:

Proposition 22. Given bn e Regn for any n then all b <bn (and similarly all b > bn)
sufficiently close to bn are either in Singn or in Singn + 1.

Similarly we assume the set Osc is nonempty, choose a b^ e Osc, and analyze
the behaviour of solutions for b near b^.

Lemma 23. Given b^ G Osc and some n 0 then all b values in a sufficiently small
neighbourhood ofb^ are in either Osc, or Sing^, or |J (Regn U Singn).

n>n0

Proof Since W has infinitely many zeros for b — b^ and the solutions are continuous
in b and r all solutions for b sufficiently close to b^ must have at least n 0 zeros of
W.

For b sufficiently close to b^, r « 1, and \N\ <C 1 we can parametrize the solution
in the form (82a-d). In order to eliminate Cλ we rewrite the solution in terms of

f = τ - l n C ? , θ{0) = θ+~ \ΆC\ , Cf = tfC2, and Cf = C3 . (93)

The variable f is monotonously increasing with r for f ^> 1, \N\ <C 1, and \κ— 11 Ĉ 1
(compare Eq. (83b)) and hence we can consider £(0), Cf\ and Cf* as functions of τ
defined for f larger than some fγ. From the constraint (49) it follows that Cf* is
negligible compared to erCf\

There are again three possibilities for f > fx and b fixed:

a) eΓCf) tends to zero for f —> oo, i.e., b £ Osc,
b) r reaches the value 1 for some f and exceeds that value for f > f, i.e., b is in
some Regn or Singn,
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c) N has a zero for some f and r < 1, i.e., b G Sing^.
For case a we define C2 = 0, for case b we define C2 = C^if) > 0, and for case c
we define C2 = Cf{f) < 0.

Again the numerical results indicate that C2 is strictly decreasing with b. This
transversality would imply that b G Sing^ for b > b^ and that 6 is in some Regn or
Singn for b < b^.

The solution for b = b^ is a member of the four-parameter family discussed
in Prop. 17. If this family of solutions is expressed in terms of # ( o o )(f), C^°\f),
and C(

3°°\f) as above then the relation Cf° } = /(0 (oo),C^oo)) for f fixed and
sufficiently large defines again an analytic function /. For b sufficiently close to
b^ the difference

Δφ) = Cfφ) - f(θφ\ Cf (6)) (94)

is again analytic in b and vanishes for b = boo.

Lemma 24. Given the function Δφ) defined above then there exists a neighbourhood
°f^ — ̂ oo tnat contains no zeros of Δ except b = boo.

Proof The proof is completely analogous to that of Lemma 21.

Combining the results of Lemma 20 and 21 we obtain:

Proposition 25. Given b^ G Osc and some n0 then all b < b^ (and similarly all
b > b^) sufficiently close to b^ are either in Sing^ or in (J (Regn U Singn).

n>nQ

Combining the results of this chapter we obtain:

Theorem 26 (Existence of globally regular solutions), i) The sets Regn and Osc
are all nonempty, i.e., for each n = 0,1,2,... there exists a globally regular solution
with n zeros of W for at least one bn G Regn and there exists an oscillating solution
with N > Ofor all τ and r —> 1 for τ —> oojfor at least one b^ G Osc.
ii) The union | J Regn has accumulation points that are contained in Osc, i.e.,

n>0

there exists at least one sequence of globally regular solutions and one oscillating
solution W^ such that Wn(r) -* W^r) for r < 1 and Wn(r) —> Ofor r > 1 for
n —> oo.

Proof i) It follows from Prop. 11 that all b < 0 are in Sing0 and from Prop. 19 that
all b > 1 are in Sing^. As a consequence of Props. 22 and 25 there must be at least
one bn G Regn for each n and at least one b^ G Osc as b varies from negative to
large positive values.
ii) Each of the sets Regn and Osc consists of a finite number of points but there must
be accumulation points in the union | J Regn since the bn are all bounded. Moreover

n>0

two values bn and 6 n + 1 are separated by (at least) one open set contained in Singn + 1

and hence these accumulation points must be in Osc.

Remark. Transversality would imply that these solutions are unique, i.e., there is
exactly one bn for each n and exactly one b^ with bn < bn+ι and bn —> b^ as
n —> oo.
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9. Black Hole Solutions

In Sect. 4 we have stated the existence of a two-parameter family of local non-
degenerate black hole solutions of Eq. (6) parametrized by (rh, Wh) with rh > 0 and
(W% — \)2<r2

h (compare Prop. 4). For Wh = 0 and rh > 1 these are the abelian RN
black holes that tend to the extremal RN solution for rh—>\. Hence we can restrict
the initial values to the domain

for 0 < rh < 1 ,

for rh > 1 .

As discussed earlier (after Eq. (51b)) W and iV are analytic functions of r, rh, and
Wh. Near the horizon rh = r(0) we find the expansion

In order to analyze the global behaviour of these solutions we proceed in a
similar way as we did for the regular solutions in the preceding chapter. First we
partition the domain of initial data (95) into sets Regn (regular black hole solutions),
Singn, Sing^, and Osc as before. Next we define for each rh and n the sets
Regn'* = {Wh : (τh,Wh) e Regn} and similarly Singes and for each rh < 1
the sets Sing^J, and Osc7^. We shall conclude that for each n and rh there is at least
one Whn e Reg^ and for each rh < 1 there is at least one Whoo e Oscr/ι.

For Wh > 1 the function W is monotonously increasing and Prop. 11 implies that
N(τ 0) = 0 for some r0, i.e., the values Wh > 1 are contained in Sing^ for all rh.
For Wh = 1 we get the trivial solution with W = 1 and the Schwarzschild metric,
i.e., 0 G Reg^ for all rh.

The case Wh « 1 for any rh is analogous to |6| <C 1 for solutions regular at r = 0.

Proposition 27. Given rh > 0 and Wh < 1, resp. Wh > 1 such that |1 - Wh\ <C
min(r^, 1) then W is monotonously decreasing, resp. increasing and N(r0) = 0 for
some τ0, i.e., all Wh < 1 sufficiently close to 1 are in Sing^. The values ofr, W, and
U at τ 0 diverge for Wh —> 1.

Proof. The solution depends continuously on Wh and therefore W, U, N, and K
remain close to their values for the Schwarzschild solution with the same rh until
r ^> max(r^, 1) and 1 — N <C 1. Then we can proceed as in the proof of Lemma 20
with the only difference that the extremum of W is at f = rh.

The case rh < 1 and Wh close to Λ/1 — rh is analogous to that of b > 1.

Proposition 28. Given 0 < rh < 1 and Wh such that 0 < — - — ^ k <C 1

W w monotonously decreasing and N(τ0) = 0/or sorae r o « l w/ί/z 0 < W(τ0) <

Wh, i.e., Wh values sufficiently close to -γ/1 — rh are in Sing^.

Proof. W and TV are analytic functions of r with the expansion (96). Hence TV(τ0) = 0

for r0 « J™h~$^ and
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Next consider the remaining extreme case rh > 1 and Wh < 1:

Proposition 29. Given rh > 1 and some n0 then all sufficiently small Wh are in
U ; ;

Proof. The solution depends continuously on Wh and therefore W, U, N, and K
remain close to their values for the RN solution with the same rh until r > 1 and
1 - N <C 1. Then with W and rU still small the solution is close to the form (39)
with at least n 0 zeros provided Wh is small enough.

Remark. For rh —» oo and W^ fixed (but not necessary small) W and N tend to

universal functions of £-.
rh

The remaining argument is completely analogous to the one used for the regular
solutions. Therefore we just formulate the results without proof.

Lemma 30. Given (r^, Wh)n G Regn/or any n then all initial data sufficiently close
t 0 (rh> Wh)n a r e i n e i t h e r R e §n> O r S i n gn> 0 T

Proposition 31. Given (rh, Whn) G Reg f̂1 for any n and rh then all Wh > Whn (and
similarly all Wh < Whn) sufficiently close to Whn are either in SingJ^ or in S ing^j .

Lemma 32. Given (r^, W^)^ G Osc and some n0 then all initial data sufficiently
close to (rh, W^^ are in either Osc, or Sing^, or (J (Regn U Singn).

n>no

Proposition 33. Given (rh,Whoo) G Oscr/ι for any rh < 1 and some n0 then all
Wh > WhoQ (and similarly all Wh < Whoo) sufficiently close to Whoo are either in

Sorfn U ^ ^

Combining the results of this chapter we obtain:

Theorem 34 (Existence of black hole solutions), i) The sets Reĝ f1 and Osc7^ are
all nonempty, i.e., for each n = 0,1,2,... and rh there exists a regular black hole
solution with n zeros of W for at least one Whn G RegJ^1 and for each rh < 1 there
exists an oscillating solution W^ with N > 0 for all τ > 0 and r —> 1 for r —> oo
for at least one Whoo G Osc r / ι.

ii) The union \J RegJ^ has accumulation points that are contained in Oscr/ l for
n>0

rh < 1, resp. accumulates at Wh = 0 for rh > 1, i.e., for each rh < 1 there
exists at least one sequence of black hole solutions and one limiting solution such that
^ n ( r ) ~^ ^ / 7

O o( r )/ ( 9 r r < 1 and Wn(r) —> 0 for r > 1 as n —» CXD and for each
rh > 1 ί/ẑ r̂  erwίj αί /etfjΐ ow^ sequence of black hole solutions such that Wh —> 0
α^ύί VFn(r) -^ 0 α^ n —> oo.

iii) The connected components of the sets Regn and Osc are either isolated points or
analytic curves in the (rh, Wh) plane.

Proof, i) and ii) exactly as the proof of Theorem 26.
iii) Props. 4 and 3, resp. 17 state the local existence of families of solutions at the
singular points r = rh and r = oo, resp. r = oo. The values of these solutions in a
neighbourhood of the singular points define analytic manifolds that can be extended
at least as long as N > 0. The intersections of the analytic manifold defined near
r = rh with that defined near r = oo, resp. r = oo are again analytic manifolds. The
(r, W) values of these intersections at r = rh are the sets (J Regn, resp. Osc.

n>0
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0 . 5 -

0 .0

Fig. 3. Initial data for black hole solutions:
Whn(rh) for n = 1, 2, 3 (solid lines), Whoo(rh) (dashed line), and the curve rh = 1 - W% (dotted
line)

Remark. One can also define a transversality property for black holes with rh fixed
with similar consequences as for regular solutions.

Figure 3 shows the initial data Whn(rh) for n = 1,2,3 and Whoo(rh) for black hole
solution obtained by numerical integration.

10. Large n Behaviour

In Sect. 3 we observed a characteristic n-dependence of the parameters of the globally
regular solutions (Eq. (14)). Already for n > 4 a typical scaling factor ea with
a « 1.8138 appears in the comparison of the n t h with the ( n + l) s t solution. Whereas
bn and Mn seem to converge exponentially fast to finite limits b^, resp. M^ = 1,
the parameters c n increase with n as e n α .

In the following we shall explain this asymptotic behaviour for large n. This
explanation is based on a characteristic behaviour of the solutions with many zeros
of W that is already rather pronounced for n = 4. As described in Sect. 3 the
numerical results suggest to introduce three regions: The inner region (I) where the
solutions are close to the limiting solution with b — b^. The small field region (II)

where W is small and N « 1 - - , the extremal RN solution. And finally the
asymptotic region (III) where TV « 1 and (-l)nWn is a universal function of
— . The latter is nothing but the separatrix of the flat space YM Eq. (37) running

from (W,W) = (0,0) to (1,0), as described in Sect. 5. Since Wn is very small in
region II it is well approximated by a solution of the linearized YM equation in the
RN background. The boundary conditions for this linear problem are provided by
the universal solutions in regions I and III. This will eventually explain the discrete
spectrum of solutions.

For b « b^ and r w 1 the solution can be expressed in the form (82) with
slowly varying coefficient functions Q(6, r) and θφ,τ). The solution for b = b^
is characterized by the limiting values (for r —> oo) Cγφ^), θφ^), and C^fr^) =
Cfo^) = 0. For b < b^ the function C2(6, T) must be positive otherwise r(τ) would
stay smaller than one. Clearly as b tends to b^ the value r{τ) = 1 will be reached for
larger and larger values of r. Introducing the modified variable f = r - In C\ used
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before we can parametrize the solution in a neighbourhood of r = 1 by

In rj(f) = C3 4- C2e
f - \c\elf - \e~f [ 1 - 4 = cos (y/lf + 0 + \ + 20 ] ) , (97a)

2 2 \ V7 V 3 / /

jV ίf) = C 2 e f - Cf e2* + \e'f f 1 - 4 = cos(>/3f + 0 + 20)) , (97b)
2 V y 7 /

= e-2rsin( — f + 0 1 , (97c)

(97d)

These expressions differ from those of Eq. (82) by the non-leading terms proportional
to C2. With these terms using the constraint (49) one can show that C3 <C e~f.
The phase θ is defined only up to multiples of 2π. We use this freedom to adjust

\ίλ
θ such that ^4-f + θ = mπ at the m t h zero of W\ The functions θ and C2 are

approximately r-independent as long as e~r <^ C2e
τ <C 1. It is important that the

validity of this condition extends into the region II with r > 1 where the solution
can be well approximated by the solution of the linearized YM equation in the RN
background

rn(f) = 1 + C2e
f , (98a)

(98b)

2 *WΠ(f) = e~2* sin Γ ^ f + θ\+ C2e
lϊf sin Γ ^ f + | + ̂  , (98c)

with the choice of parameters such that the two forms of the solution match in the
overlap of regions I and II. In region II the position of the m t h zero of W shifts from

γ-f + θ = mπ for C2e
f < 1 to X£-f + f + θ - mπ for C2e

f > 1.
Finally the form (98 of the solution has to be joined to the one obtained in

region III. There C2e
τ ^> 1, i.e., 1 — N <̂C 1 and hence W approximately solves

the flat space YM equation with boundary condition W(τ) —> ± 1 . In the region
where W is small this solution can be approximated by

rm(τ) = ce f , (99a)

Wm(t) = ±Cxe
l2f sin ί^-f + ! + # ) > (99b)

with the normalization Wm —> ±(1 — e ~ f ) . Again the phase θ is adjusted such that

^γ-f + ί H- <9 = - m π at the last but m t h zero of W. Matching this form with the

one valid in region II we obtain the conditions

Cl2,nef = c n e f , (100a)

C2,n^
f = Cγehf , (100b)

^yf + θ=^γf + § + nπ, (100c)
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where n is the total number of zeros of W. Eliminating τ and f we obtain the
"quantization condition"

and the relation

Cn = C^nC\ = c o e n ^ . (101b)

In order to estimate the mass Mn we consider the function

1 - W4 r o 1 - W4

m = m+ NUW = -(1 - N2) + NUW , (102)
2r 2 2r

satisfying the equation
m = 2(WU3 - W3U) . (103)

Hence we can express the mass in the form

Ό O

M = ra(oo) = m(τγ) + / 2(WW - WόU)dr , (104)

and choose a τ } at the end of region I where C3 « e " f « C 2 e f <C 1. Neglecting
terms much smaller than C2 we obtain

/γ2 _ | n 2 _ Q

m( T l ) = 1 JVCW = 1 - C 2 e f (N - lnr + /7W) = 1 - - C 2 . (105)

Integrating WU3 yields a negligible result in regions II and III. In order to integrate
W3U we choose a r2 in the overlap of regions II and III where C2e

T ^> 1 and find
that the contribution from region II is again negligible; in region III we obtain

f°° , W2(\ - W2) o
- 2 / W3Udτ = ( - WU + rU2)

Jr2

 V

Combining these results we find

oo

= - — C\ = --C2. (106)
r2

 4 c 4

Mn = 1 - \C2tn = 1 - \cifie~n^ . (107)

Assuming transversality C2φ) is approximately proportional to b^ — b whereas the
6-dependence of θ can be neglected. Numerical integration of the oscillating solution
and its variation with respect to b yields

θ « 1.22457 and C2 « 0.329739 (b^ - b) , (108)

numerical integration of Eq. (37) yields

θ«0.339811 and Cx w 0.432478 . (109)

Together with Eqs. (101, 107) we obtain the asymptotic expressions

bn = boo-2Λ^595 e-na , Mn = l-1.08119 e~ n α , cn = 0.259489 e n α , (110)

with a = Ά= « 1.81380 and ea ^ 6.13371 in excellent agreement with the empirical
v 3

formulae (14). Similar formulae could be derived for black hole solutions with rh < 1
fixed and bn replaced by Whn(rh).
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