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Abstract: Consider the nonlinear Schrδdinger equation ut — iΔu =f(u). For f(u) =
±\u\ι+p, ±i\u\ι+p, ±u\u\p (p > 0), and the Dirichlet boundary or nonlinear bound-
ary (including the Neumann boundary and the Robin boundary) conditions, we
establish the local estimates for the time t to the solutions of the initial-boundary
value problems. Being based up on these estimates, we investigate the blowing-up
properties of the solutions.

1. Introduction

In this paper, we deal with nonlinear Schrόdinger equations

ut-iAu=f(u). (1.1)

Equations of the form (1.1) arise in several areas of applied physics. In particular,
they appear in nonrelativistic quantum mechanics, in the theory of superconductivity,
and in the theory of laser beam propagation.

The initial value problems of (1.1) have been extensively studied. In particular,
the blowing-up properties in finite time of the initial value problems and the be-
haviour near the blowing-up time of the solutions are given sufficient attention (see
[1-4, 6]). This is because blowing-up corresponds to the self-trapping and intense
focusing of beams and mass concentration in laser beam propagation (see [5, 7]). In
the theory of superconductivity and nonrelativistic quantum mechanics, blowing-up
also corresponds to the relevant physics properties.

For the initial-boundary value problems of (1.1), however, much is unknown.
The purpose of this paper is to investigate the initial-boundary value problems of
(1.1). Corresponding to the investigation of finite-time blowing-up properties and
behaviour of the solutions near the blowing-up time to the initial value problems
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of (1.1), for the initial-boundary value problems of (1.1), the questions which we
consider are under which conditions, solutions of the problems blow-up in finite
time, and give a description of the behaviour of the solutions in blowing-up time.

For the most elementary and important six situations of the nonlinear term f(u)
which are/(w) = ±\u\ι+p/f(u) = ±i\u\ι+p,f(u) = ±u\u\p (p > 0), we respectively
establish the local estimates of L2 norms of the solutions of the initial-boundary
value problems of (1.1). By these local estimates, we can easily obtain the blowing-
up properties of the solutions. At the same time, these local estimates also describe
the behaviour of the solutions near blowing-up time. It may be shown that these
results are natural, simple and complete. In addition, these results can be easily
generalized.

In what follows, we will first give an illustration of signs in this paper and some
preparatory work. We next establish the local estimates of L2 norms of the Dirichlet
boundary value problems. Based upon these estimates, the blowing-up properties of
the solutions are obtained. Finally we give remarks on the nonlinear boundary value
problems (including the Neumann and Robin boundary value problems). The results
for the nonlinear boundary value cases are similar to and correspond to the results
for the Dirichlet boundary value cases.

In addition, for the situations of the nonlinear term/(w) = ±ίu\u\p (p > 0), we
can refer to the discussion of Kavian [9],

2. Notation and Preparatory Work

Now we illustrate the signs in this paper as follows:
dt — -|, i = Λ/—ϊ. Ω is a bounded domain in Rn with smooth boundary dΩ.

v = v(x) is the outer normal vector at xedΩ. A is the Laplace operator on
Ω c Rn. u = u(t, x) is a complex valued function defined on [0, T) x Ω for some
Γ > 0. / : C —> C is a complex valued function. V is the gradient operator.

In the domain Ω, we introduce the linear eigenvalue problem of the Laplace
operator :

(Aφ + λφ = 0, xeΩ,

\ φ(x) = 0, x e dΩ . { ' )

It is well known that problem (2.1) exists for the first eigenvalue λ > 0 and
the corresponding first eigenfunction φ(x) > 0 ( x G Ω), moreover JQ φ(x)dx = 1. It
is obvious that λ and φ only relate to Ω.

3. Local Estimates

Consider the initial-boundary value problems for nonlinear Schrodinger equation
with the Dirichlet boundary value.

dtu-iAu=f(u\ t > 0, x£Ω, (3.1)

u(0,x) = uo(x), x e Ω , (3.2)

u(t,x) = 0, t > 0, x e dΩ . (3.3)

We do not study the local existence and uniqueness of problems (3.1), (3.2),
(3.3). We suppose that a local solution is given.
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Let T > 0,p > 0, and consider a solution u of the problems (3.1), (3.2), (3.3)
such that

u = u(t9x) e C\[09 T\L\Ω)) Π C([0, T\H2 ΠHi ΠLP+\Ω)) . (3.4)

Then we have the following results:

Theorem 3.1. Suppose that f(u) = i\u\ι+p.
1. When wo = uo(x) satisfies

J(O)=-fφ(x)Reuodx < 0 ,
ZΩ

forT^f,te[0, Tlwe

where C\ and C[ are some constants.
2. When w0 = UQ{X) satisfies

= --Jφ(x)lmuodx
ZΩ

for T^γvte [0, Γ], we

where C2 and C'2 are some constants.

Theorem 3.2. Suppose that f{u) =\u\ι+p.
1. When w0 = u$(x) satisfies

ZΩ

for T^fvte [0, T], we have

^C2/ [l - ̂

^cί/ [1 - ̂

C2 and C'2 are some constants.
2. When UQ = woW satisfies

/ W I ^ 0 ,
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for T^f,te[O, T], we have

l - ^,\J(0)\P(l-cos λt)]'

-cosλt)

where C\ and C[ are some constants.

Theorem 3.3. Suppose that f(ύ) = -i \u\ι+p

1. When «o — u$(x) satisfies

J(O) = -fφ(x)Reuodx > 0 ,

[0, T]9 we have

cx/ [i - ^

- cosλ)]*

where C\, C[ are some constants.
2. When UQ = UQ(X) satisfies

= --fφ(x)lmuodx > 0 ,
2Ω

for T<.fλ,te [0, Γ], we have

where C2, C'2 are some constants.

Theorem 3.4. Suppose that f(u) = - \u\ι+p .
1. When wo = uo(x) satisfies

J(O)=lfφ(x)Reuodx < 0 ,

for T^%,te [0, T], we have

C2 and C'2 are some constants.
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2. When UQ = uo(x) satisfies

Jφ(x)lmuodx > 0 ,
Z

for Γ^f, t e [0, Γ], we have

- oosλt)}'P ,

where C\ and C[ are some constants.

Theorem 3.5. Suppose that f(u) = wlwp7 or f(u) = —u\u\p. When wo = wo(x)

for t € [0, Γ],

Co αwrf CQ are some constants, To = [p(fΩdx)~2(fΩ Iwol 2 ^) 2 ]" 1 .

Obviously, the above theorems give a description of behaviour of the solutions
in finite time for problems (3.1), (3.2), (3.3). In what follows, we prove these
theorems.

Proof of Theorem 3.1. We first prove 1. For the solution u(t, x) of problems (3.1),
(3.2), (3.3) satisfying (3.4), let

J(t) = 1/ [eiλtu + e~iλtu] φ(x)dx ,

where λ and φ(x) are the eigenvalue and the eigenfunction respectively on the
domain Ω such that (2.1), and t €[09 T], T<ij. Thus

f{t) = - / [eiλtu - e-iλtΰ] φ(x)dx + \j [eiλtdtu + e~iXtdtu\ φ(x)dx . (3.5)

Because

fdtuφ(x)dx = J[iAu +f(u)]φ(x)dx = ijuAφdx + jf(u)φ(x)dx
Ω Ω Ω Ω

= -iλfuφdx + if\u\ι+pφ(x)dx , (3.6)
Ω Ω

it follows that

fdtuφ(x)dx = iλfύφ(x)dx - ij\u\ι+pφ(x)dx . (3.7)



254

Therefore, inserting (3.6), (3.7) into (3.5) and computing, we have

J'(t) = --sin(/U)/|a
2
 Ω

In view of Holder's inequality,

-p
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(3.8)

/ \ -p / \

)dx^( Jφ(x)dx J\uφ(x)\dx
\Ω J \Ω J

= ^J\u\φ(x)dx (3.9)

Since

\u\ =
|Rew| + |Imw|

2 = 4

inserting the above inequality into (3.9), we imply that

^ _1. iλt
= 4 '

(3.10)

Γ 1
J\u\1+Pφ(x)dx^ f^\eiλtu
a LΩ4

i+/>

= \J(t)\1+P. (3.11)

For t 6 [0, T] and Γ^f, we have sinΛί^O. By (3.8) and (3.11), it follows that

Since

, te[0,T], T^j.

J(0) = -/[wo + ΰo]φ(x)dx = -Jφ(x)Reuoώc < 0 ,
4 Z

(3.12)

it follows by (3.12) that J(t) < 0, t e [0, T] and Γ g f . Furthermore, in view of
(3.12), we imply

-J(t)^ [l - 2-λ{-J(ϋ))P(\ - cos A*)] ~'P (-7(0)) , (3.13)

where ί e [0, Γ] and Γ g f . By the Schwartz's inequality, we get

(3.14)

It follows from (3.10) that

J\uφ(x)\dx = J\u\φ(x)dx^]-J\eίλtu + e-
atύ\φ(x)dx

>I / [eiku + e~iUu\ φ(x)dx = \J(t)\ = -7(0 .
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Hence, combining with (3.14), (3.12), we obtain

2 / r rt "1 ή

•cosλt)\ ,

where t e [0,Γ],Γ^f. Set d = [fΩ(φ(x))2dx]-l2\J(0) |, then

1 π
, te[0,n T^J.

Since u(t,x) = 0 when x e dΩ, it follows from Poincare's inequality that

~P- cosλί)] ~P , t € [0,Γ], TZj ,

where C{ is some constant.
This completes the proof of 1.
Now we prove 2. For the solution u(t, x) of the problems (3.1), (3.2), (3.3)

satisfying (3.4), let

J(t)=jf[eiλtu-e-iλtΰ]φ(x)dx,

where λ and φ(x) are the eigenvalue and the eigenfunction respectively on the
domain Ω such that (2.1), and t £ [0, T], T^f-λ. Applying a similar argument as
1, we get

In view of J(O) < 0, it yields that J(t) < 0, t e [0, T] and T^ fχ. The rest of the
proof is also analogous to 1.

Proof of Theorem 3.2. 1. For the solution u(t, x) of the problems (3.1), (3.2), (3.3)
satisfying (3.4), let

where t € [0, T] and Γ ^ γχ. By a similar argument as 1 in Theorem 3.1, we imply

As J(0) > 0, it follows that J(t) > 0, t e [0, Γ] and Γ ^ ̂ . The rest of the proof
is still analogous to 1 in Theorem 3.1.

2. For the solution u(t, x) of the problem (3.1), (3.2), (3.3) satisfying (3.4), let

J(t)=i-J[eiλtu-e-iλtΰ]φ{x)dx,
4

where t G [0, T] and T^j. Using similar argument as 1 in Theorem 3.1, we get

^ > te[0,n τ^j.
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As J(0) < 0, it follows that /(/) < 0, t G [0, Γ], T<,\. The rest of the proof is
also analogous to 1 in Theorem 3.1.

Proof of Theorem 3.3. 1. For the solution u(t, x) of the problems (3.1), (3.2), (3.3)
satisfying (3.4), let

where t G [0, T] and T^j. By a similar argument as 1 in Theorem 3.1, we imply

As J(Q) > 0, it follows that J(t) > 0, t G [0, T] and T<^ \. The rest of the proof
is still analogous to 1 in Theorem 3.1.

2. For the solution u(t, x) of the problem (3.1), (3.2), (3.3) satisfying (3.4), let

J(t)=l-J[eiλtu-e-iλtu)φ{x)dx,
4

where t G [0, T] and T^j^ . Applying the similar argument as 1 in Theorem 3.1,
we get

, ί€[0 ,Γ], T ^ χ .

As J(0) > 0, it follows that J(t) > 0, t G [0, T], T<^ fχ. The rest of the proof is
also analogous to 1 in Theorem 3.1.

Proof of Theorem 3.4. 1. For the solution u(t, x) of the problems (3.1), (3.2), (3.3)
satisfying (3.4), let

where t G [0, T] and T^j%. By a similar argument as 1 in Theorem 3.1, we get

>, ί e [ 0 , ί ] , Γ ^ .

In view of J(0) < 0, it yields that J(t) < 0, t G [0, T] and Γ<; fχ. The rest of the
proof is still analogous to 1 in Theorem 3.1.

2. For the solution u(t ,x) of the problem (3.1), (3.2), (3.3) satisfying (3.4), let

J(t)=U[eiλtu-e-iλίύ]φ(x)dx,

where t G [0, T] and T^j. Using the similar argument as 1 in Theorem 3.1, we
get

J\t)^ ^sin(λt)\J(t)\ι+p, t G [0, Γ], Γ ^

As /(0) > 0, it follows that J{t) > 0, t G [0, Γ] and Γ ^ f. The rest of the proof
is also analogous to 1 in Theorem 3.1.
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Proof of Theorem 3.5. When/ satisfies/(w) = u\u\p(p > 0), for the solution u(t ,x)
of the problem (3.1), (3.2), (3.3) satisfying (3.4), we put

J(t) = J\u\2dx = Juΰdx.
Ω Ω

Thus

As

J\t) = Judtΰdx + Jΰdtudx . (3.15)

Judtudx = Ju(—iAu + ϊι\u\p)dx = /

Inserting the above into (3.15), we imply that

J'{t) = 2$\u\p+2dx.
Ω

In view of Holder's inequality, it follows that

- 5

dxk

• f\u\P+2dx .
a

'{t)*2 (jdx) 2 [J(t)]ϊ+E2 .
\Ω J

Therefore

where To = [p(JΩdx)-2(fΩ l"o| 2 dx)$]-1, and 7(0) = fo \uo\
2 dx+0. Hence

Moreover we imply

where Co and C'o are some constants.
When/ satisfies/(w) = — u\u\p (p > 0), for the solution u(t9 x) of the problem

(3.1), (3.2), (3.3) satisfying (3.4), we put

j(t) = f - \u\
2dx = -Juΰdx .

Ω Ω

The rest of the proof is analogous to the above.

4. Blowing-up Properties

Based upon the local estimates in the former part, the blowing-up properties of the
solutions of problems (3.1), (3.2), (3.3) may be obtained as follows.

Theorem 4.1. Suppose that f{u) = i\u\ι+p,p > 0.
1. When UQ satisfies
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the solutions of problems (3.1), (3.2), (3.3) blow up in some finite time Γ * ^ Γ 0 =

jjarccos(l — p\jmψ\ And the solution on [0, T*) satisfies the estimates of 1 in

Theorem 3.1.

2. When UQ satisfies

V
z7ze solutions of problems (3.1), (3.2), (3.3) Wow w/> zw some finite time Γ*^7o =

jarcsin-r^j^. ylra/ the solution on [0, Γ*) satisfies the estimates of 2 in

Theorem 3.1.

Theorem 4.2. Suppose that f{u) = |w|1+/?, ? > 0.
1. W7ze/ί wo satisfies

the solutions of problems (3.1), (3.2), (3.3) blow up in some finite time T* t^To =
^arcsinpy@\w- And the solution on [0, Γ*) satisfies the estimates of 1 in
Theorem 3.2.
2. When wo satisfies

1

m = -\
ZΩ

the solutions of problems (3.1), (3.2), (3.3) blow up in some finite time Γ*^7o =

jjarccos(l \M)\~)' And the solution on [0, Γ*) satisfies the estimates of 2 in

Theorem 3.2.

Theorem 4.3. Suppose that f(u) = -i \u\ι+p, p > 0.
1. When UQ satisfies

ί//̂  solutions of problems (3.1), (3.2), (3.3) Wow w/? in some finite time Γ*^Γo =

jarccos(l — pJφ\y)• And the solution on [0, T*) satisfies the estimates of 1 in

Theorem 3.3.

2. Ψ/*e« wo satisfies

P J

the solutions of problems (3.1), (3.2), (3.3) blow up in some finite time T* ̂ To =
^arcsin \jLw And the solution on [0, Γ*) satisfies the estimates of 2 in
Theorem 3.3.
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Theorem 4.4. Suppose that f(u) = - \u\ι+p.
1. When UQ satisfies

J(0) = -
ZΩ

the solutions of problems (3.1), (3.2), (3.3) blow up in some finite time T*^TQ =
jdiτcsm-rj^ψ. And the solution on [0, T*) satisfies the estimates of 1 in Theorem

3.4.
2. When UQ satisfies

P,

the solutions of problems (3.1), (3.2), (3.3) blow up in some finite time Γ*^Γo =

^arccos(l \M)ψ) And the solution on [0, T*) satisfies the estimates of 2 in

Theorem 3.4.

Theorem 4.5. Suppose that f(u) = u\u\p or f(u) = —u\u\p,p > 0. When u$ sat-
isfies fΩ\uo\2dx=ϊ=O, the solutions of problems (3.1), (3.2), (3.3) blow up in some

finite time Γ * ^ ^ = [p(JΩ \dx)~2{JQ \uo\
2dx)2]-\ And the solution on [0, T*)

satisfies the estimates in Theorem 3.5.

Now we prove the above theorems.

Proof of Theorem 4.1. 1. In view of the condition which wo satisfies, for To =
^arccos(l - ^ y p ) , it follows that Γ 0 ^f. Therefore, if Γ 0 ^ Γ ^ f , by 1 in Theo-
rem 3.1, it follows that

lim | | t t | | l 2 ( O ) = oo,

Hence we see that T < Γo. That is, the solutions of problems (3.1), (3.2), (3.3) blow
up in some finite time Γ*^7Ό. And the solution on [0, T*) satisfies the estimates
of 1 in Theorem 3.1.

The proof of 2 is similar to 1.
Proofs of Theorems 4.2, 4.3, 4.4 and 4.5 are analogous to the proof of

Theorem 4.1.

5. Remarks on the Nonlinear Boundary Value Problems

Consider the initial boundary value problems for nonlinear Schrodinger equations
with the nonlinear boundary:

dtu-iAu=f(u), t > 0, xeΩ, (5.1)

u(09x) = uo(x), x e Ω , (5.2)
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^=g(t9x9u)9 ί£0, xedΩ, (5.3)

where g(t, x, u) is a complex valued function of n -f 2 variables.

When #(/, x, w) = 0, the problems (5.1), (5.2), (5.3) are the initial boundary

value problems with the Neumann boundary.

For some σ(x) ^ 0 (x e dΩ\ when g(t, x, ύ) = — σ(x)w, the problems (5.1),

(5.2), (5.3) are the initial boundary value problem with Robin boundary.

In the domain (2, we introduce the linear eigenvalue problems of the Laplace

operator:

( 5 ' 4 )

where σ(x) is an arbitrary nonnegative function of xedΩ. It is well known

that problem (5.4) exists for the first eigenvalue μ > 0 and the correspond-

ing first eigenfunction φ(x) > 0 (x £ Ω); moreover fΩψ(x)dx = 1. If and only if

σ(x) = 0 (x G dΩ\ μ = 0. It is obvious that μ and φ only relate to £2 and σ(x).

Based upon the above, using a similar argument as we research the Dirichlet

boundary value problems, we investigate the problems (5.1), (5.2), (5.3). Thus the

results which are completely analogous to the results of the Dirichlet boundary value

problems may be obtained. And the discussion on g(t9 x, ύ) includes the Neumann

boundary and the Robin boundary cases.
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