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Abstract: The paper deals with large deviation bounds for the proportion of
periodic orbits with irregular behavior for expansive dynamical systems with
specification, in particular, we obtain estimates for large deviations from the
equidistribution for closed geodesics on negatively curved manifolds. We derive
also large deviation bounds in the averaging principle when the fast motion is the
shift along periodic orbits.

1. Introduction

Let f*: M—M be a group of homeomorphisms of a compact metric space with
either discrete time t€Z or continuous time teR. A point xe M is called periodic if
f*x=x for some ¢ >0 and the orbit { f*x, seZ or seIR} of such x is called a closed
(or periodic) orbit containing x. Denote by CO the set of all closed orbits and by
CO4(t) those orbits from CO with some period in the interval [t—4d, t+]. Let
yeCO, xey, and 7(p) denotes the least period of y. Then the mapt— f*x sends
the Lebesgue measure on [0,7(y)] to the measure t(y){, on y where {,=
(t(y)) 1§ 8ssxds in the continuous time case and {,=(z(y))™"' DI, 0, in
the discrete time case, with J, standing for the unit mass at y. Set
Be,s=N1s Y reconly Where N, 5= # {CO;(t)} is the number of elements in CO,(t)
which is finite if f* is an expansive dynamical system (see, for instance, [BW]). By
[B1, B2, and B3] (see also [F] and [Pa]) u, ; weakly converges as t— oo to the
measure Un,., with maximal entropy for f* provided f*is a hyperbolic dynamical
system and, in fact, the more general conditions of expansiveness and specification
will suffice. This was called by R. Bowen the equidistribution of closed orbits. For
I'<CO set v, 5(I')=N_ 3 #{'nCOs(t)}. Then by [La],

lim v, ;{yeCO: {,¢U,_}=0 (1.1)
t— 0
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for each open neighborhood U,  of pu,., With respect to the topology of weak
convergence on the space Z(M) of probability measures on M. This means that
except for a small (tending to zero) proportion long periodic orbits are nearly
uniformly distributed according to ... The same results hold true if one considers
all periodic orbits y with 7(y)<t, i.e., when one replaces COs(t), N, 5, and v, 5 by
CO,=COy,(t/2), Ny=Ny3 112, and v, =y, ., respectively. In order to estimate this
small proportion of “irregular” periodic orbits one needs the large deviations
approach. I will prove here that for any 6 >0 small enough,

limsup¢~*logv, ;{yeCO: {,eK}
t—=

=limsupt~'logv,{yeCO: {,eK} < —inf {I(p): peK} 1.2)
t— o0
for any closed K =2 (M) and

liminft~'logv, ;{yeCO: {,eG}

t— o0

=liminfs ™~ *logv,{yeCO: {,eG}= —inf{I(y): peG} (1.3)

t— o0
for any open G =2 (M), where

_(h(fHY=h(f") if peP(M) is f'-invariant
Tw= { 0, otherwise. (14)

Here h(f')=sup {h,(f'): pe2(M), uis f*-invariant} is the topological entropy of
f* and h,(f') is the Kolmogorov—Sinai entropy of f! with respect to u. In
particular, this yields bounds of large deviations from the equidistribution for
closed geodesics on negatively curved manifolds since the geodesic flow on such
manifolds is a hyperbolic (even Anosov) dynamical system. Remark that (1.2)
implies (1.1) but the main interest in (1.2) and (1.3) is in the precise bounds for sets
disjoint with some neighborhood of u,,. The above results require only the
expansivity and specification properties for f* together with the density of func-
tions having unique equilibrium state in the space C(M) of all continuous functions
on M. So the results remain true for homeomorphisms of the Smale spaces (see
[Ru]) and for expanding maps of Riemannian manifolds. The latter can be reduced
to the homeomorphism case by taking the natural extension as in [Ru]. Of course,
the inequalities (1.2) and (1.3) are very close to the corresponding large deviation
results for dynamical systems from [Kil] and they follow in view of two possible
ways of obtaining the topological pressure: by means of (¢, t)-separated sets and by
means of periodic orbits. Another problem which I treat in this paper is con-
nected with the averaging. Let M and N be compact Riemannian manifolds
and B be a bounded and Lipshitz continuous map from N x M to the tangent
bundle T'N. Let

dxX*(t)

o= B[, X'O)=x, (1.5
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where X*°(t)=X% ,(t)eN, >0 is a small parameter, and f* is a smooth flow on
M generated by another C! vector field on M by means of the ordinary differential
equation

af'y
dt

b(f'y), fOy=y . (1.6)

If y belongs to a periodic orbit y of f* then by the standard averaging principle
(see, for instance, [SV]) the solution X7 ,(¢) of (1.5) is close for small ¢ and ¢e[0, T']
to the solution X,(t)=X,,,(t) of the equation

dX,(t)
dt

where B, (x)=(t(y)) "' {5 B(x, f*y) dt and, recall, 7(y) is the least period of y. Still, if
one wants to describe X} ,(¢) for small but fixed ¢ and all y lying on periodic orbits
then the standard averaging principle does not help since X3 ,(f) is é-close to
X, ,(t) only for ¢<¢(y, ), where &(y, §) depends not only on () but on ye CO itself.
Thus in order to obtain a global picture on the averaging along periodic orbits one
has to employ the large deviation approach to averaging similarly to [Ki2]. In
a certain sense, this will give a more detailed description of long periodic orbits
than (1.2) and (1.3). Namely, let Cor(N) be the space of continuous curves ¢ ={ ¢,
N, te[0, T]} on N with the metric

= BY(Xy(t))9 Xy(0)=x s (17)

POT((P, '//)2 sup dN((pt: lpt), ®, l/IGCOT(]V) s (18)
0=t<T
where dy; and dy denote distances on M and N, respectively. Let CO*, CO¥(t), and
COF denote the sets of points lying on orbits from CO, CO;(t), and CO,, respect-
ively. Introduce the probability measures v{; and v on CO¥(¢) and CO} by

vis(D)=[{,(Fay)dv,s()=Nsd Y, {(Tny) (1.9)
7€CO4(1)
for I'c CO* and v}¥(I') equal to the same expression with v, 5, N, 5, and COj(t)
replaced by v,, N,, and CO,, respectively.
I will show that for peCqyr(N), po=x,

1

Vi s{y€CO*: por(X%,,, @) <6} =< exp (— " Sor((/))) , (1.10)
=0

where < means a logarithmic asymptotic in the sense specified in Sect.3 and

Sor(¢)20 is a functional which differs from oo if and only if the curve ¢ is

a combination of averaged motions X ,(¢) satisfying

ax,(t)

7 = BuXu@) Bu(x)=[ B(x, y)du(y) (1.11)

with pu being an invariant measure of the flow f*. Furthermore, So7(¢)=0 if and
only if ¢,=X,_(t) for all te[0, T']. In this sense, the most “probable” behavior of
X%, has to be close to the motion averaged with respect to the measure with
maximal entropy. The relation (1.10) remains true if v¥, ; is replaced by v¥,..
Maybe for the first time in connection with the averaging problems I apply here the
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contraction principle from large deviations which, in particular, simplifies some of
the arguments from [Ki2].

Assuming certain properties of B, one can obtain further estimates corres-
ponding to unbounded time intervals. In the last section I consider averaging for
parabolic second order partial differential equations and stochastic differential
equations employing the contraction principle.

2. Large Deviations

In the discrete time case a dynamical system f* on M is called expansive if there
exists d,>0 such that for any pair of points x+y in M there is neZ so that
dy(f™"x, f"y)>do. In the continuous time case f*, teR is called expansive if for
every n> 0 there exists 5o (17) >0 so that dp(f'x, f5®y) <o (n) for all teR, for a pair
of points x, ye M, and for a continuous function s: R—»R with s(0)=0 implies
y=f“x for some ue[—n,n]. Next, f', teZ satisfies specification if for each
n there is an integer L(n) so that if ¢, .. .,t,+1€Z satisfy t;.,=>t;+ L(n), then
for any xo,...,x,eM there exists xeM with fh+i % x=x and
du(f'x, f1"x;)<nfor all le[t;, t;+ 1 —L()],i=0, 1, .. ., n. In the continuous time
case f*, teRR is said to satisfy specification if for each # there is L(y) so that if
tos ... ta+1ER satisfy t;1=t;+ L(n), then for any x,, ..., x,eM there exists
xeCO¥ (t,+1—1to) and a step function s(f) constant on each [t;, t;+,] with
s[to, t1)=0and |s[t;+1, t;+2)—S[ti, t;+ 1)| <n such that dp ('O x, f*~"x;) <7 for
all te[t;, t;+ 1 —L(n)].

For geC(M) set S,g(x)=2§;(1,g(f"x) for the discrete time case, and S,g(x)=
[ 09(f*x)ds for the continuous time case. Let ¥( f) be the set of ge C(M) for which
there exist 6, K>0 such that supo<s<, du(f°x, f°y) <6 implies |S,g(x)—S:g(y)|
<K.

2.1. Theorem. Suppose that f' is an expansive dynamical system on M satisfying
specification and such that V(f) is separable and dense in C(M). Then (1.2)—(1.4) hold
true for all 6>0 small enough.

Proof. For yeCOs(t) let 1, 5(y) denotes a period of y in the interval [t—d, t+J].
Then

176,600 ™ (t—70,5(0))ST,509 () =S N9l 21

where yeCO,(t) and | g | =sup {|g(x)|: xe M }. In the same way as in Lemma 4 of
[B3] and Lemma 2.8 of [F] it follows that for any ge C(M) and é small enough,

lim ¢~ 'log ¥ exp(S., ,»9(x)=P(9) . (22)

2o 7€CO(1)

where P(g) is the topological pressure of g which satisfies the variational principle
(see [Wa]),

P(g)=sup { [gdu+h,(f'): ue?(M)is f‘-invariant} . (2.3)

In particular, taking g=0,
lim ¢~ 'log N, s=h(f1). (24)
t— 0
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Thus by (2.1)-(2.4),
lim t'log [ exp(tf gdl,)dv, s(y)
—© co

=1lim ¢~ 'log <N:a‘ Y. exp(tf gdCy)>

Untd 7€CO4(t)

=—h(f 1)+,1if2 t™'log Y, exp[S.,p»g(x)]Iexplr,s() " (t—1,s())S: ,»9(¥)]

yeCO4(t)

=P(g)—h(f*)= sup (fgdu—1I(n) (2.5)
ped (M)
with I(u) defined by (1.4) which is a convex lower semi-continuous functional since
f*is expansive, and so the entropy h, (f') is upper semicontinuous, and affine in
U (see, for instance, [DGS]). By [B4 and F] expansivity and specification yield that
for any ge V(f) there exists a unique measure pu,e?(.#), called the equilibrium
state for g, such that

P(g)={ gdu,—I(pg)+h(f"). (2.6)

Since V'(f)is dense in C(M) then by Theorem 2.1 from [Kil] these imply the large
deviation bounds (1.2) and (1.3) for the measures v, ;. In order to obtain (1.2) and
(1.3) for v, I remark, first, that

limt~‘log N,=h(f'). 2.7
t—> o0
Indeed,
N 5s=N,EN,;5+N; 255+ "+ Ni-2s5+Nos (2.8)

where k is the integral part of t/26. Thus (2.7) follows from (2.4) and (2.8). Next,
similarly to (2.8) for any I CO,
Ni—s,8%-5,6(D) SNy(T)S N;, 5V, 6(I) + N - 25,5(1)
+ Ni- 18,8V - 2k8,6(1) + No,svo,5(I) - 29)
Now (1.2) and (1.3) for v, 5 together with (2.4), (2.7), and (2.9) yield (1.2) and (1.3) for
v, completing the proof. O

2.2. Remark. The same large deviation bounds hold true for the measures w, ; and
o, defined for I'cCO by w, )= (Zyeco,(z) T(y))~ ! (Zyernco,,(t) 7(y)) and
Wy =Wy 2,¢/2- Indeed, for ' CO,

(t+8) " N 4 (Nysve,s(T)—Ny) S, 5(N) S+ )Ny 5 (T, s(I) (N, 5— Ny )~

(2.10)
and
t !N (N () —Ny) 2 (M) StNv(T)(N,—Ny) ™1, (2.11)

and so (1.2) and (1.3) for w,,; and w, follow from (1.2) and (1.3) for v, ; and v,.
2.3. Remark. By [B1 and B4] the conditions of Theorem 2.1 are satisfied if f* is
a smooth dynamical system restricted to a basic hyperbolic set, in particular, in

case of an Anosov dynamical system. Then V(f) contains all Holder continuous
functions, and so it is dense in C(M). Since the geodesic flow on a compact
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manifold of negative curvature is an Anosov flow and closed geodesics are in
one-to-one correspondence to periodic orbits of the corresponding geodesic flow,
then (1.2) and (1.3) give large deviation bounds for closed geodesics on negatively
curved manifolds where CO, COy(t), and CO, should stand for sets of closed
geodesics, for those with length in the interval [t—d, t+ 6], and for those with
length not exceeding ¢, respectively.

2.4. Remark. Theorem 2.1 remains valid for subshifts of finite type after making it
aperiodic by the usual trick (see [Si] and Example 3 in [B3]). By [We] and [Si]
irreducible sofic systems satisfy specification and since the functions constant on
cylinder sets are both in V(f) and dense in C(M) then these dynamical systems
also satisfy the conditions of Theorem 2.1 (see also Sect. 6 in [KT]). I thank B.
Weiss for clarifying this point for me. In view of the equivalence of subshifts of finite
type and finite oriented graphs we obtain as a corollary large deviations results for
numbers of closed paths in such graphs with prescribed average properties.

2.5. Remark. By the usual contraction type argument (see Corollary 2.1 in [Kil])
(1.2) and (1.3) yield large deviation bounds for integrals of functions. Namely,
let gy, ..,9,€C(M) and define ¢,: 2(M)->R" by @,u=({g:du, |g.dp,...,|
gndw). Set J,()=inf{I(p): p,u=0o} if aep,2(M) and J,(2)= o0 if a¢p,P(M).
Then for any closed K<R”,

limsup ¢~ *logv, ;{yeCO: ¢,{,eK}

t— o0

=limsupt~'logv,{yeCO: ¢,{,eK} < —inf J,(a), (2.12)

t—= aeK

and for any open GcIR”,

liminfz~!logv, ;{yeCO: ¢,{,eG}

t— 00

=liminft ' v,{yeCO: ¢,{,€G} = —inf J () .

t—= o0 aeG

Again by the contraction principle it is easy to obtain also large deviation bounds
for measures uniformly distributed on periodic orbits with additional restrictions
[@nl,—o| <5t 1 as suggested in [La]. Then one ends up with functionals I(x) with

Pk =,

3. Averaging: Bounded Time

I start with the following result similar to Theorem 2.1 from [Ki2].

3.1. Theorem. Let f* be an expansive dynamical system on M satisfying specifica-
tion. Then for any continuous function q(t, y)=q,(y) on [0,T]x M, T>0 and 6>0
small enough the limit

T T
lim elog | exp (8'1 fa(f"y) dt) dvises(y)=| P(q.)dt—Th(f') (3.1)
¢—>0 co* 0 0
eaiists. The limit remains the same if V¥, 5 is replaced by v} ., ©T/e,s={, dwrye, 5(y), or
WT/e= CydwT/s(y)'
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Proof. By the uniform continuity of g(t, y) one concludes in the same way as in
Sect. 3 from [Ki2] that the assertion of Theorem 3.1 is equivalent to the statement
that for any continuous functions g¢,,..., ¢;€C(M) and for any numbers
O=to<t;<'-<t_1<t,=T one has

k ti
limelog | exp<s“1 Y f q,-(fs/ay)ds)dv";,s,a(y)

£~0 co* i—11_,
k

Z (ti—ti-1)P(q:)—Th(f"). (3.2)

Set ai=tiT_1, i=1,. N k and

k ait
D(t, y)=eXp< > | a(fy) dS) : (3.3)
i=1 a;_qt
Taking t=Te "' we see that (3.2) is equivalent to
k
lim¢~'log [ D(t, y)dviis(y)= ) (@i—a;-1)P(q:)—h(f*), (34)
t-o cox i=0

which, in turn, is equivalent to

limetlog Y| Db fy)ds= Y (G—a)P(a). (3.5)
i=0

t— o yeCO4(t) O

where y, is any point on ye CO,(1). For fixed x>0 set yJ=f7*y, for j=0,1,...,n,
with n,=integral part of x~'7(y), where y,eyeCO. Then (3.5) is equivalent to

limt~'log Y, Z D(t, yi)= Z (ai—ai-1)P(q:) . (3.6)

t— o0 yeCO4(t) j=

Recall that a set EcM is called (B, t)-separated if z,,z,€E, zy+z, implies
SUPo<s<:dm(f°z1,f°z2)> B. It follows from Lemmas 1-3 in [B3] and Lemmas 2.1-
2.6 in [F] that if f>0 is small enough then for any family E;, of maximal
(B, t)-separated sets

k

lim¢ *log Y, D(t,2)= Y, (a—ai-1)P(q) - 3.7)

1= zeEp, i=0

The equality of the left-hand sides of (3.6) and (3.7) for small ¢ and S follows in
the same way as in the proof of Lemma4 in [B3] and Lemma 2.8 in [F],
completmg the proof of (3 1). In the same way as in Sect. 2 one derives that the limit
remams the same if v§, ; is replaced by vi., by wi,s={dwr, (), or by
COT/s - Cy dwT/s(y) O

Next, I will derive large deviation estimates for solutions X5 ,(¢) of (1.5) from
Theorem 2.1 in [K11] and Theorem 3.1 above by the “contractlon principle”
argument. Set ni=T '[( 3¢, ds, yeM which belongs to the space
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P([0,T]xM) of probability measures on [0, T]xM. If gq(ty)=
q:(»)eC([0, T'] x M), then I can rewrite (3.1) as

limelog [ exp(e™ ! qdn)dvy. s(»)
e—0 co* 0

T
=(I)(P(T'1qr)—h(f1))dt

= sup (Jgdn—Ior((m), (3.8)
ne?([0,T] x M)
where
T 1
[ I(n,)de if dn=? dn,dt and
0
Tor(m= neP(M) is f*invariant; 39

o0, otherwise

and I(n,) is defined by (1.4).
Assume that V(f) is dense in C(M), then since V(f) is closed under linear
operations it is easy to see that the set

Vor(f)={4(t, y)=4:(»)eC([0, TT1x M): q,€ V() for all te[0, T}

is dense in C([0, T] x M). In view of [B3 and F] for each ge V1 (f) there exists
a unique 7,6 2([0, T] x M) on which the supremum in the right-hand side of (3.8)
is attained and, in fact, dn,=dur-1,, dt, where p, for ge V(f) is the unique measure
satisfying (2.6). Thus Theorem 2.1 from [Kil] together with Theorem 3.1 above
yield

limsup elog vy, s{y: n5e K} < —inf{Ior(p): peK}

=0
for any closed K< 2([0, T] x M) and (3.10)
lirlz_jglfslog Viesly: nieG} 2 —inf{Ior(p): peG}

for any open G= 2 ([0, T] x M). (3.11)

1
On the subspace # = ([0, T] x M) of measures u such that d,u=i,d,u, dt, ue
P (M), te[0, T] define the map ¥,: # —-Cyr(N),xeN by o=V, u with

¢i=x+ £ L B(os, y)dus(y)ds , (3.12)

where B is the same as in (1.5), which is well defined since B is Lipshitz continuous.
Then ¥ is a continuous map if one takes the topology of weak convergence on
2([0, T]x M) and the metric (1.8) on Cor(N). Clearly, X& ,=¥,n%T. Then (3.10)
and (3.11) imply that for Sor(¢p)=inf, {Ior(p): Pxu=e},

limsupelog v}, s{y: X2 ,eK} < —inf{Sor(¢): ek} (3.13)
=0
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for any closed K= Cyr(N) and
liminfelogv, s{y: X2,eG} = —inf{Sor(¢): peG} (3.1
e—0

for any open G<Cor(N), where Sor(p) is defined to be oo if ¢¥,.#. The
transition from (3.10) and (3.11) to (3.13) and (3.14) is one of the versions of the,
so-called, “contraction principle” and I appreciate a useful remark of R. Liptser
concerning it. In view of (3.9) and (3.12),

Sor(@)= jT inf {I(w): ¢,=B,(¢:), ueP(M) is f*invariant} dt (3.15)
0

with B, defined in (1.11), provided for Lebesgue almost all t€[0, T'] there exists an
fS-invariant g, for which ¢,=B,,(¢), and Sor(¢)=c0, otherwise. It follows from
Sect. 9.1 of [IT] that Sy7(¢) is a lower semicontinuous functional on Cyr(N),
Sor=0, and Sor(¢)=0 if and only if ¢,=B,__(¢,) for all te[0, T], where pim,,is the
unique f*-invariant probability measure such that g, _ (f*)=h(f").

Set @41 (x)={peCor(N): po=x, Sor(p)<a}. Since Sor(¢p) is lower semicon-
tinuous then @, (x) is a closed set. Moreover, it is easy to see that @§,(x) is
compact for any a < co. Then one can rewrite (3.13) and (3.14) in the following form
(cf. Sect. 3.3 in [FW]).

3.2. Theorem. Suppose that the conditions of Theorem 2.1 are satisfied and B in (1.5)
is Lipshitz continuous. Then for any a, f,A>0, each >0 small enough, and every
@€Cor(N), @o=x there exists e, >0 such that for all e€(0, &),

1
v?,s,,;(yeCO*: Por(X%,y, @)<p)=exp {—;Sor((/’)‘i‘/{} (3.16)
and
1
v?,s,(;{yeCO*: por(X%,ys ‘6T(x))§ﬂ} <exp {—;(Q—A)} (3.17)

with por defined by (1.8). The functional Sor(¢) is finite if and only if ¢,= B, (¢,) for
some f*-invariant v,e P(M) and Lebesgue almost all te[0, T] and Sor(¢)=0 if and
only if ¢,=B,__(¢,) for all te[0, T]. The estimates (3.16) and (3.17) remain true if
Vv¥.,s is replaced by v¥§,, 0¥, s, or 0%,

This theorem says that “most likely” X5 ,(t) will stay close to the averaged
motion ¢, =B,__(¢.), po=x. Still, for a set of y’s with an exponentially small in ¢~*
measure X% ,(f) may stay near any curve peCor(N) satisfying ¢,= B, (¢,) with
f*-invariant py,e%?(M). Other motions for X}, ,(t) may occur only for y’s from sets
whose measure decrease as ¢—0 faster than exponentially in ¢~ 1.

3.3. Remark. One can derive Theorem 3.2 via Theorem 2.1 from [Fr] in the same
way as in [Ki2] but [Fr] deals with limits of the type (3.1) for integrals with respect
to a measure independent of ¢ though here v¥,; ; depends on ¢, and so in order to
use [Fr] one has to generalize a bit Theorem 2.1 from there which is also possible.

3.4. Remark. The dynamical systems from Remark 2.3 satisfy the conditions of
Theorem 3.2 since these conditions are the same as in Theorem 2.1.
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3.5. Remark. Define the map‘I’ : P(M)—Cor(N), xeN by ¢=¥,.u with ¢,=
x+ 5[ 3 B(@s, ¥) dpu(y)ds, then ¥ is a continuous map. For pe ¥, 2(M) set
S(p)=inf {I(w): ue?(M) and ¥, u= ¢} (3.18)

and S(¢)= oo if p¢ P, 2(M). Since X, ,=¥,{, with X, , defined by (1.7), then
Theorem 2.1 together with the “contraction principle” type argument yield that for
any T, a, B, A>0, each 6 >0 small enough, and every peCy(N), ¢o = x there exists
to>0 such that for all t>t¢,,

_ 1
Vi,517€CO: por(X,,, <p)<ﬁ};eXP{—;(S(<p)+l)} (3.19)
and

_ - 1
v1,5{y€CO: por(Xs,y, <P‘6T(X))zﬁ}§e)<p{—; (a—i)} s (3:20)
where &%7(x)={peCor(N): 9o =X, S(¢) < a}. The same inequalities will hold true
if v, 5 is replaced by v,, w, 5, or @,. One can rewrite (3.18) in the form

S(p)=inf{I(n): pe (M) is f*-invariant and ¢,=B,(¢p,) for all te[0, T']}
(3.21)

with S(¢)= o if it is not defined by (3.21). Thus S(¢) < oo if and only if ¢ = X, for
some f*-invariant u and S(¢)=0 if and only if p=X,,

3.6. Remark. For a domain V<N set
%,(V)=inf {t20: X5 () ¢V} (3.22)

and 7%, ,(V)=c0 if X5 ,(t)e V for all t=0. Then it follows easily from Theorem 3.2
(cf. [Fr]) that

limelog vy, s{yeCO*: % (V)< T}
£—=0

=inf {So,(¢): 0=t=T, peCor(N), po=x, @, ¢V}, (3.23)

provided 6> 0 is small enough and V'is a connected open domain with a compact
closure V. The limit remains the same if vF, ; is replaced by v¥,, ©¥, s and 0F..

3.7 Remark. One can consider other types of large deviations in this situation.
Consider, for instance, the equation

dx:. ()
dt

Let ¥, be the map from (M) to Cor(p) defined by P, u= ¢ with

1
=B*(X%,(0), f'y) with B*(x, y)={ B(x, f*"y)ds . (3.24)
0

P=x+ I ds f B(os,f*y)du(y) . (3.25)

Then X2 ,= P, (5, where (i=¢f (1,/‘ d;s,ds. Note that if u is f*-invariant then (3.25)
becomes (p,—x+j ods| MB(qos, y)du(y). Thus if one has the large deviation esti-
mates for {§ with the rate function I(y), then for Xz , one has estimates of the form
(3.16) and (3.17) with SOT((D)—mf{I(u) Pou= q)}—mf{l(u ): ne?(M) is [f*-invari-
ant and ¢, = B,(¢,) for all te[0, T']}, i.e. with the same functional as in Remark 3.5.
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4. Averaging: Unbounded Time

Similarly to [Ki2] one can consider solutions of (1.5) on unbounded time intervals.
Denote by X (t) = X ¥(¢) the solution of (1.11) with g = ., and X (0) = x. Define the
flow F' on N by F'x=X™(t). Let V be a connected open set in N with a compact
closure V. Put

R(x, z)=inf {Sor(¢): T20, peCor(N), po=x, or=2} (4.1)
and Ry(x)=inf{R(x, z): zedV'}, where dV is the boundary of V.

4.1. Theorem. Let M be a basic hyperbolic set of the flow f* (see, for instance, [B1]).
Assume also that O is an attracting fixed point of the dynamical system F*' whose
domain of attraction contains a compact set V which is the closure of a domain V with
the smooth boundary 0V and for each zedV, (B,_(z), n(z))<O but there exists
a f'-invariant p such that (B,(z), n(z)), >0, where n(z) is the exterior normal to 0V at
z and (,), denotes the Riemannian inner product in T,N. Then for any xe V and each
A>0,

lim v {yeCO*: exp(e ™ (R(0)— A)) <75,,(V) Sexple™ ' (Ro(O)+ )} =1,
e—0
4.2)

provided T(¢)=exp(e~ 1 R(0)).

Proof. 1 only sketch the proof here since ideologically it is close to the proof of
Theorem 2.3 from [Ki2]. The main idea consists in the following. Suppose that
R3(0) < co. Then for any o >0 small enough and each >0 there exist Ty =T.,5
and  ¢%=¢%*PeCor(N) such that ¢§=0, dy(¢%,V)<e, and
Sor,(¢°)<Ry(0)+p. One can pick up also 7,=T,; such that
FT2V<{y: dy(y, )< A} with A small enough. Next, one applies a Markov prop-
erty type argument saying that either X5 ,(t), x close to 0, exits from V staying
close to ¢ for the time T; or X, ,(71)eV and X, ,(T; + T,) is again close to ¢ and
we repeat this process. The v;i7 s;-measure of those yeCO* for which X% ,(f)
performs the first type of motion can be estimated by Theorem 3.2. So first one has
to approximate certain sequences of periodic orbits of periods e ! T, and ¢~ ' T, by
a periodic orbit ye CO4(T(¢)) and then to estimate v7,-measure of points on these
long orbits via products of measures v;~1r, and v}=17, of points y on orbits from
CO,-17, and CO,-11, for which X% ,(¢) performs the motions described above. To
do this one needs, in particular, the so-called shadowing property and not just the
specification, since the latter provides only a periodic orbit of a period
T(e)+const eT(¢) approximating the above shorter periodic orbits which is not
good enough for (4.2). I refer the reader to [Ki2] in order to recover the details of
the proof of Theorem 4.1 along the same lines.

5. Averaging of PDE and SDE

In this section I consider large deviations via the contraction principle for para-
bolic second order partial differential equations and stochastic differential equa-
tions with coefficients incorporating a fast motion. Let M and N be compact
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Riemannian manifolds and

Ly=Y ajx, y) + ) b(x,y) xeN, yeM

1Zijsn ox'ox? | 2 <ign ox*’
be a family of uniformly elliptic operators on N with coefficients C? in x
and continuous in y. For ueZ(M) I denote also by L, the operator with the
coefficients  afi(x)=[ \ aij(x, y)du(y) and b¥(x)= ij(x ydu(y), 1Zi,j<n

1
Set, again, #={ue?([0,T]xM): dy=7,d,u, dt, u,e?(M)}. Consider the
map ¥,: #4—C([0,T] x N) given by ¥ ,u=u with geC(N) and

ult, )= g()— [ Louls, x)ds, 0<t<T. (5.1)
0

Employing, for instance, the probabilistic representation of solutions of second
order parabolic equations (see [KS]) one can show that ¥, is well-defined and that
it is a continuous map provided .# is taken with the topology of weak convergence
and C([0, 7] x N) with the supremum norm. Now if u} ,(t, x) is the solution of

ou, 4(t, x)
ot

and ni=T"1(] 8, oy ds, then ui,=¥,ni. Again knowing that 7% has large
deviation estimates with the rate functional I, given by (3.9), with I defined either
by (1.4) or by (3.14) from [Kil] depending on the measure for which the large
deviation bounds are needed, one obtains the large deviation bounds in the
averaging principle of the form

+ Lyueyuy 4(t, x)=0, u5, ,(0, x)=g (5.2)

pr,e{ Y Por(u3, g, u) <P} Zexp{—e™ ' (Sor(w)+4)} , (5.3)
u(0, x)=g(x), and

Br,e{Y: por(U3,q, Por(g))Z B} Sexp{—e ™ '(a—A)}, (54)
where Por(ts #) =SUPxem,ter0, 11| U(E; X)—U(E, X)|, or(g9)={ueC([0, T]

x N): u(0, x)=g and Sor(u)<a},

Sor(w)=inf {Lor(): ¥ou=u}

—jmf{l(,u) —+ L,u=0, ue?(M) is fs-lnvarlant}dt (5.5)

provided for Lebesgue almost all te[0, T'] there exists a f*-invariant y, for which

ou

ot

with periodic orbits as in Sect. 3 or the measure m from Theorem 3.4 of [Kil].
Next, consider the following stochastic differential equation on N,

dX%,, ()= (X5, (0), f1y) do,+b(X5,,(0), f*y)dt, X5,,(0)=x , (5.6)

where the matrix o(x, y) satisfies o(x, y)o*(x, y)=(a;;(x, y)) and w, denotes the
Wiener process. Then uj (¢, x)= Eg(X%, ,(t)), where E denotes the expectation (see,
for instance, [KS]). Again by the contraction principle type argument one can

+ L,,u=0and So7(u) = oo, otherwise. Here ur . is one of the measures connected
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obtain the large d~eviation bounds for the process X3 , itself. Define the map ‘I~’x,w:
M—Cop(N) by ¥y o= 0(t, w), where

@(O)=x+] 0,,(0(s)dws+[ b, (¢(s)ds, te[0, TT, (.7)
0 0

which is well-defined for almost all w. Here o, and b, denote the integrals of ¢ and
b in y against ue Z(M). In view of continuous dependence of solutions of stochastic
differential equations on coefficients the map ¥, ,, is continuous for almost all .
Since X5, ,(*, w)= ‘I~’x,wn§, one obtains the large deviation bounds for almost all
o by the same routine as above with the functional S&r(p)=inf{lor(u):

~

Y. wlh=0}.

One can consider also a fast process {,, in place of f**y in (5.6), where {, is, for
instance, a diffusion on M independent of w, in (5.6). The large deviations for the
resulting process follow in the same way, as above.

The need in averaging methods and, in particular, in large deviation estimates
there emerges when one considers small perturbations of Hamiltonian systems (see,
[AFr], and Remark 2.5 in [Ki2]). Deterministic perturbations by a small vector
field lead to an averaging of the type considered in Sect. 3 and in [Ki2]. Random
perturbations by a small diffusion lead to an averaging of the type considered in
this section.
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