Commun. Math. Phys. 160, 537-556 (1994)

Communications in Mathematical Physics © Springer-Verlag 1994

A Geometrical Presentation of the Surface Mapping Class Group and Surgery

S. Matveev¹, M. Polyak^{2,*}

¹ Department of Mathematics, Chelyasbinsk State University, Chelyabinsk 454136, Russia

² Department of Mathematics, University of California at Berkeley, Berkeley CA 94720 and MSRI, 1000 Centennial Drive, Berkeley CA 94720, USA

Received: 1 February 1993

Abstract. We construct a tangle presentation of the mapping class group similar to a natural presentation of the braid group by geometrical braids. A relation between surgery and Heegard diagrams for 3-manifolds arising in this way and different applications are studied.

1. Introduction

It is well-known that the mapping class group of the disc with n marked points has a natural presentation as the group of geometrical braids with n strings. We give a similar presentation of the mapping class group of an orientable surface of arbitrary genus (which may also easily be generalized for the case of a surface with marked points). A relation between surgery presentation of 3-manifolds and Heegard diagrams (see [6, 11]) arising in this way is investigated. This relation enables us to prove that if a 3-manifold has Heegard decomposition of genus two, it may be obtained by surgery on a framed arborescent link in S^3 . We also provide a new proof (similar in spirit to [7]) of Kirby's theorem [5], which in our setting is an easy consequence of stable equivalence of Heegard splittings and Wajnryb's presentation for the mapping class group of a surface [13].

The paper is organized in the following way: in Sect. 1 we recall the notion of framed 2n-tangles and their diagrams. In Sect. 2 Kirby calculus for framed 2n-tangles is introduced. Section 3 is devoted to the definition of the group T_{2n} of admissible 2n-tangles. We state our main theorem in Sect. 4; the proof is given in Sects. 5, 6. In Sects. 7, 8 we study the relation between surgery and Heegard decompositions. As a corollary of our construction in a particular case of Heegard genus two we obtain (in Sect. 7) the result mentioned above. A new proof of Kirby's theorem is established in Sect. 9.

^{*} Supported by Rotshild Fellowship

The paper was written when the first author was visiting Tel-Aviv University at the beginning of 1992. He would like to express his gratitude to Prof. M. Farber for his friendly support during the visit.

2. Framed 2*n*-Tangles

For a given integer $n \ge 0$ let Y_{2n} be a set of n pairs $\{i^-, i^+\}$, $1 \le i \le n$ of different points in the xy-plane $\mathbb{R}^2 \subset \mathbb{R}^2 \times \mathbb{R}^1$. To make our choice explicit we will put $i^{\pm} = (0, i \pm 1/4)$. By a 2*n*-tangle we mean a proper one-dimensional submanifold of $\mathbb{R}^2 \times [0,1]$ such that its boundary coincides with the set $Y_{2n} \times \{0,1\}$. A framing of 2n-tangle is a trivialization of its normal bundle. We require that the restriction of the framing to $Y_{2n} \times \{0,1\}$ should be induced by the standard xy-structure of \mathbb{R}^2 (say, in the positive direction of y-axis).

Given two framed 2*n*-tangles ξ and ζ one may define their product $\xi \cdot \zeta$ to be 2*n*-tangle obtained by gluing the top of the "squeezed" copy $\zeta' \subset \mathbb{R}^2 \times [0, 1/2]$ of ζ to the bottom of the squeezed copy $\xi' \subset \mathbb{R}^2 \times [1/2, 1]$ of ξ .

Each 2n-tangle can be presented by *tangle diagram*, i.e. by its (general position) projection to $\mathbb{R}^1 \times [0, 1]$ with over- and underpasses in each crossing point indicated in the usual way. Tangle diagram determines the framing induced by the vector field orthogonal to $\mathbb{R}^1 \times [0,1] \subset \mathbb{R}^2 \times [0,1]$. Two tangle diagrams represent the same framed 2*n*-tangle iff they are regularly isotopic. The addition of a kink changes the framing of corresponding component by ± 1 . It will be convenient to replace positive and negative kinks by small white and black circles respectively. A pair of opposite kinks on the same string of the tangle may by cancelled, as illustrated in Fig. 1.

Fig. 1.

2. Kirby Moves

In [5] Kirby introduced two operations O_1, O_2 on framed links in a sphere S^3 , later called *Kirby moves*. Denote by $\chi(M^3, L)$ the result of Dehn surgery of a 3-manifold M^3 along a framed link $L \subset M^3$. Then the following holds:

Kirby Theorem [5]. Given two framed links $L_1, L_2 \in S^3$ one can pass from L_1 to L_2 by a sequence of moves O_1, O_2 iff $\chi(S^3, L_1)$ is homeomorphic to $\chi(S^3, L_2)$ (by an orientation preserving homeomorphism).

We extend the Kirby moves to the operations on a framed 2n-tangle $\xi \subset \mathbb{R}^2 \times [0,1]$

by introducing the following moves $K_1 - K_3$: K_1 : Add to ξ an unknotted ± 1 framed circle separated from the other strings of ξ by an embedded 2-sphere $S^2 \subset \mathbb{R}^2 \times [0, 1]$. This move coincides with the Kirby move O_1 .

Geometrical Presentation of the Surface Mapping Class Group and Surgery

 K_2 : Let ξ_0 be a closed component of ξ . Add ξ_0 to ξ_1 by replacing ξ_1 with $\xi_1 \#_b \tilde{\xi}_0$, where $\#_b$ is a band connected sum and $\tilde{\xi}_0$ is obtained by pushing ξ_0 off itself along the framing, as illustrated in Fig. 2. If ξ_1 is closed, this move coincides with the Kirby move O_2 .

 K_3 : Let ξ_0 be a closed, 0-framed component of ξ bounding an embedded disk $D \in \mathbb{R}^2 \times [0, 1]$ which intersects with $\xi \setminus \xi_0$ in exactly two points belonging to different components ξ_1, ξ_2 of ξ . Suppose also that either at least one of the components ξ_1, ξ_2 is closed or $\partial \xi_1 \subset \mathbb{R}^2 \times \{0\}, \ \partial \xi_2 \subset \mathbb{R}^2 \times \{1\}$. Then we may replace $\xi_0 \cup \xi_1 \cup \xi_2$ by $\xi_1 \#_b \xi_2$, where the band *b* intersects *D* along the middle line of *b*, see Fig. 3.

Definition. Two framed 2*n*-tangles are said to be *K*-equivalent, if one can pass from one to another by a (finite) sequence of moves $K_1^{\pm 1}, K_2, K_3^{\pm 1}$; we denote it by $\xi_{\kappa} \zeta$.

It is convenient for our further purposes to introduce some additional moves K_4, K_5 (which can be expressed via $K_1^{\pm 1}, K_2, K_3^{\pm 1}$).

The move K_4 is the deletion of unknotted ± 1 -frame circle at the expense of the full left- or right-hand twist on the strings linked with it [4], as shown in Fig. 4.

Let ξ_0 be a closed, 0-framed component of ξ which bounds an embedded disk $D \subset \mathbb{R}^2 \times [0, 1]$. Suppose that $D \cap (\xi \setminus \xi_0)$ consists of exactly one point lying on some component $\xi_1 \subset \xi$. Then the move K_5 is the deletion of components ξ_0, ξ_1 as illustrated in Fig. 5.

Some remarks should be made at this stage.

Remark 2.1. The move K_4 may be expressed via $K_1^{\pm 1}$ and K_2 , see [4]. The same is true for the move K_5 . To obtain this, note that due to presence of ξ_0 we may change overcrossings of ξ_1 with itself and with other components of ξ to undercrossings by means of K_2 ; this allows us to unlink (and unknot) ξ_1 so that we may consider ξ_0 and ξ_1 to form the Hopf link far from the other components of ξ . We may also put the framing of ξ_1 to be +1 by adding ± 1 -framed unknotted circle (by K_1) and link it with ξ_1 (as above), which in view of K_4 is equivalent to changing the framing of

 ξ_1 by ± 1 . It remains to take note that now the deletion of $\xi_0 \cap \xi_1$ can be carried out by means of K_4 and K_1^{-1} .

Remark 2.2. If at least one of the components ξ_1, ξ_2 (say ξ_1) in the definition of the move K_3 is closed, then K_3 may be expressed via $K_1^{\pm 1}$ and K_2 . Actually, it is a composition of the move K_2 (we add ξ_1 to ξ_2 along the band b) and the move K_5 .

Remark 2.3. Any framed link $L \in S^3$ may be considered (after isotopy into $\mathbb{R}^2 \times [0,1] \subset \mathbb{R}^3 \in S^3$) as a framed 2*n*-tangle for n = 0, hence the moves $K_1^{\pm 1}, K_2, K_3^{\pm 1}$ can also be applied to links. The equivalence relation \sim_{K} for links coincides with the equivalence \sim_{a} of Kirby [5].

3. Admissible 2n-Tangles

Unfortunately the multiplication of 2n-tangles does not agree with the equivalence relation \sim_{K} : it may occur that $\xi_{K} \zeta$, but $\xi \gamma$ is not K-equivalent to $\zeta \gamma$ for some 2ntangle γ . The reason is that the condition on ξ_1, ξ_2 in the definition of the move K_3 may be violated after multiplication by γ . To avoid this difficulty we introduce the notion of an admissible 2n-tangle.

Note that each geometrical 2n-braid ξ with the ends at $Y_{2n} \times \{0,1\}$ can be considered as a 2n-tangle. The braid ξ is called *admissible*, if the corresponding permutation preserves the decomposition of Y_{2n} into (unordered) pairs. More precisely we require that if for some i, j a string of the braid runs from $i^- \times \{0\}$ to $j^{\pm} \times \{1\}$, then the other string has to run from $i^+ \times \{0\}$ to $j^{\mp} \times \{1\}$. An arbitrary framing of the braid is allowed.

Let $\beta_i^{\pm 1}$, $1 \le i \le n$ be the framed 2*n*-tangles depicted in Fig. 6.

Definition. A framed 2n-tangle ξ is called admissible, if it can be written as $\xi = \xi_1 \xi_2 \dots \xi_k$ (for some k) where each ξ_i is either $\beta_i^{\pm 1}$, $1 \le i \le n$ or a framed admissible 2n-braid.

Note that each admissible 2n-tangle ξ satisfies the following

Condition (*). For each unclosed component ξ_0 of ξ one of the following holds: (i) $\partial \xi_0 = (i^- \cup i^+) \times \{0\}$ for some *i*, or

(ii) $\partial \xi_0 = (i^- \cup i^+) \times \{1\}$ for some *i*, or (iii) $\partial \xi_0 = i^{\pm} \times \{0\} \cup j^{\pm} \times \{1\}$ for some *i*, *j* and there exists another component ξ_1 of ξ such that $\partial \xi_1 = i^{\mp} \times \{0\} \cup j^{\mp} \times \{1\}$.

One may easily see that multiplication of tangles and the moves $K_1 - K_5$ preserve the condition (*). This implies that the multiplication of admissible 2n-tangles determines correctly defined multiplication on K-equivalence classes of admissible 2n-tangles.

Geometrical Presentation of the Surface Mapping Class Group and Surgery

Denote by T_{2n} the semigroup of K-equivalence classes of admissible 2n-tangles.

Proposition 3.1. T_{2n} is a group.

Proof. Immediately follows from the fact that the reflection of an admissible 2n-tangle ξ with respect to the middle plane $\mathbb{R}^2 \times \{1/2\}$ produces the inverse 2n-tangle ξ^{-1} . \Box

4. Main Theorem

Let $\Sigma_{n,1}$ be an orientable surface of genus n with one boundary component. The mapping class group $M_{n,1}$ of $\Sigma_{n,1}$ is the group of isotopy classes of orientation-preserving self homeomorphisms of $\Sigma_{n,1}$ fixing the boundary pointwise. We will oftenly identify $M_{n,1}$ with the mapping class group of a surface ∂H_n with an open disk $D \in \partial H_n$ removed, where H_n is the standard solid handlebody of genus n in $\mathbb{R}^3 \in S^3$.

Denote by a_i , b_i , d_i , e_i , $1 \le i \le n$ the right-hand Dehn twists with respect to curves labeled, by abuse of notation, with the same letters, as shown in Fig. 7 (notice that $a_1 = d_1 = e_1$). Denote by α_i , β_i , ε_i and δ_i , $1 \le i \le n$ the admissible 2*n*-tangles depicted in Fig. 8, 6 (put $\alpha_1 = \delta_1$). Clearly, ε_i is admissible in view of K_4 and $\delta_1 \simeq \varepsilon_1$.

Remark 4.1. Applying the move K_3^{-1} , the regular isotopy, and the move K_3 successively, we can shift the white circle (the positive kink) of δ_i from the string $i^+ \times [0, 1]$ to the string $i^- \times [0, 1]$.

Theorem 4.1 (Main Theorem). There exists an isomorphism $\phi: T_{2n} \to M_{n,1}$ which maps $\alpha_i, \beta_i, \delta_i, \varepsilon_i$ to $a_i, b_i, d_i, e_i, 1 \le i \le n$ respectively.

Remark 4.2. One may obtain a similar result for the mapping class group $M_{n,0}$ of a closed surface, taking the factor of T_{2n} by cyclic commutator subgroup generated by full twist on 2n strings.

Remark 4.3. This tangle presentation of $M_{n,1}$ has a straightforward generalization to the case of mapping class group $M_{n,1,k}$ of a surface with k marked points by introducing k new strands with braiding around the other strings and between themselves (but without any new β_i generators).

5. Proof of the Main Theorem: Construction of ϕ

Consider a large disk $B \subset \mathbb{R}^2$ containing Y_{2n} . Without loss of generality we may assume that all considered 2*n*-tangles are contained in $B \times [0, 1]$. Let $\xi \subset B \times [0, 1]$ be an admissible 2*n*-tangle. For each pair $(i^-, i^+) \subset Y_{2n}$ attach to $B \times [0, 1]$ index one handle $N(A_i) \subset \mathbb{R}^2 \times \mathbb{R}^1 = \mathbb{R}^3$ so that $N(A_i) \cap B \times [0, 1]$ is the regular neighbourhood of $(i^- \cup i^+) \times \{1\}$. Add to ξ the cores A_i of the handles to close ξ from above. To make the construction explicit we will take $A_i = \{(0, y, z) \in \mathbb{R}^3 | (y-i)^2 + (z-1)^2 = 1/4, z \ge 1\}$. We obtain the solid handlebody $H = B \times [0, 1] \cup (\bigcup N(A_i)) \subset \mathbb{R}^3$

with framed one-dimensional submanifold $\tilde{\xi} = \xi \cup \left(\bigcup_{i} A_{i}\right)$ inside it. Denote by ξ'

the union of all unclosed components of $\tilde{\xi}$. It consists of exactly n arcs with the ends on the "bottom" $B \times \{0\}$ of H. Finally, remove from H interior of a regular neighbourhood $N(\xi')$ of ξ' . As a result we obtain 3-manifold $H_{\xi} = H \setminus \text{Int}(N(\xi'))$ with framed link $L_{\xi} = \tilde{\xi} \setminus \xi'$ inside it, see Fig. 9. Note that ∂H_{ξ} admits natural decomposition $\partial H_{\xi} = \Sigma_{0\xi} \cup \partial B \times [0,1] \cup \Sigma_{1\xi}$, where $\Sigma_{j\xi}$, j = 0, 1 is genus nsurface with one boundary component and $\Sigma_{i\xi} \cap \partial B \times [0,1] = \partial B \times \{j\}.$

We would like to point out that there exist natural identifications $\kappa_i: \Sigma_{n,1} \to \Sigma_{i\xi}$. Present $\Sigma_{n,1}$ as disk B with n handles as it is depicted in Fig. 10 (compare with Fig. 7). The surface $\Sigma_{i\mathcal{E}}$ is also disk $B \times \{j\}$ with *n* handles. Then κ_{i} maps *B* with holes identically to $B \times \{j\}$ with holes and the curves d_i, b_j are mapped, respectively, to the meridians and induced by framing "longitudes" of the corresponding handles (the images of b_i in Fig. 9 are drawn by thick lines).

Recall that $\chi(H_{\xi}, L_{\xi})$ denotes 3-manifold obtained from H_{ξ} by surgery on the framed link $L_{\varepsilon} \subset H_{\varepsilon}$.

Proposition 5.1. For any admissible 2n-tangle ξ the manifold $\chi(H_{\xi}, L_{\xi})$ is homeomorphic to $\Sigma_{n,1} \times [0,1]$ and the product structure induced on $\chi(H_{\xi}, L_{\xi})$ is an extension of the natural product structure on $\partial B \times [0,1] \subset \partial H_{\mathcal{E}} = \partial \chi(H_{\mathcal{E}}, L_{\mathcal{E}}).$

Proof. Since the complement of a braid in $B \times [0,1]$ is homeomorphic to the complement of the trivial braid, the proposition holds for the case when ξ is an

Fig. 11.

admissible 2*n*-braid. Using the twist along the annulus $A \subset H_{\xi}$, one boundary component of which coincides with $\kappa_1(b_i) \subset \Sigma_{1\xi} \subset \partial H_{\xi}$ and another – with the unique closed component of $L_{\beta_i}^{\pm 1}$, one can easily prove the proposition for $\xi = \beta_i^{\pm 1}$, as shown in Fig. 11. It remains to note that by the definition of admissible 2*n*-tangle product structure on $\chi(H_{\xi\zeta}, L_{\xi\zeta})$ is obtained by gluing together the product structures on $\chi(H_{\xi}, L_{\xi})$ and $\chi(H_{\zeta}, L_{\zeta})$, which implies the general case. \Box

Consider an admissible 2*n*-tangle ξ . Recall that $\partial \chi(H_{\xi}, L_{\xi}) = \partial H_{\xi} = \Sigma_{0\xi} \cup \partial B \times [0, 1] \cup \Sigma_{1\xi}$. Let $p_{\xi} : \Sigma_{0\xi} \to \Sigma_{1\xi}$ be the restriction on $\Sigma_{0\xi}$ of the direct product projection $p : \partial \chi(H_{\xi}, L_{\xi}) \to \Sigma_{1\xi}$. Define the homeomorphism $\phi(\xi) : \Sigma_{n,1} \to \Sigma_{n,1}$ by $\phi(\xi) = \kappa_1^{-1} p_{\xi} \kappa_0$. It follows from the definition that $\phi(\xi\zeta) = \phi(\xi)\phi(\zeta)$ for any two admissible 2*n*-tangles ξ, ζ .

Remark 5.1. The homeomorphisms $\phi(\beta_i^{\pm 1})$ are isotopic to the twists along the curve b_i in positive and negative directions respectively, see Fig. 10 and the proof of Proposition 5.1.

Proposition 5.2. The assignment $\xi \mapsto \phi(\xi)$ determines correctly defined homomorphism $\phi: T_{2n} \to M_{n,1}$.

Proof. It is sufficient to show that the isotopy class of $\phi(\xi)$ depends only on the *K*-equivalence class of ξ . Let an admissible 2n-tangle ζ be obtained from ξ by application of the move $K = K_1, K_2$ or K_3 . Suppose that all the components of ξ involved in the move *K* are closed. Then the equality $\phi(\xi) = \phi(\zeta)$ is clear: the same proof as for the easy "only if" part of the Kirby theorem is valid. But all components of ξ are actually closed in 2n-tangle $\Delta\xi\Delta$, where $\Delta = \prod_{i=1}^{n} \beta_i \beta_i^{-1}$. Therefore $\phi(\Delta\xi\Delta) = \phi(\Delta\zeta\Delta)$. The multiplicativity of ϕ and the equality $\phi(\Delta) = 1$ (see Remark 5.1) imply the desired

 $\phi(\xi) = \phi(\zeta)$ thus completing the proof. \Box

By the construction of ϕ we obtain that ϕ maps the tangles α_i , β_i , δ_i , ε_i to a_i , b_i , d_i , e_i , $1 \le i \le n$ respectively.

6. Proof of the Main Theorem: Construction of $\psi = \phi^{-1}$

Let us begin with reformulation of Wajnryb's theorem [13].

Theorem [13]. The mapping class group $M_{n,1}$ admits a presentation with generators $a_1, b_1, \ldots, a_n, b_n, e_2$ and relations (A) $a_i b_i a_i = b_i a_i b_i, a_{i+1} b_i a_{i+1} = b_i a_{i+1} b_i, b_2 e_2 b_2 = e_2 b_2 e_2$, every other pair of generators commute; (B) $(a_2 b_1 a_1)^4 = k e_2 k^{-1} e_2$, where $k = b_2 a_2 b_1 a_1^2 b_1 a_2 b_2$; (C) $a_1^{-1} a_2^{-1} a_3^{-1} g_1 g_2 e_2 = w e_2 w^{-1}$, where $t_1 = b_1 a_2 a_1 b_1, t_2 = b_2 a_3 a_2 b_2, g_2 = t_2^{-1} e_2 t_2$, $g_1 = t_1^{-1} g_2 t_1, u = a_3^{-1} b_3^{-1} g_2 b_3 a_3, w = b_3 a_3 b_2 a_2 b_1 u a_1^{-1} b_1^{-1} a_2^{-1} b_2^{-1}$.

Remark 6.1. Our formulation of Wajnryb's theorem differs slightly from the original one: we write homeomorphisms from right to left and use ε_2 instead of δ_2 . The latter is possible due to existence of rotation of $\Sigma_{n,1}$ which is invariant on α_i, β_i and interchanges δ_2 and ε_2 .

Proposition 6.1. The assignment $a_i \mapsto \alpha_i$, $b_i \mapsto \beta_i$, $e_i \mapsto \varepsilon_i$ determines correctly defined homomorphism $\psi: M_{n,1} \to T_{2n}$.

Proof. We need only check that this assignment transforms the relations (A), (B), (C) to true equalities on the tangle level.

(A) The equality $\alpha_i \beta_i \alpha_i = \beta_i \alpha_i \beta_i$ is verified in Fig. 12. Verification of the equality $\alpha_{i+1}\beta_i\alpha_{i+1} = \beta_i\alpha_{i+1}\beta_i$ is similar. Equality $\beta_2^{-1}\varepsilon_2\beta_2 = \varepsilon_2\beta_2\varepsilon_2^{-1}$ (equivalent to $\beta_2\varepsilon_2\beta_2 = \varepsilon_2\beta_2\varepsilon_2$) is verified in Fig. 13. Obviously every other pair of 2*n*-tangles $\alpha_i, \beta_i, \varepsilon_2$ commutes.

(B) Let $\kappa = \beta_2 \alpha_2 \beta_1 \alpha_1^2 \beta_1 \alpha_2 \beta_2$ be the image of k. From Fig. 14 we obtain that $\kappa \varepsilon_2 = \delta_2 \kappa$. Therefore $\kappa \varepsilon_2 \kappa^{-1} = \delta_2$. Using (A) we deduce

$$(\alpha_2\beta_1\alpha_1)^4 = (\alpha_2\beta_1\alpha_1\alpha_2\beta_1\alpha_1)^2 = (\beta_1\alpha_2\beta_1\alpha_1\beta_1\alpha_1)^2 = (\beta_1\alpha_2\alpha_1\beta_1\alpha_1^2)^2$$

Fig. 14.

From Fig. 15 we now obtain $(\beta_1 \alpha_2 \alpha_1 \beta_1 \alpha_1^2)^2 = \delta_2 \varepsilon_2$ which implis (B). (C) Let γ_1, γ_2 be the tangles depicted in Fig. 16. It follows from Fig. 17 that $\tau_2 \gamma_2 = \varepsilon_2 \tau_2$, where $\tau_2 = \beta_2 \alpha_3 \alpha_2 \beta_2$ is the image of t_2 . Hence we have $\gamma_2 = \tau_2^{-1} \varepsilon_2 \tau_2$. A similar trick enables us to prove that $\gamma_1 = \tau_1^{-1} \gamma_2 \tau_1$ for the image $\tau_1 = \beta_1 \alpha_2 \alpha_1 \beta_1$ of t_1 . We may conclude, therefore, that the tangles γ_1, γ_2 serve as the images of g_1, g_2 respectively.

To express the tangle $\theta = \alpha_3^{-1}\beta_3^{-1}\gamma_2\beta_3\alpha_3$ (the image of *u*) in a more convenient form we apply the moves K_2 and K_4 as shown in Fig. 18. We deduce from Fig. 19 that

the image $\omega \varepsilon_2 \omega^{-1}$ (where $\omega = \beta_3 \alpha_3 \beta_2 \alpha_2 \beta_1 \theta \alpha_1^{-1} \beta_1^{-1} \alpha_2^{-1} \beta_2^{-1}$) of the RHS of relation (C) equals ε_3 . The image of the LHS of relation (C) also equals ε_3 , as shown in Fig. 20.

This completes the proof of the proposition. \Box

The Main Theorem now follows from Propositions 5.2, 6.1.

7. From Heegard Diagrams to Surgery

Let H_n denote the standard handlebody of genus n in $\mathbb{R}^2 \times \mathbb{R}^1 \subset S^3$. We shall consider a Heegard diagram of 3-manifold M as a homeomorphism $h: \partial H_n \to \partial H_n$ such that $\overline{(S^3 \setminus H_n)} \cup_h H_n = M$. Identify $\Sigma_{n,1}$ with the complement of an open disk $D \subset \partial H_n$ and the group $M_{n,1}$ with the mapping class group of ∂H_n modulo D. Particularly, one may assume that $h \subset M_{n,1}$. Let $\xi = \psi(h)$ be the admissible 2n-tangle corresponding to h. One may express ξ as a product of tangles $\alpha_i, \beta_i, \delta_i$ according to a decomposition of h into the product of twists along the curves a_i, b_i, d_i .

Recall that the framed link $L_{\xi} \subset H_{\xi} \subset S^3$ is obtained from ξ by closing with n small semicircles from above and removing the lower strings.

Theorem 7.1. For any admissible 2*n*-tangle ξ the manifolds $\chi(S^3, L_{\xi})$ and

$$(S^3 \backslash H_n) \cup_{\phi(\xi)} H_n$$

are homeomorphic.

Proof. Let $B_1 \subset \mathbb{R}^2$ be a disk such that $\operatorname{Int} B_1 \subset B$. Denote by H^0_{ξ} the handlebody $B_1 \times [-1/2, 0] \cup N(\xi') \subset \mathbb{R}^2 \times \mathbb{R}^1 \subset S^3$ and by H^1_{ξ} the handlebody $B \times [-1, 1] \cup \left(\bigcup_{i=1}^n N(A_i)\right)$, see Fig. 21 and Sect. 5. It follows from Proposition 5.1 that $\chi(\overline{(H^1_{\xi} \setminus H^0_{\xi})}, L_{\xi})$ is homeomorphic to $\partial H^0_{\xi} \times [0, 1]$. Let $p_{\xi} : \partial H^0_{\xi} \to \partial H^1_{\xi}$

be the restriction of the direct product projection. Clearly the manifold $\chi(S^3, L_{\xi})$ is homeomorphic to $\overline{(S^3 \setminus H_{\xi}^1)} \cup_{p_{\xi}} H_{\xi}^0$. Homeomorphisms $\kappa_0 \colon \Sigma_{n,1} \to \Sigma_{0\xi}$ and $\kappa_1 \colon \Sigma_{n,1} \to \Sigma_{1\xi}$ defined in Sect. 5 can be extended to homeomorphisms $\tilde{\kappa}_0 \colon H_n \to H_{\xi}^0$ and $\tilde{\kappa}_1 \colon \overline{(S^3 \setminus H_n)} \to \overline{(S^3 \setminus H_{\xi}^1)}$ respectively. Since $\kappa_1^{-1} p_{\xi} \kappa_0 = \phi(\xi)$ by definition of ϕ , the formulas $f(x) = \tilde{\kappa}_0(x)$ if $x \in H_n$ and $f(x) = \tilde{\kappa}_1(x)$ if $x \in \overline{(S^3 \setminus H_n)}$ give correctly defined homeomorphism $f \colon \overline{(S^3 \setminus H_n)} \cup_{p_{\xi}} H_n \to \overline{(S^3 \setminus H_{\xi}^1)} \cup_{p_{\xi}} H_{\xi}^0 \approx \chi(S^3, L_{\xi})$. \Box

We now briefly recall the notion of arborescent link (see [3]). Let $\Gamma \subset \mathbb{R}^2$ be connected multigraph. Suppose that there exist a disk $D \subset \mathbb{R}^2$ such that $D \cap \Gamma = \partial D$ and ∂D consists of exactly two vertices and two edges of Γ . Collapsing D to a point we obtain a new multigraph $\Gamma' \subset \mathbb{R}^2$ as shown in Fig. 22.

Fig. 22.

Definition. A link $L \subset \mathbb{R}^3$ is called arborescent, if it admits a (general position) projection $\tilde{L} \subset \mathbb{R}^2$ which, if considered as multigraph, can be reduced to the one-vertex multigraph (i.e. to figure eight) by a sequence of transformations described above.

Corollary. Any 3-manifold of Heegard genus two may be obtained from S^3 by surgery on a framed arborescent link.

Proof. Let ξ be an admissible 4-tangle presented as a product of α_1 , α_2 , β_1 , β_2 , δ_2 and let L_{ξ} be the corresponding link. One may easily deduce that L_{ξ} is arborescent (its natural projection becomes arborescent multigraph after untwisting small kinks). The corollary now follows from the Main Theorem and Theorem 7.1. \Box

8. From Surgery to Heegard Diagrams

Theorem 8.1. For each framed link $L \subset S^3$ there exist n and an admissible 2n-tangle ξ , such that L may be transformed into L_{ξ} by a sequence of Kirby moves. Tangle ξ

may be chosen in the form $\xi = \eta \pi_n$, where $\pi_n = \prod_{i=1}^n \delta_i \beta_i \delta_i$ and η is a pure 2*n*-braid.

Remark 8.1. The first part of the theorem is an easy consequence of the Kirby theorem, the Main Theorem and Theorem 7.1, but we will provide a constructive proof without using the Kirby theorem.

Remark 8.2. Theorem 8.1 allows one to construct a Heegard diagram of 3-manifold M starting from any surgery presentation: from $M = \chi(S^3, L)$ we pass to $M = \chi(S^3, L_{\xi})$ and then to the presentation $M = \overline{(S^3 \setminus H_n)} \cup_{p_{\xi}} H_n$ by Theorem 7.1.

Definition [1, 10]. An *n*-component link $L \subset \mathbb{R}^3$ is said to be represented by pure 2*n*-plat if it admits a diagram with *n* local maxima (with respect to the projection on the *z*-axis).

Remark 8.3. Each pure 2n-plat is regularly isotopic to the plat closure of pure 2n-braid.

Let us prove the following

Lemma 8.1. Each framed link can be transformed to a pure 2n-plat by a sequence of *Kirby moves*.

Proof. Denote by m(L) the number of local maxima and by n(L) the number of components of L. Suppose that d(L) = m(L) - n(L) > 0. Then there exists a component L_i of L with at least two points of local maxima. Using the move K_3^{-1} we may pass to a link L' with d(L') = d(L) - 1 as shown in Fig. 23 (the diagrams coincide inside the square). After d(L) steps we will obtain a pure 2n-plat. \Box

Fig. 23.

We are in a position to prove Theorem 8.1.

Proof of Theorem 8.1. By Lemma 8.1 transform L to a pure 2n-plat L' which is a plat closure of some pure 2n-braid η . Then $\xi = \eta \pi_n$ satisfies the theorem since $L_{\xi} = L'$ by the definition of L_{ξ} and the proof is complete. \Box

The following corollary can be considered as a version of Birman's theorem on the existence of special Heegard diagrams [2, 10]:

Corollary. Each closed orientable 3-manifold can be obtained by pasting together two copies of the standard handlebody $H_n \subset S^3$ via a homeomorphism $u: \partial H_n \to \partial H_n$ which is fixed on all longitudes b_i , $1 \le i \le n$ (and therefore is extendable to $(S^3 \setminus H_n)$).

Proof. From Remark 8.2 we obtain that $M = \overline{(S^3 \setminus H_n)} \cup_h H_n$, where homeomorphism $h: \partial H_n \to \partial H_n$ has the form $h = \phi(\eta \pi_n)$ for some pure 2*n*-braid η . One can easily verify that the homeomorphism $p_n = \phi(\pi_n)$ maps each meridian d_i ; $1 \le i \le n$ to the corresponding longitude b_i and vice versa and, hence, may be extended to homeomorphism of $\overline{(S^3 \setminus H_n)}$ onto H_n . This implies that M is homeomorphic to $H_n \cup_u H_n$ for $u = p_n^{-1}h$. Since η is a pure braid, homeomorphism $\phi(\eta)$ preserves meridians. Therefore homeomorphism $u = p_n^{-1}h = p_n^{-1}\phi(\eta)p_n$ preserves longitudes and the corollary follows. \Box

9. Proof of the Kirby Theorem

We start with some preliminary lemmas.

Lemma 9.1. Let ξ, ζ be K-equivalent admissible 2*n*-tangles. Then the corresponding links L_{ξ}, L_{ζ} are K-equivalent.

Proof. Let ζ be obtained from ξ by the move $K = K_1$, K_2 or K_3 . Assume first that components of ξ with the ends on the bottom $B \times \{0\}$ of $B \times [0, 1]$ do not take part in K. Then L_{ζ} is obtained from L_{ξ} by the same move K. If $K = K_2$ or K_3 and components of ξ with the ends on $B \times \{0\}$ do take part in K, then L_{ζ} either coincides with L_{ξ} or is obtained from L_{ξ} by the move K_5 . \Box

The following two lemmas assure us that multiplication of ξ by a tangle corresponding to a homeomorphism extendable to the inner or outer handlebody does not change K-equivalence class of L_{ξ} .

Denote by $TI_{2n} \subset T_{2n}$ a subgroup of admissible 2*n*-tangles corresponding (via ϕ) to homeomorphisms of ∂H_n which are extendable to H_n .

Lemma 9.2. Let γ_I be an arbitrary tangle in the subgroup TI_{2n} . Then for any admissible 2*n*-tangle ξ links L_{ξ} and L_{ζ} for $\zeta = \xi \gamma_I$ are K-equivalent.

Proof. Obviously, all admissible 2n-braids belong to TI_{2n} since the corresponding homeomorphisms of ∂H_n are invariant on the union $\bigcup_{i=1}^n d_i$ of meridians of H_n (and vice versa, any homeomorphism which is invariant on the union of meridians may be obtained as $\phi(\eta)$ for some admissible 2n-braid η). Moreover, one can easily check that 2n-tangle $\tau_1 = \beta_1 \alpha_2 \alpha_1 \beta_1$ also belongs to TI_{2n} since the corresponding homeomorphism $t_1 = \phi(\tau_1) : \partial H_n \rightarrow \partial H_n$ maps d_1 to a_2 and is fixed on all other meridians d_2, d_3, \ldots, d_n . It is known that each homeomorphism of ∂H_n which is extendable to H_n can be expressed via t_1 and homeomorphisms of ∂H_n which are invariant on the union $\bigcup_{i=1}^n d_i$ of meridians of H_n (see [12, 8]). Therefore the subgroup TI_{2n} is generated by admissible 2n-braids and τ_1 and it suffices to check the statement of the lemma for γ_I being admissible 2n-braid and for $\gamma_I = \tau_1$. If γ_I is an admissible 2n-braid then $L_{\zeta} = L_{\xi}$ by the construction of L_{ζ} (removing of the lower strings of ζ removes all strings of γ_I). For $\gamma_I = \tau_1$ we may obtain L_{ξ} from L_{ζ} by the move K_5 and the lemma follows. \Box

Denote by $TO_{2n} \subset T_{2n}$ a subgroup of admissible 2n-tangles corresponding (via ϕ) to homeomorphisms of ∂H_n which are extendable to $\overline{(S^3 \setminus H_n)}$.

Lemma 9.3. Let γ_O be an arbitrary tangle in the subgroup TO_{2n} . Then for any admissible 2n-tangle ξ links L_{ξ} and L_{ζ} for $\zeta = \gamma_O \xi$ are K-equivalent.

Proof. Recall that homeomorphism $p_n = \phi(\pi_n)$ where $\pi_n = \prod_{i=1}^n \delta_i \beta_i \delta_i$ permutes each meridian d_i with the corresponding longitude b_i and, hence, may be extended to homeomorphisms of H_n to $\overline{(S^3 \setminus H_n)}$ and of $\overline{(S^3 \setminus H_n)}$ to H_n . This implies that $\pi_n \gamma_O \pi_n^{-1}$ belongs to TI_{2n} (which is generated by admissible 2n-braids and τ_1). So it is sufficient to prove the lemma for $\gamma_O = \pi_n^{-1} \gamma_I \pi_n$, where γ_I is either admissible 2n-braid or τ_1 . In the first case the link L_{ξ} is obtained from L_{ζ} by n moves K_5 , in the second – by n + 1 moves K_5 as shown in Fig. 24. \Box

Note that for any m, n there exists a natural embedding $i_{m,n}: T_{2m} \to T_{2n}$ generated by the addition of 2(n-m) new vertical strings (of the form $\{i^{\pm}\}\times[0,1] \subset \mathbb{R}^2\times[0,1]$, $m+1 \le i \le n$) to each admissible 2*n*-tangle ξ . The addition of new strings does not change L_{ξ} . This observation motivates the following

Definition. Two admissible tangles $\xi \in T_{2m}$, $\zeta \in T_{2n}$ are called stably equivalent (we write $\xi_{st} \zeta$), if $i_{m,N}(\xi) = \gamma_O i_{n,N}(\zeta) \gamma_I$ for some $N \ge m, n$ and $\gamma_O \in TO_{2N}$, $\gamma_I \in TI_{2N}$.

Lemma 9.4. If $\xi \sim_{ct} \zeta$, then $L_{\xi} \sim_{K} L_{\zeta}$.

Proof. Immediately follows from Lemmas 9.1–9.3. \Box

Proof of the Kirby theorem. Let $L_1, L_2 \subset S^3$ be two links such that $\chi(S^3, L_1) = \chi(S^3, L_2)$. Using Theorem 8.1 we may construct (for some m, n) admissible tangles $\xi \in T_{2m}, \zeta \in T_{2n}$ so that $L_1 \underset{K}{\sim} L_{\xi}, L_2 \underset{K}{\sim} L_{\zeta}$. Obviously we have $\chi(S^3, L_{\xi}) = \chi(S^3, L_{\zeta})$ which (by Theorem 7.1) is equivalent to $\overline{(S^3 \setminus H_m)} \cup_{\phi(\xi)} H_m = \overline{(S^3 \setminus H_n)} \cup_{\phi(\zeta)} H_n$. Now use the Reidemeister-Singer theorem [9] which states that any two Heegard diagrams of the same 3-manifold are stably equivalent. Translating this theorem to admissible tangle setting by means of Theorem 4.1 we obtain that tangles ξ and ζ are stably equivalent. It follows from Lemma 9.4 that $L_{\xi \overset{\sim}{\nu}} L_{\zeta}$ which implies the theorem.

References

- 1. Birman, J.: Braids, links and mapping class groups. Ann. Math. Studies 82, 3-227 (1975)
- 2. Birman, J.: Special Heegard splittings for closed oriented 3-manifolds. Topology 17, 157-166 (1978)
- 3. Caudron, A.: Classification des noeuds et des enlacements. Notes de recherche 76-80, Publ. Math. D'Orsay 82-04, 350p.
- 4. Fenn, R., Rourke, C.: On Kirby's calculus of links. Topology 18, 1-15 (1979)
- 5. Kirby, R.C.: A calculus for framed links in S^3 . Invent. Math. 45, 35–56 (1978)
- 6. Lickorish, W.B.R.: A representation of orientable combinatorial 3-manifolds. Ann. Math. 76, 531-540 (1962)
- 7. Ning Lu: A simple proof of the fundamental theorem of Kirby calculus on links. Trans. Am. Math. Soc. 331, 143-156 (1992)
- 8. Matveev, S., Fomenko, A.: Algorithmical and computer methods in 3-manifold topology. Moscow: Moscow University Press 1991, 300p. (Russian)
- 9. Reidemeister, K.: Zur dreidimensionalen Topologie. Ann. Math. Sem. Univ. Hamburg 9, 184-194 (1983)
- 10. Rego, E., de Sa, E.C.: Special Heegard diagrams and the Kirby calculus. Topology and its Appl. 37, 11-24 (1990)
- 11. Reshetikhin, N.Yu., Turaev, V.G.: Ribbon graphs and their invariants derived from quantum groups. Commun. Math. Phys. 127, 1–26 (1990)
- 12. Suzuki, S.: On homeomorphisms of a 3-dimensional handlebodies. Can. J. Math. 29, no. 4, 111-129 (1977)
- 13. Wajnryb, B.: A simple presentation for the mapping class group of an orientable surface. Israel J. Math. 45, 157-174 (1983)

Communicated by N. Yu. Reshetikhin