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Abstract. We construct a tangle presentation of the mapping class group similar to a
natural presentation of the braid group by geometrical braids. A relation between
surgery and Heegard diagrams for 3-manifolds arising in this way and different
applications are studied.

1. Introduction

It is well-known that the mapping class group of the disc with n marked points has
a natural presentation as the group of geometrical braids with n strings. We give a
similar presentation of the mapping class group of an orientable surface of arbitrary
genus (which may also easily be generalized for the case of a surface with marked
points). A relation between surgery presentation of 3-manifolds and Heegard diagrams
(see [6,11]) arising in this way is investigated. This relation enables us to prove that if
a 3-manifold has Heegard decomposition of genus two, it may be obtained by surgery
on a framed arborescent link in S3. We also provide a new proof (similar in spirit
to [7]) of Kirby's theorem [5], which in our setting is an easy consequence of stable
equivalence of Heegard splittings and Wajnryb's presentation for the mapping class
group of a surface [13].

The paper is organized in the following way: in Sect. 1 we recall the notion of
framed 2n-tangles and their diagrams. In Sect. 2 Kirby calculus for framed 2n-tangles
is introduced. Section 3 is devoted to the definition of the group T2n of admissible
2n-tangles. We state our main theorem in Sect. 4; the proof is given in Sects. 5, 6. In
Sects. 7, 8 we study the relation between surgery and Heegard decompositions. As a
corollary of our construction in a particular case of Heegard genus two we obtain (in
Sect. 7) the result mentioned above. A new proof of Kirby's theorem is established
in Sect. 9.
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2. Framed 2n-TangIes

For a given integer n > 0 let Y2n be a set of n pairs {z~, z+}, 1 < i < n of different
points in the x?/-plane R2 C I 2 x R1. To make our choice explicit we will put
i ± = (0, i db 1/4). By a 2n-tangle we mean a proper one-dimensional submanifold of
R2 x [0,1] such that its boundary coincides with the set Y2n x {0,1}. A framing of
2n-tangle is a trivialization of its normal bundle. We require that the restriction of the
framing to Y2n x {0,1} should be induced by the standard xy-structure of R2 (say,
in the positive direction of y-axis).

Given two framed 2n-tangles ξ and ζ one may define their product ξ ζ to be
2n-tangle obtained by gluing the top of the "squeezed" copy ζf C R2 x [0,1/2] of ζ
to the bottom of the squeezed copy ξ' c R2 x [1/2,1] of ξ.

Each 2n-tangle can be presented by tangle diagram, i.e. by its (general position)
projection to R1 x [0,1] with over- and underpasses in each crossing point indicated
in the usual way. Tangle diagram determines the framing induced by the vector field
orthogonal to R1 x [0,1] c R2 x [0,1]. Two tangle diagrams represent the same
framed 2n-tangle iff they are regularly isotopic. The addition of a kink changes the
framing of corresponding component by ± 1. It will be convenient to replace positive
and negative kinks by small white and black circles respectively. A pair of opposite
kinks on the same string of the tangle may by cancelled, as illustrated in Fig. 1.

Fig. 1.
r 2+ y r i+ r 2+ r i+ r i

2. Kirby Moves

In [5] Kirby introduced two operations O{)O2 on framed links in a sphere 5 3 , later
called Kirby moves. Denote by χ(M3, L) the result of Dehn surgery of a 3-manifold
M 3 along a framed link L C M 3 . Then the following holds:

Kirby Theorem [5]. Given two framed links LX,L2 e S3 one can pass from L{ to
L2 by a sequence of moves O1 ? O2 iff χ(S3, Lλ) is homeomorphic to χ(S3, L2) (by an
orientation preserving homeomorphism).

We extend the Kirby moves to the operations on a framed 2n-tangle ξ c R2 x [0,1]
by introducing the following moves Kλ — K3:

Kγ\ Add to ξ an unknotted ±1 framed circle separated from the other strings of
ξ by an embedded 2-sphere S2 c R2 x [0,1]. This move coincides with the Kirby
move Ox.
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Fig. 2. Fig. 3.

jFί2: Let ξ0 be a closed component of ξ. Add ξ0 to ξ1 by replacing ξ1 with
where #b is a band connected sum and ξ0 is obtained by pushing ξ0 off itself along
the framing, as illustrated in Fig. 2. If ξ{ is closed, this move coincides with the Kirby
move O2.

K3: Let ξ0 be a closed, 0-framed component of ξ bounding an embedded disk
D eR2x [0,1] which intersects with ξ\ξ0 in exactly two points belonging to different
components ξ{, ξ2 °f ζ Suppose also that either at least one of the components ξι, ξ2

is closed or dξx C l 2 x {0}, dξ2 C R2 x {1}. Then we may replace ξ0 U ξλ U ξ2 by
ξ,i#bζ2, where the band b intersects D along the middle line of 6, see Fig. 3.

Definition. Two framed 2n-tangles are said to be K-equivalent, if one can pass from
ι ιone to another by a (finite) sequence of moves Kχ

 ι, K2,K3

 ι we denote it by ζ
K

It is convenient for our further purposes to introduce some additional moves K4, K5

(which can be expressed via K^1, K2, K^1).
The move K4 is the deletion of unknotted ±1-frame circle at the expense of the

full left- or right-hand twist on the strings linked with it [4], as shown in Fig. 4.
Let ξ0 be a closed, 0-framed component of ξ which bounds an embedded disk

D C M2 x [0,1]. Suppose that D Π (ξ\ξ0) consists of exactly one point lying on
some component ξx c ξ. Then the move K5 is the deletion of components ξo>£i a s

illustrated in Fig. 5.
Some remarks should be made at this stage.

Remark 2.1. The move K4 may be expressed via K^1 and K2, see [4]. The same is
true for the move K5. To obtain this, note that due to presence of ζ0 we may change
overcrossings of ξx with itself and with other components of ξ to undercrossings by
means of K2\ this allows us to unlink (and unknot) ξ{ so that we may consider ξ0

and ξj to form the Hopf link far from the other components of ξ. We may also put
the framing of ξλ to be +1 by adding ±1-framed unknotted circle (by K{) and link
it with ξ{ (as above), which in view of K4 is equivalent to changing the framing of

Fig. 4.

Fig. 5.
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ξλ by dzl. It remains to take note that now the deletion of ξ0 Π ξ{ can be carried out

by means of KA and iff1.

Remark 2.2. If at least one of the components £1? ξ2 (say ξλ) in the definition of the

move K3 is closed, then K3 may be expressed via K^1 and K2. Actually, it is a
composition of the move K2 (we add ξ{ to ξ2 along the band b) and the move K5.

Remark 2.3. Any framed link L £ S3 may be considered (after isotopy into
M? x [0,1] C M? £ »S3) as a framed 2n-tangle for n = 0, hence the moves
K^ι,K2,Kfι can also be applied to links. The equivalence relation ~ for links

coincides with the equivalence ~ of Kirby [5].

3. Admissible 2n-Tangles

Unfortunately the multiplication of 2n-tangles does not agree with the equivalence
relation ~: it may occur that ξ~ζ, but ξj is not if-equivalent to £7 for some In-

K K

tangle 7. The reason is that the condition on ξ{, ξ2 in the definition of the move K3

may be violated after multiplication by 7. To avoid this difficulty we introduce the
notion of an admissible 2n-tangle.

Note that each geometrical 2n-braid ξ with the ends at Y2n x {0,1} can be
considered as a 2n-tangle. The braid ξ is called admissible, if the corresponding
permutation preserves the decomposition of Y2n into (unordered) pairs. More precisely
we require that if for some i,j a string of the braid runs from i~ x {0} to ^ x {1}'
then the other string has to run from i+ x {0} to j τ x {1}. An arbitrary framing of
the braid is allowed.

Let βfx, 1 < i < n be the framed 2n-tangles depicted in Fig. 6.

Fig. 6.

Definition. A framed 2n~tangle ξ is called admissible, if it can be written as ξ =

ξ\ζ2 • • ζk (for s o m e '

Ίn-braiά.

where each ξτ is either βf ,\<i<nor a framed admissible

Note that each admissible 2n-tangle ξ satisfies the following

Condition (*). For each unclosed component <ξ0 of <ξ one of the following holds:
(i) dξ0 — (i~ U i+) x {0} for some i, or

(ii) dξ0 — (i~ U i+) x {1} for some i, or
(iii) dξ0 = i ± x {0} U ^ x {1} for some ij and there exists another component ξ{

of ξ such that dξι = i τ x {0} U j * x {1}.
One may easily see that multiplication of tangles and the moves K{ — K5 preserve

the condition (*). This implies that the multiplication of admissible 2n-tangles
determines correctly defined multiplication on K-equivalence classes of admissible
2n-tangles.
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Denote by T2n the semigroup of /^-equivalence classes of admissible 2n-tangles.

Proposition 3.1. T2n is a group.

Proof. Immediately follows from the fact that the reflection of an admissible 2n-
tangle ξ with respect to the middle plane R2 x {1/2} produces the inverse 2n-tangle
ξ-K D

4. Main Theorem

Let Σn ! be an orientable surface of genus n with one boundary component. The
mapping class group M λ of Σ x is the group of isotopy classes of orientation-
preserving self homeomorphisms of Σn λ fixing the boundary pointwise. We will
oftenly identify Mnl with the mapping class group of a surface dHn with an open
disk D e dHn removed, where Hn is the standard solid handlebody of genus n in
R3 G S3.

Denote by a^ b^ d i ? ei9 1 < i < n the right-hand Dehn twists with respect to
curves labeled, by abuse of notation, with the same letters, as shown in Fig. 7 (notice
that aγ — dx = e{). Denote by ai9 βi, ε% and δ^ 1 < i < n the admissible 2n-tangles
depicted in Fig. 8, 6 (put ax = δ{). Clearly, εi is admissible in view of K4 and δι~ει.

Fig. 7.

Fig. 8.

Remark 4.1. Applying the move K3 , the regular isotopy, and the move K3

successively, we can shift the white circle (the positive kink) of δt from the string
x [0,1] to the string i~ x [0,1].

L2n Mnl whichTheorem 4.1 (Main Theorem). There exists an isomorphism
maps aif βif δ{, εί to av bt, di, e , 1 < i < n respectively.

Remark 42. One may obtain a similar result for the mapping class group Mn 0 of a
closed surface, taking the factor of T2n by cyclic commutator subgroup generated by
full twist on 2n strings.

Remark 4.3. This tangle presentation of Mnl has a straightforward generalization
to the case of mapping class group Mn^ιk of a surface with k marked points
by introducing k new strands with braiding around the other strings and between
themselves (but without any new βi generators).
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5. Proof of the Main Theorem: Construction of φ

Consider a large disk B C M2 containing Y2n. Without loss of generality we may
assume that all considered 2n-tangles are contained in B x [0,1]. Let ξ C B x [0,1]
be an admissible 2n-tangle. For each pair (z~, i+) c Y2n attach to Bx [0,1] index one
handle N(Aτ) C R2 x R1 = R3 so that N(A{) Γ) B x [0,1] is the regular neighbour-
hood of (i~ Ui+) x {1}. Add to ξ the cores A2 of the handles to close ξ from above. To
make the construction explicit we will take Ai = {(0, y, z) e R3|(?/ — ϊ)2 + {z - I) 2 =
1/4,z > 1}. We obtain the solid handlebody H = B x [0,l]U ί\J NiAjλ C M3

with framed one-dimensional submanifold ξ = ξ U /ΊJ AΛ inside it. Denote by ξf

\ i J
the union of all unclosed components of ξ. It consists of exactly n arcs with the
ends on the "bottom" B x {0} of H. Finally, remove from H interior of a regular
neighbourhood N(ξ') of <f. As a result we obtain 3-manifold Hξ = H\Int(N(ξ'))

with framed link L^ = ξ\ξ7 inside it, see Fig. 9. Note that dH^ admits natural
decomposition dH^ = Σo^ U dB x [0,1] U Σγ^ where ΣQ^ j = 0,1 is genus n
surface with one boundary component and Σ^ Π dB x [0,1] = dB x {j}.

We would like to point out that there exist natural identifications : , Σn

Present Σn 1 as disk B with n handles as it is depicted in Fig. 10 (compare with Fig.
7). The surface Σ^ is also disk B x {j} with n handles. Then κ3 maps B with holes
identically to B x {j} with holes and the curves di,bi are mapped, respectively, to
the meridians and induced by framing "longitudes" of the corresponding handles (the
images of bτ in Fig. 9 are drawn by thick lines).

Recall that χ(H^L^) denotes 3-manifold obtained from Hξ by surgery on the
framed link L^ C H^.

Proposition 5.1. For any admissible 2n-tangle ξ the manifold χ(H^L^) is homeo-
morphic to Σn {x[0,1] and the product structure induced on χ{H^ L^) is an extension
of the natural product structure on dB x [0,1] C dHξ — dχ{Hξ, L^).

Proof. Since the complement of a braid in B x [0,1] is homeomorphic to the
complement of the trivial braid, the proposition holds for the case when ξ is an

Fig. 9.

Fig. 10.
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Fig. 11.

twist

in-

admissible 2n-braid. Using the twist along the annulus A C H^, one boundary
component of which coincides with κx(bτ) C ΣX^ C dH^ and another - with the

unique closed component of L^.\ one can easily prove the proposition for ξ — βf\
as shown in Fig. 11. It remains to note that by the definition of admissible 2n-tangle
product structure on χ(H^^L^) is obtained by gluing together the product structures
on χ(Hξ, Lζ) and χ(H^ Lς), which implies the general case. D

Consider an admissible 2n-tangle ξ. Recall that dχ{H^L^) — dH^ = Σo^ U
dB x [0,1] U Σ 1^. Let p^ : ΣOξ —> Σ^ be the restriction on ΣOξ of the direct product
projection p\dχ{Hξ,Lς) —> Σx^. Define the homeomoφhism φ(ξ)\Σn x —> Σn 1 by

Φ(O = ^ΓV^^o ^ f°H° w s fr°m t n e definition that 0(ξQ = φ(ξ)φ(ζ) for any two
admissible 2n-tangles ξ, ζ.

Remark 5.1. The homeomoφhisms φ(βf:l) are isotopic to the twists along the curve
6Z in positive and negative directions respectively, see Fig. 10 and the proof of
Proposition 5.1.

Proposition 5.2. The assignment ξ ι—» φ(ξ) determines correctly defined homomor-
phism φ:T2n —> Mn > 1 .

Fr<96>/. It is sufficient to show that the isotopy class of φ(ξ) depends only on the in-
equivalence class of ξ. Let an admissible 2n-tangle ζ be obtained from ξ by application
of the move K = Kx, K2 or K3. Suppose that all the components of ξ involved in the
move K are closed. Then the equality φ(ξ) = φ(ζ) is clear: the same proof as for the
easy "only i f part of the Kirby theorem is valid. But all components of ξ are actually

closed in 2n-tangle ΔξΔ, where Δ = f[ β%β~λ. Therefore φ(ΔξΔ) = φ(ΔζΔ). The

multiplicativity of φ and the equality φ(Δ) = 1 (see Remark 5.1) imply the desired
φ(ξ) = φ(ζ) thus completing the proof. D

By the construction of φ we obtain that φ maps the tangles a{, βτ, 6τ, ε% to aτ, bτ,
dt, eτ, 1 < i < n respectively.

6. Proof of the Main Theorem: Construction of ψ = φ λ

Let us begin with reformulation of Wajnryb's theorem [13].

Theorem [13]. The mapping class group MnX admits a presentation with generators
ax, bx,..., α n , 6 n , e 2 αwc? relations
(A) aΊbiaι = biaιbι, aι+xbιai+x = b^^b^ b2e2b2 = e2b2e2, every other pair of
generators commute;
(B) (α 2 6 1 α 1 ) 4 = ke2k~ιe2, where k = b2a2bxa\bxa2b2;

(C) α̂ ~ α^ α^ 9\92e2 = we2w~l» where tx = bxa2axbx, t2 = b2a3a2b2, g2 = ί̂~ e 2 t 2 ,

(7. = £ α o ί i , it = α^ 6o Qib-iCL^, w — bnOLnb^d^b^udi. 6i <2O 6O .
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Remark 6.1. Our formulation of Wajnryb's theorem differs slightly from the original
one: we write homeomorphisms from right to left and use ε2 instead of δ2. The
latter is possible due to existence of rotation of Σn x which is invariant on ai, βi and
interchanges δ2 and ε2.

Proposition 6.1. The assignment ai ι-> aif bi *-> βif ei ι-+ εi determines correctly
defined homomorphism ψ :M

n x
T 2 n .

Proof. We need only check that this assignment transforms the relations (A), (B), (C)
to true equalities on the tangle level.
(A) The equality aiβiai = βiθίiβi is verified in Fig. 12. Verification of the equality
ai+ιβτaι+x = βiai+ιβi is similar. Equality /3 "̂1ε2/?2 = ^2^2ε2~1 (equivalent to
β2ε2β2 = ε2β2ε2) is verified in Fig. 13. Obviously every other pair of 2n-tangles
ai,βι,£2 commutes.
(B) Let K = β2a2βγa\βxθί2β2 be the image of k.

From Fig. 14 we obtain that κε2 = δ2κ Therefore κε2κ~~x — 62. Using (A) we
deduce

^4 = {a2βιaxa1βιaxf = (βxa2βxaxβxaxf = (βxa2axβxa
2

x)
2 .

Fig. 12. β,«,βt

Fig. 13.

• n
r r 2- 2+

Γ 1+ 2" 2

Fig. 14.
Γ 1+ 2" 2 +
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Fig. 15.

•hh

Fig. 16. I I

Fig. 17.
2 + 3"

Fig. 18.

-&L
ΪΓ

Γ 1 + 2" 2 + 3" 3 +

θ

Fig. 19.
Γ 1 + 2" 2 + 3" 3

From Fig. 15 we now obtain (β[a2aιβιa^)2 = δ2ε2 which implis (B).
(C) Let 7 1 ? 7 2 be the tangles depicted in Fig. 16. It follows from Fig. 17 that

= e2τ2, where r2 = /32α3α;2/?2 is the image of t2. Hence we have 72 = τ 2 " 1 ε 2 r 2 .
1

A similar trick enables us to prove that j x = τ f 1 7 2 r 1 for the image τx = βxa2axβx

oϊtx. We may conclude, therefore, that the tangles ηx,72 serve as the images of g},g2

respectively.

To express the tangle θ = α^1/^172/^3α3 ( m e iniage of u) in a more convenient
form we apply the moves K2 and K4 as shown in Fig. 18. We deduce from Fig. 19 that
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Fig. 20.

the image (where ω = β3a3β2a2βιθaι

 {β{

 ιa2 β2

 ι) of the RHS of relation
h i

g 2 3 3 2 2 ι ι { 2 2

(C) equals ε3. The image of the LHS of relation (C) also equals ε3, as shown in
Fig. 20.

This completes the proof of the proposition. D
The Main Theorem now follows from Propositions 5.2, 6.1.

7. From Heegard Diagrams to Surgery

Let Hn denote the standard handlebody of genus n in R2 x Rι C S3. We shall
consider a Heegard diagram of 3-manifold M as a homeomoφhism h:dHn —» <9ίfn

such that (S3\Hn) Uh Hn = M. Identify Σn{ with the complement of an open
disk D C dHn and the group Mnl with the mapping class group of dHn modulo
D. Particularly, one may assume that h C MUjl. Let ξ = ψ(h) be the admissible
2n-tangle corresponding to h. One may express ξ as a product of tangles ai,βi,δι

according to a decomposition of h into the product of twists along the curves ai,bi,di.
Recall that the framed link Lξ c Hζ C S 3 is obtained from ξ by closing with n

small semicircles from above and removing the lower strings.

Theorem 7.1. For any admissible 2n-tangle ξ the manifolds χ(S3,L^) and

(S3\Hn)Uφ{ξ)Hn

are homeomorphic.

Proof. Let B{ C R2 be a disk such that I n t ^ 1 C B. Denote by H® the handlebody

Bx x [-1/2,0] U N(ξ') C M2 x Rι C S3 and by H\ the handlebody 5 x
/ n \

[_1? l] u ( U iVίAJ , see Fig. 21 and Sect. 5. It follows from Proposition 5.1
i=ι

that χ((Hι

ξ\Hp,Lξ) is homeomorphic to dH°ξ x [0,1]. Let dH\

Fig. 21.
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be the restriction of the direct product projection. Clearly the manifold χ(S3,Lξ)

is homeomorphic to (S3\Hl) Up H®. Homeomorphisms κo:Σnl —» Σo^ and

κι:Σn^ —» ZΊξ defined in Sect. 5 can be extended to homeomorphisms κQ:Hn —> H®

and Rγ :(S3\Hn) -» (S3\H^) respectively. Since ft^Vξ^o = φ(ξ) by definition of φ,

the formulas /(#) = κo(x) if x G ffn and /Or) = κγ{x) if x G (S3\Hn) give correctly

defined homeomorphism / : (S3\Hn) Upξ Hn -> ( S 3 \ ί φ Up ζ ίZ | « χ ( 5 3 , L ξ). D

We now briefly recall the notion of arborescent link (see [3]). Let Γ C I 2 be
connected multigraph. Suppose that there exist a disk D e l 2 such that DΠΓ = ΘD
and dD consists of exactly two vertices and two edges of Γ. Collapsing D t o a point
we obtain a new multigraph Γ' C M? as shown in Fig. 22.

Fig. 22.

Definition. A link L c M? is called arborescent, if it admits a (general position)
projection L C M? which, if considered as multigraph, can be reduced to the one-
vertex multigraph (i.e. to figure eight) by a sequence of transformations described
above.

Corollary. Any 3 -manifold ofHeegard genus two may be obtained from S3 by surgery
on a framed arborescent link.

Proof. Let ξ be an admissible 4-tangle presented as a product of α ] ? α 2 , βl9 β2, δ2

and let L^ be the corresponding link. One may easily deduce that L^ is arborescent
(its natural projection becomes arborescent multigraph after untwisting small kinks).
The corollary now follows from the Main Theorem and Theorem 7.1. D

8. From Surgery to Heegard Diagrams

Theorem 8.1. For each framed link L c S3 there exist n and an admissible 2n-tangle
ξ, such that L may be transformed into L^ by a sequence of Kirby moves. Tangle ξ

n

may be chosen in the form ξ = r\πn, where π n = \\ &iβφi and η is a pure 2n-braid.

Remark 8.1. The first part of the theorem is an easy consequence of the Kirby theorem,
the Main Theorem and Theorem 7.1, but we will provide a constructive proof without
using the Kirby theorem.

Remark 8.2. Theorem 8.1 allows one to construct a Heegard diagram of 3-manifold M
starting from any surgery presentation: from M = χ(S3, L) we pass to M = χ ( 5 3 , Lt)

and then to the presentation M = (S3\Hn) Up Hn by Theorem 7.1.

Definition [1,10]. An n-component link L C M3 is said to be represented by pure
2n-plat if it admits a diagram with n local maxima (with respect to the projection on
the z-axis).
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Remark 8.3. Each pure 2n-plat is regularly isotopic to the plat closure of pure 2n-
braid.

Let us prove the following

Lemma 8.1. Each framed link can be transformed to a pure 2n-plat by a sequence of
Kir by moves.

Proof Denote by m(L) the number of local maxima and by n(L) the number of
components of L. Suppose that d(L) = m(L) — n(L) > 0. Then there exists a
component Lt of L with at least two points of local maxima. Using the move K3~

ι

we may pass to a link 1/ with d(L') = d(L) — 1 as shown in Fig. 23 (the diagrams
coincide inside the square). After d(L) steps we will obtain a pure 2n-plat. D

Fig. 23.

We are in a position to prove Theorem 8.1.

Proof of Theorem 8.1. By Lemma 8.1 transform L to a pure 2n-plat L' which is a plat
closure of some pure 2n-braid η. Then ξ = ηπn satisfies the theorem since L^ = V
by the definition of L^ and the proof is complete. D

The following corollary can be considered as a version of Birman's theorem on
the existence of special Heegard diagrams [2,10]:

Corollary. Each closed orientable 3 -manifold can be obtained by pasting together two
copies of the standard handlebody Hn C S3 via a homeomorphism u: dHn —>• dHn

which is fixed on all longitudes biy\ < i < n (and therefore is extendable to (S3\Hn)).

Proof From Remark 8.2 we obtain that M = (S3\Hn)UhHn, where homeomorphism
h:dHn —> dHn has the form h — φ(ηπn) for some pure 2n-braid η. One can easily
verify that the homeomorphism pn — φ(πn) maps each meridian dzi 1 < i < n
to the corresponding longitude bi and vice versa and, hence, may be extended to
homeomorphism of (S3\Hn) onto Hn. This implies that M is homeomorphic to
Hn Uu Hn for u = p^ιh. Since η is a pure braid, homeomorphism φ(η) preserves
meridians. Therefore homeomorphism u — p~ιh = p~ιφ(η)pn preserves longitudes
and the corollary follows. D

9. Proof of the Kirby Theorem

We start with some preliminary lemmas.

Lemma 9.1. Let ξ,ζ be K-equivalent admissible 2n-tangles. Then the corresponding

links L^, Lς are K-equivalent.

Proof. Let ζ be obtained from ξ by the move K — Kι, K2 or K3. Assume first that
components of ξ with the ends on the bottom B x {0} of B x [0,1] do not take
part in K. Then Lς is obtained from L^ by the same move K. If K — K2 or K3

and components of ξ with the ends on B x {0} do take part in K, then Lζ either
coincides with L^ or is obtained from Lξ by the move K5. D
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The following two lemmas assure us that multiplication of ξ by a tangle corresponding
to a homeomoφhism extendable to the inner or outer handlebody does not change
K-equivalence class of L^.

Denote by TI2n C T 2 n a subgroup of admissible 2n-tangles corresponding (via
φ) to homeomoφhisms of dHn which are extendable to Hn.

Lemma 9.2. Let r)ι be an arbitrary tangle in the subgroup TI2n. Then for any
admissible 2n-tangle ξ links L^ and L^ for ζ = ξ^j are K-equivalent.

Proof Obviously, all admissible 2n-braids belong to TI2n since the corresponding
n

homeomoφhisms of dHn are invariant on the union (J di of meridians of Hn (and
i=l

vice versa, any homeomoφhism which is invariant on the union of meridians may
be obtained as φ(η) for some admissible 2n-braid 77). Moreover, one can easily
check that 2n-tangle τx = βιa2aιβι also belongs to TI2n since the corresponding
homeomoφhism tx = φ(rι):dHn —» dHn maps dx to a2 and is fixed on all other
meridians d2, d 3 , . . . ,d n . It is known that each homeomoφhism of dHn which is
extendable to Hn can be expressed via tx and homeomoφhisms of dHn which are

n

invariant on the union | J di of meridians of Hn (see [12,8]). Therefore the subgroup
TI2n is generated by admissible 2n-braids and τx and it suffices to check the statement
of the lemma for ηι being admissible 2n-braid and for 7 7 = τx. If jj is an admissible
2n-braid then Lζ = L^ by the construction of Lζ (removing of the lower strings of ζ"
removes all strings of 7j). For 7 7 = τx we may obtain L^ from Lς by the move K5

and the lemma follows. D

Denote by TO2n C T2n a subgroup of admissible 2n-tangles corresponding (via

φ) to homeomoφhisms of dHn which are extendable to (S3\Hn).

Lemma 9.3. Let ηo be an arbitrary tangle in the subgroup TO2n. Then for any
admissible 2n-tangle ξ links L^ and Lς for ζ = joξ are K-equivalent.

n

Proof. Recall that homeomoφhism pn = φ(τrn) where π n = ΓI ^ / Ά permutes

each meridian di with the corresponding longitude bi and, hence, may be extended
to homeomoφhisms of Hn to (S3\Hn) and of (S3\Hn) to Hn. This implies that
π n 7 o τr~ 1 belongs to TI2n (which is generated by admissible 2n-braids and τx). So
it is sufficient to prove the lemma for ηo — π~ιjjπn, where 7 7 is either admissible
2n-braid or τx. In the first case the link L^ is obtained from L^ by n moves K5, in
the second - by n -\- 1 moves K5 as shown in Fig. 24. D

(Kj
Γ\ Γλ ΓΛ Γ\ Γ\

Fig. 24.
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Note that for any m, n there exists a natural embedding zm n : T2rn —» T2n generated

by the addition of 2(n—m) new vertical strings (of the form {i^}x[0,l]Cl2x[0,l],

m -f 1 < i < n) to each admissible 2n-tangle £. The addition of new strings does not

change L^. This observation motivates the following

Definition. Two admissible tangles ξ G T2rn, ζ G T2n are called stably equivalent

(we write ξ~ζ), if imtN(O = Ίo^N^Olifor some N > m,n and ηo e TO2N,

Ίi^TI2N.S

Lemma 9.4. Ifξ~ζ, then Lξ~Lζ.

Proof. Immediately follows from Lemmas 9.1-9.3. D

Proof of the Kirby theorem. Let LVL2 C S3 be two links such that χ(S'3,L1) =
χ(S 3,L 2). Using Theorem 8.1 we may construct (for some m,n) admissible tangles
ξ e T2rn, ζ e T2n so that LX~LV L2~Lζ. Obviously we have χ(S3, Lξ) = χ(S3, Lζ)

which (by Theorem 7.1) is equivalent to (S 3 \# m )U φ ( O f f m = (S3\Hn)Uφiζ)Hn. Now
use the Reidemeister-Singer theorem [9] which states that any two Heegard diagrams
of the same 3-manifold are stably equivalent. Translating this theorem to admissible
tangle setting by means of Theorem 4.1 we obtain that tangles ξ and ζ are stably
equivalent. It follows from Lemma 9.4 that L^Lζ which implies the theorem. D
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