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Abstract: We study the probability distribution of the appropriately scaled square
of the total spin for critical asymptotically hierarchical quantum models and show
that it converges, as the number of spins tends to infinity, to the same function
related to the corresponding classical systems. Thus, we exhibit explicitly a prop-
erty of statistical mechanical systems which, at the critical point, does not depend
whether one uses a classical or quantum mechanical description.

1. Introduction

It is widely believed that the critical behaviour of statistical mechanical system is
independent of the way (classical or quantum mechanical) used to describe it.
Sewell [8] has shown quite generally that the long distance behaviour of critical
quantum systems is classical, but the question on the relation between this classical
behaviour and the one corresponding to the classical version of the system
analyzed was not considered.

In the last decade, rigorous renormalization group methods have been de-
veloped, which permitted, among other things, a deep understanding of some
classical critical systems, particularly those having infrared asymptotically free
behaviour [6]. On the other hand, no such progress has been achieved to treat
quantum critical systems in general — a task much more difficult than the classical
case because of the appearance of non-commutative objects.

In this paper we consider a special class of spin systems which can be analyzed
both classically and quantum mechanically: the asymptotically hierarchical models
in the terminology of [9]. These are generalizations of Dyson’s hierarchical models,
originally introduced in [4]. The classical version of these models, with the spins
taking values =+ 1, at the critical point was first studied in a rigorous way in the
fundamental paper by Bleher and Sinai [3]. Vector valued classical spins at low
temperatures were analyzed by Bleher and Major in [1, 2] and by Schor and
O’Carroll in [7], using a different hierarchical model. Here we consider instead
quantum mechanical spin % systems and compare them with the corresponding
classical three dimensional vector models. Specifically, we study the probability
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distribution of the appropriately scaled square of the total spin for critical
quantum systems and show that it converges as the number of spins tends to
infinity to the same function related to the corresponding classical systems. Thus
we exhibit explicitly a property of statistical mechanical systems which at the
critical point does not depend whether one uses a classical or quantum mechanical
description.

We now explain the organization of the paper. In Sect. 2 we define the class of
hierarchical quantum and classical spin systems which will be analyzed and show,
in heuristic terms, why the probability distributions mentioned above should be the
same in both cases at the critical point. In Sect. 3 we state our main theorem, the
proof of which is given in Sect. 4 and follows basically the ideas developed in [9],
which presents a simplified treatment of the original proof for the scalar hierarchi-
cal models [3]. As a corollary we also obtain a multiscale expansion for the free
energy associated to the systems of Sect. 2.

I1. Definition of the Models and Main Results

To each site of the lattice 4, = {1,2,...,2"} we associate a spin variable which
may be a class1cal scalar variable: S; = + 1, a classical vector: S;eR3, or a quan-
tumspini. $;=/® ... ®316® ... ® I actingon ((132)2" where the components
of ¢ are the usual Pauh matrices and & is placed in the i*® position in the definition
of S;.

A member of the class of asymptotically hierarchical models is specified by an
initial Hamiltonian Hno(gl, .. Sz...,) defined on A,,. The Hamiltonians
H,(S:,...,8;:) on 4, for n > no are given recursively by

Hn(§19' .. ,gzn) = Hn—1(§1>' .. ,§2n—1) + Hn—1(§2”‘1+19' .. ,gzn)

c\" N 2
- (zs)- ey

We will assume that H,, is rotationally invariant. As shown in Dyson’s paper
[4], the thermodynamic limit exists if ¢ < 2 and there is phase transition if ¢ > 1.
We assume in the sequel 1 < ¢ < 2.

Consider the characteristic function of (),
defined by H,,. Classically,

COE) = <exp|:if< z §i)2]>

Z(c)jexp [l{( Y S, >2 — BH,,](PSI o d3S,m, 22

iedAn

e S;)? in the canonical ensemble

where ¢ eR, Z19 is the classical partition function and f is the inverse temperature.
If pif'(s) is the distribution of ), _ S; (which depends only on 1 ien, Si),

CO¢) = j exp(is?)pl (s)dns?ds . 2.3)
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It follows easily from (2.1) that the function p{(s) satisfies the recursion

CXP[ () ]fp“”l(lul)p“) (Iséy —al)d®u,  (24)

where &, is the unit vector in the one-direction.

Proceeding heuristically as in [9], we expect that above the critical temperature
|3]> ~ 2" as n— oo and hence the exponential in (2.4) should be irrelevant in this
case. On the other hand, below the critical temperature |§|? ~ 22" and the exponen-
tial is dominant. At the critical temperature we may expect |3|> ~ 22" and the

(6)2
Z (c)

P (s) =

L . - 2[4
exponential is dominant. At the critical temperature we may expect |35|* ~ z

and if this is indeed true, the characteristic function of (g) (Zie/l” S,)? should

converge to

C9(¢) = lim C© <(§)”£> = }O exp(i¢u®)q(w)dnu?du , 2.5
0

n—> o

with the distribution ¢ (u) satisfying the relation

q(u) = const exp(pu?) | q‘”’([bl)q‘“’( 2 ué, — b )dsv . (2.6)
Je

The constant above is determined by the condition C©(0) = 1.

The formal considerations were shown to be true for the scalar S;= + 1
models by Bleher and Sinai [3], who studied the problem under the restriction
\/5 < ¢ < 2. In this case, the transformation on the space of probability distribu-
tions defined by the right-hand side of (2.6) has a Gaussian fixed point which is
thermodynamically stable, i.e. the linearized map has only one eigenvalue greater
than one.

The arguments for the scalar models can be extended to the vector models so as
to justify the picture above. The Gaussian solution of (2.6) is

00 = (P expl - a(p1, e

where a(f) = fc/(2 — c). )
We consider now the quantum case. Let AY ={(j—1)2"+1,
(G—=D22+2,...,(—12?+2°}for ] S p<nand 1= j<2" P Define

=y 5. (2.8)

ie AJ)
iedy

Then, as pointed out in Dyson s original paper [4], the set {(y‘f’)2 1<p<n,
1< j< 2777 ()3} (where (fi{"); is the third component of fi{") is maximally
commuting in (C?)*" and the common eigenfunctions diagonalize H,. Denoting the
eigenfunctions by |{£$?}; m,», we have

(BOP 1Y may = £9€0 + DI} myy
()25 may = myl (£} my 29)
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Since i) = gD + pf) (1 < p < n), we must have |£@ZTD — 3| <9

STV + 439 and initially /("€ {0, 1}. Also, the possible values "of m, are
restricted to |m,| < 259,

In terms of the basis (2.9) the characteristic function of (3, , S)? in the
quantum case is

CO(¢) = (q) Y@ + DexplieZP@P + 1) — pHL({P],  (2.10)
{5}
where Z(@ is the quntum partition function and the prime in the summation takes
into account the restriction imposed on the set of possible values for {£{”}, alluded
to above.
Writing (2.10) as

on-1

C2() = Z 22 + Vexplilt(Z + 1)]za(¢), (2.11)

Z (9)

it is easy to verify, using (2.1), that

z,(£) = exp[ﬁ(ﬁ)n{’(/ + 1):' { Y } Zu—1(£1)2n-1(£2) - (2.12)
¢ie{0 2n-2

le1—t21Séstr+e2
Proceeding in analogy with the classical case we consider the characteristic

functions of (2 n(zieA" S.)%, which can be written as
o\ 2 (2 1(/c\"
(&) )=zl o) 5[ 35
X eXp {iéu [u + (—\é—zy]}zn <<§E>nu> s (2.13)

where A, = { (4) 0/ 2" ‘}, If the analogy can indeed be carried over to

- o c\' .
the quantum case, we may expect that at critical f the limit of C@ ((Z) é) exists as

n— oo and is given by

CP() = T u exp (iEu?) p@(u)du , (2.14)
0

4 n n
with p@(u) = lim,- p@ (), p@u) = Z“”( > z,,((%) u>. In addition, since
c

from (2.12) p{@(u) satisfies the recursion

(9)2 n n—1
pa?(u) = Zz(q) eXp {ﬂ u I:u + <\§E> :I} <§) Z P2 1(v)pi2 1 (v2)

v1,02€6An-1
(2.15)

lva=v2| S Zusvitoz
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we may also expect that p@(u) satisfies the equation

p@(u) = const exp(pu?) [ p@w)p?(vy)dv,dv, . (2.16)

|V1*02|§Ji—u§01 +v2
c

Assuming that all steps above can be carried out, we may ask about the relation
between the classical and quantum characteristic functions C©(€) and C@(¢). If we
set p@(u) = 4nuq?(u), such that

COE) = T exp(itu?)(q@ (u)4nu’du 2.17)
0

then q'?(u) satisfies the equation

Uy

Y2 do,dv, . (2.18)

q®(u) = const exp(pu?) ) q?(v1)q4?(v,) ”

l”l‘”ﬂé%"évl +v2

Now we make the change of variables (v, v,)— (r,0), where v, =r,

4 4
vz=\/_u2+r2——urcos9, to get
c

Nz

g9 (u) = const exp(pu?) | r*q@(r)dr | ¢ (\/‘—1 u? +r? — 4 ur cos0> sinf df ,
0 0 ¢ \/E

that is

>d3r , (2.19)

2
4(u) = const exp(fu?) | q@(lﬂ)q@( g — 7
N

which is the same as (2.6). Thus, provided the heuristic arguments for the quantum
case can be justified, we see that the distribution of lim,_, , <2> (Zim“ S.)? at the

critical temperature is the same whether one uses classical or quantum Statistical
Mechanics.
In this paper we show that the above reasoning holds (for the quantum case) if

the parameter c is restricted to \/5 < ¢ < 2*5. The region 2% < ¢ < 2, which is
allowed in the classical case, could not be handled within our method of proof.

The strategy we follow is to study the recursion (2.15) using the methods of the
scalar S; = + 1 case [9]. Unfortunately, we have not been able to implement the
very powerful analyticity techniques of Gawedzki and Kupiainen [5], due to the
discreteness of the spin values. In our problem we have to deal separately with large
fields and also with very small fields, so that the perturbative region corresponds to
intermediate values of the fields. The precise meaning of these statements, as well as
the formulation of our main theorem, is given in the next section.

III. Main Theorem

Definition 1. Given >0 and 1< c <2 define the operator /(f) acting on
4

the probability space L2<[0, 00), 7 ¥( ﬁ)% x? exp( — y(ﬁ)xz)dx>, y(B) =
T
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2(c — 1)B/(2 — c), henceforth denominated L,(f), by

(LB (5 ) = (8“(ﬂ)>jexp(—%@|f|z>f<%‘;

The following properties may be easily verified:

+ ’2‘ 3 >d3r EE)

P1. o/(p) is a self-adjoint operator on L,(f).
P2. &/(f) may be explicitly diagonalized: #(f)¢,=c "p,, neN, with

@u(x; B) = [2771/2n + DIY(B)x] ™ ' Hyus 1(y/7(B)x), Where Hy,yy is the
(2n + 1) Hermite polynomial (H,(x) = (— 1)™exp(x?)(d/dx)" exp( — x?)).
The set {@,}s=0 is an orthonormal basis for L,(f) and the first polynom-

ials are @o(x; B)=1, 01(x; B) =</37(BX* —/3, 02058 =/B7(BPx
JEy PR+

P3. Regarding </ ( ) as an operator acting on L., ([0, oo)) we have || /(f) ||, = 1.

Definition 2. Given >0, 1 <c <2 and NeN, define the subspace #+(f) =
{feLa(B): (@1 Ny =0,k =0,1,. N}.

P4. #%(p) is invariant under o7 ( f).
P5. | L (B) st p = VD,

Induction hypotheses. Suppose we are given the set of parameters 0 < A < 1,
0<D<ow, N=3,n20 and 1<c<2 At the n™ step we are also given
a compact interval B® = [ ™, B®] < (0, o). Define the following sets:
S, ={xeA,: 0<x < 43},
D, = {xeA,: 43 < x < D./n},
={xeA,: x >D\/;} ,

where 4, = <4> . We state the following induction hypotheses referring to the

2
function g,(x; B) = - Z Dp@(x) for fcB™.
Hf. For each ,BGB(") and xeD,,

gn(%; B) = La(B) x exp[ — a(B)x* — &n(x; B)] , (3-2)

where ¢,(x; B) is given by

en(X; B) = < ) BP(B) o1 (x; /3)+< )Bg’)(ﬂ)(Pz(x B)
2\" N
+ A" <c—2> 2. B (Ao, f)

O )+ W B+ R (s f). 63
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The following conditions are met:

(a) BY(p) > 0.
(b) Q™(-;p) is defined on [0, 00) such that [Q®(x;p)l,

2 n
—Q‘”’(x B <)L"< > Vxe| 0, max D, +A7
(c) W®(.; B) and R™(-; B) are defined on D, such that | W®(x; B)| < n*4,
2
and |R™(x; p)| < P <—>
5. |BP()| £ A"c™" VBeB™ and BY (Y) = Fi"c™"
Hj. For each feB™ and x€eS,,
|ga(x; B)| < 245 L, (B) exp[ — a(f)x°], (34)
Hj. For each feB® and x€L,,

s 15 Lo | —up = (3 eoipe | 69

where 0 < C(8) < % V(BB ().

H! L,,B®k=1,...,N),C® Q0™ W® and R™ are continuous functions with
respect to B over the interval B™.

Theorem. For each ﬁ <c<2thereisa possible choice of the parameters A, D,
N and n such that, given the inteval B™), if the induction hypotheses H}° — HY are
verified with Q© =0, then for all n>ny, there is an interval
B®™ =™, ] < B™ for which H} — H% are verified. The following recursive
relations are met:

R?) B"+D < B,
c2
%) On B®*Y we have | BY*Y — BP |, < 0(1_) ”B‘”“’ — — BY

forj=3,...,N and C**D(f)= C®(p) — i
RZ) 0W(x; B) = 2(d(ﬂ)Q‘"’) (6 B) + 20{(x; B), where Q{"(-; p)e #x(B) VBB,

10 (s B llw = O[WN/I_< ) ]andQ "(x; ) = 0for x >max D, + A"2+1

< 0%

o]

Remark. The condition Q™ = 0 is not strict, but the statement of the theorem
becomes simpler if we adopt it. Note that at the n,™ step all errors may be included
in R,

Remark. From the theorem above, one may conclude that thereis a .. € ﬂ" noB‘")
and a set of initial Hamiltonians (that one may show to be non-void) such
that g,(x; B..) (appropriately normalized) converges in probability
to const x exp[ — «(B)x2] and therefore, at this critical point, the distribution of

lim,, (g) (Zie . S,)? is equal to the corresponding distribution in the classical

vector case.
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Corollary 1. The free energy density f,(B) = — 27 "B~ In Z\9(B) admits the follow-
ing multiscale expansion (n > ng):

3

S B =uB =B Y z[m(%)w[p(ci)ﬂ VBEB® . (3.6)

p=no+1

Corollary 2. At the critical temperature one has

tim f,(Be) = fo(Ber) = 27 ln@f FO[CHOR]. (37)

n— oo

IV. Proofs

Proof of the Theorem. Let us assume inductively that for each k, ng < k < n, there is
a compact interval B® for which H¥ — H¥ are verified. Furthermore, if n > no we
will assume that R% — R are true for each k, no < k < n — 1. Then we will show
that there is a compact interval B®* Y such that H}*! — HZ"?, together with
R} — R}, are verified.

First of all, look at the recurrence relation for g,(x; f), derived from (2.15),

Gnr 106 B) = exp[Bx(x + Aur1)1472  Y"  gulx1; Pgalx2; B), (A1)

Xx1,X2€An

where the double prime means that the summation is over pairs (x;, x,) such that
2
[x1 — X2| £ —=x = x1 + x,.
c

For xeD, ., we shall divide the sum into three terms (see Fig. 1). Define

g§,1+)1(x; B) = exp[ Bx(x + 4,+1)] Az Z” In(x1; B)gu(x2; B) , (4.2a)

x1,x2€Dp

9521(x; B) = exp[fx(x + Ay 1)147 X" gulxs; B)gn(x2; B) (4.2b)
{x1€Sn,x2€An} U
{x1€An,x2€Sn}

9:210c; B) = exp[ Bx(x + 4,41)143 Y gn(X15 B)gn(x2; B) . (4.2¢)

{x1€Ln,x26DpnuLp}u
{x1€Dyn,x2€Ln}

Assuming that R¥ and R% apply for ny < k <n — 1, we prove that A may be
chosen close enough to 1 so that the B{"’s are uniformly bounded by a constant
depending only on the values assumed by the B{"’s on B, Then is easy to show
that

e, (x; B)| < o[n2 <c2—2>] + O[nué] VxeD,,VBeB®. 4.3)
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Fig. 1. Regions appearing in g¢}

Substituting the form depicted in Hf and approximating exp(—¢) by 1 — ¢
we get
952105 B) = Lo(B)* exp[ — a( B)x? + BAn+1X]1 47 3" x1%a[1 — 2e4(x1; )

x1,x2€Dp

+ Ty, %33 )] exp[ ~«(p) [xf £ - %x)] : (@4)

. . 2 2n 4
where the truncation error T™ is clearly O [n“ (c_2> ;| +Om*43).

In order to replace sum by integral we must extend ¢™ and 7™ over all values of
their arguments. In & all terms admit natural extensions, except for W™ and R®.
These two terms, together with 7™, shall be extended as step functions constant over
line segments of length 4, (or squares of area 42) centered in the points of the discrete
lattice. Observe that the extensions R®™, W® and T™ thus obtained preserve their
uniform bounds. Now approximate the sum by an integral including an error term S®:

g0 1(x; B)

= L,(p?* exp[ — a(f)x* + ﬁAn+1x{ §fe x1%2[1 — 28,(xy; B)

Ixx—leé—j—-x§X1+xz
[

+ T™(xy, x5; B)] exp[ — a(B) <xf + x3 —§x2>:|dx1dx2 + S®(x; ﬂ)} . (45)
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The symbol [J above means that the integral is taken over the square x;, x, €

2
between the integral of a function constant over each square of area 42 and the
integral of a function coinciding with the former on the centers of the squares
located at the points of the discrete lattice. Since we have adopted a convenient

Y| 4
min D, — ?", max D, + —"] The error S™ may be regarded as the difference

. d .
extension and have ground bounds over ax Q™ (x; B) the error thus obtained is

quite small. One may easily check, using standard techniques, that it is inferior to
0(4,). In fact, the dominant contribution to S™ comes from the border of the
integration area, where the profile of the squares does not much the profile of the

. 2 . . . .
strip | x; — x5| £ —=x £ x; + X, (see Fig. 2). This error term is not present in the
c

treatment of the classical scalar model [9], where the domains are linear, and is
genuinely O(4,). Enlarging the area of the borders and integrating we obtained the
following estimate:

|S®(x; B)l < 0(4,)(1 + x?) VBeB®. (4.6)

For xeD, , this bound is uniformly majorized by O(n4,).

A,
Zo
. . . . . . . . . . . .
/
. . . . . S . . . . . .
/
. . . . . . . . . . . .
maz Dy, . e e R T
L e e A R S
. . :/ : . : . : . : . : : . . . . .
Fm— 4 — 4t m—h —— b ——— -~ — — /
O .
I I | | I I I I /
e T i e S S
T T
/ | I | I i 1 1
—— etttk ——+ —— - =4~ — J/
Lz . e b g b g g, . . .
Ve [ 1 | I 1 1 1 /
I e e e
Nl et S,
i | | I | | i |
Bl I e e A . At
. ! ! . ! . ! . ! . ! . ! ! . . . . .
N I I I I V.
B it el S S A
minD, A . .
S S S
. . . ~ . . . . . . .
. 2
minD,, 7 maz D, Z1

Fig. 2. The approximation of sum by integral in g,
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Define the following operator

@ANEH= [ xlxzexp[—aw)(x%+x§—§x2)]f<x1dxldx2.

X1 —x2|S2-xSx1 +x2
S7xs

4.7
We may write
910 B) = Ly(p)* exp[ — a(B)x* + B4,+1x] [B(B)[1 — ™ ])(x; B)
+ T (x; p) + E®(x; B) + S™(x; B)] , (4.8)
where
T (x; )= I I X1X2 eXPl:— “(ﬂ)(xf + x5 — %x2>]
|x1—x2|§ﬁx§x1 +x2
x T®™(x1, X3 B)dx dx, 4.9)

) 2\ 4 . . .
is 0|:n4 (—2 + O(n“AE, ). E™ is the error we get when we increase the domain of
c

integration to include the whole strip. The inclusion of the little corners indicated
by “2” in Fig. 1 adds an error x0O(4,) because the integration area is O(Aé) and the
integrand is xO(Aé). The error which arise by the inclusion of region “3” may be
made arbitrarily small. This happens because exp[ —a(B) <xf + x3 — % x2>:|

< O[exp(— D?n)] for xeD, . and (x;, x,) in “3.” Fixing D large enough (but not
depending on n) we may make this error as small as required.

Implementing the change of variables given just after Eq. (2.18) we get an
important relation between the operators %(f) and o/ (), namely

T
BB f)(x; B) = 8B x(4 (B)f)(x; B) - (4.10)
Using the explicit diagonalization of <7 () we readily obtain

2 n+1
@ =TV = Jgo o [1 - <z> B{(B)os(x )

~(3) oo

2 n+1 N c2—f
_ ]."+ 1 <?> Z 7 Bﬁ"’(ﬁ)(p,(x, B)
j=3

— 2L ()" (x; B) — 2<~Q¢ (ﬂ)i W‘"’)(x; p)

— 2 (BRV)(x; ﬂ)] : (4.11)
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We write the last term in the form
N
(L (B)R™)(x; B) = k;) bP(B)or(x; B) + QP (x; B) (4.12)

where the coefficients b{"(B) are to be chosen such that

4
maxDy + 1 + ?'

[ x*exp(—y(B)x*)0{"(x; ppu(x; f)dx =0 (k=0,1,...,N). (4.13)

0
Define Q% (x; f) = 0" (x; f)x[0, max D, +A"2“](x). It follows that

0" (-; B) e #n(peB™.
The upper bound on |R™ (x; B)| implies that if n, is sufficiently large, then

|b§{"(ﬂ)]<0[ <2>n:l (k=0,1,...,N) VYBeB®, (4.14)

10031 s 0| (5] | vpen. @15
One may easily verify that
2B | 1| 2p)| somay.  @lg

Adding (4.12) to (4.11) and going back to g'), we get

92106 B) = /8 (ﬂ)3L(ﬁ)2xexp[—a(B)x +ﬁA,,+1x]{ — 2b§"(B)
nt+1 —-n
C) 7 [ e3) o o
-(3) e (C%)—"b‘z'"(ﬁ)]%(x; p

n+1 N [.2-j 2\7"
e (BT 3 [ e+ S a(3) e [ewn

c =

=2 (B)Q™) (x; B) — 201" (x; ) — 2(” (ﬂ)i W“")(X; B)

8coc(l9)3 [T(n)( )+ E®(x; B) + S™(x; [g)]} 4.17)

Now identify the following terms:

B () = BY(B) + C<§)_"b&">(ﬂ> , (4.182)

By D(B) = BY(B) + ¢? <c—22>_"b‘2"’(ﬁ) : (4.18b)
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B D(B) = B‘”’(ﬁ) + 2 <C%>_nb§.")(ﬁ) (j=3,...,N), (418c)

Q"+ (x; f) = 2(M(B)Q‘”’)(x; B+ 2075 B) . (4.18d)
W(n+1)(x;ﬁ)= _ '800(([3) S(n)( B) (4183)

8coz( B 1

R{P(x; p) = 2<d(ﬁ)i W‘”’)(X; B) - I+ EV )

+L, (B) ea:(l?)x2 ﬂAnﬂx[g(Z)l(x ﬁ)+g(3)l(x ﬁ)]} (4.18f)

Thus we may write
gn+1(x; B) = /ﬁ(ﬁﬁ L,(B)*x exp[ — «(p)x* + Bdyp+1x] [1 —2b8°(P)
2 " (nt+1 . 2 " (n+1) .
—\z) BT (Beixp)—|z) B V(Peash)
2 n+! N
- i”“(g) Z B D(B) oi(x; B)

— Q0" (x; B) — W‘”“’(x B) — R (x; ﬁ)]- (4.19)

Approximating 1 — ¢ by exp( — &) and including the corresponding error term
R, we get

n+1
0ns10: B) = Lys1(B) exp[ — (B - (%) BV (B)gs (% )

2 n+1
—(C—) BY V(B pa(x; B)

n+1 2 Y (n+1) (n+1)
—r(S) X BT Bess p - 0 s B)

Wt 1)(x; B) — R"'“)(x; ﬂ):| , (4.20)

where
Ly+1(B) = [ Sca(B? (ﬁ)3 L,(B)* exp(— 2b$(B)) , (4.18g)
RO )= — Byer + RY (5 ) — RY(x ). (.18

So, we have formally reproduced the ansatz in the intermediate fields region,
but we still have to show that some estimates are valid. The estimate on | W®* 1|
derives clearly from the upper bound on |S™|. The estimation of g{?; and
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g3, follows in general terms the same reasoning employed to bound E™. The
outcome is that

192106 B)I < Lo(B)*O(4,)x exp( — a(f)x*) VxeD,4y, VBeB®, (4.21)
and if D is fixed large enough

16821 (6 )] S Lu(BY2O(43) exp( — a(f)x?) VBeD,.1,VfeB® . (422)

Using the estimates so far obtained, one may bound |R{”| as follows:

1 2 2n 4
IRP(x; B)| < 0(n*4,) + . {0[n4<c_2> ] + 0("44‘3)}
1 2 2n
< O[n“A',F (;) _J +0(@n*4,) VxeD,,,,VBeB® . (4.23)

In the interval \/2 < ¢ < 2 we may choose 4 depending on c¢ sufficiently close
to 1 such that if n, is sufficiently large, then

2 n
| = Bdyrix + RP(x; Pl < 22" ) VxeD,yy,VBeB®. (4.24)
c2

Note that R} applies from the very definition of Q®*1), Iterating R%, with
no < k < n, we get

QI p)= Y, 2K (BPHOP) () @29)

k=no

Observe that we are using Q@™ = 0. Take we 9 T 1) and define

No
ny = [nw]. In order to estimate the sum above up to the term k = n; we shall need
the following lemma of Tauberian type:

Lemma. Given Be[B_, B+] < (0, o) andfe #%(B), | fllo < 1, there are constants

No,M and L dependlng onc,B_ and B such that, if N = N, and p = 1, then

> ngM\/;ﬁ.

LL [(Z(BYf)(x Pl = eXP( -

L2. '%(d(ﬁ)"f)(x; p)| < 2Lt exp( —I%CPN> vx SIM/pN .

The proof of this lemma will be left to the end. First of all, note that if k < ny,
then n — k = n(1 — w). So it is possible to choose N depending on w, ¢, B, p4o)

and D so large that max D, ; + A1 <iM(c, B, f%9)/(n — k)N for all k < n;.

n+1

Then for x < maxD, ., + the lemma tells us that

k=no

ni
é Z 2n+1—kexp[_

k=no

‘- k)N] o[k’vz%(c%)k] . (4.26)
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21 1
Choosing N so large that 2 exp< - —g—c N > < (A%2c” %)= we get

[2 exp< 2 19“‘: N>:|"—k < 2 <c32> 4.27)

and the sum up to order k = n, turns out to be less or equal to O[Az" c_2> ]

To estimate the remaining terms of the sum, use P3 and the uniform bounds on

o
n ) k
< 2n+1—k Ol:kN;L}‘z—<_> ]
- k=§+1 c?

2 nw
< const 2" ~@)pN*1 (ﬁ c_2> . (4.28)

n

Y 2R (BYTFOP) (x; B)

k=n1+1

Choosing w so close to 1 that 2! "”(,1% 2c7Y)° < X42¢™2 we see that the second
. 2\
term is of order O[n” tigE <?> :l, yielding the upper bound on |Q™*V(x; B)|
required in H?* 1,

To verify the bound on di Q™*V(x; B)|, we follow basically the same steps. We
x

estimate the corresponding sum up to order k = n; using the second part of the
lemma and the remainder terms using the easily derived property

1((B)f) Il = const(B) [ f o (4.29)

together with the uniform bounds on Q. The only term that should be treated

d . .
separately is 2 i Q{"(x; B), but again from P3 we easily get that this term is less

_1 o 2\" a4,
than or equal to O n" %1% > :lforx<maxD,.+1 + 2“ and feB®.

Inserting all the estimates obtained so far, one may verify that A may be chosen
in (0, 1) such that

2 n
R (x )] < ﬂ'(?) VxeD,;, YAEB® . (430

Estimates (4.24) and (4.30) prove the required upper bound on |[R®* 1|,
To finish the verification of H{"* ¥ note that

n—1
BY*V(B) = BS(B) + L. (B V(B — BY(B))

k=ngo

> inf(BEO/(f): B} — 'Y 00

k=ng
1
>3 inf{By7(6):feB™} >0 VBeB®  (431)

provided that n, is sufficiently large.
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We now consider the question of determining the interval B®* Y, From esti-
mate (4.14) we see that Bi* (™) > A"*1c~@+D gpnd BMH (W) < — A"Fle (4D,
The continuity of B{"* 1) then implies that there are two numbers, f#* 1 and g+ 1,
such that ™ < B®*D < g+ <« g™ and HA*! is satisfied with the definition
Bt = [g+D gu+1)] Repeating this process, one generates a sequence of
nested compact intervals. In the end, ., will lie in the intersection of all B™’s, This
is the usual Bleher—Sinai prescription for finding the critical temperature.

Let us now check H3*!. Here we follow an approach similar to the one
employed to verify H*!, with the simplification of working only with upper
bounds. It is enough to note that for ye D, U L, we may adopt the estimate

l9a(y; Bl = 2 Ln(ﬂ)y exp[ — a(B)y’]. (4.32)

Substitution in the recurrence relation (4.1) yields

36
[gn+106 B < Lo(B)* exp[ — a(B)x* + Ay 1X] [E (BA) (s B) + VO (x; ﬂ)} )
(4.33)
where V™ stands for all error terms. Using the same techniques already intro-

duced, it is straightforward to check that | V®(x; B)| < 0(4,) for xS, + ;. From the
definitions of #(f) and L, () it follows that

|+ 1055 B)| < Lu+1(B)exp[ — a(B)x* + pd,i1x + 266 (B)] ng + O(An):l )

(4.34)

HZ%*! then follows from the fact that x < A,,él in S, and from (4.14).
The proof of H;*! presents some new features. To begin with, note that if

x €L, +, then condition x; + x, = —=x implies that x; and x, cannot be simultan-
\/—

D
eously smaller than L In fact, we could drop the “2” in the denominator, but for
c

technical reasons we shall keep it. Divide g, into two terms, namely

92105 B) = exp[ Bx(x + As 142 X" gulx1; Bgulx23 B) (4.35)

D.
xhxzézﬁ

gnd1(5; B) = 2 exp[ fx(x + An+l)]A2 gn(x1; B)gn(x2; B) . (4.36)

IIV

o
<2z

For x ~ . /n the leading term in ¢™ is clearly < > B (B) / y([i)2 x* The
positivity of this term is guaranteed by inequality (4.31) (with n + 1 replaced by n).
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n, the following estimate applies:

J
2/c

(s ) > 5 f v(ﬁ)2< )B‘"’(B)x ><2 ) COB)xt.  @37)

This result means that the large fields upper bound (3.5) may be used for all

_bn
Y3

2
xT 4+ x5 = Eix“. Then

So it is easy to prove that for xeD,, x =

(4)

To estimate g% insert this bound and use that x; + x, = \/_ x implies

19521(x; Bl = La(B)? eXp[ — o B)x* — <%>n+lc‘"’(ﬂ)x4 + /M,.Hx:|

” 2
x4z Y s X1%2 exp[ - oc(ﬁ)(xf + x5 — zx2>]

X1, x2>__.

= L,(p)’ exp[ — a(B)x* — (7)n+lc‘”’(ﬂ)x4 + BA,.Hx]

2
X |: [ I* x1%2[ — a(p) <Xf + x5 — —x2>]dx1dxz
|x1—x2] §%x§x1+xz [

+ U (x; B)] . 4.38)

where the symbol = stands for the restriction of the domain of integration to a set of
squares compatible with the sum. Since the integrand is positive, we may majorize
this integral by dropping the restriction and thus obtaining (Z(f)1)(x; ). The
error relative to the approximation of sum by integral may be estimated analog-
ously to the estimation of S™. One verifies that

UM (x; B)| £ 0(4,)x* VYxeL,.(,VBeB®*1 (4.39)
Using the properties of Z(f8), the definition of L, () and taking into account
that ¢ < 2§, we see that 1 may be chosen to that

88205 1 5 Luva(Bxesp| —ap = (3] (coum- ) | wao

Concerning g ,, one may check that if D is chosen large enough

n+1 n
19215 B)| < L,,H(ﬁ)xexp[ — a(p)x* - (}) C‘”’(ﬂ)x“] O[AG) ]

(4.41)
So, it follows that, for xeL,,; and feB"* 1),

902105 B)| S L1 (B)x exp[ — «(p)x - (;2;) (B - A”)x‘*] . 442)
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We satisfy Hi*! defining C®* Y (B) = C™(B) — A". The required upper and
lower bounds on C"* 1 are easily verified, as well as the continuity statements in
Hn + 1‘

Proof of the lemma. We follow closely [9]. First of all, note that there is a constant
L(c, B+) such that

SLeB)fllwlm=0,1,2) VBe[B-,B+]. (443)

Let us suppose that there is a xo < M. /pN (the value of M will be fixed later)
such that

8111501 > exp( = 250N ). @44

The case with (<7 (B)"f)(x,; B) negative may be treated analogously.
Define I' = L™ ?exp ( - L;c pN ), fix fe[ f-, B+] and construct the function

h(x) =

(%(ﬁ)"f)(Xo, B)— LP(x — xo if Xo S x=x0+ F
otherwise

Clearly h(x)* < ((B)f)(x; B)? VXEEO ).
It is easy to check that || f ||, = || fl o = 1. Together with property PS5, this
implies that

PN > \/ —4; JBF [ 2 exp(— p(B)2) (o (BYS) (x; B dx
0

xo+TI

J\/—)’(ﬂ)’ [ x* exp(— y(B)x*) [( (B)°f) (xo; B) — LP(x — xo)]* dx

> const(c, B, B+) LI exp[ — y(B)(M/pN + I'}*]
= const(c, B, B+) T+ exp[ — 9(B)(M/pN + I'}* — Shnc pN:l
(4.45)

Hence

|
—p(N+ 1)Inc= —y(B)(M/pN + I')* — > ;cpN—%plnL + const. (4.46)

Rearranging terms we obtain the inequality

02 [‘5‘ Inc - y(ﬁ)MZJ PN — 2(B) ML /pN

+ l:p <lnc — —;— In L) —9(BI?+ const] . 4.47)
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Define M = ./Inc/3y(f+) to obtain, for all p = 1,

1
0= ) IncN + const,/N + const’ . (4.48)

Since ¢ > 1, there is a Ny(c, -, B+) such that the left-hand side of (4.48) is
positive for any N = N,. The contradiction proves L1.
In order to show L2, assume that there is a xo <4 M./pN such that

(A(BPS) (xo; ) > 2L* exp( —1—“9pr). (449)

From (4.43) one may conclude that || (<4 (8)’f)" | < L?| f|l«, implying that
(S (BFf) (x; B) = (A (B)SfY (x0; B) — LP(x — xo) for all x = xo. So
(A (BFf)(x; B) 2 (L (BYf)(x0; B) + (x — xo) (L (BYS) (x05 B) — %’(X — Xo)* .
(4.50)
Then, from L1 and (4.49), it follows that

(817105 > —exp — 25 o) 200 =) Loenp( ~ 5o )~ 5 x - x
2
4.51)
Let X = xo + 2L‘§exp<—lnTcpN>. We see from (4.51) that
B > exp (= 20N, “5)

But clearly X < M./pN for N big enough. The contradiction of L1 proves L2.
This completes the proof of the lemma and also the proof of our main theorem.

(2x + 4,) gu(x; B) to obtain

x€An

Proof of the Corollaries. Use that Z{® = :‘; 4,y

A1) en.,, X+ dui 1) Los1(B) 7 gns1(x; B)
CAY.., @xt AL () g )T

From the induction hypotheses one may verify that

- A B 2\ .
4, T Qx+ )LD 0bs B = [+ O[nz (c_) ] YBeB® . (450

Using (4.18g) and (4.14) one gets

Sors(B) = fi(B) = — ﬁ-lz-““)[ln(%)i n 0[,,2 (f—)] ] L @s9)

Iterating (4.55) one easily proves the Corollaries.

} . (4.53)
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