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Abstract: Let ¢ be a complex number such that |g| =1 and ¢*=1. Integrable
(“well-behaved”) operator representations of the x-algebra SL,(2,R) in Hilbert
space are defined and completely classified up to unitary equivalence. In order to
do this, the relation xy — qyz = (1 — ¢),v € R, for self-adjoint operators =z and
y is studied in detail. Integrable representations for this relation are defined and
classified.

0. Introduction

The study of non-compact quantum groups or more generally of non-compact quan-
tum spaces at the Hilbert space level leads to new features and difficulties which
do not occur in the compact case. The main source of these problems is the fact
that the generators of the “ring of functions on the non-compact quantum space” do
not have (enough) representations by bounded operators in general. On the technical
level, we are concerned with (finitely many) unbounded operators which satisfy the
commutation relations from the definition of the quantum space. The first problem
that arises is to select the “well-behaved” representations for this set of relations.
Following the terminology commonly used in representation theory of Lie algebras
and of general x-algebras (see e.g. [J, S1]), we call these representations “inte-
grable.” In general, there is no canonical way to define integrability for a given
set of commutation relations. The main purpose of this paper is to define and to
classify integrable representations for the real quantum vector space ]RZ (i.e. for
the relation xy = qyz), for the real quantum hyperboloid X, - (i.e. for the relation
zy — qyz = y(1 — q),v € R/{0}) and for the real form SL,(2,R) of the quan-
tum group SL,(2), where z = z*, y = y* and |g| = 1, ¢*# 1. Our main aim was
to investigate SL4(2,IR), but it turned out immediately that this requires a very
detailed treatment of both ]Rg and X, .. Knowing the irreducible integrable repre-
sentations could be a starting point for studying some “analysis” on the quantum
group SLy(2,IR). The problem of defining integrability for certain operator rela-
tions was touched in [D] and in [W1]. It was studied in [OS1, OS2 and S2]. If the
relations are “nice,” it may happen that for irreducible integrable representations all
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operators are bounded (like in case of classical matrix groups where they correspond
to the group elements) or only one operator is not bounded, cf. [OS1, OS2]. This
is not true for ]Ré, Xq,y 0r SLg(2,R), where apart from the trivial one-dimensional
representations always (at least) two unbounded operators occur.

This paper is organized as follows. In Sects. 2, 3 and 4 we study integrable repre-
sentations of ]Rs, Xq,y and SLy(2,R), respectively. After giving precise definitions
of integrable representations and discussing some motivation, we describe the inte-
grable representations in terms of two models. In cases of X, , and SL,(2,IR) we
also define partial integrability by allowing one operator to be closed and symmetric
rather than self-adjoint. As a result of our classification all irreducible integrable rep-
resentations of IRf], Xg,y and SLy(2,IR) are listed in Corollaries 2.10, 3.8 and 4.11,
respectively. The representation of SL,(2,IR) occurring in the paper [FT] of L.D.
Faddeev and L.A. Takhtajan fits into this list. Our classification depends essentially
on the self-adjointness of certain operators. The corresponding technical results are
contained in the Appendix.

1. Preliminaries

In this paper, ¢ denotes a complex number such that |g| =1 and ¢*+1. We
write ¢ = ™% with |p| <7 and we set g = e!T and @, = ¢ —7n for n € Z.
Throughout, the letters P and () denote the position operator and the momen-
tum operator, respectively, from quantum mechanics. That is, @ is the multipli-
cation operator by the variable z and P is the differential operator iad; acting
on the Hilbert space L*(IR). Recall that FPF~! = —Q and FQF~! = P, where
(Ff)(z) = @n)~" [ f(t)e~"*dt is the Fourier transform of a function f. The opera-
tors e and eA? with «, 3 € R play a crucial role in what follows. The following
lemma gives a precise description of the domain D(e*F). We state it only in case
a>0.

Lemma 1.1. (i) Suppose that f(z) is a holomorphic function on the strip I, :=
{z: 0 < Imz < a} such that

sup [|fy(@)Pdz < o0, (L.1)
0<y<a

where fy(z) := f(z +1y).

Then the limits f :=lim,)of, and g:=limy;,f, exist in L*(R), f € D(e*F)
and g = e*F f. We shall write f(z +ia) = g(z), so that (e*F f)(z) = f(z +ic).
Moreover, we have a.e. on R,

fl@)= nh—rngo fz+in7? and f(z+ia)= nll—>r2<> fz+ia—n"2). (1.2)

(ii) For each f € D(e®) there exists a unique function f(z) on I, as in (i) such
that f = limyof, in L*(R).

Proof: We restrict ourselves to the case a = 2.

(1): The function fi(x) = f(x + 1) satisfies the assumptions of the classical Paley—
Wiener theorem (cf. [K], p. 174), so that F~!f; € D(el*!). Hence f; € D(e)N
D(e ). Setting f=e Ff and g=ePfi, we have e*’f =g. The functions
f(z+1) and 2n)~' [e"*(F~1 f)(t)dt are both holomorphic for |Imz| < 1 and
they are equal on the real axis, so they coincide on the whole strip {z: [Im z| < 1}.
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This yields f, = FeW DRF~1f; = e¥=DFf) for y € (0,2). From F~!f; € D(el*l)
and the dominated convergence theorem we obtain

1F = Full = Ne™Pfi = W™ DPf] = (e = ¥ D)F1fi] » 0 as y L0,

and similarly |lg— fyll =0 as y12. Set (u(z)= f(z+in"2?) and n,(z) =
fx 412 —n%). Since Y, [[¢nt1 — Call < 00 and 3, [[7n+1 — M| < 00 because
of (1.1), a routine argument from measure theory shows that ¢, — f and , — g
a.e. on R.

(ii): Since f € D(e*F), fi :=eF f € D(ePYND(e~F) and hence F~!f; € D(el*).
The assertion follows by a similar reasoning using the converse direction of the
Paley—Wiener theorem. MW

Corollary 1.2. (i) If a€ R, feDEe*F), e>0 and we C, then g(z):=
e~c@tw) (1) € D(e*F) and (eF g)(x) = e~ @+ (g 4 jq).

(i) If a,B€R and fecDEe*rePNDET), then fec D(EPRe*F) and
eaPeﬁQf — eiaﬂeﬁQeaF’f‘

Proof. (i) is clear. We verify (ii) for a > 0. If f(2) is the function for
f € D) as in Lemma 1.1, then obviously e%% f(z) is the corresponding function
for €89 f € D(e“F). Formula (1.2) implies that e*Fef? f = e*BiefReoP f  m

Let us adopt a few notational conventions. If A is an operator on a Hilbert
space G and B is an operator on L*(IR), we write BA for the operator B ® A on
L*(R) ® G. If no confusion can arise, an operator and its closure are denoted by
the same symbol. If a is a self-adjoint operator, we write a > 0 (resp. a < 0) if
a20 (resp. a<0) and kera = {0}. A family {a;; ¢ € I} of unbounded operators
on a Hilbert space H is called irreducible if a decomposition a; = b; @ ¢; for all
i € I with respect to an orthogonal direct sum H = H; @ H, is only possible in
the trivial cases H; = {0} or H, = {0}. Symmetric operators are always meant to
be densely defined. As usual, a unitary self-adjoint operator is called a symmetry.

Throughout, we let
(1 0 and (0 1
=0 —-1) M 17 1 o

denote the Pauli matrices acting as operators on Hilbert spaces of the form
‘H ="H; & H,. We write s(«) for the sign of o € R.

In what follows, F will denote a fixed dense linear subspace of L?(IR) such
that F C D(e*?) N D(e*F) and F is invariant under the operators e®Q, e®F, e*<Q,
P and e=*?" for @, t € R and ¢ > 0. Note that the invariance under the unitary

groups t — €@ and t — e implies that F is a core for all operators e®? and e®%,

a € R (cf. [S2], Lemma 7.2). For instance, one may take F = Lin{e‘”zﬂl; € > p,
v € C} for some constant g > 0.

2. Integrable Operator Representations of the Real Quantum Plane ]Rfl

Recall that ]Rf] is the free x-algebra with unit element which is generated by two

hermitian elements a and b satisfying the relation

ab = gba .
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Throughout this section, let {a,b} denote a pair of self-adjoint operators a and
b acting on the same Hilbert space H.

2.4. We repeat the following definition and two propositions from [S2]. Note that
some terminology in this paper is different from the one used in [S2].

Definition 2.1. Suppose that a=0 or a £0. Then the pair {a,b} is called an inte-
grable representation of ]R(ZI if Ho = ker a is reducing for b, i.e. we have b = b; @ by
and a=a, ®0 on H = HOL @ Ho and if there exists a k € Z such that

la1|® by = e®*b|at|*  for all t € R.

In this case we write {a,b} € Cor(q).

Proposition 2.2. Suppose that a > 0 or a < 0 and that kerb = {0}. Consider the
following conditions:

(i) {a,b} is an integrable representation of IR?I.

(i) {a,b} is unitarily equivalent to some pair {i:=ce®, b:=e¥*Fw} on
L*(R)® K, where € € {1,~1},k € Z and w is a symmetry on some Hilbert
space K.

(iii) There is an integer k such that

Ialitlblis — eitPZktSlb!isla'it, t,s € R. (2'1)

Then (i) « (i1). If in addition b > 0 or b < 0, then all three conditions are equiv-
alent.

Proposition 2.3. Suppose that a >0 or a < 0. Let {a,b} be an integrable rep-
resentation of ]Rf]. Then there exists a dense linear subspace D of 'H such that
aD =D, bD C D, D is a core for a and b and aby) = gbayp for iy € D.

Suppose that a >0 or a <0 and let n,m € N. If ¢*"™+ £ 1 and if {a,b}
is an integrable representation of IR2, then {¢,d} is an integrable representation of
RZom.

2.B. Our next aim is to derive a definition of integrability in the general case. In
order to get some motivation, let us assume for a moment that we have already such
that a definition and let {a,b} be an integrable representation of ]R;. In view of the
above remark, it might be reasonable that {a?, b} is also an integrable representation

of IRfIz. Since a* > 0, we know already what the latter means. By Definition 2.1,
there exists a k € Z such that

(a2)itb — e(2<p—27rk)tb(a2)it, teR ,

so that A .

la|* b = e =P"™5p |a|** = #*° bla”®, sER. (2.2)
If k is even, this means that {|a|, b} is an integrable representation of ]RLZI. If k is
odd, then (2.2) says that {|a|, b} is an integrable representation of IRz_q. Set ¢ :=
(—=1)*. Further, by Proposition 2.3, we have |a| by = eqb|a|t for ¥ in a common
core D for |a| and b and |a|D = D. If we require that the operator relation abyy =
gbatp is also valid for ¢ € D, it follows from aby = uglalby) = ugeqblaly
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and gbay) = gbu,|aly that ugbn = e buen for 1 € |a|D = D. Since D is a core for
b, this yields u,b C ebu,.
We put the outcome of the preceding discussion into the following

Definition 2.4. 4 pair {a,b} of self-adjoint operators a and b on a Hilbert space
is called an integrable representation of IR?Z if there is an € € {1,—1} such that:

(D.1) {|al,b} is an integrable representation of ]Riq and
(D.2) ugb C ebu,.

If {|a|,b} € Cok(q), we shall write {a,b} € Cox(q) for € =1 and {a,b} € Cai11(q)
for e = —1.

Clearly, if a=0 or a<0, then Definition 2.4 is equivalent to the above Def-
inition 2.1. (Indeed, if a > 0 or a <0 then u, =1 or u, = —1I, so (D.2) yields
e=1if b+0.)

Lemma 2.5. The following three conditions are equivalent:

(i) {a?,b} is an integrable representation of IR(212.
(i) {|al|,b} is an integrable representation of leq fore=1ore=-1.
(iii) {|a|,|b|} is an integrable representation of leq for e=1 or e=-1 and
upla| C |aup
Proof. Without loss of generality we assume that kera = {0}. As already noted

above, (i) and (ii) are both equivalent to (2.2) for some k € Z. Thus (i) < (ii).
Suppose (ii) is valid. From (2.2) we get

laf*[bllal ™ = e#**[b], s€R, (2.3)
which in turn means that {|a|, ||} is an integrable representation of lRﬁq with
e = (—1)*. Further, applying first (2.2) and then (2.3), we get

lal**us|b] = |al**b = e#=*blal** = up(e?** bl|a]**)
= up|al o],
so that |a|®*u, = up|a|®® for s € R. Consequently, up|a| C |aluy and (iii) is proved.
Conversely, assume condition (iii). Then we have (2.3) for some £ € Z. Combined
with upla| C |ajup, this obviously leads to (2.2) and so to (ii). M
Lemma 2.6. u,b C ebu, if and only if ug|b| C |blus and uaup = eupuy,.

Proof. We can assume that ker a = ker b = {0}. Then u, and u, are self-adjoint uni-
taries. Suppose that u.b C ebu,. Hence ugbu, = b and ugy|blu, = |b| which gives
Ua|b] = |blug. From ugup = ugb C ebu, = eup|blu, = eupu,|bl and ker |b] = {0}
we conclude the u,up = cupu,. The opposite direction follows similarly. H

Lemmas 2.5 and 2.6 allow to formulate several equivalent versions of Definition
2.4. We mention one sample stated as

Corollary 2.7. {a,b} is an integrable representation of ]Ré if and only if we have
uqa|b| C |blug, uplal C |alup, uqup = eupuq and {|al, |b|} is an integrable represen-
tation of ]qu for e =1 or for e = —1.
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One disadvantage of the above Definition 2.4 is that it is not symmetric with
respect to ¢ and b. We now remove this defect.

Corollary 2.8. Consider the following assertions:

(i) {a,b} is an integrable representation of lRé.

(i) {b,a} is an integrable representation of ]Ré.
(iii) {a~!,b} is an integrable representation of IRé.
(iv) {a',b7'} is an integrable representation of R},.

We have (1) « (ii). If ker a = {0}, then (i) « (iii). If ker a = ker b = {0}, then
() — (iv).

Proof. By Corollary 2.7, it suffices to check that the last condition occurring therein
is invariant under the above operations. Hence it is enough to verify Corollary 2.7 in
the case where a > 0 and b > 0. But in this case these assertions follow immediately
from formula (2.1) in Proposition 2.2. W

2.C. In the subsection we describe the structure of the integrable representation up
to unitary equivalence by means of the following two models. For this let K be a
Hilbert space and k£ an integer.

(M)): Let w and v be commuting symmetries on K. Define self-adjoint operators
a and b on the Hilbert space H := L*(R) ® K by & = e“w and b = e¥*Fv.
(M_)): Define self-adjoint operators @ and b on H := L*(R)® (K & K) by the
operator matrices & = e? ® gy and b = e*>*+ P ® 7.

Clearly, the couple {@,b} of (M) belongs to C,x(g), while the couple of (M_;)
is in Cox+1(q).

Theorem 2.9. Suppose that {a,b} is an integrable representation of ]Rg such that
ker a = ker b = {0}. Let € € {1,—1} be as in Definition 2.4. Then the pair {a,b}
is unitarily equivalent to a pair {&,b} described in the model (M.).

Proof. Let H, :=ker (ug — I) and H_ := ker (u, + I). First suppose that € = 1.
Since ker a = {0}, H = H+ ® H_. From Corollary 2.7 and Lemma 2.6 we conclude
that H, and H_ reduce the self-adjoint operator b, i.e. b = b; @ by. It is clear that
a=a; ®a_ with ay >0 and a_ < 0. Applying now Proposition 2.2 to the pairs
{as,b1} and {a_, b}, we obtain a pair {d,bd} as in (M).

Suppose now that € = —1. Then u, and wu, are self-adjoint unitaries satisfy-
ing the canonical anticommutation relation u,up + upu, = 0. Hence we have an
orthogonal decomposition H = H; @& H; such that u, and w,; act as the Pauli ma-
trices oy and oy, respectively. By general properties of the polar decomposition,
ker(u, F I) and ker(up F I) are the subspaces of H, where a resp. b are positive
and negative, respectively. Let P1(a) and Py (b) denote the orthogonal projections on
ker(ug F I) resp. ker(up F I). By u, = 09, we have a = ay @ a_ with a; > 0 and
a_ < 0. Since uplalup = |a| because of Corollary 2.7, we get a_ = —ay. From
Ugbuy = —b by Lemma 2.6, Py(a)b C bPx(a), so that b and |b| can be written as

matrices
0 ¢ c 0
b= (c* O) and |b| = upb = (0 c)
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which in turn yields ¢* = ¢ > 0. By the last condition in Corollary 2.7, {|al, |b]} is an
integrable representation of le_q. Therefore, {a,c} is an integrable representation
of R* 4 on the Hilbert space H;. Now Proposition 2.2 says that {a4,c} is unitarily

equivalent to some pair {e?, e+ ¥}, (Note that ¢ =1 and w =1, since ay >0
and ¢ >0.) Hence {a,b} is unitarily equivalent to {a,b} in (M_;). ®

We state some consequences of Theorem 2.9.

Corollary 2.10. Each irreducible integrable representation {a,b} of ]Rz7 is unitarily
equivalent to one of the following list:

ey er ke a=¢e1e?, b=ee*r on’H:LZ(IR):sl,ezE{l,—l}, kel.

), :a=e®o0, b=e*"F R0 on H=L*R)®C*: kcZ
(Do :a =a, b=0omH=C:aeR.
(Mg, :a=0,b=aomH=Cack

Corollary 2.11. Let {a,b} be an integrable representation of IR?I such that
kera = kerb = {0}. Then there exists a linear subspace D C D(a) ND(b) of H
such that:

(i) aD =D, bD =D, |a|*D =D and |b|*D =D for t€ R
(ii) D is a core for a, a”', b and b

(iii) abyy = gbay) for ¢ € D.

Proof. The domain D := F ® K for (M;) resp. D :=F @ (K & K) for (M_) has
the desired properties. M

Corollary 2.12. If {a,b} is an integrable representation of ]Rz such that
ker a = {0}, then the operator (qob+ y)a™' is symmetric for any real .

Proof. Since it suffices to prove this in case where v = 0 and ker b = {0}, we can
assume that {a, b} is as in (M4 ). But then the assertion is clear, since the operators
qoe?*Pe~?Q and igye?*+ Fe~Q are symmetric by Proposition A.1, (v). B

3. Integrable Operator Representations of the Real Quantum Hyperboloid X, ,

Throughout this section 7y is a real non-zero number. By the real quantum hyper-
boloid we mean the free *-algebra X , with unit element 1 which is generated by
two hermitian elements x and y satisfying the relation

ry —qyr =1 - g1.

3.4. In this subsection we want to define x-integrable and integrable representations
of X, .. We begin with some simple algebraic manipulations.

Suppose that x and y are hermitian elements of a x-algebra R with unit. Let
« be a non-zero complex number such that & = &g and put a := a(yx — ). The
algebraic relations

(y —qyz —v(1 - @)z =0
and
ra = qar 3.2)
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in R are obviously equivalent. Thus if z is invertible in R, then (3.1) is equivalent
to (3.2) when we set y = (a~'a + v)z ™. Moreover, we have

a* —a=ag(ry — qyz — (1 — q)),

hence a is a hermitian element of R if and only if (3.1)is valid. That is, on a formal
algebraic level we have reduced the real quantum hyperboloid to lRfZ.

Definition 3.1. Suppose that z is a self-adjoint operator and y is a closed symmetric
operator on a Hilbert space H. Let a € C, a0, be such that o = &g. We shall
say that the couple {z,y} is an x-integrable representation of X, if there exists
a self-adjoint operator a on 'H such that {x,a} is an integrable representation of
]Ré, kerz = {0} and y is the closure of the operator (o 'a+ v)z~!.

Definition 3.2. 4 pair {z, y} of self-adjoint operators x and y is called an inte-
grable representation of X, if {x, y} is an x-integrable representation of X, .,
and {y, x} is a y-integrable representation of Xg .

Remarks. (1) Clearly the preceding definitions do not depend on the number a.
(2) Let 7 be the x-isomorphism of X, onto X, defined by 7(zr) =y and
7(y) = z. By the preceding definitions, 7 maps x-integrable representations of X, .,
into y-integrable representations of X, and vice versa, so 7 preserves the integra-
bility. Also the scaling isomorphism z — v~ 'z, y — y of X, , onto X, preserves
this notion. Therefore, in order to classify the integrable representations of X, ., we
could assume without loss of generality that ¢ > 0 and v = 1.

(3) The reason for allowing only symmetric operators y rather than self-adjoint
operators in the above Definition 3.1 will be seen later in Subsect. 3.C: The operators
y appearing in our models are not self-adjoint in general.

We shall provide some motivation for our definitions. First note that our assumption
kerz = {0} seems to be justified by the following very simple

Lemma 3.3. Let x and y be a symmetric operators on a Hilbert space and let

N € Dy := {n € D(zy) N D(yz): zyn — qyzn = (1 —qm}. If zn =0 or if yn =
0, then n = 0.

Proof. Suppose that zn = 0. Putting ¢ := (y(1 — ¢))~'yn, we have z{ =7 and so
0= (zn,¢) = (n,xz¢) = (n,n), that is, n = 0. The proof in case where yn =0 is
similar. W

Next we give some arguments justifying the definition of x-integrability in case
z > 0.

First let us assume that x and y are elements of an algebra R such that z is
invertible in R and (3.1) is satisfied. A straightforward induction argument shows
that

f@)y —y flgz) = (1 — Dy f)(x) (3.3)
for any polynomial f; where D, f denotes the so-called g-derivative
(Do) = 111D
qz

Suppose now that z and y are self-adjoint operators such that z > 0. In order to
define integrability for (3.1), it might be natural to require (3.3) for some suitable
“nice” functions f such as f(z) = z*,t € R. (This idea has been used already for
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]Ré in [S1].) Putting f(z) = 2%, t € R, into (3.3), we obtain formally
.Tﬁit _ (qm)zt
(G

Interpreting (gx)* as e¥*'z® for k € Z and multiplying by x from the right,
we get

%y — y(gz)* = (1 —g)

zhyx — yreP*izt = y(1 — e¥rh)git
and hence ' '
" (a(yz — 7)) = eP*la(yr — y)z", teR. (3.4)

Restricted to the domain D, from Lemma 3.3 the operator & := a(yz —7) is
obviously symmetric. Assume now that the closure a of @D, , is a self-adjoint
operator. Then, by (3.4),

za=e"*tqz teR.
Since x > 0, this means that {z,a} is an integrable representation of ]Rz. A similar

reasoning with f(z) replaced by f(x?) can be used in order to justify our definition
also in the general case.

3.B. Similarly as in case of ]Rf], we study the x-integrable representations of X,
in terms of two models.

Suppose A is a self-adjoint operator on a Hilbert space Hy with ker A = {0}.
Let K be a Hilbert space and let k € Z.

(MZ7): Suppose that w and v are commuting symmetries on K. Let Z and § be the
operators on the Hilbert space H = L*(IR) ® K @ H, defined by

F=eCwd A7 and §=(qe*FTv+1)e CweyAaTl. (3.9)

(M?Z,): We define operators Z and § on the Hilbert space H = L*(R) ® (K & K) &
Ho by
T=e9Q0 ®A and §= (e Te ?R0p0+7e @0)ByA.
(3.6)

In both cases, Z is a self-adjoint operator and 4 is closed and symmetric (cf. Propo-
sition A.1, (v)). Note that § is not self-adjoint in general, see Proposition A.4.

Proposition 3.4. The pair {Z, §} as defined in (M7T) or in (M? ) is an Z-integrable
representation of X4 . Conversely, each x-integrable representation {x,y} is uni-
tarily equivalent to a pair {&, §} of one of the above models (M7) or (MZ*,).

Proof. To verify the first assertion, set o = gg and let a = e¥**Fw & 0 for (M?) and
a = e’ ® gy @0 for (M?,). In both cases {#,a} is an integrable representation
of ]Rf] and § = (goa +7)¥~!, so that {%, §} is an Z-integrable representation of
X4, by Definition 3.1.

The second assertion follows in a straightforward manner from Definition 2.1
and Theorem 2.9. In case of (M_;) the above form of % and § is obtained after a

unitary transformation u, where u denotes the 2 x 2 matrix (u,s) with u;; = uj; =
U21=—u22=%~ u

Corollary 3.5. Let {x, y} be an x-integrable representation of X .. Then there is
a domain D C D(x) N D(y) which is invariant under x,x~' and y and a core for
these operators such that xyn — qyzn = (1 — q)n for n € D.
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Proof. Set D=F @K @Dy for (M7) and D =F @ (K& K) D Dy for (M%),
where Do, 1= (,cz P(A™). That D is a core for §j follows from Proposition A.1,
1. m

Since the above domain D is obviously contained in the domain D, , from
Lemma 3.3, it follows that the operator o in Definition 3.1 is the closure of
a(yx — ¥)|Dy,y. In particular, this shows that a is uniquely determined by {z, y}.

Corollary 3.6. For arbitrary €1,e; € {1,—1},k € Z and o € R|{0}, each couple
{z, y} of the following list is an irreducible x-integrable representation of X ..
Any irreducible x-integrable representation of X, ., is unitarily equivalent to one of
this list:

Dey o0 T= 19,y = e1(e200e”* T +7)e™? on H = LA(R).

an, s z=e?Q®o01, y=qet* e ®o¢0 + *ye_Q ® oy on
H = L*(R)® C°.

am, : zrz=a, y= ya~! on H = C.

3.C. Now we classify the integrable representations of X, ., up to unitary equiva-
lence. The cases where the operator § in our models is self-adjoint are characterized
by Proposition A.4. We rewrite our models (M3) in these cases.

(M): Let H and Z be as in (M7T) and define

O = (=1 qe* s(n) +7) e QwdyA™" for ke {0,s(p)} .
(M_1): Let H and Z be as in (M7 ) and set

(0 ys —1
§i= (y_ 0 ) HyAT,
where y4 = (iqoe(‘P_S(‘P)")P +’Y) @

Theorem 3.7. (i) An x-integrable representation {x,y} of X, is integrable if and
only if the operator y is self-adjoint.

(ii) The couples {Z,§} of (M) and (M_,) are integrable representations of X .
Conversely, each integrable representation of X, ., is unitarily equivalent to one of
these couples {%, §}.

Proof. (i). For an integrable representation {x, y} both operators are self-adjoint
by Definition 3.2, so the only if part is trivial. To prove the converse, suppose
that {z, y} is x-integrable and y is self-adjoint. By Proposition 3.4, we can assume
that {z, y} is of the form {Z, §} as in (M) or in (M?*,). For simplicity, we set
Ho = {0}. We treat only the case of (M2 ), but the proof for (MT) is similar. As
in the proof of Proposition 3.4, let a = e¥**+'F ® . Clearly, the unitary group |a|*
acts on vectors f ® (¢,n) € L*(R) ® (K @ K) as a translation of f by t@,14,. Hence
we have |a|jrp = et?*+1{la|®eh,t € R, for ¢ in the domain of § and so for ¢ in
the domain of its closure which is also denoted by § according to our convention
from Sect. 1. Since § is self-adjoint, the preceding means that {|a|,§} € Cor(—9).
Since u, = gp and u,§ € —Fu,, we have shown that {a,§} is an integrable rep-
resentation of ]Rq. By Corollary 2.7, {#,a} is an integrable representation of ]Ré.
Further, Proposition A.l, (iv), shows that ker § = {0}. Next we show that Z is
the closure of the operator (goa + ) ~'. In order to prove this, we first apply the
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unitary transformation of the Hilbert space induced by the inverse Fourier transform.
Then % and § are given by the matrices

-P

z= (691: 60 ) and §= (19_ 1&*) ,
where Ty := (£qoe?*"? +y)ef’ on L (R)® K. Let D:= F ® (K ®K). Since
TL(F®K) is a core for e~¥ by Proposition A.1, (iii), §D is a core for Z. For
vectors ¢ € D we obviously have that Z§i = (goa + )1 by Corollary 1.2, hence
#|9D = (qgoa + )~ |FD. Since Z|§D is essentially self-adjoint and (goa + v)§~! is
symmetric by Corollary 2.12, the latter implies that Z is the closure of (qoa + v)§~'.
Putting the preceding together, we have proved that {§, &} is §-integrable represen-
tation of X .,i.e. the couple {Z, 7} is integrable.
(ii): By (i) and Proposition 3.4, it suffices to determine all pairs {Z, §} in our models
(M7) and (M?* ) for which the operator § is self-adjoint. By Proposition A.4, the
latter is true if and only if we are in (M) resp. in (M_;). R

Corollary 3.8. Apart from the one dimensional representations (1l), there are
up to unitary equivalence precisely S irreducible integrable representations of
Xg,y In case v > 0,90 >0 these are the representations (1), ; o,(D); 10,y 11,
(D_y 1, and (), from Corollary 3.6. 7

4. Integrable Operator Representations of the x-Algebra SL,(2,IR)

Recall that SL4(2) is the free algebra with unit element 1 generated by four elements
a, b, c,d satisfying the following seven relations:

ab=gba, ac=gqca, bd=qdb, cd=gqdc, bc=cb, 4.1)
ad—gbc=1, 4.2)
ad —da = (g — ¢ Hbe. (4.3)

In fact, Eqs. (4.1) and (4.3) define the matrix algebra M,(2) and (4.2) says that
the quantum determinant is equal to one, cf. [FRT] or [M]. It is clear that we obtain
an equivalent set of relations if (4.3) is replaced by

da —q 'be =1 (4.4)

or by
ad — ¢*da = (1 — A1, (4.5)

or by
da—q%ad=(1—-q¢ 1. (4.6)

(We shall not need the Hopf algebra structure of SL4(2) in what follows.)

Let R be an algebra with unit. If a,b, ¢, and d are elements of R satisfying the
conditions (4.1)~(4.3), then the quadruple {a,b,c,d} is called a representation of
SLg(2) in R.

Since |g| = 1, there in a unique involution on the algebra SLy(2) such that a, b, ¢
and d are hermitian elements. Endowed with this involution, the algebra SL,(2)
becomes a *-algebra which will be denoted by SL4(2, R).

4.4. The following simple algebraic facts are the key for our integrability definitions
given below.
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Proposition 4.1. Let R be an algebra with unit and let a, b, c, d be elements of R.

(i) Suppose that a is invertible in R. Then {a,b, c,d} is a representation of SLy(2)
in R if and only if

ab=qba, ac=qca, bc=-cb 4.7)

and
d= (¢ 'bc+ Da™'. (4.8)
(ii) If d is invertible in R, then {a,b,c,d} is a representation of SLy(2) in R if

and only if

db=g"'bd, dc=gq 'ced, bc=cb 4.9)

and
a=(gbc+ 1)d!. (4.10)

(ili) Suppose that {a,b,c,d} is a representation of SLy(2) in R. If b (resp. c) is
invertible in R, then

z:=b"lc (resp. w:=c"'b) permutes with a, b, c and d .

(iv) If b and c are invertible in R, and z = b 'c, then (4.7) is equivalent to the
three relations

ab=qba, az=2za, bz=2zb. 4.11)

Proof. All assertions follow immediately by straightforward algebraic manipulations.
As a sample, we verify that (4.7) and (4.8) imply the relation cd = gdc. Indeed, from
(4.7) and (4.8) we obtain

cd = c(g e+ Da~ ' = (¢ e+ Dea™ = (¢ lbe+ 1)ga"c = gde. W

The assertions (i) and (ii) of Proposition 4.1 show that on a formal algebraic
level Eqgs. (4.1)—«(4.3) defining SL4(2,IR) are equivalent to Egs. (4.7)-(4.8) and
also to (4.9)-(4.10). Our integrability definitions for SL4(2,R) are built on this
simple observation. Some justification for the assumption ker @ = {0} in Definition
4.3 below is given by

Lemma 4.2. Let a, b, ¢, d symmetric operators on a Hilbert space. Let 1) € D(ad) N
D(a) N D(be) N D(cb) be a vector such that ady — gbcyy =1 and beyp = cbyp. If
aty =0 or if d =0, then ¢ = 0.

Proof. We have 0 = (dy, ah) = (adsp,¥) = q (bey, ¥) + (¥, ). Since (bey), ¥) =
(¥, cp) = (1h, beap) is real and ¢ is not real, » =0. M

Definition 4.3. Let a, b, ¢ be self-adjoint operators and let d be a closed symmetric
operator on a Hilbert space H. We shall say that the quadruple {a,b,c,d} is an
a-integrable representation of SLq(2,R) if ker a = {0} and if the following three
conditions are fulfilled:

(D.1) There is an integer n € Z such that {a,b} € C,(q) and {a,c} € C,(q) .

(D.2) The self-adjoint operators b and c strongly commute (i.e. the spectral projec-
tions of b and ¢ commute).

(D.3) d is the closure of the operator (¢~ 'bc+ 1)a™! .

Note that (D.1) and (D.2) imply that the operator (¢~ 'bc+ 1)a™! is symmetric by
Corollary 2.12.
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Definition 4.4. A quadruple {a,b,c,d} of self-adjoint operators on a Hilbert space
is called an integrable representation of SLy(2,R) if {a,b,c,d} is an a-integrable
representation of SLg(2,IR) and {d,b,c,a} is a d-integrable representation of
SLg(2,R).

The following slight reformulation of Definition 4.3 is often useful. The proof
is straightforward and will be omitted.

Lemma 4.5. Suppose that a, b, ¢ are self-adjoint operators with ker a = {0} and d
is a closed symmetric operator on a Hilbert space H. The quadruple {a,b,c,d} is
an a-integrable representation of SLq(2,IR) if and only if there exist an integer n
and a decomposition a =a; @ a; Da3, b=0Db, B by, c=c,®0®c3, d=d| &
dy @ d3 with ker by = ker ¢3 = {0} with respect to a direct sum H = H; ® H, ® H;
such that:

(i) di = a7 and {a1,c1} € Calq) -
(i) d = a;' and {az, b2} € Cu(q) .
(iii) {as,b3} € Cr(q) and there exists a self-adjoint operator z3 on Hj; which com-

mutes strongly with as and by such that c3 and d3 are the closure of byz; and
of (g7 'bscs + Da !, respectively.

4.B. Next we study two models of a-integrable representations of SL4(2,R). They
are closely related to the models occurring in the preceding two sections.

Let K and H, be Hilbert spaces and let k € Z. Suppose that A is a self-adjoint
operator on Hy such that ker A = {0} and that B and C are strongly commuting
self-adjoint operators on K.

(M$): Suppose w is a symmetry on K which commutes with B and C. Set H :=
L*(R)® K @ Ho and define

d=e“wa A,
b=e"*PBa0,
g=e*PCa0,

d = (qe***BC + 1)e Cwap A",
(M2)): Set H=L*(R)® (K ® K) ® H, and
=e? QoD A,
=e"*P @ Bo @0,
t=e P ®Co a0,
d = (Ge**Pe 2 @ BCoy+e P Qo) d A7 .

_ First note that in both models a, b, & are well-defined self-adjoint operators and
d is closed and symmetric (by Proposition A.1, (v)). Further, it is clear that the
quadruple {@,b,¢,d} is an a-integrable representation of SLy(2, R).

Theorem 4.6. Let {a,b, c,d} be an a-integrable representation of SLy(2,R) and let
n be the integer occurring in Definition 4.3. Then {a,b, c,d} is unitarily equivalent
to a quadruple {3,b,8 d} of the above model (M2), where ¢ = (—1)". For (M$)
the self-adjoint operators B and C can be chosen such that the spectrum of B is
contained in the set {—1,0,1} and that the operator C | ker B is a symmetry on
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the reducing subspace ker B for C. In case of (M? ) we can have that B is an
orthoprojection and that C | ker B =1 and B | kerC = I.

Proof. First we apply Lemma 4.5. Leta = a1 P a, a3z, b=0Db,d b3, c=c1 &
0B, d=di®dy®ds on H="H; ® H,® H; be the decomposition occurring
therein.

Set Hy :=kerc; @ kerb,. Since {aj,c;} and {ay,b,} are integrable represen-
tations of ]sz, Ho reduces the self-adjoint operator a. Let A :=a | Ho. Since
kera = {0}, A is invertible on Hy. Since d; = al“1 and dy = a; ' H, reduces
d as well and d | Hy = A~!. By construction, b | Hy = c | Ho = 0. Thus we have
obtained the desired form of the operators a, b, c,d on the space Hy.

Now we treat the space Hy. For notational simplicity, let us assume that
H = Hy. By the preceding paragraph this implies that kerc; = {0} and kerb, =
{0} in the above decomposition. Also, we have kerb; = {0} by Lemma 4.5.
Thus Theorem 2.9 applies to the pairs {a;,c1}, {az,b2} and {a3,b3}. Since these
three pairs belong to the same class C,(g), we obtain the same model (M)
and the same integer k for all three pairs. We treat the case of (MY). Let
K;,w; and v, = 1,2,3, denote the corresponding Hilbert spaces and symmetries,
respectively. Put w:=w; Qw, ®w; and v:=0P v, vy on K=K, K, 8 K.
Then the operators a and b = 0 @ b, @ b3 have the required structure by Theorem
2.9. Let z3 be the self-adjoint operator from Lemma 4.5. By condition (iii) therein,
23 commutes strongly with a3 and b; and hence with |a3| and |bs|. Since, |a3| = €%
and |b3| = e*>*F on H; = L*(R) ® K3, there exist a self-adjoint operator Z3 on
K3 such that z3 = I ® Z3 (cf. [S2], Lemma 5.3), that is, 23 = Z3 according to our
notational convention. Using once again that z3 commutes strongly with a; and
by, we conclude that z;3 commutes with w3 and v3, S0 ¢3 := 2313 is a well-defined
self-adjoint operator on Kj. Setting ¢ := v; & 0 @ c3, the operator ¢ has the desired
form. The above formulae for d follows from the construction and from Lemma
4.5, so our proof is complete in case (MF).

We sketch the necessary modifications of the proof in case (M?,). Then the
pairs ial,cl}, {az,b,} are {a3, b3} are as in model (M_,) of Sect. 2. Since |b;| =
e¥%+1% on H3, the same reasoning as in case (M) shows that there is a self-adjoint
operator Z3 on (K3 @ K3) such that z3 = I ® Z3. Since u,, = 0 and up, = 0, it
follows from wug, 23 C 23uq, and up,23 C z3up, that there is a self-adjoint operator
Z on K5 such that Z3 is diagonal on K3 @ K3 with Z in the main diagonal. To
complete the proof, we set B: =09 [ @ [,C:=100dZon K =K, 0K, d Ks.
|

From Theorem 4.6 we easily obtain some important corollaries.

Corollary 4.7. Each irreducible a-integrable representation of SLy(2,R) is unitarily
equivalent to a representation of the following list with «o¢€ R/{0},
AeR,k€Z and 1,6, € {—1,1}:

(I)A75h52,k La= eleQ, b= €2€<P2’°P, c=Ab,
d= €1(q_/\62‘p2kp + l)e_Q on H= LZ(IR) )
(Doo,el,eng : aZEIeQ,bZO,czaze‘kaP ,

d=¢e1e"? on H=L*R).
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My @ a= e? R0, b=e*F @0, c=Nb,

d = (gre**F £ DNe 9 ® 0y on H=L*(R)® C*.
My = a= e? ®0p,b=0,c=e"* P o

d=a"'on H=L"R®C*.
dm, - a=ab=c=0d=a'onH=C.

Each quadruple {a,b,c,d} of this list defines an irreducible a-integrable repre-
sentation of SLq(2, R) and different values of parameters give inequivalent repre-
sentations.

Corollary 4.8. Let {a,b,c,d} be an a-integrable representation of SLq(2,IR) on a
Hilbert space H. Then there is a dense linear subspace D C D(a) N'D(b) N D(c) N
D(d) of H such that:

(i) aD=D, bDC D, cDC D, dD C D and |a|'D =D for t € R.
(i1) The operator relations (4.1)~(4.5) are pointwise satisfied on D.
(iii) D is a core for a,a™',b,c and d.

If kerb = {0} or (resp. and) kerc = {0}, we may have also that bD =D and
[b/*D = D or (resp. and) ¢D =D and |c|'D =D, t € R.

Corollary 4.9. If {a,b,c,d} is an a-integrable representation of SL4(2,R), then
{a,d} is an a-integrable representation of X .

4.C. Now we characterize the integrable representations of SLy(2, R).

Theorem 4.10. (i) An a-integrable representation {a,b,c,d} of SLq(2,IR) is inte-
grable if and only if the operator d is self-adjoint.

(ii) The quadruple {a,b,¢,d} of the model (M$) is integrable if and only if BC' > 0
and k = 0. The quadruple {@,b,&,d} of (M%) is integrable if and only if BC < 0
and k=01if o >0resp. k=1 1if p <O.

(iii) Each integrable representation of SLq(2,IR) is unitarily equivalent to one of
the quadruples described by (ii).

Proof. (i) The only if part is trivial by Definition 4.4. Suppose that {a,b,c,d} is
an a-integrable representation of SL4(2, IR) for which the operator d is self-adjoint.
By Theorem 4.6 we can assume that the quadruple {a,b,c,d} is as in one of our
models (MY ,). We have to show that {d, b,c,a} is a d-integrable representation of
SLg(2,R). We only sketch the proof in case of (M* ). First note that ker d = {0}
by Proposition A.1, (iv). To check that {d, b} is an integrable representation of ]Rf‘i,
we argue similarly as in the proof of Theorem 3.7. Obviously, kerb is reducing
for d, so we can restrict ourselves to the case where kerb = {0}, i.e. ker B = {0}
and Hy = {0}. We have |b|it = eitwwnP(eitoglBl g ertloelBly on [2(R) ® (K ® K),
hence |b|**d = et¥*+1d|b|* for t € R. Since obviously upd C —dup, {d,b} is an
integrable representation of ]Ré by Corollary 2.7. The same reasoning works for the
pair {d,c}. Finally, we have to verify that a is the closure of (gbc + 1)d~'. For
this we first note that {a, bc} is obviously an integrable representation of IR(212 and
d is defined as the closure of (gbc + 1)a~!. Therefore, by Definition 3.1, {a,d} is
an a-integrable representation of X2 ;. Since d is self-adjoint, {a,d} is integrable
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by Theorem 3.7 and a is the closure of (gbc + 1)d~!. This completes the proof
of (i).

(i) follows by combining (i) with Proposition A.4 and (iii) follows from (ii) and
Theorem 4.6. W

Corollary 4.11. We retain the notation from Corollary 4.7. Then any irreducible
integrable representation of SLy(2,R) is unitarily equivalent to one of the following
list:

Mrere0: AE(0,+o0],e1,82 € {-1,1}.
(II))\,S((P) : )\ G [“OO, 0).
{, : aeR|{0}.

Each of these representations is an irreducible integrable representation of
SL¢(2, R).

Corollary 4.12. If {a, b, ¢, d} is an integrable representation of SL4(2,R), then
{a, b},{a, c},{b, d},{c, d} are integrable representations of IRLZI, {a, d} an inte-
grable representation of X, and {d,a} is an integrable representation of Xz ;.

In their study of the quantum Liouville model on the lattice, L.D. Faddeev
and L.A. Takhtajan constructed a representation of SLy(2, R), cf. [FT]. We briefly
discuss this in the following

Example 4.13. Set g=-¢€'. For )€ (0,+00), we define operators a:= et
VI+ A% b:=eQ c:=2e? and d:=e Tv/1+ A2~ 7 on H = LA(R).
The representation from [FT] corresponds to the case A = 1.

The following assertions can be verified by arguing in a similar way as in the
proofs of Propositions 1.3 and 1.4: The operators a | F and d | F are essentidlly
self-adjoint. By a slight abuse of notation, we denote their closures again by a and
d, respectively. For ¢ € F,a1) = V1 + Xe2@+ ePep and dyp = V1 + Ae2@~ie ).
Further, ker a = {0} and aF is a core for d.

From these facts we easily conclude that {a, b} € Co(q),{a,c} € Co(q) and d =
(Gbc+ Da~l, ie. {a,b,c,d} is an integrable representation of SL,(2, R). Clearly,
{a,b,c,d} is unitarily equivalent to the representation (I), ; ; o from Corollary 4.11.

5. Concluding Remarks

(1) Suppose {z, y} is a couple of the class Cx(q), k € Z. Then the operator |z| + |y|
is essentially self-adjoint if and only if k € {—1,0,1,2s(¢)}. (This follows at once
from Proposition A.5 if we take {z, y} as in (M;) resp. (M_;) and apply some
unitary transformation e*Y%,y € R.) Further, for the classification of integrable rep-
resentations of X, , and SLy(2, R) only the classes Ci(g) with k = —1,0,1,2s(p)
are needed. For these and other reasons it seems to be sufficient to take only these
classes Cr(q) as integrable representations of IRE. Since x% + y? is essentially self-
adjoint if and only if k=0 for |p| < § and k = s(p) for J < || < m, it might
be even justified to consider only the class Cx(q) with kK =0 resp. k = s(p) as
integrable representations of ]Ré.

(2) Let A denote one of the x-algebras Ith], Xq,4 or SLy(2, R), and consider an
integrable, z-integrable or a-integrable representation of A. Then, by Corollaries
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2.11, 3.5 resp. 4.8, the commutation relations defining A are pointwise satisfied for
all vectors of a suitable invariant core D for the corresponding operators a, b; x,y
resp. a, b, ¢, d. Hence such a representation gives really a s-representation, say p, of
the *-algebra A on the domain D in the sense of unbounded representation theory
(see e.g. [S1], Sect 8.1). This justifies to speak about integrable, z-integrable or
a-integrable representations of the x-algebras A of the previous sections. In case of
an integrable representation of A, o* is a self-adjoint representation of A, but the
converse is not true. This suggests the following

Problem. Characterize the self-adjoint representations of the x-algebra A which cor-
respond to integrable representations of A.

(3) Knowing the irreducible integrable representations of ]R(ZI, Xq~ 1esp. SLq(2, R),
the C*-algebra generated by the corresponding operators can be studied. For this
the affiliation notion of [W1] plays a crucial role.

6. Appendix: Some Operator-Theoretic Results

Suppose that A is a self-adjoint operator on a Hilbert space G. Let E,, denote the
spectral projection of A corresponding to the interval (—n,n). We study operators
(we®? A+ v)ef” on the Hilbert space H = L(R)® G, where a, 7y € R, w € C,
w=0. We denote the closure of (we®@A +y)ef’ by T or again by the symbol
(we*@A + ~)ef” according to our convention from Sect. 1. Sometimes the operator
Q is denoted by the variable x.

Proposition A.1. Put 1., := e~ E.n for neH,e > 0 and n € N. Suppose that
Dy is a core for A and set D = F @ Dy. Then:

(1) D is a core for T.
(i) For n € D(T*), we have 0., € D(T*)ND(e’(@e*®?A+ 7)) and T*n. , =
e (@e*@A +Y)e n, € € (0,£0), n € N.

(iii) 7D is a core for e F.

@iv) ker T* = {0}.

(v) T is symmetric if and only if we** = w.

Proof. (i). By taking the closure in the graph norm of A, we can assume that
Do = D(A). Upon writing A as a direct sum of bounded self-adjoint operators it
follows that it suffices to prove the assertion in case where A is bounded. Further, it
is sufficient to show that D((T' | D)*) C D(T™), since then (T' | D)** = T**. Suppose
that n € D((T | D)*). Then there is a { € H such that (Te_5$2@l), n) = (e~ 9, ()

for € F® G and for small & > 0. Since (@e®® A + v)e@*+Y is a bounded op-
erator, the latter and Corollary 1.2, (i), yield

(€P1h, (@€ A +7)e @V ) = (p, e () (6.1)

for 9 € F®G. Since F is a core for ef, (6.1) is valid for all 1 € D(ef)®G.
Proceeding in reversed order, we get (e=*@=V'Tq) n) = (e=5%"¢), () for 1 € D(T).
Letting € | 0, we conclude that n € D(T™).
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(i1). For ¢ € D(T') and n € D(T*), we have

<Te-5m2 n¢7n> = <e—6(z+i)2EnT¢vn> = <T'¢1775,n>
= (ePy, (@e“C A+ Y)nen)
= (§, e E,T*n)

by Corollary 1.2. This yields (0e*? A + )., € D(eF), nen € D(T*) and T*1; , =
eP(@e* YA + Y)e .

(iii). First note that 7D = T(F ® D) € D(e~F) and e PT1) = (we=*e*@ A + y)
for 1 € D. Suppose that n € D((e~F | TD)*), ie there is a ¢ € H such that
(e=PT,n) = (Ty,¢), ¥ €D. By closing up in the graph norm of A we
can assume that Dy = D(A). Replacing ¢ by el nt, the preceding yields
(P, (@e*e®@A + 7)™ Epn) = (T4, Ce.p) for ¢ € D(T), so that T*Ce , = (@e™
e®? A + 'y)e_‘””z n7. On the other hand, by (ii) and Corollary 1.2, T*(. , =
(@e*e*QA + v)eP (. .

A simple operator-theoretic argument shows that the operator @e®e®@A + + has
trivial kernel. Therefore, the preceding gives e” Cen = P E.n. Letting € | 0 and
n — 0o, we obtain e’( =15, i.e. n € D(e™F).

(iv). Let n € ker T*. Then we have 7., € ket T*, so eF(@e*@A + Y)ne, = 0 by
(i1) and hence 7., = 0 for all € > 0 and n € N. Consequently, n = 0.

(v) follows at once from Corollary 1.2 and (i). W

Proposition A.2. Suppose that A >0 on G. Let o, 1,0, € R and s € Z be such
that By + 0 = a+27s,a=+0 and [y +nr for j =1,2 and for all n € Z. Define
closed operators Tj,j = 1,2, on H by Tj = (e*FPi'A + 1)eP. Let 3 denote the
set of real numbers y,, := o~ (2m + D1 + By),m € Z.

G) If 3N (0, 1)+, then T} +T,
(i) If 3N[0,1] = ¢, then T} = Tb.

Proof. First let us show that it suffices to prove the assertions (i) and (ii) in
the scalar case G = €. Since we can express A as an orthogonal direct sum of
bounded self-adjoint operators with simple spectra, it is enough to verify (i) and
(i1) for such operators. But then G is a separable Hilbert space and we can write
A as a direct integral of operators A-I, over the measurable field oc(4)> A —
Hy := L*(R) of Hilbert spaces. Let £ = £(\) be a cyclic vector for A. Set T} ) :=
(e*QHPrix + 1)eP. Obviously, {tn.m(\) = e~ T AMEN); n,m € No} is a count-
able family of measurable vector fields such that a.e. {1 m(A)} is dense in D(T} »)
with respect to the graph norm. From this we conclude that A — T  is a measur-
able field of closed operators and T is the direct integral of this field (cf. [S1],
12.1). Using standard properties of direct integrals of closed operators (see chapter
12 of [S1] for details), it follows that it suffices to prove the assertions for the
operators T 5, j = 1,2. For the rest of this proof we assume that G = C. We set
§:=1log A and h; () :=e****FA1 4 1,z € C. Then, by definition, T; = h} (z)e”,
where h;f(x) is the multiplication operator by the function hj(x) on H = L*(R).
We prove (i). Put f; := hj (z)~'f for f € L*(R). Note that f; € L*(R), since
each function h;t(x) has positive infimum on R because G;+nm for n € Z.
Since obviously (T} f,g;) = (eF'f,g) = (f,eFg) for f € D(T};) and g € D(e),
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we conclude that g € D(T}) and T7g; = ePg. Assume to the contrary that 17 =
Ty. Then we have (T} fi,0) = (Iof1,92) = (f1,T592) and hence (eff,g,) =
(hf(x)~'eP £, g) = (f1,eFg) for all f,g € D(e”). Therefore, fi € D(el). Setting
f(@)=e"7, it follows from Lemma 1.1 that fi(z) = h;(z)"'e™® has a holo-
morphic extension to the strip [; ={z:0 <Imz < 1}. But the set of zeros
Zm = —6a~! + iy, of hy (2) intersects I;, since 3 N (0,1)=+¢ by assumption. We
arrived at a contradiction, so (i) is proven.

Now we prove (ii). Take 1 € D(T}) and set 7:(z) = e=@= p(z) for e > 0.
Proposition A.1, (ii), says that 7. € D(T}) N D(e”'h; (z)) and T;ne = ePhj (z)7e.
(Note that E, =1 and so 7, =17, if n> el) By Lemma 1.1, the function
(hj_na)(x) of D(e”’) has a holomorphic extension, say (hj'ns)(z), to the strip [;.
Our assumptions 3N [0,1] = ¢ and B + 5, = a + 27s imply that | hi (2) | =0 on
I, for some constant ¢ > 0. Thus 7c(2) := (b} 7:)(2)h; (2)™', 2 € I, defines a holo-
morphic function on I; for which

sup [ Ine(z +iy)Pdz <o sup [|(h; n)(z + iy)Pd .
0<y<l 0<y<1

The latter is finite by Lemma 1.1, since h;ne € D(e?). Formula (1.2) shows that

ne(2) has the boundary values 7.(x) on R, so 7. € D(ef’) by Lemma 1.1. Applying
(1.2) once more, we get

Tyne = e"(hne) = hy (@ + )€ ne)(@) - (6.2)

In order to complete our proof, take vectors n' € D(T}) and n? € D(T;). We have
T;‘ng = e‘“zT]*nj and Ay (z) = hy(z + ). Using these facts and applying (6.2)

twice, we get
—ex? ik * —
(7= Tyn'ym2) = (Timz,m2) = (¥ (hynd), m2)
= (hyne,e"n2) = (n, by (@ + e n2)
* —exlmx
= (., T32) = (e, e Tyn')

Letting € | 0 we obtain (T}n',n*) = (n',Tyn*). This shows that T} = T;* = T>.
||

Corollary A.3. Retain the assumptions and the notation from Proposition A.2 and
assume that 3 = [, so that Ty =T, =: T. Then the operator T is self-adjoint if
and only if s is even and |o| < 2.

Proof. If s is odd and |a| > 27, then 3N (0, 1)F¢. If s is even and |a| < 27, then
30 [0,1] = ¢. Note that the cases @ = + 27 are excluded by assumption. W

Remarks. (1) The operator T' from Corollary A.3 acts as Ty = eg((—l)seo‘QA
+ l)eg for 1y € F. Often this form of 7' is more convenient. In particular we see
that 720 if and only if s is even.

(2) S.L. Woronowicz [W2] has determined even the deficiency indices of the op-
erator T' for G = C. He showed that for odd s both deficiency indices of 7" are
finite and their difference is one, so 7" has no self-adjoint extension in L?(RR). If s
is even, the deficiency indices of 7" are equal and finite.
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Proposition A.4. (i) The operator y defined by formula (3.5) is self-adjoint if and
only if w=(—=1)*s(y)-I and k € {0,s(p)}.

(ii) The operator ¥ in formula (3.6) is self adjoint if and only if k=0 and ¢ >0
orifk=—1and ¢ <0.

Proof. Without loss of generality we assume that Hy = {0}.

(). First we study the self-adjointness of the (closed symmetric) operator Sy :=
(goe? A+ 1)e"? on L*(R)® G, where A €R, A+0. A unitary transformation
by the inverse Fourier transform yields F~1S\F = (goe#*?\ + 1)e’, so Corollary
A3 applies with A=T,a =@y =p—2krand B=%£,s=k if A\>0resp. B =
£ +ms=k+1if A <0. Note that a+0 and S+nnm for n € Z, because q=+1.
Since |p| < 7 and ¢ =0 by assumption, Corollary A.3 shows that S, is self-adjoint
if and only if £ =0 for A > 0 or if k£ = s(p) for A < 0.

To Prove the assertion of (i), note that y~!v j is the direct sum of two operators S
with A =~"!, G =ker(w — I) and A = —y~!, G = ker(w + I). By the preceding
discussion, both operators are self-adjoint if and only if we are in the above two
cases.

(ii). Putting S. := (eqoe?*+'* + v)e~Q for ¢ = %1, the operators  and 7* are given

by the matrices
0 5 . 0 S
i = d * = —1
1= (s, §) =5 %)

Therefore, § is self-adjoint iff S} = S_;. Upon scaling, we can assume that v = 1.
Then F~1S.F = (eqoe?**'? + 1)e!” and we are in the situation of Proposition A.2
with A=1I, a=ppy =9~ QRk+Dm, fi =%,0=%+m, s=k+ 1. Using
once more that || < 7w and ¢ =0, one easily verifies that 3N (0,1) = ¢ in the
two cases k=0, >0 and k= —1,0 <0 and that 3N [0,1]=+¢ otherwise. By
Proposition A.2 these are the only cases where ST = S_; or equivalently where
is self-adjoint. M

The next proposition can be derived by using similar arguments.

Proposition A.5. Suppose that ker A = {0} and let n € Z. Then the (closed sym-
metric) operator (Ge**"F A+ 1)e~@ is self-adjoint if and only if A >0 and n =0
orif A< 0 and n = s(yp).
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