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Abstract: We describe an approach, based on Baldi's large deviation theorem, to
carry out the statistical mechanics of a class of infinite dimensional dynamical systems.

I. Introduction

In previous works [32-34] we showed that large deviation theory (Sanov's theorem),
used in a Young measure framework, provides an efficient tool to carry out the ther-
modynamic limit yielding the equilibrium states for two-dimensional Euler equations.
The interest of this approach was reinforced by the confirmation both experimentally
[10,38] and by numerical simulations [40] of the theoretical predictions in the case
of a vortex patch.

One aim of this paper is to provide a complete proof of the large deviation estimates
used in [33]. Our proof is an application of Baldi's large deviation theorem [3] (in
a slightly modified version). More generally, we show that Baldi's theorem is an
elegant and powerful tool to carry out thermodynamic limits in various functional
frameworks.

Another aim is to describe a class of infinite dimensional dynamical systems to
which the theory can be applied.

It is out of the scope of this paper to review the main contributions to statistical
hydrodynamics, nevertheless some comments and references are given in Sect. IV. It
is also worth noticing that a work close to ours, although expounded from a more
physical point of view, is developed by Miller et al. [26].

II. Baldi's Large Deviation Theorem and Thermodynamic Limits

Baldi's theorem gives general conditions under which a family of probability measures
on a locally convex topological vector space has the large deviation property.

As we will see, it provides a powerful tool to carry out thermodynamic limits for
infinite dimensional systems.
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The Large Deviation Property. Let E be a locally convex Hausdorff topological vector
space. We consider a family μh, h > 0, of Borel probability measures on E.

We will say (see for example Varadhan [42] or Ellis [12]) that the family μh has
the large deviation property with constants λ(/ι) and rate function L iff:

(i) λ(h) is > 0 and lim X(h) = +oo.
h—>+oo

(ii) L\E —>• [0, -foo] is a lower semi-continuous functional on E (not identical to
+oo). Moreover L is inf-compact, that is: the set \y | L(u) < b} is compact for all
real number 6.
(iii) For every Borel subset A of E, we have:

1

λ(/ι)
< lim inf T 7 I T Logμh(A) and

lim sup—— Logμh(A) < -Λ(A),
λ{rι)

where τl(A) = inf L(u).

The functional L is also usually called the information functional, and — L the
entropy functional.

Let E' be the topological dual of E, endowed with the weak-star topology
σ(£", E). For a Borel probability measure μ on i£, we define its Laplace transform:

= / exp((<^, v))dμ(y), for <̂  G £^x.μ(φ)

As it is well known, μ is a convex, lower semi-continuous and proper functional on
Ef. The same is true for the functional Logμ(^).

Baldi's Theorem 2.1. Let μh be a family of Borel probability measures on E,
satisfying the following assumptions:
(1) There is a function \(h) as in (i) such that

}i L o g

where F is a convex, lower semi-continuous and proper functional on E' which is
finite on a neighborhood of the origin.
(2) Compacίty assumption:

For every R > 0, there is a compact set KR C E such that

l,ogμh{Kc

R) < -R.

Let us denote by L the Young-Fenchel transform of F, that is:

L(v) = sup (((/?, v) - F{φ)), foτveE.

L is a convex, lower semi-continuous, and proper functional on E.
BaldΓ s theorem states that under the assumptions (1) and (2) the upper bound in

(iii) holds.
If we suppose that L has some additional strict-convexity property, we can also

derive the lower bound. We will suppose that L satisfies the following condition.
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(3) For every real number r, the set Ar — {v \ L{v) < r} is the closure of the subset
of the points v of Ar, where the subdifferential dL(y) (see [12]) is non-empty and
contains an element φ such that:

L(y') > Lψ) + (φ, uf - v), for all v' φ v .

Then BaldΓs theorem asserts that under the hypothesis (1), (2), (3) the two bounds in
(iii) hold. So, we see that the family μh has the large deviation property with constants
\{h) and rate function L. Indeed, one easily checks that the functional L is inf-compact
on E: for every real number b, the set Ab is closed and the lower bound applied to
the open set Kb+X yields Ab C Kb+ι [with the notation of (2)].

Comments. 1) In practice it may be difficult to check that the hypothesis (3) is
satisfied. In fact, Baldi's proof works as well with the following weaker hypothesis
(3')
(3r) For every v such that L(v) < +oo, for every open set O containing v and every
ε > 0, there is vx G O such that L(vλ) < L(y) + ε and L is strictly convex at υx, that
is: 3φ G dLiu^ such that

L(i/) > L(vx) + (φ, v1' - I/J) , for all v' φ vx .

2) L is strictly convex at v if, for example, dL(y) is non-empty and

L(tv + (1 - t)vf) < tL(y) + (1 - t)L(yr)

for all 0 < t < 1, v' G dom L, v' φ v.
3) In the case where only the hypotheses (1), (2) are satisfied, as we have seen, Baldi's
theorem gives an upper bound. But the functional L may fail to be inf-compact in
that case. Nevertheless we can see that the set

AQ = {y G E I L(y) = 0} is non-empty .

Notice first that we obviously have F(0) = 0 and since F is also the Young-Fenchel
transform of L, we get:

inf L(y) = 0 .

Furthermore, we have μh(Kι)+μh(K\) = 1, and from (2) we know that μh{Kx) —» 0
(when h —> oo).

Now, if Ao were empty we should have Λ(KX) > 0. Then, applying Baldi's
theorem we should have μh(Kx) —>• 0; this would yield a contradiction. Moreover,
one can easily deduce that for any open set U containing Ao there is a number a > 0
such that:

μh(Uc) < exp(—X(h)a), for h large enough.

We shall say that the family μh concentrates about the set Ao.

Thermodynamic Limits and the Concentration Property. When dealing with thermo-
dynamic limits one usually encounters the following situation, which we summarize
here in an abstract form. Let δh be a family of random variables with values in a
Hausdorff locally convex topological vector space E. 6h generally comes from some
finite dimensional approximation of an infinite dimensional system. If we can prove
that, for h large, with a high probability, δh remains in a neighborhood of some points
z/* of E, then ^* is the equilibrium state of our system, and the thermodynamic limit
is performed.
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Large deviation theory shows us that such a situation is very common. We will
assume in the sequel that the family δh (or the associated probability distributions μh

on E) has the large deviation property with constants \{h) and rate function L.
Since Prob(<5^ G E) = 1, for all h, we have inf L(y) = 0 and the set Ao is a

non-empty compact subset of E. And, as in the above comment 3, for every open set
U containing Ao, there is some a > 0, such that:

Prob(^ G Uc) < exp(-λ(/ι)α), for large h.

That is, the family δh concentrates about the set Ao which is the equilibrium set of
the system.

In our "microcanonical" approach, we will study now the situation where δh

satisfies some given constraints (it would be more correct to say that we introduce
some conditioning on the random variables δh). These constraints will be given, for
example, by the constants of the motion of an infinite dimensional dynamical system.
We introduce the constraints in the general form δh G CS\ where & is some subset
of E. Of course, since δh comes from a finite dimensional approximation, the ideal
constraints δh G W will not be exactly satisfied, but only up to some approximation
given by an open neighborhood of 0 in E, W. Let us denote Ww = W + W. We shall
then consider δh G Ww.

Let us now give a definition.

Definition. Let <§T, <§f* be subsets of E, we will say that δh concentrates about £f*
conditionally to W iff:

(i) VW^liminf - ^ - LogProb(^ G %w,) > -oo ,
h-^oo Λ{fl)

(ii) W * , 3a > 0 , 3W

%w\%*,*) ^ e χ p ( _ λ ( / ι ) Q ) j f o r h l a r g e e n o u g h

Here VF*, W, VF7 denote open neighborhoods of 0 in S.

Remarks. 1) Heuristically, this definition means that if we know that δh takes its
values in a neighborhood of CS, then it will be in a neighborhood of ^ * with a high
probability.
2) As previously noticed, we have to widen the sets <<?, ̂ * into open neighborhoods.
In fact Vxoh{δh G %) is not defined for an arbitrary subset CS\ and even if CS is a
Borel subset, it can be zero.
3) The condition (i) ensures that, when h —• oo, Prob((^ G ̂ / ) cannot be too small.

Now we derive the following concentration result which will be useful to carry
out thermodynamic limits.

Concentration Theorem 2.2. We suppose that δh has the large deviation property
with constants λ(h) and rate function L. Let & be a non-empty closed subset of E and
&* the subset of &', where L achieves its minimum value on W. Then δh concentrates
about W* conditionally to <ξ.

Proof. L is inf-compact on E, thus <§Γ* is always non-empty. In the case where
inf L(y) — +oo, we obviously have if* = CS. In this case, we may say, by
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convention, that δh concentrates about <§ί* cond. to &'. Otherwise, by the l.d.p. (large
deviation property), we have

liminf—— L o g P r o b ^ G %w,) > - inf L{y) > - inf L(y) ,
λ(h) v^w' u ^

and (i) is satisfied.
Now, let VF* be given, and consider a real number aλ > 0 such that

inf L(v) ~ inf L(y) > a, .

We shall use the following result.

Lemma 2.3. L<?r W, ^ be closed subsets of E, then we have

inf_ L(y) -* inf

Proof. Let us denote by W the filter of the neighborhoods of 0 in E. For W <G W,
we define

Z(W) = inf_ L(v), ί* = sup l(W), /** = inf L(i/).
T6 esnz

We obviously have /(VF) -> /* (when W -> 0), and /* < /**.
If l* = +oo, there is nothing to prove, let us suppose Z* < +oo.

Let us take ε > 0 and, for each W, we choose vw £ .^ Π <€'w such that
l(W) < L(yw) < Z* + ε.

The set {i/ G E11 L(y) < Z* + ε} is a compact subset of E, and there is a subfilter
W of ^ for which vw converges towards z/*. We have i/* e ^ Π g", and the lower
semi-continuity of L implies:

L(z^*) < lim inf L(vw) < Z* -f ε ,

from where Z** < Z* + ε, and the lemma is proved.
From the lemma we deduce that there is a number a > 0 such that, for W small

enough, we have:

_ inf L(y) - inf L(y) > a , for all VF;.

Applying the l.d.p., we get:

lim sup —— Log Prob(^ e &
λ(/ι)

and

liminf-—LogProbO^ e %w,) > -A(&w,).
λ{tl)
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Now, we have

< limsup—— LogProb(^ G

- l iminf-— Log Prob(δh G

) < -a ,

from which we get (ii) and the theorem is proved.

Remark. The set <s?* in which δh approximately remains with a high probability is
the equilibrium set of the system. If <§Γ* does not reduce to a point (the equilibrium
state) we are in a phase transition situation. We shall see in the following section
how we can use this concentration result to derive a maximum-entropy principle for
Young measures. We shall use this principle in Sect. 4 to get the equilibrium states
of some infinite dimensional dynamical systems.

III. A Maximum-Entropy Principle for Young Measures

It currently happens when dealing with a limit process for a sequence of bounded
measurable functions that the sequence does not converge and shows an oscillating
limit behavior, whereas some estimates and conservation laws hold. In such a case,
the concept of Young measure has been found relevant to describe the behavior of
the sequence (examples can be found in hyperbolic systems of conservation laws,
homogenization, hydrodynamics...). Young measures can be viewed as giving a
macroscopic description of the system, whereas the bounded measurable functions
are all the microscopic states.

We use the results of Sect. 2 to derive a maximum entropy principle for Young
measures. That is: the macrostate (Young measure) which realizes the maximum
of an entropy functional has a natural concentration property (a large majority of
the microstates satisfying a given set of constraints are in a neighborhood of that
macrostate). It turns out that this entropy functional is the classical Kullback entropy
(see Sanov's theorem).

Young Measures. Throughout this section X, Y will denote two locally compact
separable and metrizable topological spaces. Let us suppose that a positive Borel
measure dx is given on X.

Let us recall that Young measures [44] are a natural way to generalize the notion
of measurable mapping from X to Y: at any point x G X, we no longer have a
well determined value, but only some probability distribution on Y. In other words,
a Young measure v is a measurable mapping x —• vx from X to the set M{(Y) of
the Borel probability measures on Y endowed with the narrow topology.

Clearly, v defines a positive Borel measure on Y x Y (that we will also denote
by v) by:

x
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for every real function /(#, y), continuous and compactly supported on X x Y
if e CC(X x Y)). Moreover, for fix) e CC(X), we have

• /

<!/,/>= / f(X)dx,

that is, the projection of v on X is dx.
It is well known [19] that this property gives an equivalent definition of Young

measures. That is, for any positive Borel measure v on X x Y whose projection on
X is dx, there is a measurable mapping x -* vx such that the above formula holds.
The mapping x —> z^ is unique up to the dx-almost everywhere equality.

To any measurable mapping f:X -^ Y, we associate the Young measure
δf :x —> ί j^), Dirac mass at fix).

We shall make two additional assumptions:
(*) The measure dx is diffuse and of finite total mass dx(X) = \X\.

(**) There is a distance function d(x,x') giving the topology of X, such that: for
all ε > 0, there is a finite partition of X into measurable subsets 3£ = {X11 i =
1,..., n(S')} with | J P | — |X?| for all a, j (we shall say that 3£ is an equipartition
of X), and satisfying d(J*Γ) < ε, where d(,5̂ Γ) = sup sup d(x,xf) is the diameter
Of JΓ. * x,a;'6Γ

Notice that (*) and (**) implies that \A\ goes to zero when the diameter of a
measurable set A goes to zero.

Hypotheses (*), (**) are satisfied, for example, if X is an open convex and bounded
subset of W1 with dx =Lebesgue's measure, and also if we consider any image of X
by a ^-preserving homeomorphism.

We shall denote by M the convex set of Young measures o n l x 7 , and we recall
some useful properties.
- M is closed in the space Mb(X x Y) of all bounded Radon measures on X x Y
(with the narrow topology), the narrow topology is equal on M to the vague topology
(weak topology associated to the continuous compactly supported functions) and it is
metrizable. Furthermore if Y is compact then M is compact. In the sequel M will
be endowed with the narrow topology.
- {δf I / : X —•> Y measurable} is a dense subset of M. The proof of this property can
be found in [5] for the case Y compact. The general case follows by approximation.
Approximate first (for the vague topology) a given Young measure v by u3- (as in
the proof of Theorem 3.1 below) which is constant, equal to u\ on each set X% of
an equipartition JΓ, and then approximate each v% by a probability measure with
compact support.

A Large Deviation Property. Suppose now that we are given a basic Borel probability
measure τr0 on Y. Then to any equipartition 1 ' of X we can associate a Borel
probability measure μ^ on M in the following way. We take px,..., J^n, n{/F)
Y-valued independent random variables with the same distribution τr0. We consider
the random function

where l χ ι is the characteristic function of the set X1. We denote δ%* the Young
measure associated to f ^- and μ ,Γ the probability distribution on M of the random
variable δr. Now, we can state the main result of this section.
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Theorem 3.1. When d(&) —> 0, the family μ^ has the large deviation property with
constants n(JP)/\X\ and rate function ϊ^(y), where π — dx 0 τr0 and IΈ(y) is the
classical Kullback information functional (see Varadhan [42] j , defined on M by:

dv
Log —— dv, is v is absolutely continuous with respect to π ,

dπ
XxY

I^iv) = -f oo otherwise.

Proof We shall show that Baldi's theorem applies to that case. We take for E the
space Mb(X x Y) endowed with the vague topology. Taking the vague instead of the
narrow topology on E makes no change on M but gives the compacity property (2)
for μ/;, since the closure M of M in Mb for the vague topology is compact. Then
we have E1 = CC(X x Y).

We check now that the assumption (1) is satisfied. We take φ(x, y) £ CC(X x Y)
and compute the limit in (1),

= / exp
E

/

/ 1 ί \

exp [ -Γ^T / φ(x, y) dx j dπo(y).
1 Y \ Xi

J
Let us define

1 r
φj:{x, y) = —— / φ(x, y)dx, if x E X\

n \ ( if
— - φ ) = I dx Log [ /
\Λ\ / J \ J

then we have

]*Ί
n ' ~ MA i / j i

When d(JΓ) goes to zero, φ/:(x,y) converges towards φ(x,y) and by Lebesgue's
theorem, we get:

f ( f \
F(φ) = / cbLog / exp(φ(x,y))dπo(y) .

X \Y /

The functional F is everywhere finite on CC{X x F), it is convex since it is a limit of
convex functions, and it is obviously continuous for the norm topology of Cc. Thus
it is also lower semi-continuous for the weak topology <τ(Cc, Mh).

Now, to check that the hypothesis (37) is satisfied, we have to compute the Young-
Fenchel transform L of F. For v E Mb(X x Y), we have:

L(v)= s\φ((ι>,φ)-F(φ)). (4)
φecc

First Point. We have L(y) — +00 if v fi M. We can easily see that L(y) = -hoc
unless v is positive. Indeed, if v is not positive, there is some φ E Cc, φ < 0, such
that (z/, φ) > 0. Then we have F(φ) < 0 and (z/, φ)—F(φ) > 0. Taking the supremum
over the λφ9 λ > 0, gives the result.
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Now we prove that L{y) < +00 implies v G M. Let us notice that the supremum
in (4) can be extended to any φ G Cb(X x Y). Thus for any φ(x) continuous and
bounded on X, we have

+00 > L(v) > (z/, Xφ) — λ / φ(x)dx , for all real number λ ,

x

hence (1/, φ) — f φ(x)dx, that is v G M.
x

Second Point. On M we have L(v) = /π(ι/) Let us first prove that L(y) < Iπ(v). Of
course we may suppose that /π(z/) < +00, in which case υ is absolutely continuous
with respect to π:v = ρ(x,y)π, where ρ is a π-integrable Borel function. Then we
follow the method given by (Varadhan [42], Theorem 4.1) and use the inequality

ab < b Log b + exp(α - 1), for all real number α, and for b > 0 .

For any 99 G Cc(-^ x F), and any c(x), we have:

(φ- c)ρdπo(y) < / ^Log ρdπo(y) + / exp((/? - c -

Y Y Y

taking c(x) = Log ί J oxp(φ) dπΛ - 1, and using / ρ(x, y) dπo(y) = 1, we get:
\ J

i f ( f \
/ φρdπ0 < / ρ Log ρ dπ0 + Log / exp(φ) dπ0 ,

y y \y /

integrating this over X yields L(z/) < / π (^) .
Let us now prove the converse inequality L(y) > Iπ(y). It is well known that:

( f f dx
/π(ι/) = sup (i/, cp) - |X| Log / exp 99 — dπ0

the result thus follows by applying Jensen's inequality to the convex function — Log.
It remains to check that the strict-convexity condition of Baldi's theorem is

satisfied. This is not obvious since if v is such that L(v) < +00, dL{v) may be
empty. In fact, we shall see that (30 is satisfied. At first we prove that L is strictly
convex at the Young measures v = exp(<^)π, for φ G CC(X x Y). Since we know that
Iπ(v) is strictly convex on its domain, we only have to prove that for such Young
measures φ G dL{v). Let us consider the functional

XxY

One can easily check that for any Borel function ρ, 0 < c < ρ < C < +00, the
functional / is Frechet-derivable at ρ in the space L°°(π). From the convexity of /,
it comes:

KQ') > KQ) + / (1 + Log ρ) (ρf -ρ)dπ, for all ρ' > 0, ρ' G L°°(π).

XxY

It follows that for all v in Mb(X x Y) we have

L(y) > L(ρπ) + (v - ρπ, Log ρ).
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Hence for ρ = exp(</?), we get φ G dL(exp(φ)π).
Now let v be given such that L(y) < +00. We have v — ρπ. For any equipartition

3£ of X, we define the densities

1

ρjξix, y) = ^(2/), for x G Xι\ and z/ r = ^ π .

One easily checks that v % converges towards v, for the vague topology, when
&) -> 0.

Furthermore, we have

By Jensen's inequality, we have

/

dx
ρ(x,y)Logρ(x,y)——

x%

from which L(υ$) < L(u).
Now we have to approximate the measure v^ . The following lemma, whose proof

is an easy exercise, will be useful.

Lemma 3.2. For any given density ρ(y) in Lι(πQ), there is a sequence ρn(y) of
continuous functions satisfying:

(i) ρn(y)>O,Jρn(y)dπo(y)=h
(ii) ρn = 1 out of a compact set,

(iii) f \ρn — ρ\ dπ0 —> 0 w/ze/ί n —>• 00,

Furthermore iflρl^ < m, we can choose ρn such that Iρ^^ < 2m + 1.

Then, for each ρ\y), we consider the sequence ρι

n given by the lemma. One can
also find sequences aι

n(x) of continuous functions with compact support on X, such
that

0 < a\{x) < 1, and / \\χτ - < | dx < -

x

Now let us consider the sequence of continuous functions

ρn(x, y) = Σ aι

n(x)ρι

n(y) + 1 - ^ <(x)
i 1

we easily check that ρn > 0, ρnπ is a Young measure, ρn — 1 out of a compact
subset of 1 x 7 and

/ \θn~ Q.iλ dπ —> 0 when n —> 00 .

It follows that ρnπ converges towards v:# for the vague topology and L(ρnπ) —>
L(is3) (it is a straightforward application of Lebesgue's theorem if ρ:£ is bounded,
the general case can be reduced to that case). Since φn = Log ρn e CC(X x Y), the
hypothesis (3') is satisfied, Baldi's theorem applies and the proof is complete.
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In this Young measure framework, Theorem 2.2 yields the following result.

Corollary 3.3. Let & be a non-empty closed subset of M, <§Γ* the subset of & where
the functional Iπ achieves its minimum value on %. Then δ3- concentrates about W*
conditionally to <%.

Remark. Theorem 3.1 appears as a generalization of the well-known Sanov's theorem
[36]. Indeed, apply the contraction principle to the mapping v —> J vx dx.

We refer to [34] for a direct proof of Corollary 3.3 using Sanov's theorem.

IV. Statistical Equilibrium States
for a Class of Infinite Dimensional Dynamical Systems

1) A Class of Infinite Dimensional Dynamical Systems. Now we apply the tools of the
previous sections to evolution equations of the form:

\ u = J&(q), div(u) = 0

where q(t,x) is some scalar density function defined on R x Ω (Ω is a bounded
connected smooth domain of W1), u(t,x) is an incompressible velocity field taking
its values in M.d, which can be recovered from q by solving a P.D.E. system. Thus
5£ denotes a (not necessarily linear) integro-differential operator.

Let us give some well-known examples of such systems.
1. The simplest example of (I) is the linear transport equation, where u(x) is a given
incompressible velocity field on Ω.
2. 2D incompressible Euler equations in the usual velocity-vorticity formulation are
clearly of the form (I). Take for q the vorticity: q = curlu, then u is given by

curl u = q ,

div u = 0,

u n = 0 on dΩ .

This is a particular case of the quasi-geostrophic model used in geophysical fluid
dynamics [24], in which q is the potential vorticity, and u is given by:

u = curl ψ ,

-Δψ + r2ψ = q + / ,
Ψ = 0 on dΩ .

Here /(x) is a given function (topography) on Ω, ψ the usual scalar stream function
and r 2 a non-negative constant.
3. Collisionless kinetic equations such as the Boltzmann-Poisson equation of stellar
dynamics and Vlasov-Maxwell equations of plasmas can also be written in the form

(I).
The first step in our program is to define a flow associated to (I) on the phase space

L°°(Ω). Unfortunately, to our knowledge, there is no general existence-uniqueness
result for the Cauchy problem for system like (I). Examples 1 and 2 are well known,
but for kinetic equations, although some existence results are available [2,11], it
seems that the uniqueness problem is not yet solved.

To proceed further, we shall make the following hypothesis.



206 J. Michel, R. Robert

(HI) The system (I) defines a flow Φt:L°°(Ω) —> L°°(Ω), whose restriction to any
ball L^° = {q:\q\cQ < r} is continuous for the strong L2 topology.

So, for any given initial datum q(x), we have a velocity field u(£, x); to this field
we associate a Lagrangian flow φt(\), defined by:

{ φo(x) = x J
We shall suppose:
(H2) The Lagrangian flow φt is globally (in time) defined on Ω. The mappings φt

are volume-preserving homeomoφhisms of Ω, satisfying an estimate:

\φt(x) - <^(y)| < C(T, r) |x - y | α ( Γ ' r ) , α(Γ, r) > 0,

for Igl^ < r , x , y G β , t G [ 0 , Γ ] .

And we have Φtq(x) = q(φ^ι(x)).
For any given r > 0, let us denote M r the space of Young measures on Ω x [—r, rj.

A natural extension of Φt to Mr is given by:

where </?f is the Lagrangian flow associated to the initial density

q(x) = ρ(χ) = / a dux(a).

Heuristically, we may say that the oscillations of the density function are merely
frozen and convected by the velocity field associated to the mean density.
(H3) Φt: Mr —• Mr is continuous for the narrow topology.

Notice that the density of L^° in Mr implies that such an extension is unique.
Notice also that the topology on L^° induced by the narrow topology of M is equal
to the strong L2-topology (whereas the corresponding uniform structures are different).

Hypothesis HI, H2, H3 are obviously satisfied in Example 1 if u is a Cι velocity
field on Ω which is tangent to the boundary. They are also satisfied in Example 2:
this is the classical Youdovich's theorem in the case of Euler equations [43]; its
generalization to the quasi-geostrophic model will be found in [23].

Constants of the Motion. For systems of the form (I), there is a family of constants
of the motion which will play a crucial role. These are the functionals

Cf(q)= / f(q(x))dx,
J
Ω

for any given continuous function / on R. Let us define the distribution measure of
g, πq by (πq, f) = Cj(q). Then πq is conserved by the flow.

Notice that, in the case of Example 2, the quasi-geostrophic model has in a natural
way a Hamiltonian structure [24], and these invariants are the well known Casimir
invariants associated to the degeneracy of the Poisson brackets. According to each
particular case, we will have also to take into account the classical constants of the
motion of the system (energy, angular momentum,...).

2) Motivation to Define Equilibrium States. Observations, experiments, or numerical
simulations in 2D fluid dynamics display in many cases the appearance of well
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organized structures. This is a striking feature of 2D fluid turbulence. We observe
that after a complex evolution the system converges towards some stationary state
which is usually called a coherent structure. Since in 2D turbulence the energy of
the flow is conserved Onsager [30] suggested that such structures were equilibrium
states and it would be possible to predict them by a relevant statistical mechanics
approach. The same idea was later rediscovered by Lynden-Bell [22] in the context
of stellar dynamics. Lynden-Bell tried to explain the particular distribution of light
observed in elliptical galaxies. We do not intend to discuss further these enlightening
and pioneering works. The interested reader can find some information in the papers
[9, 13, 21, 26, 27, 35] (this list is of course far from exhaustive). To summarize our
view, let us say that these works have clearly shown the need for an appropriate
statistical mechanics approach working in a sufficiently broad frame.

3) Previous Attempts to Define Equilibrium States. A natural way to define equilibrium
states is to construct invariant Gibbs measures on the phase space. Although this can
be done for some infinite dimensional systems (see for example [15]), we do not
know how to construct such measures on the natural phase space L°°(Ω) for systems
like (I). In the case of Euler equations some work has been devoted to the study
of Gibbs measures with formal densities given by the enstrophy and the energy [4],
and also to Gibbs measures associated to the law of vorticity conservation along the
trajectories of the fluid particles [6]. Unfortunately all these measures are supported
by very "large" functional spaces so that not only the mean energy and enstrophy
of these states are infinite but the phase space L°°{Ω) is of null measure. So, it is
only at a formal level that this makes sense. Moreover this approach fails to give
any prediction on the long time dynamics corresponding to a given initial vorticity
function.

The most common approach is to use a convenient finite dimensional approxima-
tion of the system, possessing an invariant Liouville measure. Then one can consider
the canonical measures associated to the constants of the motion and try to perform
a thermodynamic limit in the space of generalized functions when the number of
degrees of freedom goes to infinity. For example, for 2D Euler equations one can
consider the N Fourier-mode approximation or the point-vortex approximation. Two
difficulties arise in this approach. The first is to choose a relevant scaling to per-
form the limit; an interesting comment on this point can be found in [26], see also
[16,4]. The second is even more fundamental: generally, the approximate system will
have less constants of the motion than the continuous one (I), so that the long time
dynamics of that system may be very different from that of the continuous one.
For more comments and references on these previous attempts see for example
[33, 35, 26].

4) Our Approach. As expounded in [33] for 2D Euler equations, our approach is
based on the following points.

1. Identify the long time limits of the dynamical system as Young measures. Mr

is a suitable compactification of L^° since the narrow convergence (when t goes to
infinity) of SΦtq towards some Young measure v preserves the information given by
the constants of the motion, that is, for all function /

/(Φ tς(x))dx-»

Ω
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but the left-hand side is constant and equal to (π , / ) , so that:

Ω

The same kind of arguments applies to the other invariants. For example, in the case
of Euler equations, since Φtq converges weakly towards z>(x), we have for the energy
E{Φtq) —> E(ΰ), which is the energy of the Young measure v, see [33].

Thus we see that the constants of the motion of (I) bring constraints on the possible
long time limits.
2. For a given initial state q, the corresponding equilibrium state is the Young measure
z/* which minimizes the Kullback information functional I^iy) (π = dx ® τr0,
|j?|τr0 = τrg) under the constraints given by the constants of the motion. Thus
z/* (or more generally the set g7*) will have the concentration property given by
Corollary 3.3.
3. In other words, to get z/*, we have computed the thermodynamic limit in the space
M of the "microcanonical" measures μ3; (defined in Sect. Ill) with the conditioning

n

given by the constants of the motion. But the probability measure π$> = 0 τr0, on
the space Es: of the density functions which are constant on each element of the
equipartition S\ is not conserved by the flow Φt; so that the compatibility with the
dynamics of the system is not a priori ensured.

In [33] the method was justified by an invariance theorem. That is, the concentra-
tion property is conserved by the extended flow Φt. The proof given in [33] works
equally well for systems like (I) satisfying hypothesis HI, H2, H3. Indeed, the crucial
point is the (obvious) fact that the functional lΈ{y) is conserved by the extended flow.
Another straightforward consequence is that the equilibrium set ^ * is conserved by
Φt (Φt(&*) = &*). So, if &* = {z/*} then Φt(v*) = v* and the mean density Ϊ/*(X)
is a stationary solution of (I).

It was argued by Eyink and Spohn [13] that the above invariance property was not
enough to provide a complete justification of the method. Their interesting comments
lead us to develop here some further arguments.

Let us apply the contraction principle to the mapping v —» v from Mr into L °̂
endowed with the weak topology σ(L°°,Lι) (we suppose that π 0 is supported by the
interval [—r, r]). Then we deduce from Theorem 3.1 that the family of measures π^
has the large deviation property with rate function

J(/)=inf/».

Obviously, the functional J is conserved by Φt.
Now, for any Borel subset A of L£°, we have (using the notation ~ as a convenient

shortcut):

J(Φt(A))) =

where J(A) = inf J(/), so that
f€A

when
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It means that the measures π ^ are, in some approximate sense, conserved by the flow
Φt. It appears that this argument can be sharpened to give something looking like a
classical justification.

5) Towards a More Complete Justification. Let us start with some heuristical consider-
ations. Let us suppose that the flow Φt is "well approximated" by some iV-dimensional
dynamical system:

(ΦN)t:EN^EN,

that is, for any given q, (ΦN)tqN is close to Φtq in the L2 norm (here qN denotes an
approximation of q in the L2-sense); and this approximation is uniform for t in the
interval [0, Γ], for N large enough (depending on Γ).

Let us suppose now that (Φpj)t has an invariant Liouville measure μN on EN. Of
course, we cannot expect that (ΦN)t will have the same constants of the motion as
Φt, but since the constants of the motion of Φt are uniformly continuous functionals
on the compact space Mr, any finite subset of these functionals will be approximately
conserved by the flow (ΦN)t during the time interval of interest (for TV large enough).

Therefore, since we are interested in the long time dynamics of (I), say for example
at time T, it is natural to consider the microcanonical measures μN obtained by
conditioning μN by the constants of the motion of (I); and then to perform the
thermodynamic limit of μN in the space M, which is the good candidate for the long
time limits.

Of course this program is not easy to carry through in general. Nevertheless it is
exactly what is done in Corollary 3.3 with the "Liouville" measure π ^ .

It remains to show that π ^ is actually conserved by a flow on Er which
approximate Φt.

An Approximation of the Flow Φt. Let us begin with t = 1, let & be an equipartition
of Ω and E^ the subset of the functions of L^° which are constant on the sets Ω%

of 3)\ We can construct an approximation of Φx in the following way: For a given
integer p > 1, we write

s=l

where each Cs is a box which is a product of intervals of the form

r—,r , k = — p , . . . , p — 1 .

P V J
First, we construct a mapping Ψp\E3- —• L^°. For g G C s , q = Y^q^Qi,
ΨpiΦ — Σ^l^ s(i?*)> w n e r e ^i denotes the Lagrangian flow associated to qs, the
center of the box Cs. Now, we approximate this mapping Ψp by a mapping ΨPy#;
taking its values in E^ . This can be done by means of the following lemma whose
proof is given in the appendix.

Lemma 4.1. Let Ω be an open bounded subset ofRd, JΓ = {Ω1}, &' — {Oι}y two
equipartitions of Ω with the same number n of elements. Then, there is a permutation
σ of {1,. . . , n} such that vol(β2 Π O σ ( i )) > OJor all i.

We apply the lemma for each s and choose a permutation σs such that

Ωι) Π Ωσs{%)) > 0, for all i.
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Then we define the mapping ^ r by:

Then we have the following result.

Proposition 4.2. For d{3') small enough and p large enough (depending on d(.3Ί)),
Ψp •£ uniformly approximates Φx on Ej;. That is: Ψp ^(q) is close to Φγ(q) in L^°
endowed with the narrow uniform structure of M (uniformly with respect to q £ EJ;).

Proof. At first, it is an easy exercise to check that for d(JΓ) small enough Ψp /;{q) is
close to Ψp(q) for the narrow uniform structure of M (uniformly for q £ E^). This
follows from the fact that the Lagrangian flow φ{ satisfies a Holder estimate which
is uniform for q in L^°.

Now, let JΓ fixed. For p large enough, Ψp(q) will be close to Φγ{q) in the L2 norm
(uniformly for q £ E%•). Indeed, by (HI), Φ{ is continuous from EJ; into L^° (for
the L2 norm) and since Ej; is compact, it is uniformly continuous on E^ . The result
follows by noticing that on L^° the uniform structure of the L2 norm is stronger than
the one induced by the narrow uniform structure of M.

It is clear that Ψp %: conserves the distribution π . For any probability measure π 0

n

on [—r,r], the measure (2)τr0 on E:// is also obviously conserved on each box Cs.

But it is not globally conserved, since two different boxes Cs and Cs can have the

same image by &Pv%>-
With a slight change, one can get a one to one mapping Θp r from E$; onto EJ:.

We proceed as follows. Mr is a compact metrizable space for the narrow topology, let
us denote <i( , •) a distance function defining the uniform structure. Now, we define a
one to one mapping qs —> q^s\ where ξ is a permutation of the indices of the boxes,
in the following way:

where k runs over the permutations of the indices of the boxes satisfying πqk(S) = ττqS.
This mapping is straightforwardly extended (as above for Ψp) from Cs onto C^s) to
get finally a one to one mapping Θp /: from EJ; onto E:jr:. Obviously, πq and the
measure π /: are conserved by Θp /:.

Of course, it remains to prove that Θpt- is also a good approximation of Φ{ (i.e. an
analog of Proposition 4.2 holds for θp y ). Despite the fact that this property follows
common intuition, it is not easy to prove rigorously. We can only conjecture that it
is true at present.

Finally, if we suppose that such a result is true, at long time (say t = T,T integer),
for d(J&) small enough and p large enough, the flow Φτ will be well approximated
by (θp/)

τ, so that the classical appeal to ergodic theory holds.

6) Resolution of the Variational Problem. As we have previously seen, the equilibrium
set ^T* corresponding to a given initial datum q is the set of the solutions z/* of the
variational problem,

(V.P.) / > * ) = i n f { / » I v e %} ,
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where W is the closed set of the Young measures v satisfying

Ω

(**) other constraints (energy...).

Using Lagrange multipliers, we can get easily the equation satisfied by the critical
points of (V.P.) (Gibbs states' equation). We refer to [33] for Euler equations and to
[24] for the quasi-geostrophic model.

In this section we shall make two comments. The first comment is relative to the
choice of the basic probability measure τr0. Indeed, it is natural to examine how the

equilibrium set defined by (V.P.) depends on π 0 . As previously, denote π 0 = -— πq,

and suppose that we choose another probability distribution πγ on [—r,r] to define
the rate function Iπ,, πf = dx® πx. The condition (*) implies that, for almost all
x, ux is absolutely continuous with respect to π 0 . On the other hand, one easily gets
for v e <§f:

Thus we see that, provided that / (τr0) < +oo, minimizing Iπ or Iπ, on W gives the

same equilibrium set ^ * . In the degenerate case / π i (π 0 ) = +oo, Iπ; is identical to

+oo, and the corresponding equilibrium set is equal to W.
To summarize: in the non-degenerate case, the equilibrium set does not depend on

the choice of πι. It is then very natural to choose πx — π 0 .
We come now to the resolution of (V.P.) in the particular case of Example 1. We

have:
CS''= J v e M

/ •
dx = π

q

and the unique solution of (V.P.) is i/* = dx0τro. Let us suppose that the Lagrangian
flow φt associated to u is mixing in the usual sense of ergodic theory, that is: for any
measurable subsets A, B of i?, we have

lim vol(φ~\A) Π B) = vol(A) vol(E).
t—>oo

In that case, we can easily prove that when t —» oo,

δΦtq —> z/* , for the narrow topology.

This simple result linking the long time dynamics with the equilibrium state leads to
the following important comment.

For a given q, since Φtq = q(φ^1), many other topological invariants are conserved
by the flow: for example, if q is a patch with n connected components, the same will
be true of Φtq for all t. So we may a priori think that an equilibrium state will depend
not only on the constants of the motion that we have considered but on q itself.
Example 1 shows that in fact these invariants play no role. We see that, when t goes
to infinity, the Dirac Young measure δΦtq approximates better and better in the narrow
topology the limit ι̂ *, while the supplementary invariants that Φtq conserves bring
no constraints at the limit on the state z/*. This is due to the fact that these invariants
are not uniformly continuous for the uniform structure induced on L£° by the narrow
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uniform structure of Mr. Indeed, any uniformly continuous invariant has a unique
continuous extension F on Mr. Then, at the limit, i/* must satisfy the constraint
F(z/*) = lim F(Φtq) = F(q).

t^oo

Let us notice also that, for Example 1, the mapping Φ ̂ \E3 —» EJ; defined by

where the permutation σ is chosen such that volO^J?*) Π Ωσ^) > 0, is obviously
one to one and conserves the distribution πq and the measure

V. Comments

1. The idea to consider such equilibrium states for the Boltzmann-Poisson equation
was first introduced by Lynden-Bell [22]. As noticed in [41], since the region occupied
by the stars is the whole space R3, equilibrium states do not exist in that case.
Moreover, even if the particles are constrained to move in a bounded domain of the
space, their speed is distributed over all of R3; so that the domain is not naturally
bounded in the case of kinetic equations. This of course needs some supplementary
technical work to define rigorously the equilibrium states.
2. In the case of Euler equations and more generally for the quasi-geostrophic model
the same equilibrium states can be obtained by using the classical point-vortex
approximation, see [23,24].

3. In a recent paper [26], Miller et al. exhibit a TV-dimensional approximation of
2D Euler equations on the torus, which preserves the main features of the Hamiltonian
structure; that is, the degeneracy of the Poisson brackets yielding O(Λ/N) Casimir
invariants. This approximation was previously published by Zeitlin [46], see also
[14,45]. While it is likely that this equation provides a good approximation of Euler
flow, the thermodynamic limit in the space of Young measures of the associated
canonical Gibbs measures is far from obvious. The following simpler problem is not
even solved.

Let us consider e 1 , . . . , e^, the usual real orthonormal Fourier basis, ωN = Σ ω^,
and let ωN evolve according to the usual spectral approximation scheme. Then it is
well known that the measure dω{ . . . dωN is conserved, so are the energy and the
enstrophy Y^ω\. Let us consider the Gibbs measures

μN = — exp ί — Na \ J ω?) dωι ... dωN , for a > 0 fixed.

The following question arises naturally:
Do the images, by the mapping ω —> δω, of the measures μN have the

large deviation property with constants N and rate function Iπ(iy)
cy
— exp(—aω2)dω
π
To conclude this comment, let us notice that the large deviation results of Sects. II

and III provide an easy and rigorous proof of the thermodynamic limit result of Miller
et al., see [33] Comment 7.
4. We left no place in this paper for the discussion on the physical relevance of
these equilibrium states. Such a discussion is necessarily based on an analysis of the
macroscopic spatial scale at which the flow is observed, of the viscous dissipation scale
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(if some viscous dissipation process occurs), and of some characteristic relaxation time
of the system. This greatly varies from one system to another (there is no viscous
dissipation for collisionless kinetic equations) and must be carefully done specifically
in each case. This is clearly out of the scope of our paper which is an attempt to give
some clarification on the mathematical basis of the theory. In our opinion we need
to distinguish clearly between the mathematical properties of ideal models and the
variable conditions under which such equilibrium states might be physically relevant.
Nevertheless, some elements for such an analysis can be found in [35, 40, 26, 13]
for 2D turbulence, in [39] for Jupiter's Great Red Spot, and in [22,41] for stellar
systems.
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to improve the present paper.

Appendix

Proof of Lemma 4.1. We proceed by induction. More precisely, we prove that for all
k, 1 < k < n, and any family Ωι,..., Ωk of k distinct elements of 3\ we can find
O 1 , . . . , Ok distinct elements of ά such that vol(i?2 Π O%) > 0.

This is obviously true for k — 1. Now, let us suppose that the property is true up
to k < n, and consider a family i ? 1 , . . . , Ωk+1.

By the induction hypothesis, there is O 1 , . . . , Ok

9 in (Ψ such that vol(J?z Π O*) > 0
for i = 1,..., k. Let us consider Ωk+ι. If Ωk+ι intersects [in the sense vol(J?fc+1 Π
O*) > 0] an element O* of Θ] different from O 1 , . . . , Ok, the result is proved.

Otherwise, we have Ωk+ι C O1 U . . . U Ok [in the sense vo\(Ωk+ι Π (...)) =
vol(i?fe+1)], then Ωk+ι intersects at least two different sets O 1 , . . . , Ok, let us denote
them O 1 , . . . , Op (renumber), 2 < p < k. Now we have Ωk+ι C O1 U . . . U Op.
If one of the Ω\ . . . , Ωv\ say Ω\ intersects Ω\(Oι U . . . U Ok) the result clearly
follows: since Ωι intersects a set O* of & different from O 1 , . . . , Ok, we only have
to associate O* to Ωι and then Oi to Ωk+ι.

So, we may suppose that Ωk+ι U Ωι U.. . U Ωp c Oι U. . . UO k. Since the measure
of the first set is equal to (p + l)vόί(Ωι)9 it cannot be included in O1 U . . . U O p,
so that there is a set Ov+ι (renumber) which intersects a set Ω% for i < pΛϊ Ωp+ι

intersects Ω\(Oι U. . . U Ok), the result follows; otherwise, we iterate the construction
and it yields a sequence O\ i — 1.. .m, p < m < k, such that Ωm intersects
Ω\(Oι U . . . U Ok) and for each O\ p < i < m, there is a Ωj with j < i which
intersects Oι.

Now, to conclude, we associate to i7 m a set O* of @ different from O 1 , . . . , Ok.
Then we associate Om to Ω% for i < m, O% to i?J for j < i, and so on till we get an
index j < p. We associate this O3 to Ωk+X and the proof is complete.
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