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Abstract: Recursion relations are established for the residues of fractional powers of
a two-reduced super-KP operator making use of the Baker-Akhiezer function. These
show the integrability of the two-reduced even (or bosonic) flows of the super-KP
hierarchy. Similar recursion relations are also proven for the residues of operators
associated with the odd (or fermionic) flows of the Mulase-Rabin super-KP hierarchy.
Due to the presence of a spectral parameter and its fermionic partner in the Baker-
Akhiezer function, these recursion relations should be relevant to any attempt to prove
or disprove a recent proposal that the integrable hierarchy underlying two-dimensional
quantum supergravity is the Mulase-Rabin super-KP hierarchy.

1. Introduction

A surprising link has been established between the quantum theory of two-dimensional
gravity and integrable hierarchies of nonlinear equations of the KdV type [1]. It is
therefore of considerable interest to discover whether an integrable system underlies
two-dimensional quantum supergravity and its topological counterpart. Recent study
of a plausible superloop equation [7] has suggested that the Mulase-Rabin super-KP
(SKP) hierarchy [11, 6] (or a reduction thereof) is a contender for this role. Further
study of this system is therefore warranted.

In this paper, a two-reduced SKP operator is studied. Making use of the Baker-
Akhiezer function of the Mulase-Rabin SKP hierarchy, identities and recursion
relations satisfied by fractional powers of the reduced operator are established, which
show that the two-reduced even (or bosonic) flows of the SKP hierarchy are consistent
and Hamiltonian. This Hamiltonian structure has been found previously by Oevel and
Popowicz [3] using the Lax formulation of the two-reduced even flows. However,
the approach taken in this paper is perhaps more relevant to any attempt to prove
or disprove the speculation that the integrable system underlying two-dimensional
quantum supergravity is a reduction of the Mulase-Rabin SKP hierarchy [7, 8]. This
is because of the appearance of a spectral parameter and its fermionic partner via the
Baker function, as discussed further in the conclusion.
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In Sect. 2, the Mulase-Rabin SKP hierarchy is briefly reviewed, along with a
super-residue formula which is central to the results of this paper. This is applied
in Sect. 3 to the proof of recursion relations for residues of fractional powers of a
two-reduced SKP operator, and these are used to show the Hamiltonian integrability
of the two-reduced even (or bosonic) flows of the SKP hierarchy. Using the Baker
function approach, it is also possible to establish identities and recursion relations for
the residues of operators which appear in relation to the odd (or fermionic) flows of
the Mulase-Rabin SKP hierarchy. This is done in Sect. 4. The conclusion contains an
appraisal of the significance of these results to any attempt to establish a link between
two-dimensional supergravity and the Mulase-Rabin SKP hierarchy. Calculational
details are contained in the appendices.

2. The Mulase-Rabin SKP Hierarchy

The SKP hierarchies of nonlinear equations are formulated in terms of the super
pseudo-differential operator

Q = D + %{X) + qι(X)D~ι + q2(X)D~2 + . . . (2.1)

defined on a (1/1) superspace with coordinates X = (x, θ). Here, D = dθ + θdx and
D~n(n > 0) is defined by D~2n = d~n and D~:(2n+l) = Dd~{n+X\ where d~n =
d~n is the usual pseudo-differential operator. Hatted superfields are Grassmann-odd.
If the superfields %(X) and qx(X) sastisfy the constraint D% + 2q] = 0, then [2]
there exists a pseudo-differential operator

S = 1 + sι(X)D-{ + s2(X)D-2 + . . . (2.2)

such that
ι . (2.3)

The even (or bosonic) flows of the SKP hierarchy parameterized by the Grassmann-
even parameters tn, n > 1, can be given in the Lax form

(2-4)

where (Q2 n)+ denotes the differential-operator part of Q2n and (Q2n)__ = Q-(Q2n)+.
In terms of S the flows are expressed

βC
(SdnS-ι)_S, (2.5)

and are integrable [2] in the sense that - — , - — 5 = 0.
L ̂ n ^m J

The SKP hierarchy admits several different types of integrable odd (or fermionic)
flows (see [6] for a review of these and an explanation of their geometric significance).
Here, the Mulase-Rabin hierarchy [11, 6] is considered, although the techniques of
this paper can be applied to the Manin-Radul hierarchy [2] with minor modification.
The Mulase-Rabin flows with respect to Grassmann-odd parameters r x, n > 1, are
given by ^

= -(Sdn-ιdθS'ι)_ S. (2.6)
UT i
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Unlike the Manin-Radul SKP hierarchy, the odd flows do not admit a Lax formulation
purely in terms of the operator Q, rather

dτ ,
n--

The Baker-Akhiezer function of the Mulase-Rabin SKP hierarchy is

w(X,ζ;X,t,τ) = Sexp ( V/£ n λ n + τ _ιζXn~ι) + xX +θζ\ , (2.7)
Vn>i n~2

where the bosonic spectral parameter λ has a fermionic partner ζ. For the purposes
of this paper, it will suffice to consider the truncated version

w(X,ζ;X) = SexX+θζ . (2.8)

A related function is
ri)*(λ, C; X) = (S~ιf e~xχ-θζ , (2.9)

where JdXφ(X)Sψ(X) = J dX(S*φ(X))ψ(X) for superfields φ and ψ. Also
important will be the following identity [14, 8]: if P and T are super pseudo-
differential operators with grading p and t respectively, then

^- jdX f dζ(PexX+θζ)(T'*e-χ'χ-θ'ζ) = {-\){ΊD+w\PT)_δ(X,X'), (2.10)

where primed operators act on the variable X\ and δ(X,Xf) = δ(x,x')(θ — θr) is
the supersymmetric delta function. This is easily established by direct calculation.
If Res(PT) denotes as usual the coefficient of D~ι in the super pseudo-differential
operator PT, then the following super-residue formula applies:

I f f , f

^Res(PΓ) = ( - l ) ( p + ί + 1 ) lim φ dX / dζ(PexX+θ°)(Tf*e'~x x~θ ζ). (2.11)
1 x-^x' 2πi J J

This follows from (2.10) using the result

lim (PT)_ S(X, X') = \ Res(PT),

which in turn follows from the definition of the supersymmetric delta function and
the corresponding result for nonsupersymmetric residues.

3. The Two-Reduced SKP Operator

The two-reduction of the SKP operator Q of (2.1) is achieved by the requirement QA

is a differential operator L, which, using (2.3), is equivalent to

L = Sd2S~ι (3.1)

with (Sd2S~ι)_ — 0. Making use of the expansion (2.2) of S, it is simple to check
that L cannot contain the operators dD and <9, so that it has the general form

L = d2-U(X)D-V(X). (3.2)
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The two-reduction means that the superfields sn(X) in (2.2) are no longer arbitrary,
but satisfy differential relations determined by LS = Sd2. These cannot be solved to
give the sn(X) as local functions of U and V.

The superfields Rfi\X), i > 0 will be defined as

n—-

where this notation is adopted because the Rίfp are the coefficients in the asymptotic
expansion of the coincidence limit of the resolvent kernel,

1 °° 1

x-+x -h z n=Q

(as can be established by expanding the resolvent of L in terms of the resolvent of d2

in the manner of the appendix of [5] and taking the coincidence limit). As such, the
R^ are local functions of U and V and their derivatives. The parameter z is related
to the SKP spectral parameter λ by z = λ2. Using the super-residue formula (2.11)

with P = S and T = S~ι, one obtains from Ln~~2 = Sd2n~ιS~ι the formula

R%\X)= lim (-1) 2 + 1— ίdλ [dζ\2n-ιDιw(\,ζ',X)w*(\,ζ;X'). (3.4)
x-.x> 2m J J

The superfields R$ of (3.3) satisfy a number of relations as a result of the form
(3.2) of L, which allows them to be generated recursively using R^ = 0. Defining
the combinations

An = &?> - i DE™ ,

(3.5)

then they satisfy the differential relations

(Π) 5 ^ n = (9D - &) i n + i (DV) ft® ,

and the recursion relations

(III) SΛ^.! = \ Φ2D - 3Ud - (DU)D -

+ 5 £(dD - ί^)in - ( | φV) +

(IV) Cn+ι = -\φD- U)DBn + (2^D + \ (DV))Λn

+ \ ((DV)d + ΦV)D + ΦDV))R(°].

These are proven in Appendix A using the representation (3.4) of the R$, and involves
operating on w(X, ζ; X)w*(\, ζ; X') with sums and differences of operators acting at
the points X and X' before taking the coincidence limit X —• Xf. It does not require
the imposition of the SKP equations on 5, but relies only on the form (3.2) of the
reduced SKP operator L.
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Next, the even (or bosonic) flows for the two-reduced SKP operator are considered.
By (2.5), all dependence of S on t2n vanishes, as (Sd2nS~ι)_ vanishes for the two-
reduced SKP operator. The remaining even flows take the Lax form

dL =[L,(Ln~h-]- (3.6)
dt2n-l

Substituting the form (3.2) for L, one finds from the coefficients of D and 1 on the
right-hand side that

j ^ — = - 2dRes(L 2) = - 4dR{°],

a y 1 1 1 ( 3 ' 7 )

= - 2 < 9 R e s φ L n 2) + 2(dD - ϋ) R e s L n ϊ=-4Cn.

Consistency of the two-reduction with the even SKP flows requires that these nonlinear
equations be integrable. The integrability and Hamiltonian nature of these equations
has been established in [3] using the Lax formulation (3.6). Below, these results
are demonstrated using the identities (I)-(IV). This provides an outlook on the
integrability of the two-reduced SKP hierarchy which relates to the Baker function
via (3.4), where the appearance of the spectral parameter λ and its fermionic partner
ζ should be important in any attempt to relate this integrable system to the super-
Virasoro constraints which have been conjectured for the partition function of two-
dimensional quantum supergravity. This is discussed further in the conclusion.

Using β£> = Res(Ln~2) together with - , — - = -D and — — = - 1 , it
follows that δU(χϊ δ V { X )

C AίO) , ΛAX

= -(n+i)i#\

δV(X) { ^ 2) n '

(this can also be proved using the identification of the superfields E$ with the co-
efficients in the expansion of the coincidence limit of the resolvent of L, after the
method of [4]). Here, the variational derivatives are defined by δ f dXF[U,V] =

JdXδU(X) -J— + JdXδV(X) Jr

F

VΛ for a functional F[U,V] of the super-
δU(X) oV(X)

fields U and V. Thus the Eqs. (3.7) can be put in the Hamiltonian form

dV(X)

ΘU(X)

= [V(X),Hn]FB,
dt2n-\

with Hamiltonian

jdXRf+λ{X) (3.9)
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and the (graded) Poisson brackets

{U(X),0(X')}m=0,

), V(X')]PB = dδ(X, X'),

(x%B = dhx,x'),
, V(X%B = -φD - U(X))hX, X').

The Poisson brackets have the correct symmetry properties and obey the super-Jacobi
identity. Integrability of the hierarchy (3.7) is equivalent to showing [Hn, Hm]PB — 0,
which is done in Appendix B using the identities (I)-(IV).

To relate these results to the proof of the integrability of (3.7) via the Lax
formulation [3], the identities (I)-(IV) ensure the vanishing of the coefficients of
the operators D~ι, D~2, D~3 and D~4 respectively on the right-hand side of (3.6).

By setting V = 0 in (3.2), L becomes the super-KdV operator. This reduction
has been considered in [3]. In terms of the approach taken here, consistency of the
condition V = 0 with the two-reduced even flows requires, by (3.7), that Cn vanishes,
or that <9i4υ = ΦD - U)Ά®\ This is indeed the case for the super-KdV operator
L = d2 — UD, as was shown in [4].

4. Recursion Relations Related to Odd Flows

The Baker-function formalism also allows the determination of recursion relations for
the residues of operators which are related to the odd flows (2.6) of the Mulase-Rabin
SKP hierarchy (these cannot be seen using the techniques of [4] in which only the
resolvent is employed.) If S is the wave operator of the two-reduced SKP operator,
in that Eqs. (3.1) and (3.2) are fulfilled, then by carrying out the steps of Appendix
A with the quantity An(X, X') of Eq. (A.I) replaced by

it is possible to extablish identities of the form (I)-(IV) with 2R^ = Res(DιL 2)
replaced everywhere by Res(DιSdndθS~ι). Note that again this relies only on
Eqs. (3.1) and (3.2) satisfied by S and makes no assumption the S obeys the Mulase-
Rabin SKP equations (2.6). Also, the quantities Res(DιSdndθS~ι) are not local in
the superfields U and V, although they are local in terms of the superfields sn(X) in
the expansion (2.2) of 5. These recursion relations have been checked to low order
by hand using the relations between the superfields sn(X) implied by LS = Sd2.

The significance of these recursion relations to the two-reduced (with respect to
the parameters for the even flows only) SKP hierarchy is that they are respectively
equivalent to the vanishing of the coefficients of the operators D~ι, D~2, D~3, and
D~A on the right-hand side of the equation

9 L ιdθS~x)_}. (4.1)
dτ ,

n--2

This shows the consistency of the odd flows with the two-reduction.
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The superfield V cannot be set to zero consistently in the presence of the odd flows,
in contrast to the situation for the even flows. This is because, by (4.1), the vanishing

of —¥— requires dRes(DSdndθS~ι) = {3D - U)Res(SdndθS-1), which is not
n+-

true for L = d2 — UD, as can be verified by explicit computation for small n.

5. Conclusion

As mentioned in the introduction, any relation between the reduced Mulase-Rabin
SKP hierarchy and two-dimensional quantum supergravity is likely to proceed via
the spectral parameter λ and its fermionic partner ζ in the Baker function (2.7). To
make this clearer, we recall briefly the situation in ordinary (nonsupersymmetric) two-
dimensional topological quantum gravity, where the partition function is a tau function
for the KdV hierarchy subject to the additional constraint that it satisfies the string
equation [1]. These two conditions are equivalent to a set of Virasoro constraints on
the partition function [12, 13], which have been interpreted in terms of the geometry
of moduli space by Kontsevich [9] and Witten [10].

The Virasoro constraints can be traced to conformal transformations of the spectral
parameter λ of the two-reduced KP (or KdV) hierarchy, as follows. The coincidence
limit R(x\ z) (with z = λ2) of the resolvent of the two-reduced KP operator d2

x - u{x)
satisfies a set of recursion relations

zdxR(x; z)=\ (d3

x - 4u(x)dx - 2u(x))R(x; z).

Acting on both sides of the equation with —dzz
m+l and using the fact that 5^m =

—dzz
rn+ι is a generator of conformal transformations in the parameter z for rank one

tensors, the recursion relations can be written

3 A + i ^ f e z) =\(dl~ 4u(χ)d ~ 2u/(x))^πιR(x; z), m > -1 .

Via the relation between the resolvent and the Baker function, conformal transfor-
mations of z induce transformations of the parameters tn describing the KdV flows,
and this recursion relation becomes a condition on the tau function r of the KdV
hierarchy,

9l(r-lLm+lr) =\(d3

x- 4u(x)d - 2n/(x))9(τ-1Lmτ), m > - 1 ,

where the Lm are Virasoro generators constructed from bilinears in the tn. This
recursion relation combined with the string equation L__{τ = 0 establishes the
Virasoro constraints Lmr — 0, m > 0 [12, 13].

In [7], it has been proposed that the partition function for topological supergravity
should satisfy a set of super-Virasoro constraints, and analysis of the corresponding
superloop equations suggested that the Mulase-Rabin SKP hierarchy is a candidate for
the corresponding integrable system. Based on the nonsupersymmetric case outlined
above, it could be expected that superconformal transformations of the spectral
parameter λ and its fermionic partner ζ in the Baker function of the SKP hierarchy
would be related to any super-Virasoro constraints on the partition function, and that
recursion relations obeyed by the reduced hierarchy would be an important element
of the structure. In this paper, these recursion relations have been at least partly
elucidated in relation to the integrability of the reduced hierarchy. However, due to
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the complicated nature of the recursion relations (I)-(IV) and their counterparts for
the odd SKP flows found in Sect. 4, there is no obvious sign of any super-Virasoro
structure. Probably related, there is also no obvious reason why λ and ζ should be
coordinates on a superspace with torsion, as required for a superconformal structure.
This presumably would emerge if a formulation of the SKP hierarchy in terms of
free superfields on a super-Riemann surface with coordinates (λ, ζ) could be found,
analogous to the Grassmannian formulation of the ordinary KP hierarchy [15].

Appendix A

Here, the proofs of identities (I)-(IV) are given. The fundamental object of interest is

F(X, X'; λ, 0 = -w(\, C; X)w*(λ, C; X'),

where w and iD* are defined in (2.8) and (2.9). We also define

An(X,Xl)=^~iIdλίdζλ2n'ιF(X,X'-X,O, (A.I)

which, by (2.10) and (3.1), is equivalent to (Ln~ϊ)_δ(X,X'). Then, using (2.11),

lim Rn(X, X') = i R e s ( L n ^ ) = βW>{X).
X —> X

Similarly, if O is some operator acting on the argument X,

lim 0Rn(X, Xf) = \ Res(OLn" 2) ? (A.2)
X —> X

The method of proof of the identities is very similar to that employed in [4] for
the super-KdV equation using heat kernels. Therefore, only brief details are given. A
fundamental identity is

0 = (L-L'*)F(X,X';\,Q, (A3)

which follows from 0 = (λ2 - \2)F(X, X'\ λ, ζ).

Taking the contour integral lim -— : § d\ J dζλln~ι of (A.3), and using

(A.2) and identities such as lim (O + O')FAX,X') = O lim F(X,Xf) and

lim (d-d')Fn(X,X') = 2 lim dF(X,Xr)~d lim FAX, X% one finds
X->X' X^X' X-+X1

\ (A.4)

Similarly, acting on (A.3) with (D - Df) and carrying out the above steps, together
with

χlimχι(D-D')Fn(X,X')

= 2 lim DFJX,X')-D lim Fn(X,X'),

lim (d-d')(D-D')Fn(X,X')
X —>• X

= 4 lim dDF(X,X')-2d lim DF(X,X')
X-^X' n X^X'

-2D lim ΘFn(X,X') + dD lim Fn(X,X'),
X-+X' X-^X'
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one finds
= I (d2 + UD) R^ - URf + \ (DV) £ f . (A.5)

Identities (I) and (II) follow from (A.4) and (A.5).
The recursion relations (III) and (IV) follow by considering the relation

X2F(X, X'; λ, 0 = \ (L + L'*)F{X, X'; X, ζ). (A.6)

Acting on both sides with (d + d')9 adding the identity 0 = —-^(d —

Lf*)F(X, X'\ λ, Q and carrying out the above steps gives

d&nlι = \ (d3 + UdD - (DU)d + (dU)D - (dDU) - ~ (dV) - f

+ \φD- (DU)) R^ -φd+\ (dϋ)) R^ , (A.7)

which yields (III) after use of (A.4) and (A.5). Finally, acting on both sides of (A.6)
with (<9 + <9') (D — Dr) and carrying out the above steps (including adding the identity

0 = -\ (D - D1)φ - df) (L - L ;*)F(X, X'\ λ, ()) yields

= -2U lim n(
X —>X

+ \ (6Ud -f 2(dU)

+ - (2d3 - 2UdD - 4(DU)d - 2(dDU) - SVd - ^

+ \ (-d3D + Ud2 + 2(dϋ)d + (d2ϋ) + 4VΘD - 2(DV)d

+ 2(dV)D)R^. (A.8)

The term U lim f d
2Fn{X1 Xf) can be eliminated using 0 = (L - λ2) F(X, X'\ λ, 0 ,

y\. —>y\.

giving

Rf+ι = Mm d2Fn(X, X') - ϋR^ - VRf .
A —>A

Combining this with (A.8), (A.7), (A.5) and (A.4) yields the recursion relation (IV).

Appendix B

Here, it is shown that the Hamiltonians (3.9) are in involution with respect to the
Poisson brackets (3.10). Using (3.8), one finds

[Hn,Hm]PB = 161 dX((dR^)R^ + Cm^). (B.I)

Substituting the definition (3.5) of C m , this is easily seen to be antisymmetric under
interchange of m and n, as it should be. Applying the recursion relations (III) and (IV)
for dRf® and Cm, the aim is to show that the resulting expression is antisymmetric
under the interchange of m — 1 and n, as the recursion relations can then be applied
in reverse to obtain

Wn,Hm]m = -16 J dXiφR^R^ + Cn+ιR
(^)

Using Ho = 0 (since ^ 0 ) = 0), it then follows that [Hn, Hm]m = 0, as required.
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To show the antisymmetry under the interchange of m - 1 and n, substitution for

dfV® and Cm in (B.I) gives

\ ίHn> Hm~\m = a\ + a2 + «3 + «4 + a5

with

α, = i /" dXR(Ji\d2D - 3Ud -

α2 = ̂  I ax to^vψu - u)Am_ι - | / ax κ^\av - U)DBm_ι,

α3 = - / dXΛ^(Va + i (aV))^ , ! - i / dXR®\(dV) - ^ (DV)D)R(^ ,
j i i i 2. I''' ί A i 'I' L ill' *

i(W))im_ l 52 V ^ " ^ Λ m - 1

α5 = i / P ( ( O 7 ) 9 + (9y)L>

Using (II) and (III) and integrating by parts several times,

α2= IdXAnφD-ϋ)λm_x-\ ίdX(DV)ΆnR
{%_

J J

Using (I) and the definition (3.5) of Cm_ι,

a4 = -\ jdX(DV)RfAm_λ + \

+ j dXV(-\R^dR^_γ + I (dR^

Making use of these expressions and symmetrizing some of the derivatives in α3 and

α5, one easily establishes the antisymmetry of a{ + . . . + a5 under the interchange of

m — 1 and n.
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