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Abstract: The KP hierarchy is hamiltonian relative to a one-parameter family of
Poisson structures obtained from a generalized Adler map in the space of formal
pseudodiίferential symbols with noninteger powers. The resulting W-algebra is
a one-parameter deformation of WKP admitting a central extension for generic
values of the parameter, reducing naturally to Wn for special values of the para-
meter, and contracting to the centrally extended W1 + 00, W^ and further trunc-
ations. In the classical limit, all algebras in the one-parameter family are equivalent
and isomorphic to wκ?. The reduction induced by setting the spin-one field to zero
yields a one-parameter deformation of W^ which contracts to a new nonlinear
algebra of the W^-type.

1. Introduction

The topography of W-algebras [1] in two dimensions is beginning to unfold and,
among them, algebras of the W^-type provide natural landmarks. Some of these
W-algebras, which are generated by fields of integer weights 2,3,4, ... and possibly
also 1, are expected to be universal for some infinite series of finitely generated
W-algebras, in the sense [2] that all W-algebras in that series can be obtained from
it as reductions. The best-known example of such a series is comprised by the \Nn

algebras [3], of which the Virasoro algebra (corresponding to n = 2) is the simplest.
These algebras can be realized classically (i.e., as Poisson algebras) as a certain

natural reduction of the second GeΓfand-Dickey brackets [4] - a hamiltonian
structure for the generalized KdV hierarchies (see [5] for a comprehensive review).
These are the integrable hierarchies of isospectral deformations (of Lax type) of the
one-dimensional differential operator L = dn + YJl

jIoUj(z)dj in terms of which, the
GeΓfand-Dickey brackets have a very simple expression which we now briefly review.
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Let us introduce the ring of pseudodifferential operators of the form

f inite

p= Σ Pj(z)dJ, (i.i)
7= -oo

with multiplication given by the generalized Leibniz rule (for a = a(z))

Va = aV + £ Pfr-^ fr-fc+'W-' (1.2)
fc=l K!

and let P_ = Σj=-™PjdJ and P+ = P — P- denote the projections onto the sub-
rings of integral and differential operators respectively. Now let X = Σ"i = o ^~'~ lχ*>
and define the Adler map [6]

= (ZJQ + L - L(XL)+ = L(XL)- - (LX)-L , (1.3)

which sends X linearly to

for some differential operators J0 . The second GeΓfand-Dickey bracket is then
simply defined by

{Ui(z\ Uj(w)} = - JtJ(z) δ(z - w) . (1.5)

The constraint un-ι(z) = 0 is second class and, upon reduction, (1.5) yields a local
Poisson algebra which realizes WM.

In the study of the isospectral deformations of the differential operator L,
a crucial role is played by its nth root L1/n = d + Σ7=oaj^~J- In fact> the hierarchy
can be defined starting from L1/n since there is a bijective correspondence between
Lax flows of L and of Llln. This prompts the definition of the KP hierarchy [7] as
the isospectral deformations of a general pseudodifferential operator of the form
A = d -f Σ7=oaJ^~J Operators like L1/n are obtained by imposing the constraint
An- = 0. Since the KP flows preserve this constraint, they induce isospectral
deformations of Lί/n and hence of L, and thus the KdV hierarchies are natural
reductions of the KP hierarchy.

This fact, together with the relation between the WM algebras and the KdV
hierarchies, suggests that the universal W-algebra for the WM series could be
realized as a hamiltonian structure for the KP hierarchy. This reasoning led
a number of authors to the construction of a new algebra - called WKP in the
second reference of [8] and (a natural reduction thereof) W^ in the third reference
of [8] - by generalizing the Adler map to the space of pseudodifferential operators
of the form A. Nevertheless, all attempts to obtain any of the \Nn algebras as
reductions of WKP have failed; although as shown in [9] the classical limit of every
Wn can be recovered upon reduction from the classical limit of WKP.

The possible physical relevance of WKP has been pointed out in [10], where
a nonlinear W^-type algebra was identified as the chiral symmetry algebra of the
black hole conformal field theory based on the coset model SL(2,R)/U(l). It was
then conjectured that this chiral algebra is simply a quantization of WKP. If this
were so one could expect an infinite set of conserved charges to be present and
eventually account for the maintenance of the quantum coherence of the black
hole. An important step towards the elucidation of this conjecture was achieved in
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[11] via a remarkable transformation for the KP potentials in terms of only two
bosons [12].

The construction of WKP immediately suggests how to construct an infinite
number of hamiltonian structures for the KP hierarchy [13] (see also [14]). The
nth-power of the KP operator A is a pseudodifferential operator Λn = dn

-f Σ lioo Vjdj which contains the same information as the original KP operator
and, since Lax flows of A and Λn correspond, can be used to describe the KP
hierarchy. We can moreover define a Poisson structure by the extension of the
Adler map to operators of the form Λn. This yields a hamiltonian structure for the
KP hierarchy and a new algebra Wg£ which is not isomorphic to WKP under
polynomial redefinitions of the fields and which, unlike WKP, does admit a central
extension. It is WKP which reduces naturally to WM. What was proven in [9] is that
the classical limit of the W(κj> does not depend on n. In other words, WKP f°r all
n = 1,2,3, . . . is a deformation of the same classical algebra: wκp. This prompts

the study of deformations of wκp which may interpolate between the W^p.

In this paper we shall focus on one such deformation - which we call W^p. It is
the Poisson structure induced by the extension of the Adler map to the space of
pseudodifferential operators of the form dq+ Σι

c°=1bjd
q~j for q any complex

number. Making sense out of this operator requires a bit of formalism concerning
the manipulation of formal pseudodifferential symbols which shall be the focus of
Sect. 2. There we will also discuss the calculus of complex powers of pseudodifferen-
tial operators which will become instrumental in proving that WKP is a hamiltonian
structure for the KP hierarchy.

Section 3 contains all our results which are directly conerned with integrable
systems and the KP hierarchy, whereas in subsequent sections we will focus on
more W-algebraic matters. Thus in Sect. 3 we will prove that the extension of the
Adler map to the space of formal symbols does indeed define a Poisson structure
and show that the KP flows are hamiltonian relative to it. We also discuss the
reductions to the KdV hierarchies as well as the bihamiltonian structure.

In Sect. 4 we start the analysis of WίfP as a W-algebra. We compute the algebra
explicitly and we show that a natural reduction yields a one-parameter deforma-
tion W(^ of \Λ/00. We write down the Virasoro subalgebra and investigate how the
generators transform under it. We also investigate whether the deformation para-
meter q is essential.

In Sect. 5 we discuss how to recover other W-algebras of the W^-type as
contractions and/or redutions of W(^P. In particular, we will show that the full
structure (i.e., with central extension in all spin sectors) oϊ\N1 + 00 arises as a suitable
contraction of W(KP as q -> 0. Moreover the algebra appears in ajbasis in which the
truncation to W^ is manifest. The similar contraction of W(^} yields a new
genuinely nonlinear algebra WJ. Furthermore, contracting W(ό? as q -* 1 yields the
full structure of W^. This provides a conclusive link between the full structure of
WOQ and algebraic structures associated to the GeΓfand-Dickey brackets. General-
izing one finds that for N > 1, the contraction as q -> N recovers the centrally
extended \N00-N, a further truncation of W1 + 00.

In Sect. 6 we discuss the classical limit of WKP and we show that it is
independent of q in the sense that the dependence of q can be reabsorbed by
a change of basis. Therefore all classical W-algebras in the one-parameter family
are isomorphic to the algebra wκp defined in [9].

Finally we close the paper, in Sect. 7, with a summary of our results and some
concluding remarks on the emerging landscape of W^-type algebras.
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2. Pseudodifferential Symbols and Their Complex Powers

For most practical purposes one can work with pseudodifferential operators as the
ring of formal Laurent series in 8~l with multiplication law given by (1.2).
However, for two applications that we have in mind (namely, complex powers and
the classical limit), it is convenient to work instead with the space of pseudodif-
ferential symbols. In this section we will define pseudodifferential symbols and
discuss their complex powers, postponing the discussion of the classical limit until
we need it.

The Ring of Pseudodifferential Symbols. To every pseudodifferential operator P we
associate its symbol - a formal Laurent series - as follows. We first write P with all
δ's to the right: P = Xi^ # Pi(z)3*. (Each P has a unique expression of this form.) Its
symbol is then the formal Laurent series in ξ ~ 1 given by

Symbols have a commutative multiplication given by multiplying the Laurent
series; but one can define a composition law o which recovers the multiplication law
(1.2). In other words,

P(z,ξ)oβ(z,Q = (Pβ)(z,£), (2.2)

where PQ means the usual product of pseudodifferential operators. This composi-
tion is easily shown to be given by

P(Z,ί)oβ(z,0= Στζί^JΓ (2-3)
k^OKl °ζ °z

For example, ξ o a = aξ + a' which recovers the basic Leibniz rule: da = ad + a'
and which, upon iteration, gives rise to (1.2). Since we will be working with symbols
throughout this paper, we will often drop from the notation the explicit mention of
z and ξ, referring to the symbol P(z9ξ) = £i^jvPi(z)£f simply as P.

Symbol composition has the advantage that it is a well-defined operation on
arbitrary smooth functions of z and ξ and can therefore be used to give meaning to
such objects as the logarithm or a noninteger power of the derivative. For example,
for a — a(z\

logξoa = alogξ - £ *— ̂ αω<ΓJ' , (2.4)
j=ι J

which shows that the commutator (under symbol composition) with log£, denoted
by ad log ξ, is an outer derivation on the ring of pseudodifferential symbols.
Similarly, if q is any complex number, not necessarily an integer, we find

A—< I 7- I - ' V ' /

j = o L / _

where we have introduced, for g any complex number, the generalized binomial
coefficients

β
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Conjugation by ξq is therefore an outer automorphism of the ring of pseudo-
differential symbols, which is the integrated version of ad log ξ :

ξ*oA(z,ξ)oξ-* = exp(4adlogξ) ,4(z, ξ) . (2.7)

It follows from (2.5) that (left and right) multiplication by ξq sends pseudo-
differential symbols into symbols of the form ^ j ^ N P j ( z ) ζ q + j - Let us denote the set
of these symbols by ̂ . It is clear that ̂  is a bimodule over the ring of pseudo-
differential symbols, which for qeZ coincides with the ring itself. In fact, since
^ = <9£ for p = q mod TL, we will understand ̂  from now on as implying that q is
reduced modulo the integers. Moreover, symbol composition induces a multiplica-
tion ^x^-»^p+g, where we add modulo the integers. Therefore the union
£f = (jq&q forms a ring graded by the cylinder group (C/Z.

On <9o one can define a trace form as follows. Let us define the residue of
a pseudodifferential symbol P(z9ξ) = Σj^NPj(z)ζj by resP(z, ξ) = p_ι(z). Then
one defines the Adler trace [6] as TrP = JresP, where J is any linear map which
annihilates derivatives. It is easy to see that Tr[P, Q] = 0, since the residue of
a commutator is a total derivative. The Adler trace can be used to define a symmet-
ric bilinear form on pseudodifferential symbols

<ΛF> Ξ Ξ T r ^ o β , (2.8)

which extends to a symmetric bilinear form on all of &* . Relative to this form the
dual space to ̂  is clearly isomorphic to <¥Lq and it is an easy calculation to show
that for A = aξi+qe ̂  and B = bξj~qe 5%, the residue of their commutator is still
a total derivative. In fact

resD4,.B] = . _ ( - l)W+'-'> (2.9)

proving that the trace form extends to all of £f.
The ring ^0 of pseudodifferential symbols splits into the direct sum of two

subrings 5̂ 0 = ^+0^_, corresponding to the differential and integral symbols
respectively. This decomposition is a maximally isotropic split for the bilinear from
(2.8), since Tr A ± o B ± = 0, where A + denotes the projection of A onto &t± along
^τ. A similar split could in principle be defined in <9 ,̂ but the induced split
£f = 5^+©^- is no longer a split into subrings as can be clearly seen from (2.5),
since even if q > 0 its composition with a(z)e&+ has an integral tail. We will
therefore only write P+ for P e ̂ 0 a pseudodifferential symbol.

Complex Powers of a Pseudodifferential Symbol. Let A(z, ξ) - ξn + ^luj(z)ξn~j

for n e2ζ be a pseudodifferential symbol and let α e C be any complex number. The
purpose of this subsection is to define A" and to prove the main properties that we
expect powers to obey. Complex powers of pseudodifferential operators were first
defined by Seeley and our treatment follows the one in [15].

The resolvent Rλ of A is the pseudodifferential symbol defined by

Rλo(A - λ) = 1 , (2.10)

for A e C . Let us rewrite A — λ as A — λ = Σ7 ̂ o^n-j(z

? £> λ), where αn(z9 ξ, λ) =
ξn-λ and αn-j(z,ξ,λ) = Uj(z)ξn-j, for j ^ 1. Notice that αn-j(z9tξ9t

nλ) =
tn~jαn-j(z, ξ, λ\ whence the index of αn~j reflects its degree of homogeneity under
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the above rescalings. Formula (2.10) implies that the resolvent is given by
Rλ = Σj^ob-n-j(z, ξ, λ) and that its coefficients can be solved for recursively from
anb-n = 1 and

Σ fc— -* = 0 (111)

for all r ^ 1. This implies that the coefficients of the resolvent are homogeneous
under rescalings b _ w _ 7 (z, tξ, tnλ) = t~n~jb-n-j(z, ξ, λ).

For Re α < 0 let us define

AΛ(z,ξ) = ̂ -μ«Rλdλ = ̂ -Σ $W-n-j(z9 ξ, λ)dλ , (2.12)
zπr *πjzQr

where the contour Γ = Γ(ξ) = Γi + Γ2 + Γ3 is specified as follows. ΓΊ =
{λ = re ίβδ |oo >r>p}, Γ2 = {/I = pe^ > φ > θξ - 2π}, and Γ3 =
{λ = reί>(θί~2π)|p < r < oo }, where i|ξ|Π > p and ̂  are such that for the given ξ, the
contour does not contain any poles. The contour is oriented in such a way that the
circular part is traversed clockwise. The power Aα in (2.12) is defined as exp(αlogA)
with log λ the branch of the logarithm with a cut for arg λ = θξ. Because Reα < 0,
the integral converges and each term in (2.12) is well-defined. We can therefore
write

where

βS-jfe ξ) = ±μ*b-n-j(z9 ξ, λ)dλ , (2.13)

where again the indices reflect the degree of homogeneity. Indeed, for t > 0,

= t«n-ja%_j(z,ξ), (2.14)

where we have used that the contour Γf is homologous to Γ. This implies that

Λ = Σ^-^K"1"^5^.- (2 15)
7 ^ 0

The following result shall prove very useful in what follows. We shall refer to it as
the semigroup property of AΛ.

Proposition 2.16. For Reα < 0 and Reβ < 0, then Aa°Aβ = Aa+β.
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Proof. Let us define a contour Γ - Γi + Γ2 + Γ3 as follows. ΓΊ =
{λ = reί(θξ-ε}\ oo > r > fp}, Γ2 = {A = fpe ίφ |0 - ε > φ > θ + e - 2π}, and Γ3 =
{Λ, = rei(θξ+ε-2π)^p < r < oo J? where ε is chosen small enough so that Γ' can also
be used to define AΛ. Again the contour is oriented so that the circular part is
traversed clockwise. We then use these contours to write

(2.17)
«+7t ΓΓ

We now use the identity

O Γ) / D D \ /O 1 O\
μ A - μ λ μ

to rewrite the above product as

where we have used the fact that since the contour Γ is inside the contour Γ' the
second integral vanishes since the integrand is holomorphic in λ.

An immediate corollary of the semigroup property is that if k is a positive
integer, A-k = (A'l)k. In fact, since /I"1 agrees on ί\ and Γ3, the integral around
Γ in the definition of A _ 1 reduces to the contour integral around Γ2 which is
a closed negatively-oriented contour. Using that AoRλ = 1 + λRλ9 we find

AoA-t = ± μ^dλ + -?- $Rλdλ = 1 , (2.19)
2π r2 2π r2

since Rλ is holomorphic in the disk bounded by Γ2. Therefore it follows that
y4_ ! = A'1 and applying the semigroup property, A-k = A~k.

We can finally define the complex powers. Let α e C be an arbitrary complex
number and let k e TL be such that Re α < fc. Seeley's proposal is to define

A* = AkoAΛ-k . (2.20)

For this to make sense it should not depend on which k we choose. In fact, if
kJεZ are such that R e α < / c and R e α < j then we should show that
AkoAΛ-k = AjoAχ-j. For definiteness let us assume that k >j. Then p = k — j is
a positive integer and let β = α — fc. Therefore what we have to show reduces to
Aβ = A~poAβ+p for Re(/? + p) < 0. But this follows immediately from the semi-
group property and the fact that A~p = A-p.

Notice that if Re α < 0 then we can simply take fc = 0 and A" = Aa; whereas for
, Aj agrees with the usual jth power: simply choose fc = j + 1 and compute:

~l = Aj . (2.21)

Finally we prove the general group property of complex powers.
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Proposition 2.22. Let α,j5e<C. Then A«°Aβ = A«+β.

Proof. Choose j, k such that Re α < j and Re β < k. Then

= A«+β ,

where we have used the fact that Rλ commutes with A and the semigroup
property.

It is possible (see, e.g., [15] §§9 and 10) to topologize the space of symbols in
such a way that the mapping α ι-> A* is holomorphic. Since it agrees with the power
for α e TL it makes sense to consider it as the symbol for an arbitrary complex power.
In particular, a standard density argument allows us to prove that all the usual
properties of rational powers are obeyed by the complex powers as well. In
particular, for α, β E <C,

(A*)β = A«β . (2.23)

It is also clear from (2.15) that taking the αth power maps symbols of the form
ξp + to symbols of the form ξ*p + .

3. The KP Hierarchy and its Hamiltonian Structures

In this section we will prove that the generalization of the Adler map to the ring
£f of symbols defines a Poisson structure which depends on a complex parameter q.
We then prove that the KP hierarchy is hamiltonian relative to this Poisson
structure for all q but that, unless q is an integer, neither the reduction down to
rc-KdV nor the bihamiltonian structure seem to be present.

The Generalized Adler Map and Some Formal Geometry. In order to define the
generalized Adler map, we need to briefly introduce some formal geometry on the
space Jiq of symbols Λ(q) of the form

7=1

The affine space Jtq plays the role of the manifold on which the KP flows are
defined. The tangent space 9~q to Jίq is parametrized by the infintesimal deforma-
tions of A(q\ which are given by symbols of the form

A = Σ
j=ι

Every A e ̂  of the above form defines a vector field dA as follows. If F is any
function on Jίq , then

as
f V δF

• εA] = \Σ ak^~
ε = 0 \=1 δuk
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One-forms are parametrized by the dual space ^~* of ̂  under the bilinear form
(2.8). In other words, "̂* is made up of symbols of the form

χ= f ξ' -'-^x.. (3.4)
7 = 1

Then, for A and X as above,

CO

Xj, (3.5)

which is clearly nondegenerate.
If we define, as usual, the gradient dF of a function F by

AF, (3.6)

for all A<E$~q, then, for A as in (3.2), one easily computes

δF

hence, comparing with (3.5), yields
00 δF

dF= ££'•-*- 1 0 —.

Hence the gradient of a function is a 1-form as expected.
Given a 1-form X as in (3.4) we define a vector field J ( q } ( X ] as follows:

J(q\X) =

= A(q} o (X oA(q]) _ - (A (q) o X) _ o A(q} . (3.9)

Notice that since Λ(q)°X and X°A^ belong to ^o, it makes sense to project onto
their integral and/or differential parts. It is clear that J(q)(X) e^, so that it defines
a tangent vector. It is moreover easy to see that if 7 is another 1-form,

TrJ(q}(X)oY= -TrZoj^F; (3.10)

making J(q} into a skewsymmetric linear map J(q}\ 2Γ* -» 2Γq. This allows us to use
J(q} to define a bracket on the functions on Jί as follows:

q

{F,G} - Tr J(q\dF)°dG . (3.11)

Equation (3.10) implies that this bracket is antisymmetric, and it is not too difficult
to show directly that it satisfies the Jacobi identity. The proof of this fact is
straightforward and can be adapted from the proof of the hamiltonian property of
the original Adler map for the KdV hierarchies, to be found, for example, in [5].
Therefore we shall restrict ourselves to sketching the proof, trusting that the
interested reader will have no trouble in filling in the details with the help of the
existing literature.

Hamiltonian Property of the Generalized Adler Map. In fact, it is easier to describe
the proof in a more general setting than that of the ring of symbols. Let S = (JqSq

be an associate algebra (over some ground field k of zero characteristic) graded by
some commutative group written additively. Then S0 is a subalgebra and Sq is an
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So-bimodule. Suppose further that S0 decomposes as the vector space direct sum of
two subalgebras SO = R + @R-. Given any element X εS we denote by X± its
projection to R± along R+ . Suppose further that we have a nondegenerate trace
form Tr: SQ-+k inducing a symmetric bilinear form <Jf, 7> = ΎrXY which is
maximally split; that is, such that the subalgebras R± are maximally isotropic. In
other words, Tr X ± Y± = 0. Let us now extend Tr to all of S by letting it be zero on
Sq Φ 0. Then the bilinear form extends to all of S in such a way that Sq and S-q are
nondegenerately paired.

Choose an element LeSq and define the generalized Adler map J: S-q -> Sq by

J(X) = (LX)+L - L(XL) + = L(XL)- - (LX)-L . (3.12)

We can view this as an infinitesimal deformation δxL = J(X). More geometrically,
however, we can view J(X) as a vector field tangent to Sq at L as follows. Since Sq is
a linear space, we can identify its tangent space with Sq itself and the cotangent
space with S-q9 where the dual pairing between the tangent and cotangent spaces is
given by the bilinear form. Then J can be interpreted as a way to assign vector
fields to 1-forms and δx is simply the Lie derivative in the direction J(X). In
particular, acting on functions, δx — δJ(X).

The first thing one should prove is that the vector fields obtained by J close
under Lie bracket or, in terms of the infinitesimal deformations δX9 that they too
form a closed algebra.

Lemma 3.13. For all X,YeS-q,

[δχ> <5y] = δ[x,γfL >

where [X, 7]* is given, modulo the kernel of J, by

[X, rj£ = δxY+X(LY). - (XL)+Y-(X^Y) . (3.14)

Proof. See Proposition 3.2.2 in [5].

This bracket makes S-q into a Lie algerba as shown by the next proposition.

Proposition 3.15. The bracket [,]* defined by (3.14) satisfies the Jacobi identity.

Proof. Let X, 7, ZeS_, and define JacobiL(Z, 7, Z) = [X, [7, Z\l~\l + cyclic.
We will show that this is zero. For simplicity we work under the assumption that
X, 7, Z are L-independent so that we have no terms of the form δx 7. The general
case is no harder to prove and we leave this as an exercise. By definition,

[Z, [7, Z]*]* = δxlY, Z~\l + *(L7(LZ)_)_ - X(L(YL) + Z)_

- (XL) + Y(LZ) - + (XL) + (YL)+Z- Y(LZ) -(LX)-

+ (YL) + Z(LX). + (7(LZ)_L) + * - ((7L)+ZL)+J*Γ

-(7<->Z). (3.16)

Also by definition,

δxίY, Z]2 = Y(J(X)Z)- - (YJ(X))+Z - (Y^Z) , (3.17)

which we choose to write as

Y(L(XL).Z)- - Y((LX)-LZ)- - (Y(LX) + L)+Z + (YL(XL)+)+Z - (Y*-*Z) .
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Therefore we can write

JacobiL(X, 7,Z) = 7(L(XL)_Z)_ - Y((LX)-LZ). -(Y(LX) + L)+Z

+ (YL(XL)+} + Z + X(L7(LZ)_)_ - X(L(YL) + Z)_

- (XL)+ 7(LZ)_ + (J*ΓL)+(7L)+Z - Y(LZ)-(LX)-

+ signed , (3.18)

where "signed" means signed permutations, which make the underbraced terms
cancel. Now we notice that

Y(LZ)-(LX)~ + Y((LX)-LZ)- + signed - 7((ZJΓ)_(LZ)+)_ + signed ,

Y(L(XL)-Z)-. - X(L(YL)+Z). + signed - Y(LXLZ)- + signed ,

and

(YL(XL)+) + Z + (XL)+(YL)+Z + signed - ((YL)-(XL)+)+Z + signed .

Plugging these into (3.18), we find

JacobiLCAT, 7, Z) = - 7((ZJQ_(LZ)+)_ + Y(LXLZ)- + ((YL)-(XL)+)+Z

- (Y(LX)+L)Z + X(L7(LZ)_)_ + (Y(LZ)-L)+X

- ((YL)+ZL)+X + signed , (3.19)

where the underbraced terms cancel after taking into account the signed permuta-
tions. What is left is

((7L)_(ZL)+)+Z - ((YL)+ZL)+X + (Y(LZ)-L)+X - (Y(LX)+L)+Z + signed .

The first term can be rewritten as ((YL)-XL)+Z, which combines with the second
(taking into account the signed permutations) to give (YLXL)+Z 4- signed. Sim-
ilarly, after permuting, the third and fourth terms rearrange to
— (YLXL)+Z + signed, which precisely cancels the contribution of the first two

terms.

Notice that for q Φ 0, the usual commutator does not close in S-qί and hence
cannot be used together with [, ]* to give S-q a Lie bialgebra structure. This fact
underlies the apparent lack of bihamiltonian structure for q φ Ίί on which we will
comment below.

For F: Sq:-+k a function, its gradient dFeS-q, and J(dF) would be the
hamiltonian vector field associated to F. The Poisson bracket defined by J is then
given by {F, G} = ΎrJ(dF)dG = dJ(dF}dG. In the same way we proved (3.10), one
can show that this bracket is antisymmetric. By definition, J is a hamiltonian map if
and only if the bracket defined above obeys the Jacobi identity. The Jacobi identity
is equivalent to the vanishing of the Schouten bracket of J with itself which, being
a tensorial operation, means that the Jacobi identity is a condition at a point. It
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then follows that it is sufficient to show it for linear functions since the gradient of
any function can be substituted at a point by the gradient of a linear function.

Every XeS-q independent of L defines uniquely a linear function Fx = ΎΐLX
whose gradient is given by X.

Theorem 3.20. For X, 7, Z independent of L,

[FZ, [FX, Fγ}} -f cyclic = 0 .

Proof. If Fx and Fγ are linear functions, their Poisson bracket is given by
{Fx, FY} = ΊτJ(X) 7 We now use the fact that for all W, Z,

ΊτJ(W)Z = -ΊτL([_W, Z]2 - δwZ + δzW) , (3.21)

which follows from (3.14) by explicit computation. In our case, since X, Y are
independent of L, it follows that {FX,FY} = iTrL[J5Γ, 7]*. Notice that since
[X, 7] * explicitly depends on L, linear functions don't close under Poisson
bracket. If Fz is another linear function then

, 7]*

= Tr J(Z)[X9 7]2 +

which using (3.21) can be rewritten as

, [*, 7]2]2 + ^Lδz[_X, 7]2 .

Using Proposition 3.15 and (3.17) we find

[FZ, {FX, FY}} + cyclic = ^Ίr((LY)+J(Z)Y-(YL)-XJ(Z)) + signed ,

which we choose to write as

Tr((ZJO+L(ZL)_7- (LX) + (LZ).LY

- (YL)-X(LZ)+L + (YL)-XL(ZL) + ) + signed .

Using cyclicity of the trace and permuting, the underbraced terms are easily seen to
cancel, whereas the remaining ones can be written as

Ύr((ZL)+(YL)-XL - (LX) +(LZ) _ L7) + signed . (3.22)

We now make use of the following lemma:

Lemma 3.23. For any A, B, C e S0 ,

ΎτA + B.C + cyclic = Tr ABC .

Proof. See [5] Lemma 3.2.4.
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Using this we can rewrite (3.22) as

Tτ(ZLYLXL - LXLZLY) - (X<-*Y) ,

which clearly vanishes by cyclicity of the trace.

A One-Parameter Family of Hamiltonian Structures for the KP Hierarchy. The KP
hierarchy is the hierarchy of isospectral flows of pseudodiίferential symbols of the
form

Λ = ξ+ £ α^-1, (3.24)
j = ι

which are given by

dV
— = IΛ'+9Λ]. (3.25)
otf

It is straightforward to show that these flows commute and that they are hamil-
tonian with respect to the Poisson structure defined by the Adler map with

hamiltonians Hf = - Tr Λf . Indeed it is easy to show that we can substitute
t

άHf = Λf~l in the Adler map to obtain

J(dH,) = (AoA'f-l)+oA-Ao(A'-ioA) + = [>!'+, Λ] . (3.26)

Since the flows commute, the corresponding hamiltonians are in involution.
Now let q e C x be any nonzero complex number and let Λq denote the symbol

of the gth-power as defined in the previous section. Then the Lax flows correspond:

Proposition 3.27. For <?eC x ,

Proof. It is clearly only necessary to prove it in one direction ( => ) since for the
other direction we can replace A by Λllq after invoking (2.23). So let us assume that

— = [71, A]. Then it is clear that for k a positive integer, — — = [77, Ak~\. Now let
ot ot
k be a positive integer such that Re q < k. Then Aq-kis given by (2.12). Therefore its
ί-derivative is given by

^pi = J_μβ-t^d;i. (3.28)

But taking the f-derivative of (2.10) we find

dR* _ dΛ
at ot

= -Rλ°\_Π,Λ]°Rλ
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Therefore,

^p = [J7,Λ-*], (3-29)

which together with the derivation property of the commutator yields the desired
result.

In particular, for the KP flows (3.25), Proposition 3.27 implies

(3.30)

which, using the semigroup property of complex powers, becomes

where the generalized Adler map is evaluated at A(q) = Aq. To prove that the KP
flows are indeed hamiltonian relative to J(q) we have to find functions H\q) such
that we can substitute Λ'~q for their gradients in J(q\ It is not surprising that the
naive result is true.

Proposition 3.32. Let q E C x , / e N and let H(q) = - Tr (AqY/q. Then we can substitute

Proof. From (3.8), the gradient dH(^ is given implicitly by

= ΎrdH(q}A. (3.33)

We therefore compute the LHS of this equation and read oίf the gradient after

^comparing with the RHS. Let kzTL be a positive integer such that Re- < fc. Then,
<?

by (2.20), (Aq + eAf/q = (Aq + εA)k°(Aq + εA)/lq-k, whence the LHS of (3.33) be-
comes

. (3.34)

The first can term easily be evaluated to give

I Tr Y (Aqγ o A o (Aq)k~1 -' o μ*),/β_k, (3.35)

which, using cyclicity of the trace and the fact that for any symbol B and Re α < 0.
B o BZ = BX o B, can be further simplified to

^ T1-,/ ΛdV/a-1 . A ί'J O^\
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The second term in (3.34) is trickier. Using (2.12),

(A* + *A)m-k = -?- f λ«*-kRλ(e)dλ , (3.37)
zπ Γ

where Rλ(ε) — (Λq — λ + εA)~1. Taking the ε-derivative, we find

d - - - « - ^38j

where J^ = Rλ(ty. Standard manipulations inside the trace allow us to write the
second term of (3.34) as

A. (3.39)

d
The integral is easily evaluated after noticing that Rλ = ~—Rλ and integrating by

dλ
parts - the boundary contributions vanishing since Re(//g — fc) < 0. Therefore we
can rewrite (3.39) as

^)^1 , (3.40)
V V

which together with (3.36) yields

ι°A , (3.41)

which proves the proposition.

This shows that the generalized Adler map J(q} defines, for any nonzero
complex number q, a hamiltonian structure for the KP hierarchy.

Bihamiltonian Structure. It is well known that the KP and KdV hierarchies are
actually bihamiltonian: one hamiltonian structure being the one obtained from the
Adler.map and the other structure being given by simply deforming the Adler map.
For example, if we take (q = 1) A = ξ + £JLo ajζ~j an<^ we deform the Adler map
J(1) by shifting A h-> A + λ, we find that

where J^ is given by

CΛ*-]+ -[Λ*+]- . (3.43)

Since this shift corresponds to the change of variables α0 1— > α0 + λ and the Jacobi
identity holds for arbitrary aj9 it means that for all λ the new bracket satisfies the
Jacobi identity. This being a quadratic identity, it means that it will contain pieces
of orders 0, 1, and 2 in λ which must vanish separately. The A-independent terms
are the old Jacobi identity for the unperturbed Adler map and the terms in λ2 are
the Jacobi identity for the new hamiltonian structure; whereas the terms linear in
λ are simply the expression of the fact that the two structures are coordinated - one
of the hallmarks of integrability.

It is easy to see that this way of deforming the Adler map to obtain a further
coordinated hamiltonian structure does not work for qφΈ.ln fact, suppose that we
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shift A(q)-+A(q) + /U, for some Ae^q. Then the deformed Adler map will in
general contain terms quadratic in λ. If the deformation is to yield a further
coordinated hamiltonian structure, the quadratic terms have to vanish. In other
words,

(AoX)+0A-Ao(XoA)+=Q V Z . (3.44)

It is easy to show that if q φ Z, then the only solution to this equation is A — 0.
Indeed, 'ύAt3~q has leading term aξq ~ N for some N e IN, choose X = ξN ~q ° x e F*.
Then (A o X)+ = (X o A)+ = ax and (3.44) simply says that A and ax commute. The
leading term in their commutator is given by (q — N)a(ax)' which has to vanish for
all x. Since qφΈ, this means that a = 0.

For q = neZ things are nicer. In fact, we can choose A = 1, and the new
hamiltonian structure is given by

J(S(X) = lA(n\ *_]+ - \_Λ(n\ * + ]_ . (3.45)

It is easy to show [5] that these are hamiltonian structures for the KP hierarchy
with the same hamiltonians.

Reductions to KdV Hierarchies. The n-KdV hierarchy can be obtained by impos-
ing the constraint A*L = 0 on the KP operator A. It follows from Proposition 3.27
that this constraint is preserved by the KP flows. Moreover the hamiltonian
structure defined by J(n} induces a hamiltonian structure in this subspace, since for
any X, J(n\X) is a vector tangent to the space of Λ(II)'s obeying (Λ(l°)_ = 0. In fact,
this induced hamiltonian structure is nothing but the second GeΓfand-Dickey
bracket for the n-KdV hierarchy. It is easy to see that the analogous constraint on
A(q} is not preserved by the KP flows for qφZ. This is not at all surprising given
that on ,̂ the analogous projections to ^+ are not natural. It would be very
interesting to see if there are other hierarchies besides the KdV ones to which the
KP hierarchy could reduce naturally in its hamiltonian formulation for q φ Z.

4. The W$ Algebra

In this section we start the discussion of the W-algebraic results of this paper. We
first compute the W^ algebra explicitly from the fundamental Poisson brackets of
the generalized Adler map J(q\ We then introduce the reduction consisting in
setting the field of lowest weight equal to zero and in this way obtain a one-
parameter deformation of W^. We work out the first few brackets explicitly before
and after reduction and we show that there is a Virasoro subalgebra with a q-
dependent central charge. We also investigate whether or not there is a polynomial
redefinition of the fields which relates different values of q. Finally we restrict to
q = rceN and we prove that W^> reduces naturally to Wn.

The Fundamental Poisson Brackets of the Adler Map and W^. We find it conveni-
ent to introduce a further parameter (α) in the expression for A(q):

aξ« + ^ Uj(z)ξq~j (4.1)
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and, at the same time, rescale the generalized Adler map (3.9):

o X ) + o A(q) -Aqo(Xo A(q})+] . (4.2)

Naturally, this does not spoil its hamiltonian properties and will become very
useful when we discuss contractions of the resulting W-algebras. Let X =
Σj>ι ζi~q~1 °-x/e^~*. Since J(q\X}e£Γq is linear in X, we can expand it as

J(q\X)= £ (Jff xjK*-1. (4.3)
ί j z i

where the J(q) are some differential operators. As shown, for example, in the second
reference of [8], the fundamental Poisson brackets arising from J(q) are given up to
a sign by these differential operators

{ιφ), u»} - - Jg)(z) δ(z - w) . (4.4)

It is precisely in expressions like these that W-algebras are classically realized.
The computation of the Jί|} is straightforward and we simply reproduce the

result:

j~9~ί

This is a nonlinear algebra with fields of weights 1, 2, 3, . . . which for 4 = 1 reduces
to the (centerless) Wκ? defined in the second reference of [8]. Therefore we refer to
it as

The u1(z) = 0 Reduction and W^. In order to obtain the W^ algebra we must
constraint the field MJ of weight 1 to vanish. It follows from (4.5) that for q φ 0 this
constraint is formally second-class, since J(ql = — qad is formally invertible.1 The
reduction is effected by going to the Dirac brackets (see, e.g., the second reference of
[8]), which are simply given by

= jg) _ j(?).( j(«))-ι .jw = j(j) + δj(j) ? (4.6)

1 For q = 0, MI decouples from the algebra and we simply obtain a nonlinear algebra without
central extension whose linear terms reproduce W^



34 J.M. Figueroa-O'Farrill, J. Mas, E. Ramos

where the differential operators are evaluated on the constraint submanifold
defined by ul = 0. From (4.5) we read off the following Poisson brackets:

[ 7 π 1 Ί J '~ 1 Γ i n 1 Ί
J , Γ + Σ 7 ΓJ J k=ι L J ~ κ J

whereas J($ = — ( J(^)*, with * the unique anti-involution on the ring of differen-
tial operators defined by d* = — d and a(z)* = a(z). Naturally we could have read
off J|^ from (4.5), but the resulting expression is rather complicated and simplifies
only after some algebra using identities of the generalized binomial coefficients
(2.6). From this we can immediately compute the correction to the fundamental
Poisson brackets coming from the constraint:

= 2

(4.8)

Notice that despite the potential nonlocality present in (4.6), the resulting bracket is
local. Computing the new bracket for u2 uncovers a Virasoro subalgebra:

,, α . ~ .. _ λ . . ..
Ω^2 = — q(q — 1)0 + u2o + ou2 . (4.9)

12

Therefore M2 generates diffeomorphisms under Poisson bracket in the following
way: an infinitesimal diffeomorphism with parameter ε induces a variation of the
Uj given by

δεUj = - Ω$ ε - (Ω<2«])* ε . (4.10)

Using (4.6) and (4.8) we can compute

(4.11)

which shows that Uj is a field of weight j under diffeomorphisms. These fields do not
transform tensorially since they have higher derivatives of the parameter ε in their
transformation law, but it seems reasonable to expect that - at least for generic
q - one could redefine the uj>2 by adding differential polynomials of fields ui<j of
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lower weight in such a way that the unwanted terms cancel. For example, if we
define ύ3 = u3 + ^(2 — q)u'2, then it transforms like a tensor of weight 3:

(4.12)
Similarly, the generator w4, defined to be

li <* * ^ l i ow ^ " (5qu. - -2(q - 3)u3 + ̂ (ί - 2)(β - 3)u2

transforms as a tensor of weight 4. Notice that this transformation fails when the
Virasoro central charge vanishes: q = 0, ± 1. In particular this means that there is

no primary basis for W^. Nevertheless, for q different from those values, we would
be surprised if a primary basis would not exist; although we have not worked out
a proof. Notice also that if q = 3, then u4 is already a tensor. This is a general
feature: if q = N9 then UN + ± is already a tensor.

In summary, the W-algebra defined by the Dirac brackets Ω($ for z, j ^ 2
defines a classical realization of W^ - a one-parameter deformation of W^, which
corresponds to q = 1 [8].

Are all WKP Nonisomorphicl As it stands WKP depends not just on q but also on α.
However, the dependence on α is fictitious. We can always reabsorb α by rescaling
all the fields and also the generalized Adler map. Indeed from (4.5) it is clear that

this is achieved by sending Wji— >αu; , J
(q)\-+- J(q\ We consider two Poisson struc-

tures equivalent if there is a polynomial redefinition of the generators which takes
one structure into a multiple of the other. Then the inessentiality of the parameter
α can be re-expressed as saying that the Poisson structures corresponding to any
two nonzero values of α are equivalent.

How about the parameter qΊ We have not been able to determine whether this
parameter is essential. But passing to the reduced algebra W^ and looking at the
central charge of the Virasoro subalgebra, it is clear that for q = 0, ±1, the algebra
is not isomorphic to the other values of q. Working with q a formal variable, we
have investigated the first few brackets with the resulting conjecture.

Conjecture 4.14. Let p Φ q. Then W^ and W^ are equivalent if and only if p,qφ TL.

q = neN and the Reduction to Wn. We finish this section with a brief comment
on q = n e N and the algebras this yields. As remarked in the previous section when
q = n e N is a positive integer, it makes sense to impose the constraint Λ("} = 0. On
this subspace, the generalized Adler map induces a Poisson structure which is
nothing but the original Adler map for the rcth-order KdV hierarchy. Thus the
W-algebra its fundamental Poisson brackets yield is the GeΓfand-Dickey algebra
GDn which, under the further constraint u1 = 0, reduces to WM. Therefore we have
â  reduction W^ -> GDn -» Wn. Alternatively we could have first reduced to
\Λ/S and then truncated to Wn.

Moreover, it makes sense to deform the generalized Adler map to obtain the
"first" Dickey-Radul bracket. This bracket gives rise to a W-algebra which can
therefore be obtained as a contraction of W^p - namely λ -» oo in the analog of
(3.42) for J(

λ

n). The contracted hamiltonian map is given by (3.45) which can be
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suggestively rewritten as

from where it follows that the resulting W-algebra breaks up as a direct sum of
commuting subalgebras generated by the coefficients of the differential and integral
parts of Λ(n\ respectively. The W-algebra generated by the coefficients of the differen-
tial part is simply the first GeΓfand-Dickey bracket G Dj,1*, whereas the one generated
by the coefficients of the integral part is again W1 + 00 without central extension.

5. Some Contractions and Reductions of

The issue of Lie algebras containing a tower of infinitely increasing spin fields was
launched in the context of two-dimensional conformal field theory in [16] where
the algebra w^ - a contracting limit of WM - was seen to be isomorphic to the local
algebra of two-dimensional area-preserving diffeomorphisms and to admit a non-
trivial central extension only in the Virasoro sector. In [17], the W^ algebra was
constructed as a deformation, the main motivation being to accommodate for
nontrivial central extensions in all higher spin sectors. The method was brute force
imposition of the Jacobi identity within a suitable Ansatz. Later [18] the
Wi + oo algebra was found as an extension of the previous one accommodating for
an extra spin 1 field. The question of the relation of these algebras to the Poisson-
bracket algebras induced by the GeΓfand-Dickey construction was partially
understood in [19], where vY1 + 00 was shown to arise as the first hamiltonian
structure of the KP hierarchy. However, since the algebra obtained was centerless,
the full connection still remained unclear. In this section we will show how to
recover the full structure of WΊ + ̂  as a suitable contraction of W^ as q tends to
0 and not to oo as one would perhaps naively expect. The central extension arises
by judiciously scaling the parameter α introduced in (4.1) and (4.2) in such a way
that α tends to oo, with uq = c, a constant. Moreover, Wi + ̂  is obtained in a basis
making its truncation to W^ manifest; thus we also recover the full structure of
WQO. The full structure of W^ can also be recovered by a similar contraction of
W^, this time as q-*l. This procedure generalizes as follows: taking the limit
q -> N and α -> oo such that a(q — N) = c, a constant, of the (nonlocal) reduction
°f WKP induced by setting the N fields of lowest spin to zero, yields the full structure
of the subalgebra \Nao-Noϊ\N1 + OQ generated by the fields with spins greater than N.
Finally we construct a new nonlinear algebra as a contraction of W^ as q -» 0 or,
equivalently, as a reduction of W1 + 00.

Centrally Extended W1 + 00

 as a Contraction of W^. In this subsection we will
analyze the contraction q -» 0 of W^. To this effect let us rewrite (4.1) as:

Λ<«> = aξ* + £ Uj(z)ξq-j = aξq + S (5.1)
j*ι

which defines S. Notice that lim^0 S = A-, where A = A(0\ We can expand (4.2)
as follows:

-t(SoX)+oS-So(XoS)+l . (5.2)
α
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Taking the limit we find that the terms quadratic in S disappear, whereas the linear
terms in S contract trivially to give

[Λ_,*]+-[Λ_,* + ] = -[ΛL,Jr+]_ . (5.3)

Expanding ξq = 1 -f qlogξ -f 0(q2) we find that, upon taking the limit, the S-
independent terms yield

ct(logξ°X) + +X+o\0gξ-logξoX+ -(*ologξ) + ], (5.4)

which can be immediately rewritten as — [c log ξ, X + ] _ . The limiting hamiltonian
structure is therefore

J(?laΰ(X)= -[clog£ + Λ _ , * + ] _ . (5.5)

The oindependent part is the standard first hamiltonian structure of the KP
hierarchy [20] which was identified in [19] with a centerless W1 + 00. On the other
hand, the odependent central extension is nothing but the Khesin-Kravchenko
2-cocycle of the Lie algebra of pseudodifferential operators on the circle which
appeared in the context of W-algebras in [21] for the first time.

Taking the limit in the explicit expression (4.5), we find the following well-
known expression for the centrally extended W1 + x:

r / ( θ ) } _r( y q ~ 1)1(7 -1)!^,-,(J l + -C(-1}

_ -
+ Σ r , W i - i - Σ , k+,-«-ι(-5)'. (5.6)

/ = ! L ' J 1=1 L L J

Notice that this basis for \N1 + ̂  makes manifest a nested sequence of sub algebras
obtained by truncating the spectrum from below. For any JV, the generators {ut}i>N

close among themselves. In particular for N = 1 we recover the full structure of
W^ The full structure of W^ also arises by first reducing to W^ and then taking
the contracting limit q-*l as we will see in the next subsection. For N ^ 2, the
resulting algebras (W^-^y) do not contain a Virasoro subalgebra and are therefore
not interesting from the point of view of extended conformal algebras. Neverthe-
less, as we will show at the end of the next subsection, they can be obtained by
reducing W^ and then contracting to q -> N.

The Full Structure of \N00 as a q -> 1 Contraction of W^. We now investigate the
contraction q -> 1 and α -» oo in such a way that a(q — 1) = c, a constant. From
(4.5) it follows that J(*\ diverges, hence it is necessary to impose the constraint
UI(Σ) — 0. However the correction terms implied by the Dirac bracket (4.6) do not
contribute since they contain a (J^)"1 which is zero in the limit. For /, j ^ 2, the
central term is finite in the limit, since letting q = 1 + e, we see that the central term
in (4.5) is 0(ε) - the 0(1) terms being absent. The terms of order ε all come from / = i
and / = i — 1 in the sum:

which in the limit yield the central terms in (5.6). The nonlinear terms in (4.5) are
polynomial in q and scale inversely with α, thus vanishing in the limit. After some
cosmetics, the linear terms reproduce the linear terms of (5.6). Therefore the
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resulting algebra is simply the subalgebra of (5.6) generated by {wj/^i - that is,
WQO with central extension.

As advertised before, this fact generalizes. If we take the limit q-*N and α -> oo
such that a(q — N) = c, we find that the central terms in (4.5) for i, j ^ N all diverge
in the limit. We must therefore reduce the^algebra by setting them to zero. The
resulting algebra-denoted tentatively2 by \N(£-N is nonlocal for all values of q.
However in the limit, the nonlocal (as well as the nonlinear) terms all vanish
and we are left - after similar manipulations to the ones described above for N = 1
- with the subalgebra of (5.6) generated by the {ui}i>N - namely, \N00-N with
central extension. It is possible - although we refrain from doing this here for the
sake of brevity - to obtain for all N an explicit expression for the limit of the
reduced hamiltonian map analogous to (5.5) and featuring the Khesin-Krav-
chenko cocycle.

A New Nonlinear Algebra as a Contraction of W(<J}. Imposing the constraint

Ul (z) = 0 on the \N1 + ̂  algebra we obtain W J - a new nonlinear algebra. From the
results of the preceding subsection, it follows that this path to W^ can be
summarized as

(58)

Performing the operations in the reverse order we recover the same algebra,
whence we can exhibit W^ as the contraction of W^. The explicit expression
of this algebra can be obtained by contracting the operators Ω(.]} defined by (4.6).
The contraction of JΦ is simply given by (5.6), whereas the contraction of δJW is
given by

1 +~'Σ
ί_ ι

/ ιy i-i j-i r _ ι -ιr _ ι η
-4^-Σ Σ K J (-i)V^— <- „,. (5.9)

C fc = 2 ί = 2 L ' C ~ i J L ί ~ ~ 1 J

One can show that this is a genuinely nonlinear algebra in that there exists no
polynomial field redefinition which linearizes it. Moreover it canjDe shown by
inspection of the first few Poisson brackets not to be equivalent to W^ for any q;
that is, there exists no polynomial redefinition of fields which sends WJ to
a multiple of W^ for any q.

2 In [22] strong evidence was presented to suggest the existence of nonlinear local algebras

denoted ^/OO-N with the same spectrum as the algebras we obtain here. Our choice of notation
notwithstanding, we have not been able to exhibit between these algebras and the ones we obtain
here any link besides the fact that they are both deformations of \N00-N
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6. The Classical Limit of

In this section we investigate the classical limit of W^. The classical limit of
GeΓfand-Dickey brackets (see, for example, [9] ) is defined as the brackets induced
by the Adler map in the commutative limit of the ring of pseudodifferential
operators. We shall briefly sketch this, referring the reader to [9] for more details.

The starting point for defining the classical or commutative limit of the ring of
pseudodifferential operators is the introduction in (2.3) of a formal parameter h as
follows:

ttd'Pd'Q
P Q-g0UW8?' ( '

interpolating from the (commutative) multiplication of symbols for h = 0 to the
(noncommutative) composition of symbols for h = 1. The classical limit of any
structure is obtained by introducing the parameter h via (6.1) and keeping only the
lowest term in its h expansion. Therefore, the classical limit of o is simply the
commutative multiplication of symbols; hence the name commutative limit.

Symbols can be made into a Poisson algebra, where the Poisson bracket is
defined as the classical limit of the commutator - namely,3

[Λβ^limft-^ΛQ], (6.2)
h^O

which can be written explicitly with the help of (6.1) as

rP 0 1 1_^β 8P8Q (63)
ίP>Ql-TξTz~τzTξ (6 3)

One recognizes this at once as the standard Poisson bracket on a two-dimensional
phase space with canonical coordinates (z, ξ).

We must now take the classical limit of the generalized Adler map (3.9). The
generalized Adler map can be rewritten as follows:

J(q\X] = lΛ(q\X'] + °Λ(q) - lΛ(q\(XoΛ(q))+'] , (6.4)

which makes its classical limit obvious - namely,

j<$(x) = lΛ(q\x}+Λ^ - μω (XA^)+] . (6.5)
Expanding J ( $ ( X ) as

= Σ ((J^tj XjW-1* (6-6)

we can read off the fundamental Poisson brackets. Notice that these consist of the
terms in J[|} with exactly one derivative. We can therefore read them off from (4.5)
or else compute them from scratch using (6.5). Either way we obtain an expression
which depends explicitly on q and whose explicit form need not concern us here. As
shown in [9] for the case q = n € N, this depencence in q is fictitious and can be

3 We use [, ] to denote the Poisson bracket to avoid confusion with the Poisson bracket defining
the W-algebras
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eliminated by a polynomial redefinition of variables. Just as in [9] the polynomial
redefinition is easy to describe implicitly and we do so now.

Recall that two Poisson structures are said to be equivalent if there exists
a polynomial redefinition of variables which renders the two structures propor-
tional. We will show that for any nonzero /?, q, the classical generalized Adler maps
J(

c? and Jty are proportional.
Again let Jΐq denote the space of symbols of the form ξq + Σj> 1 Uj(z)ξq~j. Then

by the remark immediately following Eq. (2.23), the map φ taking A ι-> Aplq defines
a map Ji^ -* Jip with the property that the coefficients of Λplq are differential
polynomials in the coefficients of A. The classical limit of this map is simply the
(p/g)th-product as commutative Laurent series, which for noninteger powers is
defined as follows. Let A = ξq + Σj>ι uj(z)ζq~j an^ let us rewrite it as
Λ = (l+ Σ^ Uj(z)ξ-j)ξq. Its αlh-powerls defined by

α l o g l + £ *jt~J , (6.7)

where both exp and log are defined by their power series around 0 and 1,
respectively. From this definition it easily follows that if δ is any derivation,

(5Λα = α/lα~1(SΛ . (6.8)

The map φ induces a map φ*:3~q -> ̂  between tangent vectors and a dul map
φ*:^~* -> £Γ* which are defined as follows. If Ae$~q, then

at
= -Λflt-lA. (6.9)

f = 0

Similarly, if Ze^*, then φ*(X) is implicitly defined by

(6.10)

Using the fact that the classical limit of the bilinear form is simply given by the
trace of the commutative product, we find

φ*(X) = -Λp/q~1X . (6.11)
9

With these two maps we can induce a Poisson structure J\f on Jίp by complet-
ing the following commutative square:

r(«)

y* ̂  ̂ΐ v* , i n (6.12)

In other words, J\f\ ZΓ* -+ ?Γp is given by Jj/ = φ^ ° J^} ° φ*, where o means here
composition of maps. Explicitly, if X € =^"* ,

Jl(X) = ί-j Aplq~lJ(q\Aplq-lX} , (6.13)
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where J^} is given by (6.5) at A(q} = A. Using repeatedly the fact that

-IΛ9 Aplq-lZ\ = - [Λ ZIA^'1 = lApl\Z} for any Z, we find that

= p-

= - J $ (X ) evaluated at A(p} = Ap/q , (6. 1 4)

which proves the equivalence of J(

cf and JjJ} for any p, q.
In particular, this shows that all algebras in the one-parameter family have the

same classical limit. In other words, the classical limit of W^ is wκp for all q where
this algebra is defined in [9]. Analogously, and after the ul(z) = 0 reduction, the
classical limit of W^ is independent of q and yields a reduction of wκp denoted w^.

7. Conclusions

Extending the Adler map to the space of pseudodifferential symbols of non-integer
powers, we have constructed a one-parameter family (indexed by the highest power
of the Lax-type operator) of hamiltonian structures for the KP hierarchy. These
structures interpolate between the ones found by Radul, to which they reduce when
the parameter is a positive integer. We have been so far unable, however, to
promote them to a bihamiltonian pair by finding a suitable one-parameter family
of coordinated brackets. Nevertheless, our results show that there are a lot more
hamiltonian structures for the KP hierarchy than previously expected.

Under the identification of the fundamental Poisson brackets of hamiltonian
structures of Lax-type hierarchies with W-algebras, this one-parameter family of
hamiltonian structures gives rise to a one-parameter family W^ of W-algebras.
This one-parameter family of W-algebras relates many known W-algebras via
reductions and/or contractions and it is our hope that it plays an organizational
role in the surveying of the topography of W-algebras of the W^-type. The relation
between the many algebras connected by the one-parameter family constructed in
this paper can be summarized by the following two commutative diagrams of W-
algebras. The first diagram indicates the algebras obtained from W^ at special
values of q:

reduction -
WKp - » Wo,,

•j evaluation -t evaluation
I β=ι I «=ι

reduction

I

G D j / ' x W Γ

evaluation

contraclion

reduction j, reduction φ reduction

Contraction Q ̂  reduction _ ̂
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where the horizontal arrows labelled "reduction" correspond to the reduction
induced by setting the field of lowest weight to zero. The contraction from Wj£p is
the first Dickey-Radul hamiltonian structure, which breaks up as two commuting
subalgebras: one isomorphic to a centerless W1 + 00 and the other being the first
GeΓfand-Dickey bracket. Of course, this diagram can be further extended by
considering reductions of GDn induced from imposing definite symmetry condi-
tions on the Lax operator. These W-algebras are associated to the B and C series of
simple Lie algebras in the same way that Wn is associated to the A series [23].

The second diagram indicates those algebras reached via contractions of
, and its reductions:

truncation truncation reduction „
\Λ/ ... < W < \ι\l. . » W^v v co — JV v v o o " * 1 + oo v v o o

contraction f contraction * contraction

(f-*0 ' #->0
reduction

contraction

The algebra W J is a new genuinely nonlinear algebra which extends the Virasoro
algebra with generators of spins ^ 3. It is obtained as a reduction from \N1 + ̂  by
setting the spin-one generator to zero. The reduction to \N(S-N is obtained by
setting the generators with spins ^ N equal to zero. This reduction yields in
general a nonlocal Poisson algebra, but upon contraction the nonlocal terms, as do
the nonlinear ones, vanish.

Under classical limits we found that the ^-dependence disappears and all
classical algebras are isomorphic. This situation can again be summarized by the
following commutative diagram

wg -^
I classical I classical

^ limit ^ limit
reduction Λ

WKp » Woo

where the horizontal arrows have the same meaning as before.
While in the process of typing this paper, a paper appeared [24] containing

a deformation of W^ based on the two-boson realization of [12]. Nevertheless, the
deformation in [24] is such that for all nonzero values of the parameter the algebra
remains isomorphic to WKP and for the parameter tending to zero, the algebra
contracts to a centerless W^. Therefore, the results described in this paper provide
the first nontrivial deformation of WKp (or W^).

To conclude, we would like to stress that using our results one can find
a continuous link between the nonlinear WKP algebra and the w^ algebra (obtained
by further contracting W^). As mentioned in the introduction, the former algebra -
or rather a quantization thereof - is the chiral algebra of the noncompact coset
model describing the black hole solution of Witten; whereas the latter algebra is
known to be relevant for the dynamics of the c = 1 matrix model and shows up as
well in the continuum. If these two models are supposed to represent different
phases of two-dimensional gravity coupled to c = 1 conformal matter, it raises
questions on the nature of the corresponding phase transition. It is plausible that
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further study in this direction will unveil the relevance of the mentioned infinite-
dimensional algebras as underlying dynamical principles of the corresponding
models. We think that the algebraic link that we have set up in this paper will prove
useful in this context.
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