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Abstract. We consider Ising spin glasses on Z d with couplings Jxy = cy-xZxy,
where the cys are nonrandom real coefficients and the Zxys are independent,
identically distributed random variables with E[Zxy] = 0 and E\Z2

xy~\ = 1. We
prove that if ^ | c y | = oo while Σ)>IC>Ί2 < oo, then (with probability one) there are
uncountably many (infinite volume) ground states σ, each of which has the
following property: for any temperature T < oo, there is a Gibbs state supported
entirely on (infinite volume) spin configurations which differ from σ only at finitely
many sites. This and related results are examples of the bizarre effects that can
occur in disordered systems with coupling-dependent boundary conditions.

Introduction

The majority of theoretical work on realistic (i.e., non-infinite-range) spin glasses
has focused on the nearest-neighbor Edwards-Anderson (EA) model [1,2], prim-
arily due to the relatively simple form of its Hamiltonian. A smaller body of work
has studied models with random long-range interactions which are square summ-
able; the usual case is that of power-law decay. These models are of interest for
several reasons: the one-dimensional case is partially tractable and is believed to
display a phase transition for a certain range of values of the power-law exponent
[3]; there is a significant body of rigorously provable results (see [4] and references
therein); and in three dimensions, models with a 1/r3 falloίϊ approximate more
closely than nearest-neighbor models the RKKY interactions within an important
class of laboratory spin glasses (specifically, dilute magnetic alloys) [2].

It is useful to distinguish among four different classes of spin glass models (we
confine ourselves to Ising systems): 1) the infinite-range Sherrington-Kirkpatrick
(SK) model [5]; 2) the nearest-neighbor EA model (or other short-range models); 3)
models with long-range random interactions of the kind discussed above; and 4)
randomly site-diluted models with deterministic interactions of non-constant sign,
such as RKKY. Of the above, only the first is fairly well-understood (but mostly on
a non-rigorous basis); whether its properties apply to any of the other three is
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a subject of much debate. Of the latter three, (2) appears to be the simplest;
importantly, it is generally believed that its basic thermodynamic properties (pres-
ence or absence of a phase transition, multiplicity of ground states) resemble those
of (3) and (4), as well as those of laboratory spin glasses (see for example, Ref. 6).
However, the extent to which all of these models resemble or differ from one
another remains unclear.

In this paper we focus exclusively on models of class (3). We find, essentially
through judicious choices of coupling-dependent boundary conditions, that an
uncountable number of Gibbs states can be generated at any temperature. These
Gibbs states and their associated ground states will have unusual properties to be
discussed in the next section. Moreover, we find an uncountable number of even
more exotic ground state spin configurations, with the following property - the flip
of any finite subset of spins costs an infinite amount of energy. This last property
cannot extend to short-range models; neither can the property of having many
Gibbs states at high temperature. Nevertheless, these findings lead to important
questions which are relevant to short-range spin glasses.

To motivate the discussion in the next section, we consider here a one-
dimensional model with the following formal Hamiltonian:

where the Zxy( = Zyx) are independent, identically distributed random variables
with mean zero and variance one, 1/2 < α rg 1, and the σx are + 1 valued Ising
spins. If we confine our attention to a finite system within a volume A with
a boundary condition σb outside this volume, the Hamiltonian becomes

^ \X y\ Z \X JΊ,y
xΦ y

It is known [7] that for any σb which does not depend on the Zxys the free energy
per spin exists and is a constant independent of {Zxy} and of the boundary
condition σb. It has also been proved [8] that for α > 1, there is "weak uniqueness"
(see also Ref. 9) of the Gibbs state for any nonzero temperature; i.e., for any σb as
above, there is (with probability one) a single infinite-volume limit Gibbs state
for any sequence of volumes tending to Z, and if σbf is another coupling-indepen-
dent boundary condition, then the same infinite-volume Gibbs state results. Fur-
thermore, this state is not a mixture of other Gibbs states. For the range
1/2 < α ^ 1, weak uniqueness of Gibbs states is known to be valid for sufficiently
high temperature [10]. Although non-rigorous arguments indicate that this model
has a phase transition [3], there are no rigorous results which extend to low
temperatures; i.e., there is as yet no proof that weak uniqueness breaks down at low
temperatures.

We now give a simple argument to indicate that unusual things can happen
when coupling-dependent boundary conditions are allowed. For illustrative pur-
poses, consider a one-dimensional system with Hamiltonian (1.2) (but restricted to
the right half-line), and with A = [1, L]. Focus on a spin at site x, with 1 ^ |x| ^ L.
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The energy contribution of this spin can be written as — hxσX9 where

1 Z 1 7
x v-ι ^xy λ v-̂  ^xy &

~2 ^ I x — v\<χ(7y 2 ^ \γ — v\"Gy

y(dFx)^L\X y\ Δ y = x + nL \ x / I
n= 1,2, . . . , oo

z L < y φ j c + «L \ x y\
n= 1, 2, . . . , oo

Consider the three terms which combine to give hx. The first is of course finite. If
the σb's of the third term are chosen independently of the ZXy$ appearing in that
term, then it follows that (with probability one) the sum converges and hence the
third term is also finite. (The convergence of the sum for α > 1/2 will be discussed in
Sect. 3.) But now consider what happens when the remaining boundary spins which
appear in the second term are chosen in a certain coupling-dependent manner. In
particular, suppose we make the boundary-dependent choice σb = sgn(Zxy) for
each σb

y in the second term; then the resulting sum will diverge for α ^ 1 and it
would cost infinite energy to flip σx from + 1 to — 1. Similarly, by choosing
σb=— sgn(Zxy\ it would cost infinite energy to flip σx from - 1 to + 1 .

We have not presented a detailed version of this argument because our purpose
in this introduction is only to motivate the assertion that we can always choose
boundary conditions to force any particular spin σx with x e A to point either up or
down in the ground state, such that a flip would cost infinite energy. Furthermore,
it is clear that we can repeat the same procedure for all of the spins in A. The only
potential problem is the third term, but that will remain finite because of the
independence of the ZXyS. That is, a σb which depends on a particular Zxy is still
independent of the other couplings.

A similar line of reasoning implies that boundary conditions can be chosen to
make a spin configuration as "stiff" as desired; for each x in A, we can choose the
boundary conditions to create a large (but finite) field hx of any desired sign and
above any desired magnitude by cutting off the choice σb = sgn(Zxy) after a suffi-
ciently large number of terms. That is, one can arrange the boundary spin
configuration to force a (finite volume) ground state with the property that
overturning any spin will cost a finite but large (of any magnitude desired) energy.

These rather crude arguments provide some idea of the kinds of situations
which can arise when coupling-dependent boundary conditions are employed.
They do not comprise a satisfactory picture because they don't provide a procedure
for generating infinite-volume Gibbs states (or ground state spin configurations)
with these exotic properties. Do such states actually exist? We will prove in the
following sections that not only is the answer yes, but an uncountable number exist,
and this is the case at all temperatures.

An immediate question then is what effect, if any, such exotic states have on
"observable" properties. Since states which do not "arise" except from coupling-
dependent boundary conditions may be regarded as not being physically observ-
able [9], one interpretation of this question [11] is whether these exotic states do
somehow arise at low temperature when using, say, free boundary conditions.
Another question is, does any of this shed light on nearest-neighbor models?
Because we have only speculations to offer at this point, we defer a treatment of
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these issues to the future. We would however like to make one point, which is
developed in much greater detail in Ref. 12 in the context of short- and infinite-
range models. That is that there are two ways in which multiple (exotic) states
could arise from, say, free boundary conditions. The first (but, as argued in Ref. 12,
rather unlikely way) is that there is a single, well-defined infinite volume limit,
whose decomposition into extremal Gibbs states could include our exotic states.
The second way is that the exotic states could be included among many different
limits along different subsequences of volumes. Even though singling out a particu-
lar exotic state would require a coupling-dependent subsequence of volumes, the
multiple states would be observable in their contibution to the sensitive depen-
dence on volumes of free boundary condition states.

The rest of the paper is organized as follows: Sect. 2 contains a statement of four
theorems, along with some discussion, that assert the existence of exotic Gibbs
states and delineate their properties. Sections 3, 4, and 5 contain the proofs of
Theorems 2.1, 2.2, and 2.4, respectively. The proof of Theorem 2.3 is straightfor-
ward and is discussed in Sect. 2.

2. Main Results

We consider a formal Hamiltonian, J f, for Ising spin configurations on Z d :

z{χ,y)

where the sum is over all pairs of sites in Zd, the spins σx take values + 1 or — 1,
and each Jxy is a real number (with Jxy = Jyx and Jxx = 0). To define infinite
volume ground states (or, later on, Gibbs states) when, for fixed x, ]Γy | Jxy | diverges,
we must specify an order of summation to take advantage of possible conditional
convergence of various series. Thus we will fix, once and for all, (for any choice of
Jxys) an increasing sequence Λn of finite subsets of Zd tending to all of Z d as n -* oo.
For simplicity, we choose

A n = {xeZd: \x\ ^ n} = {-n, - n + 1, . . . ,n}d (2.2)

where |x | =
An infinite-volume ground state is a configuration of spins on Zd with the

property that the flip of any finite subset of spins raises the energy. More precisely,
an infinite-volume ground state will be defined as any spin configuration σ
(mapping each x in Zd to σx = + 1 or — 1) such that for every finite subset
AofZd,

( Σ Jxyσxσy)^0. (2.3)
n-»oo \ xeA yeΛn\A J

This definition requires the above limit to exist for each finite A, but we allow the
limit to be + oo. (When A is the empty set, AJ^Ais defined to be zero.) The limit
represents the energy cost of flipping the spins in A while leaving all others fixed.
The relation of this definition to that of finite and infinite volume Gibbs states will
be discussed below, where we will also consider the "stiffness" of ground states
based on the magnitude of the AJf/s. But first, we focus on the stiffest possible
ground state, which we call a rigid ground state. This is one for which
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. = + oo for every nonempty finite A. Equivalently, it suffices to require that
for each x in Zd,

Ajfx(σ)= lim Σ Jxyσxσy= + oo . (2.4)
n-* oo yeΛn

Clearly, Σ? I Jxy I must diverge for each x in order that rigid ground states might
exist. When the couplings are all positive, then the identically + 1 and identically
— 1 configurations are both rigid. Sometimes these are the only rigid ground states.

Consider, for example, the case when d = 1 and Jxy = \y — x\~a with α :§ 1. (This
example is rather artificial in that the free energy per site is infinite in the
thermodynamic limit even with free boundary conditions, but we use it simply as
an illustration.) For any α > 0,

Σ \ylXl\*°y- Σ | y Λ 2 r σ y = Q(1)> (2'5)

y Φ χi y Φ X2

which implies that in a rigid ground state, σxι = σX2 for every xl9 x2- If one
multiplies this d = 1 coupling by the deterministic sign εxy = (- I) 1 *"* 1 , then one
obtains a model equivalent to the ferromagnetic one (under the gauge transforma-
tion of flipping all σxs with x odd) so there are still exactly two rigid ground states.
However, if one instead uses the sign εxy = ( — lγx~y\+ 1, then the model is equiva-
lent to a fully antiferromagnetic one which, by again using Eq. (2.5), can easily be
seen to have no rigid ground states.

When the signs of the couplings are chosen at random, the existence and
number of rigid ground states is a priori unclear. The next theorem shows that if
the couplings of the above d = 1 example are multiplied by random signs and if
i < α S 1> then there are uncountably many rigid ground states (for almost every
choice of the random signs).

Theorem 2.1. For pairs {x, y} of distinct sites in Zd, let Zxy( = Zyx) be independent
identically distributed random variables whose common distribution has zero mean
and variance equal to one. Let cy be a (nonrandom) sequence of real numbers indexed
by y in Zd (with c0 = 0) such that

Σ \cy\= oo a n d Σ \ c y \ 2 < °° > ( 2 6 )
yeZd yeZd

and let Jxy = cy-xZxy in the Hamiltonian (2.1). Let S be any subset ofZd with the
property that

for each x in Zd, Σ \cy-χ\ < °° ( 2 7 )
yeS

(An infinite such S always exists.) Then, with probability one, for every choice of a spin
configuration σ on S there is a rigid ground state σ* which agrees with σ on all ofS;
i.e.,

σ* = σw for each w in S . (2.8)

The proof of Theorem 2.1 will be given below in Sect. 3 of the paper. It is based
on decomposing Zd into a disjoint union of directed trees, one starting from each
w in S. Within each tree the spin values are defined inductively, starting from the
prescribed σw on the root w of the tree, so that the spin σ* equals sgn(J x y ) σ*,
where x is the immediate predecessor of y on the tree. Rigid ground states are
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obtained by constructing suitable trees with infinitely many branches coming out
of each x. The terms in the Hamiltonian corresponding to these different branches
(from a single x) add coherently, while other terms from within a given tree or
between trees add incoherently. A modification of this construction (which we give
in Sect. 4), in which a large but finite number of branches come from each x leads to
ground states in which AfflA may be made arbitrarily large (but finite) for each
nonempty A.

Let us then define a pliable ground state as one in which A fflA < oo for each
finite A. (We denote henceforth by si the set of all finite subsets A of Zd.) Further,
given any sequence θ = (ΘA: A e si) of non-negative numbers indexed by A, we will
call a ground state σ, θ-stiffiϊ

A tfA (σ) ^ ΘA for every A e si . (2.9)

Theorem 2.2. Let θ = (ΘA: Ae si) be any non-negative sequence indexed by A e si
(with θ of the empty set equal to zero) and assume the same hypotheses as in Theorem
2.1. Then, with probability one, for every choice of a spin configuration σ on S9 there is
a pliable, θ-stίff ground state σ which agrees with σ on all of S.

In order to explore the consequences of Theorem 2.2 for the nature of Gibbs
states, we need to define finite and infinite volume Gibbs states at inverse temper-
ature β < oo . First we define a spin configuration σ (on all of Zd) to be allowed (as
a boundary condition for every finite region A e Zd) if for every x in Zd,

hx(σ) = - lim £ Jxyσy exists and is finite. (2.10)
^«->oo yeAn

(Note that a pliable ground state is always allowed.) Then, we can define for any
finite A e Zd, the interaction energy between a spin configuration σΛ on A and the
allowed boundary condition σ as

\ lim £ £ Jxyσ^σy
xeΛ yeΛn\Λ

e}(σΛ;σ)= - \ lim £ £ Jxyσ^σ

= +\ Σ Jχyθiθy- Σ M ' ) * ί , (2-11)
•̂  x,yeΛ xeA

and the "total" energy of σΛ, for the boundary condition σ as

Jc \σ ,σ)— — - 2^ Jxyσxσy + JΓj (σ ,σ) . (z.izj
^x,yeA

A finite volume Gibbs state in the region A at inverse temperature β e [0, oo) with
(allowed) boundary condition σ is the probability measure p^σ on configurtions
σA with

Pβ,a({σΛ}) = (Zi.y1 exp( - /fcfVV)), (2.13)

where

£ Σ Λ σ Λ ; σ ) ) . (2.14)

Note that this, of course, depends only on the σys for yφ A.
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A probability measure p on configurations σ' (on all of Zd) will be called an
infinite volume Gibbs state at inverse temperature β e [0, oo) if

p({allowed σ's}) = 1 (2.15)

and for every finite A a Zd, the conditional probability that σx = σx for each xe A,
given (the σ-field generated by) {σy\y φ A} is

Λ piσ({σΛ}) (2.16)

for p-almost all σ's.
In general, if one takes a boundary condition σ to be a pliable ground state,

then the limit (or limits), as A -» Zd, of p ^ will be supported on infinite volume
spin configurations σ which differ from σ at infinitely many sites (as in, e.g., the
standard nearest neighbor Ising ferromagnet). However, if σ is sufficiently stiff, in
particular if

£ e-PAH*W< oo . (2.17)

the situation will be quite different: the limit will be the infinite-volume Gibbs state
described in the next proposition, which is supported entirely on σ's which differ
from σ at only finitely many sites. The relevance of this fact is that, by Theorem 2.2,
we can construct uncountably many σ's such that (2.17) is valid for all β > 0. To see
this, simply order the elements of J / as Λl9 A2, . . . and choose θk = θAk so that
θk/ln(k) -• oo as k -• oo .

We leave the proof of the next theorem to the reader; it is basically just a matter
of disentangling definitions.

Theorem 2.3. Suppose σ is a pliable ground state such that (2.17) is valid for some
β e (0, oo ). Define a probability measure pσ

β on infinite volume spin configurations by

p«({σA}) = e-PΔH^l Σ e-PΔH*W, Aejtf, (2.18)
/ Aesf

where σΛ denotes the configuration obtained from σ by flipping all the sites in A. Then
Pp is an infinite-volume Gibbs distribution at inverse temperature β.

The final topic we consider in this section is the use of a spin configuration σ' on
7jd as a boundary condition when, for each x, the limit in (2.10) exists but is infinite
(either + oo or — oo). We will say (for reasons that will be clarified below) that
such a spin configuration σ' is forcing. One type of example is when σ' is a rigid
ground state, in which case the sign of infinity for hx(σ') is just σ'x itself, for each x.
Such a configuration is not an allowed boundary condition (according to our
definition) but nevertheless one may construct a finite volume measure on config-
urations σΛ by first replacing Zd by An (i.e., by taking σ' as boundary condition in
An\A and free boundary conditions on Zd\An\ considering the resulting Gibbs
state pf,σ>yΛn and then taking the limit as n -> oo.

If σ' is a rigid ground state, then it is clear that for any β > 0, the resulting
measure, which we denote (as in the allowed case) ρf,σ> is simply a Dirac measure
on the single configuration σΛ with σx = σ' for each x in A. For a general forcing σ',
the measure pft<r> is supported on the single configuration with σx = sgn(/ιx(σ')) for
each x in A. The limit as A -• Zd of ρ^σ> is of course simply the Dirac measure on
σ with σx = sgn(hx(σ')) for each x in Zd; naturally, we will say that σ' forces σ.
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Since a rigid ground state σ* forces itself, it is possible to regard the Dirac
measure on σ* as a kind of (degenerate version of) an infinite volume Gibbs state
(for any inverse temperature β > 0). This is certainly not so for a Dirac measure on
a configuration σ which is not a rigid ground state. Thus if for some σ which is not
a rigid ground state, there exists a σ' which forces σ, then we see that coupling
dependent boundary conditions (since the construction of such a σ' will depend on
the JXyS) can yield infinite volume limits which are degenerate and not Gibbs states
(even in the degenerate sense). This leads us to ask whether there are any (or many)
configurations σ, other than rigid ground states, which can be forced by some σ'.
The next theorem gives the rather striking answer. Its proof (which is a bit simpler
than those of the other theorems) is given in Sect. 5.

Theorem 2.4. Let Jxy be given as in Theorem 2.1. Then with probability one, for every
spin configuration σ on Zd, there is some configuration σ' on Zd which forces σ.

Remark. In fact, the above result is easily strengthened to show that (with prob-
ability one) there are, for every σ, uncountably many configurations σ' which force
σ. To see that, choose any infinite S satisfying Eq. (2.7). Then it is easy to see that
(with probability one) for every x in Zd, £ y e S | Jxy \ < oo. It follows that each forcing
pair (σ', σ) yields an uncountable equivalence class of forcing pairs in which σ' is
changed arbitrarily on S, while σ remains the same.

3. Proof of Theorem 2.1

The general strategy will be to choose (in a manner described below) for each xeZd

an infinite subset Ux of Zd such that the Uxs are pair wise disjoint with

£ \cy-x\= oo, f o r a l l x e Z d . (3.1)
yeUx

Consider the directed graph with vertex set Zd and a directed edge from x to
y whenever yeUx. This will be a union of disjoint trees. We will require each tree
to have a root (a site not in any Ux) and the set of roots to coincide exactly with the
set S given in the theorem. For w e S , let Tw denote the tree with root w. Once we
have chosen the spin value of each root according to Eq. (2.8), all other spins will be
uniquely determined as

σ* = σ*ηy for all y G Tw , (3.2)

where ηy is defined inductively, by setting ηw = + 1 for each w e S and requiring:

for each x e Zd, ηy = sgn(Jxyηx) for every yeUx. (3.3)

(Here sgn(O) may be taken to be +1.)

In addition to Eq. (3.1), a crucial property of our partition of Zd into the disjoint
tree set {Tw\ w e S} will be that

Γ Ί 1 / 2

X Σ \cy-x\
2 < oo f o r a l l x e Z ' . (3.4)

weSLyeΓw J

The construction of the Uxs and the decomposition of Zd into the trees, Γw,
satisfying Eqs. (3.1) and (3.4) will be given below. We proceed to complete the proof
of Theorem (2.1) given such a decomposition.
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Let us first show that for any single choice of σ, the resulting σ* (given by Eqs.
(3.2)—(3.3)) is a rigid ground state with probability one. To do this we must show
that for each x e Zd,

ΔHx(σ*) = lim £ J ^ σ j σ * = oo (3.5)
«->• oo yeΛn

with probability one. We express AHx(σ*) as the sum of two terms Fand V. In V
we restrict y to be either in Ux or (if x φ S) to include the (unique) y0 with x e Uyo.
In F we take all other / s (both those in the same tree as x and those in different
trees); V = lim,,-^ V(n\ where in V(n\ y is further res triced to be in An.

First we note that for the / s of F',

Jxyσ*σ* = J ^ J / y = Jxysgn(Jxy) = \Jxy\ , (3.6)

so that (with probability one) V = oo because

Σ 1 ^ 1 = Σ \cy-x\\Zxy\= oo . (3.7)
yeUx yeUx

The divergence of Eq. (3.7) follows from Eq. (3.1) because the \Zxy\'s are i.i.d. (and
not identically zero) non-negative random variables. (This follows, for example,
from the Kolmogorov three-series theorem; see, e.g., Chung [13].) Next we note
that for the / s of F, Jxyσ*σ* = cx-yZxyσ*σ*, with the random variables {σjσ*}
independent of the random variables {Zxy} because the signs σ*σ* are defined only
in terms of other Zx>y>\ Since the Zxys are independent, mean zero and since
E(V{n)1) is uniformly bounded by Σylc*-}Ί2 < °°» ^ e existence and finiteness
(with probability one) of the limit defining V follows by a martingale convergence
theorem (see e.g., Hall and Heyde [14], Corollary 2.2). This proves that for any
single choice of σ, Eq. (3.5) is valid with probability one.

To complete the proof, we must show (for each x e Zd) that, with probability
one, Eq. (3.5) is (simultaneously) valid for all choices of σ. By Eq. (3.6), V does not
depend on σ and is still + oo as before, but V= V(σ) must be shown (with
probability one) to be finite for all choices of σ. To do this we write V as a sum,
where each term only includes / s from a single tree, Tw. Denoting by w(x) the root
of the tree containing x, we have

V= lim Σ <W)*WKS>. (3.8)
w—• oo weS

For w = w(x),

V(:\x)= Σ cx-yZxyηxηy, (3.9)
y e Tw(x) n Λn

where fw{x) is Γw ( x ), except for the / s included in V. For w φ w(x),

F (r = Σ cx.yZxyηxηy . (3.10)
yεTw(x)nΛn

To prove convergence of (3.8) to a finite limit for all choices of σ, it suffices, by the
dominated convergence theorem, to show that (with probability one), each F^ } has
a limit as n -• oo and that

Σ sup |H? I < oo . (3.11)
weSn^O
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The limit for each V$ follows by the same martingale convergence argument as
given above for the limit defining F(for a single σ) To obtain Eq. (3.11), it suffices if

weS

But then,

£ ( s u p | F (

w

M ) | ) < oo . (3.12)

sup

^ lim ΓjE^ sup

^ lim

1 / 2

where the first inequality is Cauchy-Schwarz and the second is Doob's inequality
for martingales (see Hall and Heyde [14], Theorem 2.2). Combining Eq. (3.13) with
(3.4) yields (3.12) as desired. The proof of Theorem 2.1 is now complete except for
the construction of the Uxs needed to decompose Zd into the rooted directed trees,
TW9 for weS.

Tree decomposition ofZd. We are given {cy: yeZd} satisfying Eq. (2.6) and
a nonempty subset S of Zd satisfying Eq. (2.7). The object is to construct Ux's for
x in Zd, which partition Zd\S and hence construct the rooted directed trees Tw, for
w in S which partition Zd in such a way that Eqs. (3.1) and (3.4) are valid. Before
doing this in general, let us consider a simpler context in which Zd is replaced by
the natural numbers N = {1,2, 3, . . . } and in which cy = \y\~a(c0 = 0) with
1/2 < α S 1.

The construction in this simple context will serve both as an illustration and as
a tool for the general context. We express S as {w0, w l 5 w2, . . . } with Wj < w J + 1

and note that in our simple context, Eq. (2.7) reduces to

f K Γ α < oo . (3.14)
7 = 0

Our construction will be based on successive halving. We begin by defining
successively halved subsets of N:

= {2,6,10,... } = { 4 n - 2 : n e N }

= { 2 k + 1 d - 2 k : n e N } . (3.15)
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For k ̂  1, TWk\{wk} will be a subset of Gk, but because of Eq. (3.4) we will want
it to include only fairly large integers, i.e., ones at least as large as Lfc, defined by

Γ Γ °° Ί 1 / 2 1
Lk = mini neΊS:\ Σ l y - x Γ 2 " ^ k~2 for all x ̂  k >

L Ly=n J J

(y-kΓ2«^k-4[>. (3.16)

(We remark that k~2 in the intermediate expression of Eq. (3.16) can be replaced by
any summable sequence.) We define

Ft = Gtn {n: n ^ Lt} for i ̂  1 ,

(3.17)

for each ι ^ 0, TWi\{Wi} will be exactly Ft\S. For each /, we must define Ux for each
x in TWi. Put the integers of Ft\S in increasing order, xψ < xψ < . . . , and set
xg) = Wj. Then define the C/X's by successive halving:

Tj _ rr IΆ _ r γ ( o . , c r; \ — ίv^') γ(') γ(») 1

l/x(o = {xJ i>:; 6G f c}. (3.18)

In our simple context Eq. (3.1) reduces to Yjyeuxy~a = oo . To see that this is
valid, first note that ΣyeGky~a = °° f° r e a ° h ^ a n < i hence YJy^Fιy~a = °o (since
Fo 3 Go and for i ^ 1, Ft and Gt differ by only finitely many elements.) By Eq.
(3.14), also ΣyeFλsy~a = °° Finally, by the monotonicity of y~α, the construction
(3.18) implies that for k ̂  0,

-(x ( i l )- α + Σ y~*^ Σ Σ Γ ^ Σ r α > (3.i9)
j ; e Uxw l = k+ί y E jjxω y e Uxa)

(where x% is the first element of Uxw) which implies that

^ y-«= oo foreachfc^O, (3.20)

as desired.
The condition (3.4) reduces to

oo Γ

Σ
1/2

< oo . (3.21)

Using ^/V + Z?2 ^ |α| + |fe|, we bound the LHS of Eq. (3.21) by
oo Lx-1 Γ Πl/2 oo Γ Πl/2

Σ ^ - α + Σ Σ b - x l " 2 " + Σ Σ \y-χΓ\
fe = 0 fc = 0 L y φ x J k = Lx\_yeFk\S
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The first term is finite by Eq. (3.14), the second because α > 1/2, and the third is
bounded (see Eq. (3.16)) by

oo Γ ~|l/2 oo

Σ Σ iy-*r2α ^ Σ
= Lx\_y^Lx J k = Lx

k~2 < oo . (3.23)
: = LX

Thus Eq. (3.4) is verified in the simple context.
We proceed to the general context. The main complication is the absence of any

monotonicity for the coefficients {cy: yeZd}. Roughly speaking, we will circum-
vent this by grouping sites of Zd\,S together in shells,

Bi = ΛMι\S ,

Bk = (ΛMk\ΛMk_1)\S for ^ 2 , (3.24)

where the Mks are defined sequentially as

I yeΛn\S

Mk+ί =min<n> Mk: £ \cy-x\ ^ 1, for all x e ΛMk > . (3.25)
(. ye(Λn\ΛMk)\S J

Each Ux will be a union of shells, Bk\ the Bks will be chosen much like the
individual sites were chosen in our simpler context. Gt and Ft for i ^ 0 are defined
exactly as before, by Eqs. (3.15) and (3.17), except that the definition (3.16) for Lk is
replaced by

[ ~|i/2 i

Σ ky-χl2 ^ / c ~ 2 for all xGydMk >
VΦΛM^ J J= minjn > k max £ |c,_J 2 ^ fe"4} . (3.26)

At this stage, we need some orderings. For each i Ξ> 0, put the integers of Ft in
increasing order, /* ι ) </(

2° < . . . . Choose any ordering for S so that
S = {w0, w l 5 w2, . . . }; ΓWi\{wi} will be exactly \JjeFiBj. To construct the l/Λ's, we
choose a "spiral" ordering of Zd so that for every n, all sites x e ylM come before all
sites x φ Λn. We then use this fixed ordering on Zd to order, for each i, the sites in

[)Bj={xf9x*9xf9...} (3.27)

and we set XQ0 = v^. The construction (3.18) is now replaced by

UWi = Ux(i) = [j Bjψ = Bjit> u Bfv u Jfyω u . . .

£/χco = U Bff ' (3 2 8 )
7'eGk

We have now defined all the (7x's and hence all the 7Vs. To verify Eq. (3.1),
observe that Ux is a union of infinitely many Bks. It follows from Eqs. (3.24)-(3.25)
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that for any given x, ΣyeBk \cy-x | ^ 1 for all large fc, and hence Eq. (3.1) is valid. The
verification of Eq. (3.4) is essentially the same as the analogous verification of Eq.
(3.21) done in the simpler context. The construction of our tree decomposition, and
the proof of Theorem 2.1, is now completed.

4. Proof of Theorem 2.2

We begin by noting that to prove that the event defined at the end of the theorem
has probability one, it of course suffices to show that for any ε > 0, its probability is
at least 1 — ε. Henceforth, letting ε > 0 be fixed, we will construct our configuration
σ = σ(σ) in an ε-dependent way and will show that

P(for all σ, σ(σ) is a pliable, 0-stiff ground state) ^ 1 — ε . (4.1)

Next we relate 0-stiffness (and pliability) of σ to the values of A34?A(σ) for
A a singleton set {x}, i.e., to the A J^(σ)'s defined in Eq. (2.4). For any finite A,

Σ Σ Σ Σ 1^1 • ( 4 2 )
xeA x,yeA xeA x,yeA

From this we observe two things. First σ will be pliable if each A J^x(σ) exists and is
finite. Second, let us order the sites of Zd (e.g., by the "spiral" ordering discussed
near the end of Sect. 3) as xl9 x2, X3, . . . and define for k ̂  1,

θk = max{ΘA: xk e A but x7- φ A for j > k} (4.3)

then σ is 0-stiff if (recall that ΘA ̂  0 for each A)

(σ)-2kΣ\JXjXk\^θk f o r a l l / c ^ l . (4.4)

Let φk9 k ̂  1, be some fixed numbers such that φk>0, Σ ^ f c ^ ^ (e S >
φk = 2~k). Then to obtain Eq. (4.1), it suffices to show that for all k ̂  1,

p f f o r a l l σ, 00 > AHXk(σ(σ)) ^ 2^ \JXjXk\ + θ k ) ^ l - ε φ k . (4.5)
\ 7 = 1 /

It should be understood that the event in Eq. (4.5) includes the existence of the limit
defining Aj^Xk. We will obtain Eq. (4.5) by choosing constants λk (with λγ = 0) and
showing that

j k (4.6)

P ( f o r a l l σ , 0 0 > AHXk(σ(σ)) ^ λ k + θ k ) ^ l - εφk/2 . (4.7)

By Chebyshev's inequality (and the Cauchy-Schwarz inequality which gives
E(\Zxy\) S lE(\Zxy\

2)y/2 = 1), the LHS of Eq. (4.6) is bounded by

Σ \JXjXk\)lh ύ 2 ^ Σ \Cχk-Xj\Έ(\ZXkXj\))lλk S 2<ek-Jλk, (4.8)
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where %>k denotes the sum of the k largest |c7 |'s. Thus we obtain Eq. (4.6) by
choosing, for k ^ 2,

λk = ̂ k-Jεφk. (4.9)

It remains to construct σ(σ) so that Eq. (4.7) is valid for each k ^ 1 with our
given and chosen λk9θk9 and φk. To simplify the notation a bit, let us define px and
εx for each x in Zd by setting px = λk + θk and εx = eφk/2 with k chosen so that
xk = x. Let us also write AJ^x(σ) for AJ^x{σ{σ)). Then Eq. (4.7) becomes

P ( f o r a l l σ, oo > A H x ( σ ) ^px)^ί-εx. (4.10)

We will show that, for any given pxs and any positive εxs we can construct σ(σ) so
that Eq. (4.10) is valid for each x in Zd.

We use the same general strategy as in the proof of Theorem 2.1. Namely we
decompose Zd as a disjoint union of directed rooted trees, TW9 one for each w e S
with w the root of Tw, and then define σy = σwηy for each w and each y e Tw (as in
Eqs. (3.2)—(3.3)). In fact, the set of sites in each Tw will be precisely the same as that
used for the proof of Theorem 2.1. Namely

j) (4.11)
jeFi

with {w0, Wi, . . . } any ordering of S, with the shells Bk defined by Eqs. (3.24)-
(3.25), and with the F/s (G/s and L/s) defined by (3.17) ((3.15) and (3.26)). The
difference comes in the construction of the Uxs (Ux is the set of "children" of x in
our tree structure). Once again each Ux will be a union of the shells Bk, but this time
it will be a finite union (chosen below).

The proof of Theorem 2.1 shows (see especially (3.6)—(3.10))

AJTx(ά) = V'x + Σ σwix)σw V%1, (4.12)
weS

where w(x) is the root whose tree contains x,

Vχ = yliχ

lJχyl + l\Jyoχ\ (where x E Uyo\ otherwise] ( 4 1 3 )

and

Vtl = lim X cx-yZx-yηxηy, (4.14)

where fw = Tw for w Φ w(x) and fw(3C) is Tw(x)\{y's and 3;0 of (4.13)}. The existence
and finiteness (with probability one) of Vx^l and of the sum in Eq. (4.12) follow
from the proof of Theorem 2.1 (see (3.11)—(3.13)) and since Ux is now finite, we have
AJtx(σ) existing and finite with probability one.

For a lower bound, we have

AMTM* Σ \Jχy\- Σ 1 ^ 1 ( 4 1 5 )
yeUx weS

Since the RHS does not depend on σ, we will obtain Eq. (4.10) by choosing the Uxs
so that the RHS is at least px with probability at least 1 — εx. First, we note that (by



Exotic States in Long-Range Spin Glasses 385

the martingale convergence theorem used in the proof of Theorem 2.1), the limit in
Eq. (4.14) is both a.s. and in L2 so that (compare Eq. (3.13))

= Σ \c*-y\2^ Σ i ^ - , 1 2 (4 1 6 )

Thus for any μx > 0,

p
weS J LweS J weS

\ Σ I c , - x | 2 ϊ / , (4.17)
weS L J

where the last expression is finite by Eq. (3.4). Let us choose

x/ yeS\_yeT

then by Eq. (4.15), we will obtain Eq. (4.10) if we choose the Uxs so that for every
x i n Zd

p( Σ \Jxy\ύpx + μx)ίε/2. (4.19)

Let Vx denote the random variable appearing in Eq. (4.19). We use the
inequalities and identities,

P(VX S EίVJZ]) ^ P(\ Vx - E[Vχ-}\ ^ EIVJ2-]) ^ Var(FJ/(£[F,/2])2 , (4.20)

(4.21)
\yeUx

where Z has the same distribution as the Zxy% and

Var(FJ= Σ Var( |J, y | )= Σ \cχ-
yeUx yeUx

^ Σ \cx-y\2El\zn= Σ K\2> (4.22)
yeZd yeZd

to conclude that Eq. (4.19) will be valid if both of the following inequalities are valid:

\ Σ \cy-χ\)'EL\ZΠ^px + μx, (4.23)
ZyeUx J

K— \ \r l ι F Π Z Π < ρ / 9 (ά 0ά\

2yeUx ) J

Thus we simply need to choose each Ux so that

Σ Ic,-χl ^ vx Ξ ^ ^ m a x f px + μx, \(2/εx) Σ K\2T) • (4-25)

This condition is the replacement of Eq. (3.1).
As mentioned above, Ux will be a finite union of the shells Bk, with indices from

Ft when x e Tw. (see Eq. (4.11)). To choose the indices, put the integers of each Ft in
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increasing order, fψ <fψ < . . . and then (as in Eq. (3.27)) use the "spiral" order-
ing on Zd to order the sites in each

TWi = {xW = wi9xψ,xψ9...}. (4.26)

Recalling that (as explained following Eq. (3.28) above) for any x, ΣyeBk\cy-z\ ^ 1
for all large k9 we see that for any x9Σyeux\cy-x\ c a n be made larger than any given
vx simply by taking Ux to be a union of sufficiently many Bk's. To see concretely
how we can thus satisfy Eq. (4.25), define for each i ^ 0 and k ^ 0,

Rΐ
Uχio= 0 £/«>> ( 4 2 7 )

k ^ ^ + 1 '

where for each i ^ 0, the Rψ*s are defined inductively by R{1\ = 0 and

Σ j (4.28)

This completes the proof of Theorem 2.2.

5. Proof of Theorem 2.4

Once again the proof is based on a tree structure. This time there will be a single
tree. Its root will be xί9 the first site in the "spiral" ordering of Zd, and again Ux will
denote the immediate children of x on the tree. Given σ, σ' will be defined by the
requirement that

for all x, σ'y = σxsgn(Jxy) for all y e Ux . (5.1)

This defines σy except on the root; there it can be taken as + 1. The two crucial
properties we need of our tree are Eq. (3.1) and (as replacement for Eq. (3.4))

Γ Ί 1 / 2

Σ Σ Ic,-*l2 < oo fora l lxeZ*. (5.2)
x'eZd\_yeUx, J

Let us show that these two properties imply that (with probability one) for every
configuration σ, σ'(σ), defined by Eq. (5.1), forces σ. Equivalently, we must show
that for each x e Zd,

P(σxhx(σ'(σ)) = + oo for all σ) = 1 . (5.3)

But

σxhx{σ'(σ)) = - Σ \Jχy\ + ~VχJχχi+~ Σ σχσχ'\ Σ Jxysgn(Jx>y) \
L yeUx

 Z Zx'ή=x LyeUx, J

>ι y \J i ι\j i 1 y
/^ l__j I Λ,y 1 r\ I ΛΛ 1 1 Λ ^_j

y ε Ux x' φ J»

= + oo (with probability one), (5.4)

where the existence, finiteness or infiniteness of the various expressions follows
from Eqs. (3.1) and (5.2) by essentially the same arguments which, in the proof of
Theorem 2.1, yielded A ffl(σ*) = + oo for all σ (with probability one) as a conse-
quence of Eqs. (3.1) and (3.4). It remains to construct our tree.
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Each Ux will be a union of shells, Bk, which (because there is no S to delete) are

defined a little differently than the Bks of Eq. (3.24). Namely,

B'k = ΛM\ΛM^ forfc^2, (5.5)

where

M Ί = m i n l n ; Σ \cy-Xί\ ^ 1 f ,

Mk + 1=mmln> Mk: £ | c y _ x | ^ 1 for all x G ΛM, > . (5.6)

(- yeΛn\ΛM'h '

We then define Lk by Eq. (3.26) except that Mn-γ and Mk are replaced by

M^_! and Mk. Gt and F f are then defined by Eqs. (3.15) and (3.17). We now simply

define for ί ^ 0 (recall that Zd = {xu x2, x3, . . . } ) ,

UXi= U Bj. (5.7)

The verification that this construction satisfies Eqs. (3.1) and (5.2) is similar to the

analogous argument in the proof of Theorem 2.1; we leave it as an exercise for any

reader who is still hanging on.
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