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Abstract. The g-deformed vertex operators of Frenkel and Reshetikhin are studied in
the framework of Kashiwara’s crystal base theory. It is shown that the vertex operators
preserve the crystal structure, and are naturally labeled by the global crystal base. As
an application the one point functions are calculated for the associated elliptic RSOS
models, following the scheme of Kang et al. developed for the trigonometric vertex
models.

1. Introduction

The integrable RSOS models of Andrews-Baxter-Forrester (ABF) [1] and their
generalizations [2—4] are built upon elliptic solutions of the Yang-Baxter equation
(YBE) in the interaction-round-a-face (IRF) formulation [5]. The one point functions
in these models are known to be given in terms of branching functions for some
coset pair of affine Lie algebras. (To be precise, this is so in one region of the
parameter space of the model, called “regime III.”) Similar results hold also for the
vertex models corresponding to trigonometric solutions of YBE. As shown by Kang
et al. [6,7], the theory of crystal base [8, 9] offers in the latter case a powerful and
systematic method for computing one point functions on the combinatorial level (i.e.
assuming the validity of the corner transfer matrix method [5]).

In a recent work [10] Frenkel and Reshetikhin studied the g-deformation of the
vertex operators a la Tsuchiya-Kanie [11] in conformal field theory. They showed that
the correlation functions satisfy a g-difference analog of the Knizhnik-Zamolodchikov
equation, and that the resulting connection matrices give rise to elliptic solutions of
YBE of IRF type. It seems quite likely that the previously known models mentioned
above are special cases of their construction. This has been confirmed in [10] in the
simplest case including the ABF model.

The purpose of the present article is to study the g-vertex operators of [10] in
the framework of the crystal base theory [6, 8]. As an application we show that the
computation of the one point functions in the elliptic RSOS models can be treated in
much the same way as is done in [6].
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Throughout this paper we follow the formulations in [6]. In Sect. 2 we recall some
basic facts about the crystal base theory following Kashiwara [8, 9]. The discussions
about the vertex operators begin with Sect. 3. The vertex operators we consider are of
the form @:V()\) — V(u) ® V, where V() is an integrable highest weight module,
V() is a completion of V (1), and V is a finite dimensional module of the quantized
enveloping algebra U, (q). This is an equivalent of the vertex operators ¢(z) in the
formulation of [10]. Unlike Frenkel and Reshetikhin who treat general highest weights,
we restrict ourselves to the case of dominant integral weights since the crystal base
theory is specific to the latter situation. Our basic observation is that, provided V
has a crystal base, the vertex operators preserve the crystal structure (Theorem 3.4).
Assuming that V' has a global crystal base [9,12] we are led to a natural basis of
the space of vertex operators labeled by “admissible triples” (Proposition 3.3). In
Sect. 4 we consider compositions of vertex operators. We prove in particular that the
composition (z;)o¥(z,) with another vertex operator ¥(z) is well defined at z; = z,
(Lemma 4.1). Section 5 is devoted to the description of the connection (or braiding)
matrices relating the compositions of vertex operators in different order. As shown in
[10] these connection matrices provide elliptic solutions of the Yang-Baxter equation
in the face formulation. From the observation above it follows that these solutions
share the same energy function with the corresponding trigonometric R matrix [Sect.
5.3, Eq. (5.11)]. We shall prove the second inversion relation (Proposition 5.2) for the
connection matrices, which is necessary in order to apply the corner transfer matrix
method. In Sect. 6 we show that the highest weight vectors in the tensor product
module V() ® V(n) are labeled by “restricted paths” (cf. [13]). Finally we relate
these facts to the one point functions of the lattice model defined by the connection
matrices.

2. Preliminaries

771

!
2.1. Notations. We fix an affine Lie algebra g. Let A, h, =), o, 6 = Z a,o,,and d
i=0

have the same meaning as in [14], except that for the type A(zzl) we reverse the ordering
of vertices from [14]. Thus we have a, =1 in all cases. The canonical central element

!
will be denoted by c= >~ a/h,. Set I ={0,1,...,l}, P=ZA, & ... ®ZA, ® LI,
i=0

P*=7hy® ... ®Zh; & Zd, and Q, =Z- 0y @ ... ® Z~(oy. We normalize the
invariant form on P so that (o, ;) =1 for a short simple root c. It is related with
the normalized form (|) in {14] via (A, p) =7(A|p)/2, where the number r is such
that the dual algebra gV (the one obtained by reversing arrows of the Dynkin diagram

!
of g) is of type X(T) Setting o= Z A, we have 2(p,6)=rh", hY = Z a; being
the dual Coxeter number i=0 =0
Throughout this paper we shall mostly follow the notations of [6] unless oth-
erwise stated. In particular we use g, =g, [k], —(qZ - q; k)/(ql —-q, 1, and

[k);! =[k);[k—1],...[1],. Set P,,=P/Zé, (P.,)* = EB Zh, C P*, and letcl: P —
=0

P, denote the canonical map. We fix af:P,, — P by af(cllo)=ca; (i #iy=0)

and af(cl(Ay)) =4, so that cl o af =1id and af(cl(ey)) =0y — 6. With the data

g, P, I above is associated the quantized affine algebra U = Uq(g; P, I) defined over
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Q(g) (g an indeterminate). Its presentation is those given in (2.1.7)—(2.1.12) in [6].
The subalgebra of U generated by ¢,. f, (i € I) and ¢" (h € (P.)*) is denoted by
U"=Uy(g; P,;, I). We shall use the coproduct A= A_ and the antipode «=a given
by

Afe)=e, @1+, @e, A(f)=[21"+12f, A =¢"2¢". Q@1
a,e)=—t"e. a,(f)=—fit;, a(@)=q" (2.2)

This differs from the Hopf algebra structure adopted in [6]

Aey=e @t +1we, A(fy=[al+tef, AG)=q¢" 24", 23
a_(e)=—eit,, a (f)=—t]"f,. a (@")=q" (2.4)

The formulations based on these two structures will be compared in Sect. 2.6.
As in [6] we put

A={f € Q(q)]f has no pole at ¢ =0} .

2.2. U- and U'-modules. For a positive integer k we set (P,), ={X € P|(h,.\) €
L.y Yie L{c,\) =k}, (P)),={\ € (P,),[{d.\) =0}, and likewise for (P, ),. As
in [6] V()\) denotes the irreducible highest weight U-module with highest weight A.
We fix a nonzero highest weight vector u, of V(A) throughout. In general a weight
space of a U-module A is denoted by M, (v € P), and likewise for U’-modules.
We write wte=wv for v € M,. Let V()= & V()), be the weight space
decomposition. We set VEA=Qy

voo= [ vo,. (2.5)

PEA-Qy

Let Mod/ denote the set of finite dimensional U/-modules V such that

l
wi(V) C Ay + Y Zel(a,)  for some Ay € Py, (c.af(N) =0.  (2.6)
1=0

For V' € Mod/ we shall identify the affinization Aff(V) ([6], Sect. 3.2) with the
U-module structure on V[z, 2~ '1=Q(¢)[#, 2~ '] @ V defined as follows:

bn+n ® e, f1(2’n ® ’U) — Z“éz()‘Hl ® fl/U‘,

wi(z" @ v) = nd + af(wtw),

e,(Z" )=z @7

where n € Z, v € V' is a weight vector and wtv signifies its weight. We shall often
write 2" @ v as vz".

Analogously, for an invertible element = € Q(g), let V,, denote the U’-module
whose underlying space is V, equipped with the structure map 7, :U’ — End(V)

T ey =a%0n(e,).  w(f) =270y, 7w (¢") = 7",

where 7 signifies the original structure map. (The notation V, conflicts with that of
weight spaces, but the meaning will be clear from the context.)

2.3. Crystal base. We recall from [8,9] some basic notions concerning the crystal
base.
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Let M be an integrable U-module. For each i € I, any weight vector v € M can
be uniquely decomposed as

N
U= Z ffk)uk , o eup =0, wtu, = wtu + ko, , (2.8)
k=0

where f* = ¥ /[k],!. Using (2.8) one defines the linear maps &, f'?, glow, flow ¢
End(M) as follows [9]:

N N
t k—1 71 k+1
owu_Zfl( ) U, fzowu:Zf'L'(+)uk7
k=0

N
&y Z [(h;, wtu) + k + 1], £,

[k]

k>

=1

_ iv: [k + 1], Dy
— [(h;, wtu) + kI,

The notions of upper (resp. lower) crystal, crystal lattice and crystal base at ¢ =0 are
defined in [8,9] using &, f;” (resp. &%, f1°%). Those at ¢ = oo are defined similarly
replacing A by A={f € Q(¢)|f has no pole at ¢ =o0}.

It is known [8] that an integrable highest weight module V' ()\) has the standard
crystal base at ¢ =0 described as follows ([9], (3.3.1-2), (4.2.9)):

LY\ = Z Ay (2.9)

B = {fiY .. "1°WuA mod gL' (\)}\{0}, (2.10)
LUP()\)V — q(>\ A)—(v, V)LlOW(A)V , BUP(A)U — q()\ A)—(v, V)BIOW()\)U ) (211)

Let ¢ denote the anti-automorphism of U given by
ple)="1f, of)=e, o@")=d"
Then V(X) carries a unique symmetric bilinear form (), such that
(u/\,u/\)Lp =1, (xu,v)w = (u,cp(at)v)w foral u,v e VM) andz € U. (2.12)
The upper crystal lattice can also be characterized as ([9], (4.2.7))
L) = {u € VO)|(u, L®¥(\), C A}. (2.13)

Crystal lattice/base can be formulated also for U’-modules, but for finite dimen-
sional modules the existence of a crystal base is not guaranteed in general. A family
of finite dimensional modules having “pseudo-crystal base” have been studied exten-
sively in [7].

24. Dual modules. In general, let H be a Hopf algebra, ¢ an anti-automorphism of
H, and M an H-module. We shall regard the linear dual M* = HomQ(q)(M , Q)
as equipped with an H-module structure via ¢:

(zv*,v) = ¥, pxw) v e M veM,zcH, (2.14)
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where (,) denotes the canonical pairing of M* and M. This module structure is

denoted by M*?. If M is finite dimensional then M 2 (M*#)*¢™" (canonically).
Taking ¢ to be the antipode a we have the canonical identification

Hom (L, M ® N) = Homy(M** ® L,N), (2.15a)
Hom (L ® N, M) = Hom (L, M @ N*%), (2.15b)
We remark that the dual of (2.5),

VR =Tont= @ vo)*
VEA—Q 4

is a lowest weight module with lowest weight —A.
Now let ¢ denote the anti-automorphism of U given by

ey =e;, uf)="F, uM=q".

(We have changed the sign of ¢ from [6]). Let M be an integrable U-(or U’-)module,
(,) the canonical pairing of M™* and M. It can be verified directly that

(@Vo* vy = (v, &F), (0", 0) = F, Py, vfeM* veM.

We have also the same relations with up and low interchanged. Suppose that M has
an upper (resp. lower) crystal base (L, B). Then (L*, B+) with

Lt = {v* € M*|(v*, L) C A}, (2.16a)
B* = the base of L /qL* dual to B with respect to (), (2.16b)
is a lower (resp. upper) crystal base of M** [9].

2.5. Global base. In Sect. 3 we need the global crystal base for finite dimensional
U’-modules. Let us recall this notion briefly from [9].
Let U’Q be the subalgebra over Q[g,q~'] of U generated by ™, f™ (i € I,

h n
n € Z,)and ¢", { i } = kH (" F—g R (F—q7R) (h e (P)* . n € Zsy).
=1

Suppose V € Mod’ possesses

an upper crystal base (L, By) at ¢ =0, (2.17a)

an upper crystal base (L__, B_ ) at ¢ = o0, (2.17b)

a U'Q-submodule Vo suchthat Vo @ Qg =V. (2.17¢)
Qlg.q—"]

Assume further that the natural map L, — L/qL, induces an isomorphism
VoNLgn L ~—Ly/qLy. (2.174d)

Let G'P denote the inverse map of (2.17d). Under these conditions, {G*?(b)},¢ g, is

a base of V, called the upper global base. We say simply that V' has a global base if
(2.17) are satisfied.
The following fact will be used later ([9], Lemma 5.1.1).

For b € Ly/qL, and n > 0 we have e/ T'G"P(b) =0 < &7 b =0. (2.18)
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We remark that the lower global base can be defined analogously [9], but it does not
have the property (2.18).

2.6. Intertwiners. In this paper we shall deal with intertwiners of U/-modules of the
form
@ . M 1 — M2 ®M3 5

where M,QM,; = @ ];[(Mz)g @ (Mj),,_¢- The coalgebra structure A, (resp. A_) is
v
adapted to the upper (resp. lower) crystal base at ¢ =0 in the sense discussed below.
Let M, N be integrable U-modules such that wt(M) C Ay + > Za,, wt(N) C
Lo + > Loy, for some Ay, p, € P. We define operators 3, v, n by
Brr(w) = g~ VT Codody e M (2.19)
YunU®v) = POW200m)y @y gy € M,,veN,. (2.20)

Then A, (z) = yyn © A_(2) 0 vy (@ € U) and By ® Oy = By © Tun =
Yun © Bugn- We extend 7y, also to M@N. It is known [8] that

(i) (L, B) is a lower crystal base of M at ¢ = 0 if and only if (3,,(L), 3,,(B)) is
an upper crystal base of M at g = 0.

Suppose M, has a lower crystal base (L, B%) (i = 1,2,3), and set L}’ =
Bar, (LY, B = By,(B). For a linear map &'°V: M, — M,&M; we put
PP = Ypp a1, © @'°% and vice versa. Then we have

(i) PV ox = A_(z) o PV if and only if P* oz = A, (z) 0 P (z € U),
(iii) o By = (Bpr, ® Bas,) o @V, Hence V(LW C Lv (%)L';’“’ if and only if
(L) C L3P @ Ly.

In the rest of this paper, except in Sect. 3.4, crystal lattice/base will always mean

upper crystal lattice/base at ¢ = 0.

3. Vertex Operators

3.1. Formulation. Fix A\, u € (Pf)k and V € Mod” . In [10] Frenkel and Reshetikhin
studied the vertex operators (VOs). By definition they are operators of the form

A, 5 A A+ 20)
d — Ap—Ay — ( .
(2)==z D(2), Ay A 3.1
where &(z) is an intertwiner of U-modules

$(2): V() = V(&V[z,27']. (3.2)

Fixing a weight basis {vj} of V, we define the weight components &,,, of &(z) by
Saw=) > 000", B VO, = VW, wjmopins ()
j n€l
Note that for each v we have Qﬁjnv = 0 for n > 0, since the weights of V(u) are

bounded from above. If we set ¢ =5 ( > ¢jn) ® v; we obtain an intertwiner of
U’-modules 3\ n€Z

PV - V(weV. 3.4
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The weight components (3.3) are recovered uniquely from & by using the weight
decomposition of V(u). Thus there is a bijective correspondence $(z) < & between
intertwiners (3.2) and (3.4), and the two formulations are equivalent. In the following
discussions we often find it more convenient to deal with (3.4), which we also refer
to as a VO.

3.2. Existence of vertex operators. Let us examine the conditions for the existence of
VOs.

Lemma 3.1. Let & be a VO (3.4). Then for each v € V() there exists an N € L
such that
eﬁvqf'jnv =0, fZqu'Jnv =0 foralli, jn

Proof. First note the following simple fact. Let W be an arbitrary U (5[2) -module,
and let V; = EB Q(q)vk be the [ 4+ 1 dimensional irreducible module with basis
v, = fI )vo, 617’0 =0.Ifu= E w, @ v, € W@V, satisfies A(ef”)u = 0, then
e’ln” kwk = 0 for all k. This can be shown inductively for K = [,l — 1,... by
comparing the coefficients of v, in A(eT*)u.

To show the lemma we may assume that v is a weight vector. Since V() is
integrable, we have ej*v = 0 (Vi € I) for some m. From the remark above it follows
that e;f’"”J“M@jnv = 0 for all ¢, j, n, where

M = max dim Ué(gl)vj —1 (3.5)
%

with Ué(gl) denoting the subalgebra generated by e, f,, and ¢" (h € (P.)™). This

implies that f{”*M’Lséjnv = 0, where s = (h,,wt®, v) = (h,,wtv — wtv,) is
independent of n. The proof is over. [J

Definition. For a VO (3.4) &, let the image of the highest weight vector be
' Puy =u, @y + ..., (3.6)

where ... is a sum of terms of the form v ® v, u € V(w), with v # u. We call
v, € V the leading term of .

The following tells that @ is determined by its leading term (communicated by
Kashiwara).

Proposition. Notations being as above, let
VI ={veV|wtv=dO-p), Py =0 Viel}.
Then the map sending P to its leading term gives an isomorphism of vector spaces
Hom,/(VOV), V() @ V)-S5V C V.

Proof. Let U'(b,) be the Hopf subalgebra of U’ generated by e, (i € I) and ¢"
(h € (Pcl)*). Then u, generates a one-dimensional U’(b_ )-submodule Q(g)u, with
the defining relations e,u, = 0, ¢"u, = ¢ u,. We have

Homy;, (V(X), V(1) ® V)= Homy, (Q(@)uy, V() @ V). (3.7)

In fact it is clear that the canonical map (3.7) is well defined and injective. To see that
it is surjective, pick a v € V(1) ® V' such that wtv = ¢l(\) and e,v = 0 for all 7 € I.
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Then from the proof of Lemma 3.1 there exists an N € Z such that fNv = 0 for
i € I, hence v generates an integrable U’-module isomorphic to V().
Noting (2.15a) we can rewrite (3.7) further as

the right hand side of (3.7) = HomU/(b+)(V*a(u) ® QQu,, V)—VI.

The last isomorphism follows from the presentation of V*%(u) as U’(b, )-module
U/(b+)/ <Z U/(b+)e§hzyﬂ>+1 + Z U/(b+) (tl _ q:(hzy/">)) . O

When V has an upper global base, the space of intertwiners admits a description
in terms of crystals as follows.

Definition. Let (L, B) be a crystal base of V' € Mod/. We say that a triple (i, b, \)
A\ u € (Pﬂ)k, b € B) is admissible if u, ® b € B(u) ® B is a highest weigh vector
of weight cl(\); or equivalently if

wib=clA —p), &My =0 foranyiel.

Let
BY = {b € B|(i,b, \):admissible} .

From (2.18) it follows that {G"P(b)},¢ B is a base of V. Hence we have

Proposition 3.3. Assume that V has a global base in the sense of Sect. 2.5 with
the crystal base (L, B). Then the space Homy;, (V(\), V() @ V) of VOs has a basis

{@/;b}beB,;, such that $4° has the leading term G*™(b) (b € BY):
Pluy =u, @ GPOb) + ... .

3.3. Stability of crystal lattice. Let V € Mod”. In this subsection we assume that V/
has a crystal base (L, B). We fix a weight basis {v, } of V' such that v; modqL € B.
We say that a VO @ (3.4) preserves the crystal lattice if

L) C L L,
where L(p) = IT L(w),,. Our goal is to show the following.
Theorem 3.4. Let @ be a VO (3.4) with the leading term v, € V.

(@) If v, € L, then ® preserves the crystal lattice.
(b) In addition if v;, mod gL belongs to B, then @ induces a morphism of crystals

$:B(\) — B(n)® B.

(¢) There exists an m > O such that for any v € L(X),_, we have
B0 € g CRMOI LGy i,

where M is given in (3.5). In particular, for any fixedv and N, &;, v € q" L(w) holds
for all but a finite number of (j,n).
A proof of Theorem 3.4 will be given in the next subsection.

Remark 1. In the same way as (3.4) one may also consider intertwiners of the form

TV = VoVi. (3.8)
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Under the assumption of Proposition 3.3 it can be shown that the space of intertwiners
(3.8) has a basis {¥}"} indexed by b € BY, such that ¥{"u, = G*(b) ® u, +
terms v’ @ u', u' & V(p),,.

Remark 2. Let  be the automorphism of the algebra U over Q defined by €, = e,,
f,=1f ¢" = ¢" and § = ¢~!. We have A, (z) = 0o A_(Z) for z € U, where
o(a ® b) = b ® a. There exists a linear automorphism € End(V(\)) such that
u, = u, and

zu=2u forxelU,ue V().

Suppose the finite dimensional module V" also admits € End(V') with this property,
and let

PP VN - VRV
+

be an intertwiner with respect to the coproduct A . Setting ¥Fv = g 0 PH5 we
obtain an intertwiner

DV - VRV ().
:F

Moreover W~ (resp. W) preserves the upper (resp. lower) crystal lattice at ¢ = oo
but not the one at ¢ = 0 in general.

3.4. Proof of Theorem 3.4. In view of the remarks in Sect. 2.6 it is enough to prove
the theorem in the setting of lower crystal lattice. In this subsection only, a crystal
lattice/base will mean a lower crystal latticelbase. We put A = A_, & = &%

1 2 ’
fi = f}"‘”, and assume that D is an intertwiner with respect to A_.
Let 7 be the anti-automorphism of U given by

Ye) =afity, W) =q te,, v =4q".

Define a new bilinear form (,),, on V(u) by setting (u, V)y = (6“1u,v)¢, where
Bu = ¢ =My for u € V(u),. Then (,), is nondegenerate, symmetric, and
satisfies [cf. (2.12, 2.13)]
(UM, .Uf)"b - 1 (.’L'U,, v)qp = (u7¢($)v)¢) (qu € V(/L),l' € U)v
L(p) = {u € V(w|(L(w),u)y, C A}.

Using this we define #V:V(u) ® V(A\) — V by &V(u®@v) =Y (u, ?,,v),v;, where

w5
® =3 ®;,®v,.Interms of $ the intertwining properties of & translate as follows:

3.9)

PV (u®ew) =e,d uv)+q TG (fu ), (3.10)
(W fv) =g F S wev) + g YR (eu ),  (3.11)
wt PV (u ® v) = cl(Wwtv — wta) . (3.12)

By the definition of M (3.5) the following hold:
ey =0= (" Myxv)=0 (Yuc V(). (3.13)

We note also that
fwe Ag M Ew  (vweV). (3.14)
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Proof of (a). Thanks to (3.9), the statement (a) is equivalent to

V(u®v)eL (Yu€ L(w) Yo € L)y _¢) (3.15)

w=m
for any £, € @,. It is true in the case £ = 7 = 0 by the assumption. We show
(3.15) by induction on ht(£) + ht(n) where ht(§) = > n, for £ = > n,a,.
1€l 1E1
Suppose ht() > 0. In view of (2.9) we may assume that u = f;u/ for some

i€land v € L(p), ,,, - Consider the decomposition of (2.8): v/ = 3 fPu,,

0<j
v= > f( Vg, €,u; = €,v, = 0. Then v’ € L(u) [resp. v € L()\)] implies u, € L(u)
0<k
[resp. v, € L(N)] ([8], Proposition 2.3.2). Moreover we have u = 3 fi(jH)uj. By

0<y
the induction hypothesis we know that @V(u] ®v,,) € L. Using the result for U, q(slz)
in Appendix (Corollary A.13) we get ?V(u®@v) =Y @V(ﬁﬂuj ® f;’cvk) e L.
The case ht(§) > O is similar. [J

Proof of (b). Since @ commutes with &, and ﬂ, it is enough to verify that $(B()\)) C
B(u) ® B. In view of the description (2.10) of B(}) it suffices to prove the
following statement by induction: If b = vmodgL()) € B(X), fb # 0 and

dvmod(¢L(u) ® L) € B(p) ® B, then & f,v mod(qL(1) ® L) € B(u) ® B. Again this
is a consequence of Corollary A1.3. [

Proof of (c). We may assume that the leading term v,, belongs to L. We shall show

PV(u@v) € ¢?0T ML (u e L(w), _,, Yv € LNy (3.16)

p=m
for any £, n € Q.. The assertion (c) follows from this with the choice m =
max (2o, A—pu— af(wt’vj))

Flrst let us prove (3.16) for £ = 0, v = u, by induction on ht(n). The case

ht(n) = 0 being trivial, suppose ht(n) > 0. We may assume that v = f] u; for
some ¢, j > 0 and u; € L(W),_p,jq,> €;u; = 0. From the estimate of powers of

q in the case of U, (5[2) (Proposition Al. 2) we see that @V(u ® u,) € ¢°L implies

@V(fju Qu,) € q“+(2973a1)L Here we used (29, ;) = («,, @,). The assertion follows
from thls

Next let us consider the general case by induction on ht(£). We may assume
v = f,v' for some i and v’ € L(\), _ ¢4, Let k be such that ey’ # 0and ef 1’ =0,

so that v = f,v’/[k + 1],. Then (3.11) implies

& (w@v) = [k+ 107 ¢V ([ e v) + ¢ (euer)).  (.17)

Consider the first term of (3.17). If j,n are such that (u, éjnv’)wvj # 0, then
wtu = wtv' — af(wt vJ) + né. Hence together with (3.14) we find

e+ 1070 g (w, @, 0, froy € AdE Y M, @, o Fro,
Since k + (h;, wtv’) > 0 we have by the induction hypothesis

the first term of (3.17) € Ag; M q@en-M+hE=ey (3.18)



Crystal Base and Vertex Operators 57

As for the second term, let u = Y f/u,, e;u; = 0. Then
Jj=20
PV (eu®@v) = Z [(hz,wtu>+j+1]iq5v(ff_1uj®v’)
k+MA125>1

c Aq—(hi,wtu)-—k—M—l Z @V(f';:]——lu] ®v/),

where we have used (3.13) to restrict the sum to k + M + 1 > j. Using again the
induction hypothesis we find

the second term of (3.17) € Agq, Mg@en—cu-(M+hE=an ], (3.19)

Both of the right-hand sides of (3.18, 3.19) belong to Ag®?21~M+DOT, a5 desired.
O

4. Compositions of Vertex Operators

4.1. Convergence of composition. Let V,W & Mod’ have crystal bases. We shall
consider the intertwiners .
V)= V()W ,

V() - V)V,

Fixing bases {v;} C V, {wy} C W we denote by &,
respectively.

Ifweset®, =) q5jm Quz™ (z € Q(g)™), then it gives rise to an intertwiner
Vi — V) ® V, with V, being the U’-module in Sect. 2.2. We would like to
define the composition

¥, their weight components

@, ®id)o?, =Y Y (@ "y P, 00, DV, dw,. 4.1)
3k mneL

For this purpose we need to extend the base field to K = Q((g)), the field of formal
Laurent series in g. Weset VE =V @ K, UK =U' ® K, etc.
Q(g) Q)

Lemma 4.1. If z/y = ¢ * with s € Z., then the composition (4.1) gives rise to a
well defined intertwiner of U'¥ -modules

VEQ) - VEw) o VE g WK

Proof. We may assume that the leading terms of @, ¥ belong to the crystal lattices.
Fix u € L(\) and | € Z. It suffices to show that for each N > 0 the sum

> qsmsﬁ]m o ¥, u comprises only finitely many non-zero terms mod ¢V L).
m+n=l[
Since ¥, u = 0 for n > 0, the sum is restricted to n < n, for some n.
Theorem 3.4 (c) states that ¥, u = 0 mod qM"L(u) where Ilim M_ = oo. Since

n——o n

D, s Yy, both preserve the crystal lattice, the assertion is clear. [J

4.2 Dual crystal base. For V € Mod/ we shall consider the dual U’-module V**
with respect to ¢ (see Sect. 2.4). We have (V,T)*L = (V’“)I for z € Q(g)*.
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As in (2.6) fix a reference weight \; € wt(V). As the reference weight of the dual
module we shall always take A\j = —X, € wt(V**). For v € V,, we set

ﬁv (v) = q(af(v),af(v»—(af(ko),af(x\o))v

“4.2)
TV(U) — q(ZQ,af(/\o)—af(V))v , SV(’U) — (_l)ht(Ao—V)v_

Likewise define (3, «, etc. It is known ([6], Proposition 5.1.8) that the following give
isomorphisms of U’-modules:

Fyu VI =5V 0™ o syw 0 fps o Tyu(vY), 4.3)
Fy iV oy —><V*“>*a ;v Ty, 44
where we identify V with (V*)*.
Define
(v v), = (ﬂv*v , V), (4.5a)

L*b = {v* e V*|(v*, L), C A}, (4.5b)
B** = the base of L™ /qL** dual to B with respectto (,),.  (4.5c)
From (2.16) and the remark (i) in Sect. 2.6, (L**, B*") is an (upper) crystal base of
V*!. Note that (€,b*,b'), = (b*,&,b'), and (f,b*,¥'), = (b*, f,b'), hold for b* € B*,
b € B.
In this section we shall assume that

V has a global base, (4.6a)
V*! has a global base, (4.6b)
Their crystal bases (L, B), (L*, B*) are related via (4.5b), (4.5¢).  (4.6c)

Lemma 4.2. Let \,pu € (P?), b € B, b* € B* 5o that (b,b*), = 1. Then
(u, b, N is admissible < (\,b*, ) is admissible .
Proof. Tt suffices to check that the following are equivalent for each ¢ € I:
M &'t b =0, @ "N =0

Let ¢,(b) = max{k.ekb # 0} and ¢,(b) = max{k|fFb # 0}. Then (i) states
g,(b) < (h;, p). The condition (ii) is equivalent to

@reMFpE Y = (b &MY =0 forany b € B. @.7)
Equation (4.7) means that there is no b’ € B satisfying b = éﬁhi”w“b’ , i.e. that
%(b) < (h,, A). The assertion now follows from the relation ¢,(b)—¢,(b) = (h,, A—pu).
4.3 A lemma. By virtue of Lemma 4.2 the set

B*z = {b* € B**|(\,b*, u):admissible}
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is in one to one correspondence with BY. In fact they are dual bases to each other
with respect to (, ),. In this subsection we assume that they are non-empty.
Let

@Q‘?/'V(A) -VweV, beBy, (4.8)
SV = TRV, bF e B 4.9)

be the bases of VOs normalized as in Proposition 3.3. For definiteness we have
exhibited the spaces V, V** explicitly. Using (4.9) we now define

BN o = (A@Fy4) 0 (BY40) _nv (4.10)
In view of (4.3), (4.10) gives an intertwiner of U’-modules
PNt V() — V)@ Ve,
Lemma 4.3. Let A\, N € (PY),. Then
Hom,,(VEO), VEW) =K if A=,
=0 otherwise.

Proof. Let ¢:VX()\) — VE()N) be a U'-linear map, and let ¢ be its weight
components, so that ¢,, maps VE(\), to VE()X), . Each ¢, is a U’-linear map
from VE()\) to VE()) sending u, to a highest weight vector of weight A + né in
VE(\). Tts image is a U -submodule.

From Theorem 4.12b) in [15] it follows that the integrable highest weight U-
module V' ()\) is absolutely irreducible, hence in particular VX ()\) is an irreducible
U module. Hence we find that ¢,, = 0 (n # 0) and that ¢y is a scalar which can
be nonzero only for A= )\. O

Proposition 4.4. Let ' € BY,, b* € B*),. Then the composition of U'¥ -linear maps

(K = Q)

oht d
V* a®i

VEWN) LVK WeVK — " TR @ (VoK @K 120 VK(A) 4.11)
is a scalar g b id. Here g oo € K enjoys the property
Cg" = (1,b*), mod qQIlgll,  C = (—1)HONF Wb (4.12)

k= (20, A+ A\§ — w) In particular the matrix (gf\‘b/b* ot p= 1S invertible.

Proof. By virtue of Lemma 4.1, (4.11) is well defined. Hence by Lemma 4.3, it must
be a scalar map § ~”b " id. To see (4.12), let A = ). We set &k = (20, )\—l—)\g‘ —u) €Z,

T\(u) = %Ay for u e Vv,

and likewise for T”. It can be checked that

DN o = (T @ (s 0 fyt ) 0 DN o T, (4.13)
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Now take bases {v,} C V, {vf} C V* such that v, mod gL € B, v{ modqL** €
B*t. Setting dif\‘z", =Y & @y, 452’{;(1 =3 @;k ® v}" and using (4.13), we write
down the image of u, as follows:

G uy =T B o T, P (uy) x (s(]),vy), -
Note that T\ u, = u, and that T (L(p),) € qL(w), unless v = pu since (20,0) € Z,

for o € Q,\{0}, together with Theorem 3.4(a). In view of the normalization (4.8,
4.9) of VOs, we obtain (4.12). [

5. Connection Matrices

5.1. R matrix. Throughout this and the next sections, we deal with only those modules
V € Mod” such that

V satisfies the conditions (4.6a)—(4.6¢), (5.1a)
Its crystal By, is perfect in the sense of [6]. (5.1b)

Under the assumptions above, there exists an intertwiner of U-modules
Ry (2)/2): V2, 27 1@ Wizy, 2, 11— Wizy, 2y 1@ Vizy, 27,
which commutes with the multiplication by z,, z, and depends rationally on z = z,/z,

(cf. [6]). Set Ry, (2) = PRVW(Z), Pw ® v = v ® w. The condition (5.1b) implies
in particular that,

wtV C Ay — ZZZOO‘w dim V, =1 for some A, € P,; .
1#0

From this section on we take such weight as a reference weight. Pick a nonzero vector
vy €V, and let wy € W, , 11y be the counterpart for W. We normalize Ry, (2) by

Ry (2)vy @ wy = vy @ wy - 5.2)

We have then (cf. [10])
Ryw@Ryy(zH=1, (5.3)
(Ryw (@)™ = Byw (@) Ry (2), (5.4)

with some rational function By, (2) € Q(q) (2).

5.2. Connection matrix. Fix \,v € (Pﬂ)k. Suppose that triples (v, b;, 1), (4, by, A)

are admissible for some p € (P?),, b, € By, and b, € By,. In this section we

use the VO in the formulation (3.1, 3.2) /1}(2), P4y (2). Note that they have the
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overall fractional powers of z. Correspondingly we must extend the base field Q((q))
to include the fractional powers qA*, etc.
A result of [10] says that

(id ®va(31 /22)) (45 (Z )® 1d)¢ub2 (Z2)

A b op
b
Z @ () @ P2 (2) oy | ) b | (z1/%)  (5.5)
b}, bh, wobow
holds with some scalar functions
Abop
pobow

Here (5.6) is understood to be zero unless (v, by, 1), (i1, by, A), (v, b, '), and (i, b5, A)
are all admissible triples. We denote by C,y;,(2) the matrix with (5.6) as entries where
the matrix indices are (b,, i, b,) and (b}, i, b}).

The composition of vertex operators (in the sense of matrix elements)

@”b‘ (2)) @ iDL (2,)

are absolutely convergent when |z,| > |z,|, and can be continued meromorphically
(apart from the overall powers of z,) to (C*)2. The right-hand side of (5.5) should
be understood as a result of analytic continuation. The matrix C',y;, (2) satisfies the
Yang-Baxter equation ([10] Theorem 6.3.)

Ao by v Avb A
Z CV1 Vs b5 bS () CV, V3 bﬁ b7 (zy)
b7,bg,bg As by N A¢ by v
Ay by Ay
X Cyyyy | by by | ()
voby N
AL b voby A
> Cuy | b by | W) Crivy | Do by | (zy)
b7,bg,bg >\6 b5 )\5 )\5 b4 A4
A b A
X Cyyy | g b, | (z). (5.7)
vobg A

We note that the compositions of intertwiners {(gb H(z)) ® id)D b w @z, by, ),
(i, by, N) © admissible} are linearly independent since

@3 @id)Pu, =u, @b, @ bymodqL(v) ® L® L ® Qllgl]-
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As a direct consequence of (5.3) and the above, C|,;, (2) satisfies the first inversion
relation:

X b op XY
Y Cyw | b by | @) Cyy | By by |z
B, b 1! wobhov i b, v
= 6b1751652y526%ﬁ : (5.8)
Remark. Assume that the left (resp. right) hand side of (5.5) is absolutely convergent
for |z,/z| < 1 (resp. |z,/z| > 1). Setting z;, = 2, in (5.5) and noting that
Ry (1) = id we get
Aby o
Cyv | b b, | ()= 6b1b’16b2,b§5u,u’ . 5.9
Wt v

In view of Lemma 4.1 it seems likely that the assumption is valid. A rigorous proof
would require the knowledge of poles of the coefficients of the gKZ equation, which
is beyond the scope of the present paper.

5.3. Energy function. Now let us consider the limit ¢ — 0. By the construction we
have
di‘;i’,(z)uA mod ¢L(u) ® L = zA#’AAuu ®b.

By the assumption (5.1b) and Proposition 4.3.2 of [6], we have
Ry y(2)|,zo(by @ b)) = 27 HO1900p @, . (5.10)

Here H denotes the energy function of RVV (see [6], Sect. 4).
Therefore at ¢ = 0 Eq. (5.5) gives

A by op
Cyy | b b | (@)
oo v =0
= 8y, b Oy Oz N TR TRART OB i (5.11)

In this sense we find that the energy function for the connection matrix C' coincides
with that of vertex model in the sense of [6].

5.4. Second inversion relation. Applying (5.4) twice together with the isomorphism
(4.4) we obtain the second inversion relation for the R matrix

ayw () (Ryw (7)) ™H = (B, @ id)Ry (22" ) (Fy @id), (5.12)

oy (2) = ﬂvw(z)/ﬂv*w(z) . (5.13)

We shall give its counterpart for the connection matrices. For this purpose we need
to prepare a lemma.

Let {v,} C V, {v]} C V* be the dual bases with respect to the canonical pairing.
Rewriting Proposition 4.4 in terms of VOs (3.1) we have

D B a(@); 0 PR (2), = 6y gh” idyy s (5.14)
J

/ \ * *b -
> e 2) 0 B (2); = 6,9 ) Pidy, . (5.19)
J
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Here we have set o; = (g,af(wt(v,))), gfbb* = qrhV(A#“Ak)gfbb*. The weight
components P(z) ; of a vertex operator is defined by D2 =Y, @(z)jv ® v;. The
J

second formula is obtained from the first by replacing V' by V** and using (4.3),
with a suitable choice of g*\*" = thv(AA_A“)Q*f;b*b, F* A € Qg
Now set

\
Gy=¢""Mx,  xa=q V(T € Q). (5.16)

Note that X, is the principally specialized character of the irreducible g¥-module with
highest weight A\, where gV is the dual Kac-Moody algebra.

Lemma 5.1.
wbb® *Ab*b
G,gy~ = Gug n
Proof. We are to show that
\ _ 13 % b
quh Ax—4(e,N) Ty oy (T)% o Z @2‘1/7*a(z)j ° @l;v(z)]>
J

2rhY A, —4(o, 2 —4 "o, —2rhY Ab*
= ¢ n—4o,1) try () (Tu o Z q QJ@l;V(q r Z)j o @uv*a(z)j)
J

From the intertwining property of the VO we have
— —bp;— v — b — v b —
q 4(g,u)Ti o g 4es—2rhY (4 AM)@;V(Q wht oy = st\tv(z)] oq 4(9”\)T§ )

By the cyclic property of the trace and the fact that each hand side is convergent in
g-adic topology, the assertion is clear. [

Proposition.
A b o A bW
G,\G, ! _ 7 —orRY
G/\G Cyy | b b, | (= I)va b, b | (g arh z)
/ ! / / 1T /
by,bY,A uoby v wob, v
= avv(z)fsbzézébé%(suu' )

where G and v,y are given in (5.16) and (5.13), respectively.
Proof. Let RVV(Z)ZZ be the matrix elements of Ry, that is,
Ryy(2)v,®v; = > Ryy (o, ®@v,.
k.l

Similar convention is used for Ry «(2) and Ry «y,(2) by taking the dual base {v)}
of {v;}. From (5.5) we have

Y B, 0 PhY () Ry ()

,J

b i Abop
= Y () 0B 2),Cyy | B b, | (2). (5.17)
b, b, wobow
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Here we put z,/z, = z. Operate &/ ‘fi(zz) x from the left to the both hand sides of
(5.17) and sum over k. Setting W = V* in (5.5) and using (5.3) we have
Iy
5255\/i (z)y © ‘ﬁ:l{f(zl)i
w o by v
lbl /\/b* - i
D By 0 B (), Cyy | b b | DRy (2)Fs -

/ / !/
Y N o
j/,l/

From the relation

Ryy () = (Ryy(2))5, = BN (Ryy«(2) "),

together with (5.14)—(5.15), we get

pwo by v
bibf p'b] -
By Y g B Oy | b by | ™ h
b} ,b¥ A A bW
Abop
= Z gzbeQQBH bl(zl)lcvv b b, | (2).
b, b, ! oty v

*
From Proposition 4.4 there exist inverse matrices ("yfb b

and g A Consequently we get

w by v
By (2" HCyxy | bF b )z
by
ubl bl vbhb} AUn
= v HZZCVV b, b, | (2).
b)) oty
Similarly we can derive
pobfooA
vy
Ab
.z 171 Tk ~ ~
= Zg*zblblﬁ’*’:/bzbz Cyv | b B | @ 2.
BB po by V

Using the first inversion relation (5.8) with W = V* and Lemma 5.1, we obtain the
desired result. [
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6. Restricted Paths and One Point Functions

6.1. Restricted paths. Recall that we consider only V € Mod/ whose crystal B is
perfect of some level N € Z,,. Hence for any n € (Pfﬂ) y there exists sequence of

weights 19 = 1,1, 7, ... € (PE)N and a path Pgr = (pgr(n))nzl, pgr(n) € B, such
that for any n the following isomorphism of crystals holds:
B(n)~>7n,;; B) ® B®™.

Here u,, is sent to (% Qpg(M)®...Qp,. (1), and 7(n; B) denotes the set of 7 paths
(see [6] Sect. 4). It is known that if b € B(n) corresponds to an 7 path p = (p(n)),,>,
then -

wtb =1+ Y (af(wtp(k) — af(wip,, (k) — w(p)6,

k=1

w(p) =Y k(H@E + 1) @ pk) — H(py,(k + 1) @ p,, (k).

k=1

6.1)

where H is the energy function (5.10) of the corresponding Ry,y,. We shall identify
B(n) with #(n; B).
Let k be a positive integer with k > N. Fix £ € (P)),_, and n € (P?) . We set
High’(¢,7) = {ue ® b € B() ® B()|&;(u; @b) =0 Vi e I}.

Definition. We say that § = (a,p) is a restricted (£, n)-path in B if the following
hold.

(1) a = (a(n)), g, a(n) € (PY)y,

2) p= (p(n),>, € 71; B),
(3) the triple (a(n), p(n), a(n — 1)) is admissible for all n > 1,

@) a0 =&+n+ Z (af(wtp(k)) — af(wtp,, (k).

Note that the a(n) are uniquely fixed from £ and p by (3), (4). We let 72,,(§,n; B)
denote the set of restricted (£, n)-path in B.

Proposition 6.1. The following is a bijection:

o€, B) — High"(€,m),  (a,p) — uz @p.
The weight of (a,p) € 7 (&, m; B) is given by a(0) — w(p)é with w(p) given in (6.1).
Proof. For n > 0 we define v(n) € B(§)® B(n,,) by the following map induced from
B(n)—B(n,) ® BE™:

B(€) ® B(n)—(B(€) ® B(n,)) ® B®",
u @p —v(n)@pn)®...p1).

First let (a,p) € Z2,(€,n; B). Then we have wt(n) = wtv(0) — Z wtp(j) =
=1

a(n) € P. Let us show v(n) € HighO(E,nn) for all n > 0 by the induction on 7.
For n > 0, we have v(n) = ue ® u, , s0 we get v(n) € Higho(ﬁ,nn). Assume
that v(n) € Higho(é‘,nn). From the admissibility of the triple (a(n), p(n), a(n — 1)),
v(n) ® p(n) = v(n — 1) is a highest weight vectorof B(a(n)) ® B. Setting n = 0, we
find v(0) = u, ® p € High"(¢, n).
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Conversely if u, ® p € High’(&, ) then setting a(n) = wtv(n) we have
(a7p) e 2&35({777; B) D

6.2. IRF models and their one point functions. Here we define IRF models whose
Boltzmann weights are given by the connection matrices, and state results on their
one point functions.

As before we fix g, V € Modf and k > N. Take a two dimensional square lattice
. Place variables A, p, ... (resp. b,b,...) on vertices (resp. bonds) with values in
(PJ?),c (resp. B). For a configuration of variables around a face

A—2
b} by
Fig. 1 ,u/—b,—u
we associate the Boltzmann weight ’
Abyop
Cyv | b b, | ().
oty v

Recall that it is zero unless the triples (i, by, \), (v, by, 1), (', 01, N), (v, b, ') are
admissible.

Although in our consideration we treated g to be an indeterminate, the matrix
elements of C'y,y, have meaning as functions of g and z. Under such identification we

restrict g to 0 < g < land zto 1 < z < ¢~ "™".

Next we explain the ground states of our IRF model. Fix a particular site .
Consider the horizontal half infinite line [ on % having 1 as the left end. The ground
states are labeled by the pair (£,1) (£ € (P)),_n,n € (PY)y). The ground state
corresponding to (£, 7) is described as follows. Define the (£, n)-path a,,. such that
cl(agT(n - 1) - agr(n)) = wt(pgr(n)). Note that the sequences {agr(n)}n20 and
{py-(M)},,>o are periodic. Place a,,.(0), a,,.(1),. .. [resp. p,,.(1), py,.(2),...) on every
site (resp. edge) on [ starting from 7. The ground state is uniquely determined by the
condition that it is periodic in the horizontal direction and constant along the NE-SW
direction.

Take a dominant integral weight A € (sz) - We consider the probability of finding
the variable on i being the value A, and denote it by P(\|€,n). Here (£,n) signifies
the choice of a boundary condition. Assume that the initial condition (5.9) is valid for
the Cj,,. Thanks to the Yang-Baxter equation (5.7) and the second inversion relation
(Proposition 5.2), Baxter’s corner transfer matrix method [5] is applicable. We have
the following expression for the one point function.

AFOE, 7 )
Z b)

where

Fgmo= Y ¢“?,

PESes(&,m:B) (N)
Fes&,m: BY(N) = {P = (a,p) € Z7(§,m; B)|a(0) = A},

\2
Z= Y xyFNEnd™).
Ne(Py
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Here w(p) and ), are given in (6.1) and (5.11), respectively. Then we have the
following. Let

High(¢,n), = {v e VO @ V|wtv=v,ev =0Vi e I}.
Proposition 6.2.

F\&m3q) =Y dim High(€,m), 54" -

Moreover if the generalized Cartan matrix of g is symmetric,

\%
XFQIEm ™)
X&Xn
Proof. From the theory of crystal base we have

dim High(¢, n), = #High’(¢, ), ,

where High®(¢,7), denotes the weight space of High’(¢,7) of weight v. Hence the
first statement is a direct consequence of Proposition 6.1.

If the generalized Cartan matrix of g is symmetric, then, as noted before, x, gives
the principally specialized character of the g-module V()\). Therefore we have the
following identity of specialized characters:

\4
XeXy = >, X FN|Ema™)
NePDy

P, =

which provides us with the way of calculating the normalizing factor Z. [

Remark 1. The quantity ¢°¢T57 75X F(\|£,m; q) is called the branching coefficient [16],
A A

where s, = ( r_(i_kQ;- thL)g) - (5;16) for A € (P+0)k. The transformation property of

the branching coefficients under the modular transformation enables us to analyze the

critical behavior of our one point function.

Remark 2. This type of results have been established by direct methods for higher spin

representations of U P (f?[z) [17] and the vector representation of U q(g) of classical types
A, B, D [18,19]. (There are problems for the type C since the vector representation
is not perfect.) Proposition 6.2 covers and generalizes these results, on the assumption
(yet to be verified) that the connection matrices coincide with the Boltzmann weights

constructed in [3, 4].

Appendix. Vertex Operators for Ug(slz)

In this Appendix we study the vertex operators for integrable modules over U, (sl,).
Dropping indices we write the Chevalley generators as e, f,t. Let V,, denote the
m+ 1 dimensional irreducible U, (s[,)-module with highest weight vector u;". We set

-1 k
w=m}ﬂ%$ - L.

The upper crystal base (L,,,, B,,,) of V,, at ¢ = 0 is given by

L, = EBAuZ‘, B, = {U?}ogkgm-
k=0
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Let now [,m,n be non-negative integers such that [ = m + n — 2s, s =
0,1,...,min(m,n). We consider the intertwiners of the form

oV, -V, oV,
where the tensor product is taken with respect to A = A . Define c;; by
Iy
D(uy) = Z CjUs ®UG g -
max(0,k—n+s)<j<min(m,k+s)

We are interested in the behavior of ¢, as ¢ — 0. Set &; = ¢;_jp,— (4.5~ Explicitly
the coefficients ¢, ;, ¢, ; are given by

Proposition Al.1.
Ck

Zl — Z (_l)Vql/(l+l—k)+](k——]+m—l)
00 max(;—k,0)<v<min(y,s)
si|n—=s+v| | m-v l
X . Al.l
Ml VAN @1
Gy
—éﬁ = the same formula with m and n interchanged , (A1.2)
00
oo = Cop - (A1.3)

Proof. Solving A(e)w = 0 for w = ®(u}) € V,, @ V,, and applying A(f) to w we
get (A1.1). Likewise starting from ®(u}) and applying A(e) we find (A1.2). We omit
the details. [

Proposition Al.2. We have

C. .
L=t L), (kzGj<m-s) (Al.42)
00
= (—1)RqURm=s=kiD 4 ) (k<j k<m—s) (A1.4b)
= (=1 GmmEst by ) (k> m—s,j > m—s),(Aldc)
where . .. means terms in qA.

Proof. A direct computation shows that in the case k < m — s the right-hand side
of (Al.1) contains a unique term which gives the lowest power of ¢. The estimates
(Al.4a) for k < m — s and (A1.4b) are derived in this way. The other case can be
treated similarly by using (A1.2, A1.3). O

The following is an immediate consequence of Proposition Al.2.

Corollary A1.3.

() Let d(ul) = u @ v + ..., where ... stands for a sum of terms u' @ v/,
u' € QU] with j #0.If v € L,,, then &(L;)) C L, ® L,,.
(ii) Suppose moreover that vmod qL,, € B,,. Then @ induces a morphism of crystals

$:B,—- B, ®B,.
Remark. From Sect. 2.6 we can deduce analogous results for lower crystal lattices,

replacing uf* by vp* = f®uf* and A, by A_. Proposition Al.2 and Corollary A1.3
are both valid in this setting.
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