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Abstract. An algebraic rule is presented for computing expectation values of products
of local nonabelian charge operators for fermions coupled to an external vector
potential in 3 -f 1 space-time dimensions. The vacuum expectation value of a product
of four operators is closely related to a cyclic cocycle in noncommutative geometry of
Alain Connes. The relevant representation of the current is constructed using Kirillov's
method of coadjoint orbits.

1. Introduction

In 1 + 1 space-time dimensions it is known that a normal ordering of local charge
operators is sufficient to make them well-defined in a suitable dense domain of a
fermionic Fock space. Assuming that the physical space is compactified as the circle
Sι, the normal ordered charge densities define a representation of a central extension
LG of the (Lie algebra of) the loop group LG corresponding to a compact gauge
group G. In the case of chiral fermions the central term is nontrivial and gives rise
to a highest weight representation of LG. The Lie algebra of the group is an affine
Kac-Moody algebra.

In higher dimensions even the normal ordered current densities do not give well-
defined operators in the Fock space. Even the state created from the vacuum by
an action of a typical element of the current algebra has an infinite norm. This
reflects the fact that the automorphisms of the algebra of canonical anticommutation
relations (CAR) generated by gauge transformations are not implementable by unitary
transformations in the Fock space in space dimensions higher than one. (For a
thorough discussion of CAR representations see [A].) In other words, a gauge
transformation tends to take a state in the Fock space to a vector in a different
Fock space corresponding to an inequivalent representation of CAR.
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One is thus lead to consider, not a representation in a single Fock space, but an
action of the group of gauge transformations in a bundle of Fock spaces, parametrized
by vector potentials. The representations of CAR in different fibers are in general
nonequivalent.

In any case, in quantum field theory we would like to compute matrix elements
like

(φ,XιX2...Xnφ), (1.1)

where φ, ψ are states in the quantum Hubert space and the X^s are smeared charge
operators, formally

xi= f J0(x)f(z)dx, (1.2)
M

where / is a test function, J o is the charge density and the integral is taken over
the three dimensional physical space M. But how can we make sense of (1.1) if
the charges are not well-defined operators in the Fock space? The answer is that the
X/s still make sense as sesquilinear forms in the Fock space, [R], and therefore
expressions like (φ, Xψ) are meaningful when the arguments φ, ψ are restricted to
a suitable dense domain J ^ c & in the Fock space. But what about expressions
like (φ, XιX2ψ) involving products of charge operators? A sesquilinear form can be
thought of as an infinite matrix but the usual product of a pair of matrices does not
necessarily converge in infinite dimensions.

The convergence problem was solved by Langmann by introducing a regularized
multiplication of matrices (sesquilinear forms), [L]. Instead of explaining the details
of Langmann's construction I shall give a derivation of the rules how to compute the
expectation values (1.1) which is based on an earlier work on gauge group actions in
Fock bundles, [Ml]. It will turn out that all the matrix elements of operator products
XιX1...Xn can be evaluated using simple algebraic relations based on Lie algebra
extensions generalizing the structure of an affine Lie algebra to higher dimensions.

In order to get to the bare essentials of the construction it is useful to consider a
bigger group than the group Map(M, G) of smooth gauge transformations. To make
things technically slightly simpler we assume that the physical space M is a compact
oriented spin manifold and that the classical spinor fields are sections of Spin <g>E,
where Spin is the spin bundle (with fiber C2) and E = M x V is a trivial complex
vector bundle over M with a unitary representation ρ of G in the fiber V. (The
compactness of M can be traded off to finiteness of a certain Sobolev norm of g — 1,
g G Map(M, G), and the triviality of E can be dropped if Map(M, G) is replaced
by the group of bundle automorphisms of a principal bundle P to which E is an
associated bundle.)

Let H be the space of square-integrable classical spinor fields on M (sections of
Spin(g>£) and let H+ be the subspace of H spanned by vectors corresponding to
the nonnegative part of the spectrum of a Dirac operator D9 and H_ the orthogonal
complement of H+. Any linear operator g in H can be written as a block matrix

with respect to the splitting H = H+ Θ H_. We denote by GLp the group consisting
of invertible bounded linear operators in H such that the off-diagonal blocks 6, c are
in the Schatten ideal L2p of operators T such that (T*T)P has a converging trace.
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It can be shown that Maρ(M, G) C GL2 when dim M = 3, [MR]. The embedding
is given by the natural action of gauge transformations on spinor fields, that is, by
point-wise multiplication (T(g)ψ) (x) = ρ(g(x))ψ(x). We shall show how to compute
matrix elements of products Xι . . . Xn, where the Xτ's belong to the Lie algebra of
GL2 and the hat means the corresponding second quantized operator. By restriction
to the Lie algebra of the subgroup Map(M, G) this will give all the required matrix
elements of local nonabelian charges.

The quantum sesquilinear forms X form a Lie algebra gl2 which was derived in
[MR] from a GL2 action in a (dual) determinant bundle DET* over a Grassmannian
Gr2; the latter is a homogeneous space for GL2. Each element W G Gr2 is a closed
subspace of H and thus defines a polarization H = W 0 W^. On the other hand,
each polarization of H defines a representation of CAR in a Fock space βw with a
Dirac vacuum \W) characterized by

a*(u) \W) =0 = a(v) \W) for u G W±, υ e W , (1.4)

where a*(u) is a creation operator and a(v) is an annihilaton operator with the only
nonvanishing anticomutators

a*(u)a(υ) + α(v)α*(tt) = (u, υ) u,v G H. (1-5)

The inner product ( , •) in H is linear in the first and antilinear in the second
argument. In the case of chiral fermions this construction is "twisted" in such a way
that the bundle Vac of Dirac vacua is equal to the determinant bundle DET*, [Ml].
For this reason the anomalies related to chiral gauge transformations are given in
terms of gauge action in the line bundle DET*. The Schwinger terms are equal to
those found in [MR] and were later derived in [L] using the sesquilinear approach of
Ruijsenaars. In fact, there was a perturbative argument [JJ] that certain commutator
anomalies would arise when quantizing a nonabelian chiral Yang-Mills-Dirac system.
A geometric and mathematically consistent treatment was given in [M3,FS]. On the
other hand, it has been proven by Pickrell that "normal" representations of GL2 do
not exist, [PI].

In Sect. 2 and 3 we shall recall sorne^ basic facts about determinant bundles over
Grassmannians and group extensions GLp; for more details see [MR, M2, PS]. The
results on vacuum expectation values are contained in Sect. 4. In Sect. 5 we reconstruct
the GL2 action on vacuum line bundle from Kirillov's theory of coadjoint orbits. The
appropriate orbit is the cotangent bundle Γ* Gr2 and the prequantization line bundle
for Kostant-Souriou quantization is the determinant bundle DET* when restricted to
the zero section in T* Gr2.

2. Basic Notions about Infinite-Dimensional Grassmannians

Let H = H+ Θ H_ be a polarization of an infinite-dimensional complex separable
Hubert space to a pair of closed infinite-dimensional subspaces. For any closed
subspace W c H and positive integer p we denote by Grp(W) the Grassmannian
consisting of closed subspaces W C H such that
(1) the orthogonal projection W —> W is a Fredholm operator,
(2) the projection W' —> W^ is in the Schatten ideal L2p.

We shall denote also Grp = Grp(H+). The Grassmannian splits to connected

components Gτ^\W) according to the Fredholm index k of the projection W —> W.
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We shall fix an orthonormal basis {en}neZ of H such that en G H+ for n > 0
and en G H_ for n < 0. If W G Grp then it has a basis {w n } n > 0 (not necessarily
orthonormal) such that

wn = Σ αmnem + ] Γ /?mnem (2.1)
m> —/e m<k

with α - 1 G L l 9 where fc is the Fredholm index of the projection W —• i7+. (In fact,
it is possible to choose w such that a — 1 is of finite rank.) We shall call such a w
an admissible basis and the set of all admissible basis is a Stiefel manifold St .

The Stiefel manifold St splits to connected components S t ^ labelled by the
Fredholm index k.

It is often convenient to think of points W G Grp as operators F:H —> H. Namely,
to each W we can associate the operator F such that F\w = +1 and the restriction
of F to the orthogonal complement of W is - 1 . Clearly F2 = 1 and F * = F.
Furthermore, if we write

with respect to the splitting H = H+ 0 H_ then the off-diagonal blocks are in L2p,
Fn — \ e Lp and F22 -f-1 e Lp. In particular, when W = H+ then the corresponding
operator ε = F(H+) is

0

Differentiating the equation F2 = 1 we observe that the tangent space to the
Grassmannian at F e Grp is represented by hermitian operators u which anticommute
with F and such that the diagonal blocks of u are in Lp and the off-diagonal blocks
in L2p. By Holder inequalities, the cotangent space Tp Grp consists of hermitian
operators P anticommuting with F and with diagonal blocks in Lp^p_λ), off-diagonal
blocks in L2p^2P-\y The value of the linear form P at u is ixuP.

We also need a generalization of the above definitions. Instead of H+ and
the basis {en} we could choose some plane W G Grp with an admissible basis
w = {wx,w2,...}, complete this to a basis {w}neZ of H, and define a basis wf of
some W G Grp/(W) to be admissible relative to w if the matrix w'(w) giving the
projection oϊw' to the vectors {wi}i>_k is of the type 1+Ll9 where k is the Fredholm
index of the projection W —> W. We shall denote the Stiefel manifold consisting of
these basis w' by Stp(W). It does not depend on the choice of the admissible basis
w of W.

Let GLp be as in the introduction. Note that automatically the diagonal blocks of
g G GLp are Fredholm operators with opposite Fredholm indices. The Lie algebra
glp consists of bounded operators in H such that the off-diagonal blocks are in L2p.
The group GLp acts naturally on Grp. In fact, Grp = GLp/Bp, where Bp consists of
the upper triangular matrices, c = 0.

Let GLP denote the group of operators t (in some fixed Hubert space) such that
t — 1 G L . There is a natural complex line bundle, the determinant bundle DETp,
over Grp. Its fiber at W consists of pairs (w, λ) G Stp xC, w being a basis of W,
with the equivalence

(wt, λ) - (w, λdett), for t G GLι. (2.3)
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A section of the dual determinant bundle DET* is then a function ψ: Stp —•» C such

that ψ(wt) = ψ(w) detί for t G GLι.

3. Some Group Actions on Bundles over Grassmannians

There is an extension GLp of GLp by the abelian ideal Map(Grp, C
x ) ( C x is the

multiplicative group of nonzero complex numbers) which acts in the total space of
the bundle DETp. The structure of this group is explained in [MR,M2]; here we shall
recall some basic facts (in slightly different way than in the references).

Define first the group Wp consisting of pairs (g,q), where g G GLp and q is a
oo x oo-matrix valued function on Grp such that gwq(W)~ι is an admissible basis
of gW for any admissible basis of W. The multiplication is defined by

(£, q) (g', q') = (gg', q") with q"(W) = q(g'W)q'(W). (3.1)

The pairs (l,g), q(W) G GLι and detq(W) = 1, for all W G Grp form a normal

subgroup. Dividing by this subgroup one obtains the group GLp.

The action of GLp in DETp is given by

\\), (3.2)

where W is the plane spanned by w. The natural action in the space of sections of
DET* is

[(g, q) • φ] (w) = ψ(g-[wq(W)). (3.3)

The group GLp is a fiber bundle over GLp with fiber Map(Grp, C
x ) . Actually,

there is a group with smaller fiber which acts in DETp. In the case p ~ 1 the
"regularization" q can be chosen to be a constant function on Gvλ and we get an
extension of GLX by C x ; the structure of this central extension is explained in
detail in [PS]. The Lie algebra gl} is a vector space sum glj Θ C with the following
commutators, [Lu],

[(X,X),(X',X')]= {[X,X'],\ tiε[ε,X][ε,X']). (3.4)

When p — 2 the extension is not central. As a vector space the Lie algebra gl2 is

a direct sum of gl2 and the abelian Lie algebra of maps h: Gr2 —>• C of the form

F ) , (3.5)

where a G C and ξ:H -> H is a linear map such that the off-diagonal blocks are in
L4β and the diagonal blocks are in L2. The commutator is defined as

[(X, h), (X1, h')] = ([X, X'], S§xti -&χlh + c2(X, X'; •)), (3.6)

where SZX denotes the Lie derivative on Gr2 arising from the natural action of GL2

on the Grassmannian and c2 is the Lie algebra cocycle with coefficients in the space
of functions (3.5), [MR],

c2(X, X'; F) = i tr(ε - F) [[ε, X], [ε, X']]. (3.7)

Following Pickrell [PI] one can think of gl2 as a central extension of a Lie
algebra gl2. As a vector space gl2 = gl2 0 M2 4 , 3 , where M2 3,4 consists of operators
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P:H —> H such that the diagonal blocks are in L2 and the off-diagonal blocks are
in I/4/3. The commutation relations are

[(X, P), (Y, Q)} = ([X, Y], [X, Q] - [Y, P] + [[£, X], [ε, Y]]). (3.8)

Thus without the last term on the right the commutator would define a semidirect
product of gl2 and the abelian algebra M2 4/,3.

The 2-cocycle defining the central extension gl2 = gl2 θ C is

ω((X, P), (Y, Q)) = 1 trε[[ε, X], [ε, Q]] - £ trε[[ε, Y], [ε, P ] ] . (3.9)

The group GL2 corresponding to gl2 is GL2 x M2 > 4/3 with the composition rule

(g^PJ • (52,P2) = (gιg2,P1 + gιP2g{1 + \[ε,gιεg^}

\ ι g ^ - \ [ε^g^εig^Γ1]) • (3.10)

We shall later need the adjoint action of GL2 on the Lie algebra gl2. Since the

center of GL2 does not contribute to the adjoint action, the action is determined by

the GL2 action on gl2. Using the commutation relations (3.6) the latter is found to be

Aά(gyP)(X, Q, a) = (gXg-\Q\ af) with

Q' - 9Qg~l - ίgXg~\P] + \ [gεg-\[gXg-\gεg-1]]

+ \ [gXg-\[gεg-\ε]] - \ [ε, [gXg~\ε]],

oί = α - ^ trεttε^X^1], [ε,P]] - | \xQ{g-χεg - ε)

+ [ε, [ε, <r^</]] + [^- !ε^ [ ε ^ - ^ ^ ] ] ) . (3.11)

4. Vacuum Expectation Values of Operator Products

To start with I shall reformulate some of the results of [PS] on representations of GLX

in a language suited for a generalization to GL2.

Let w € Stf}. We define a holomorphic section ψw of DET* by

^ ( i i ) = detiί;*^ = det(w*u+ + w* w_), for wG Stf} (4.1)

and ψw(u) = 0 otherwise. We shall think of the basis w as Z x N matrices, the second
index labels the different vectors of the basis and the first index labels the coordinates
of the vectors in the standard basis e n . The w+ part of the matrix consists of the rows
labelled by nonnegative coordinate indices and w_ is the lower part consisting of
rows labelled by negative indices. The blocks w_, u_ are Hilbert-Schmidt matrices
whereas w+ — 1 and u+ — 1 are of trace-class. It follows that w*u is of the form 1-f-
a trace-class operator, and the determinant is well-defined.

An inner product in the space of finite linear combinations of the sections ψw is
defined by declaring

(φw,φw,) = dct(w*w') (4.2)
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when both w,w' G S t ^ and the inner product is zero if the Fredholm indices of w, w'
do not coincide. The Hubert space completion of this inner product space is denoted
by Sf. It can be identified as the fermionic Fock space as follows. Any increasing
sequence ( i o , i l 5 . . . ) of integers such that lim(iμ — μ) — k [where the integer k is
called the index of the sequence (i)] defines a basis vector in J^", ψ^ = ψw with
w = {ei 1ei , . . .} . These vectors are orthonormal with respect to the inner product
(4.2). The interpretation of ψ^ is that it represents a Fock space state with holes in
the negative energy sea corresponding to one-particle energy levels labelled by the
negative integers in the sequence (i), and filled positive energy states labelled by the
missing nonnegative integers in (i).

An element (g,q) G GLλ acts on the vectors ψw by

T(g, q)Ψw = ̂ ^ ( g * ) - i (4.3)

corresponding to the natural action [T(g, q)ψ] (u) = φ(g~ιuq) on a general section of
DET*. As already mentioned, in the case p — 1 we may choose q to be independent

of W G Grj. This means that we can define GLγ to be a central extension of GL{,
[PS].

An element W G G^ determines the vector ψw up to a phase by selecting w to
be an orthonormal basis of W. A rotation of the basis w by an unitary transformation
t G GLι changes ψw by the factor detί*. Thus the general vacuum expectation values
(W|X| W): = (ψw,Xψw) of some operator X in 3^ depends only on the point W
on the base manifold Gr1 and not on the choice of w.

The inner product (ψw,ψ), where ψ is an arbitrary element of β~, can be computed

in the following way. Without an essential restriction we may assume that w is

orthonormal. Let {/n}nGZ be an orthonormal basis of H such that {/n}n>0 G St^ .

For any pair w,w' G S t ^ we can write

d e t C Λ 7 ) = φw{w'), (4.4)

and therefore

(φ,ψw) = φ(w) (4.5)

for any φ G J^". Thus we have:

Proposition 4.6. Let W G Gr1? w an admissible orthonormal basis of W, and

xeg\v

(W\X\W) = (Xψw)(w).

We shall now go over to the case p = 2, corresponding to the dimension three of
the physical space. In higher dimensions than one, for any given vacuum state \W)
in the fermionic Fock space, the vector X\W) does not belong to ̂  when X is a
gauge current, or a product of current components.

If w G St4/3 then the formula (4.1) still defines a holomorphic section of DET*.
This follows from the generalized Holder inequalities which state that AB has a finite

trace if A G Ln and B G Ln with — I — = 1. In the case at hand, w_ G Lάn and
v q p q '

u_ G L4 and so w^u_ G Lx\ note that both w+ — 1 and u+ — 1 are still in L{.

Thanks to the smooth action of GL2 in DET* the section Xψw is a perfectly

well-defined smooth section of the determinant bundle DET* for any X G gl2 or any
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product of elements of gl2, and therefore we may evaluate

(Xψw)(w). (4.7)

We take this expression as the definition of the vacum expectation value
In order to further motivate this choice, we shall show later that (4.7) is actually
obtained by computing fiberwise the expectation values of the current algebra in a
Fock bundle.

For any finite transformation g G GL2 we can compute (H+\T(g,q)\H+) quite
explicitly. The result is

(H+\T(g,q)\H+) = det(aq(H+Γι), (4.8)

where a — a(g) is as in (1.3). In particular, near the unit element in GL2 we may
choose q(H+) = a and then the vacuum expectation value at the true vacuum is
normalized to one. Of course, this does not mean that all vacuum expectation values
for elements of GL2 are equal to one, but only for those elements given by the local

section GL2 —> GL2 above.
The vacuum expectation values of Fock space operators have been determined

earlier by Ruijsenaars, [R]. He did not discuss the abelian extension GL2. His result
should be interpreted in the present context as vacuum expectation values with respect
to some fixed local section GL2 —> GL2. Recently Langmann has defined a product
for the sesquilinear forms in Fock space which corresponds to the product of bundle
maps discussed above, [L].

Note that the value of the spherical function Φ(g,q) = (H+\T(g,q)\H+) at (g,q)
is equal to the value of the vacuum section ψ0 (which is defined by the basis
w = w(0): = {e0, e l 5...}), at the point gwq~ι. Therefore all the derivatives

(XλX2...Xn)

= i ; • • • Wn

 Φ(et>Xl • • •etnXn(9' 9> W u . = - = t n = o , (4-9)

which are the vacuum expectation values of the operator products X{... Xn, can be
written

(Xι...Xn) = (Xι... Xnφ0) (w(0)). (4.10)

The computation of the vacuum expectation values (at the free vacuum ψ0 = \H+))
is now completely algebraic. The vacuum ψ0 is annihilated by all the operators

X <G gl2 C gl2 with b(X) — 0. On the other hand, if ψ is any section then

(Xφ) (wφ)) = 0 when c(X) = 0. (4.11)

This follows from g~lw(0)q = w(0) for any g with c(g) = 0 and q = a(g). Thus we
have the following result:

Theorem 4.12. The vacuum expectation value (XλX2 ... Xn) of elements Xt G gl2 is

computed as follows. Commute all generators ί J to the left and all generators

of the type ( A to the right, using the commutation relations (3.6). Any element
\c dj

on the latter type on the right gives zero when acting on the vacuum and any element of
the former type on the left gives zero when it hits the vacuum on the left. We are finally
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left with some function h on the Grassmannian, involving products of the cocycles
c2(X, Y\ f) sandwiched between the vacuum states. The value of (X{ . . . Xn) is then
obtained by evaluating h at the base point F = ε.

Corollary 4.13. (X) = (XY) = (XYZ) = 0 and {XYZV) = tiVl2X2lZl2Y2l +

trX2lVl2Y2lZl2 for all X, y, Z, V G gl2 C gl2.

Note the difference, as compared to the case of gl1? already in the expectation
value (XY). For gl2 this is equal to tr(X21Y12) and for X = F * gives the norm
squared of the vector X\0). For gl2, (Y*Y) is not really a norm of any vector in
the Fock space. The vacuum expectations are closely related to cyclic cocycles of
a Fredholm module in Connes' noncommutative geometry, [C]. Let X l 5 . . . ,Xk be
elements of g\p with k > 2p. Then the trace

is finite and defines a cyclic cocycle in glp. It is a simple matter to show that

r(x, y, z, V) + r(x, v, z, Y) =

I want to stress once more that we do not have a true unitary representation of the
Lie algebra gl2 but a "pseudorepresentation" which allows to compute expectation
values of products of generators compatible with the commutation relations of glj
although the generators are not represented by linear operators in a Fock space.
Nevertheless, the vacuum expectation values can be recovered from a group action
in the Fock bundle, as will be explained below.

The bundle of Fock spaces i ^ parametrized by points W G Gr2 is constructed
essentially generalizing the construction of the Fock space J ^ = β^+ to arbitrary
position on Gr2, [Ml]. Away from the base point W = H+ there is a modification
of the inner product by the formula (4.2), which is related to the fact that in the
case p = 2 the admissible basis w are in general nonunitary. However, in this paper
we shall localize the inner products at the point H+ and therefore we leave it to
the interested reader to check the general case [Ml]. The dual determinant bundle
DET* over Gr2 can be thought of as a one-dimensional complex subbundle of i^,
the vacuum line bundle.

Given W G Gr2 the vacuum Vac(VF) is spanned by the section φw, φw(u) =

det u(w), where w is an admissible basis of W and the argument u G St(0)(W) and

u(w) is the matrix defining the projection of u onto the vectors wτ. If u G St^k\W)

with k Φ 0 then we set φw(u) = 0.
The vacuum vector is well-defined up to a phase (depending on the choice of w).

A section of Vac is given by W ^ φw G J^y,

Φw(u) = det(w+) det(u(w)). (4.14)

Note that the values of φ do not depend on the choice of w. The second factor in φ
is invariant under the combined action of GL2 on the base parameter w and on the
fiber variable u. On the other hand, the first factor is the highest weight vector in the
space of sections Γ(DET2). Thus φ is annihilated by all (X,0) G gl2 with b(X) = 0.
Taking into account (4.11) we get:
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Theorem 4.15. For any elements Xz G gl2,

(Φ, ̂ 1^2 ' XΠΦ)H+ = (X\X2 --Xn)'

where ( , -)H denotes the fiber inner product at W = H+ in the Fock bundle over
Gr2 and φ is the vacuum section defined by (4.14).

In Sect. 5 we shall see how the construction of GL2 representations is related
to Kirillov's theory of coadjoint orbits. At this point let us make some preliminary
observations in relation to the vacuum expectation value computations. Let U2 C GL2

be the unitary subgroup and U2 the corresponding extended group; the functions h in
(3.5) are then purely imaginary and P, Q in (3.8) are antihermitian. If φ' is a section
of the Fock bundle which lies on the U2 orbit through φ, φ1 = T(g,q)~ιφ, then the
natural definition for the expectation values with respect to the φ' state is

(φf\Xx . . . Xn\φf) = (φ\T(g, q)Xλ . . . XnT(g, g)"1 \φ). (4.16)

The right-hand side of (4.16) can be computed using the adjoint action of U2 on its

Lie algebra. This is given by the formula (3.11) (for the larger group GL2). Modulo
the center, (g, q) can be represented by an element (g, P) G GL2.

Restricted to the subspace gl2 in the enveloping algebra, the vacuum expectation

values define an element in the dual space gl2. Using the notation at the end of the

previous sectioin, a general element in gl2 is a triple (X, ζ), α), where X G gl2, a G C,

and Q G M24,3; Q represents the function - tr(ε — F)Q on the Grassmannian. The

vacuum expectation value with respect to the φ vacuum is simply (X, ζ), a) ι—> a. By

formula (3.11) the vacuum expectation value with respect to φ' is the form

ξ(X,Q,a) = (φ'\(X,Q,a)\Φ')H+

= a - l2 trε[[ε,gXg-ιl [ε,P]] - ± \τQ(g'ιεg - ε)

- i trX(Sg-ιεg - 8ε - [ε, [ε,g-ιεg]]

-lg-lεgΛε,g-ιεg]]). (4.17)

The form ξ G gl2 depends on (g,P) only through G = g~ιεg and Pr =
[G,g~ιPg]. The latter is a hermitian operator (for a unitary g) which anticommutes
with G. The operator G is a point on Gr2 and Pr can be interpreted as a (real)
cotangent vector, P' G T^Gr 2 , P'(u) = tvuP\ where u G T G Gr 2 . Namely, by
Holder inequalities P' G M 2 ) 4/ 3; on the other hand, the diagonal blocks of u are in
L2 whereas the off-diagonal blocks are in L4. Again by Holder inequalities the trace
XxuPf converges for all u if and only if P' G M 2 4/ 3. Thus the vacua φ' — T(g, q)~ιφ

(and the linear forms ξ) are parametrized by points in T* Gr2.

More General Matrix Elements

Let gl0 C gl2 be the subalgebra consisting of matrices g in (1.3) with finite rank
off-diagonal blocks. Denote

β{X\ F)=± tr[ε, F] [ε, X] with X G gl0, F G Gr2 . (4.18)
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By a simple computation,

β([X,Y];F)-&xβ(Y ,F) + &γβ{X;F) = -ι

ϊ tiF[[ε,X],[ε,Y]] (4.19)

and therefore the commutation relations for the generators η(X) = (X, β(X\ •)) [in
the parametrization (3.4), (3.5)] are

[η(X),η(Y)] = (η([X,Y]\ι- trε[[ε, X], [ε, Y]]) . (4.20)

It follows that the generators η(X), for X G gl1? can be used to span a representation

space for a highest weight representation of glα by acting by polynomials of the

generators on the vacuum vector. Note that β(X\ ε) = 0, thus the highest weight

vector for gl2 is a highest weight vector for glx.
The mixed commutation relations between the X and η(X) generators are

[(X, 0), η(Y)] = ([X, Y], jί tr[[F, X], ε] [ε, Y]) , (4.21)

where the cocycler converges for X G gl2, Y G gl0. Note that the cocycle converges
actually for a slightly larger class of operators, namely for those Y with L4β off-
diagonal blocks.

The subspace βζ of the Fock space consisting of finite linear combinations of
vectors of finite energy and finite particle number is dense in &. In the charge
zero sector ,i^ ( 0 ) a Fock basis can be constructed of vectors in J ^ by applying
the Weyl basis generators η(Ezj) [the only nonzero matrix element of E^ , which
is equal to 1, is in the (ij) position] to the vacuum vector. The inner product
of a pair of states q\0) and p\0) is (0|p*g|0), where the antiautomorphism of the
enveloping algebra of glx is determined by the hermitian conjugation of the Weyl
basis generators, η{Eτj)* = η(Ejτ). Thus for each polynomial p(Xv . . . , Xn) in the
generators Xi e gl2 there is a sesquilinear form

{ψ^')^{ψ\p(X)\ψf), (4.22)

with domain ^ ( 0 ) x i ζ ( 0 ) . Again, the value of the form for given pair of vectors
Ψ = g(X)|0), ψf — q'(X)\0) is evaluated by shifting the raising generators to the
right and lowering generators to the left and finally evaluating the cocycles at the
base point F = ε, Theorem 4.12.

This method works also in any highest weight representation of gl1? since it uses
only the commutation relations and the existence of a highest weight vector. However,
in the special case of the Fock representation there is a simpler way to compute matrix
elements of products of generators.

Consider the associative algebra 33 which is the tensor product of the enveloping

algebra of gl2 and the CAR algebra based on H, modulo the additional relations

[X, a*(u)] = a*(Xu), [X, a(u)] = -a(X*u),

[h,a*(u)] = 0 = [ f t ( ) ]

where ΪZ, V G H, X G gl2, h is a function on Gr2, and Xu means the defining action
in the one-particle space.

By using the commutation relations an arbitrary element of J8 can be written as
a linear combination of terms of the type

R = Xi...XnhPYι...Yk, (4.24)
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where P is an element of the CAR algebra, h is a function on Gr2, the generators
Xτ G gl2 have nonzero elements only in 6-position, and the 6-blocks of the F/s
are zero. The rule for computing the vacuum expectation value of (4.24) is now the
following: (R) = 0 if k > 0 or n > 0. Otherwise (R) is obtained by evaluating the
function h at the base point F = ε and then computing (P) in the usual way using
the basic canonical anticommutation relations.

Matrix Elements in an Arbitrary Highest Weight Representation

We can consider also more general highest weight pseudorepresentations. Let λ =
{λ n } n G Z be a sequence of integers, with λ n > λ m for n > m, such that λ n —> k
when n —» oo and λ n —• 0 when n —> — oo, where the integer 0 < k is the level
of the representation. We shall first consider a (true) representation of gl1? [KP]. The
representation in a vector space J^(λ) is characterized by a cyclic vector |λ) such
that

The irreducible representation of g^ in the charge zero sector of the fermionic
Fock space 3? is obtained in the case k = 1, \% = 1 for i > 0 and Xi = 0 for i < 0.

To each X G gl2 we can now associate a sesquilinear form on J^(λ). Let g+ C gl2

be the subalgebra of lower triangular matrices g, gi3 = 0 for i > j , g_ the subalgebra
of upper triangular matrices, h the Cartan subalgebra of diagonal matrices. (Note the
ordering of matrix elements; the elements with bigger indices are before those with
smaller indices when reading from top to bottom or from left to right.) Any element
of the enveloping algebra ^(gl 2 ) can be written as a sum of products

v = u_zhu+ ,

where u± £ ^ ( g ± ) , h G 3&(h), and z G ^(Map(Gr2,C)). The vacuum expectation
value of an arbitrary element in the enveloping algebra is then evaluated by a
straightforward generalization of the previous rules: An element of g+ acting on
the vacuum on the right gives zero as well as an element of g_ hitting the vacuum on
the left; the vacuum is an eigenvector of h G h, by (4.25). After these identifications
one is left with expressions (z) which are evaluated as (z) = z(ε).

5. Interpretation in Terms of Coadjoint Orbits

Let G be a Lie group and g its Lie algebra. The group G acts in the dual space g*
in a natural way,

(9 ' O ( i ) = ξ(Aάg-ι(x)), where x G g, ξ G g* (5.1)

and Aάg denotes the adjoint action of the group on its Lie algebra.

Each G orbit in g* is a symplectic manifold. The symplectic form ω is given by

ωξ(u,υ) = ξφι,υ]), (5.2)

where tangent vectors to the orbit through the point ξ ar represented by elements
u, v G g using the Lie algebra action on g* [defined by left invariant vector fields,
infinitesimal version of (5.1)].
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If g is finite-dimensional, the dimension of the orbit M = Gξ is even, say 2n,
and the form ωn defines a volume on the orbit. An orbit M is quantizable if the
symplectic form ω is integral, meaning that the integral of the 2-form ω over a
compact submanifold (without boundary) is always an integer. Suppose now that M
is quantizable. Then there is a complex line bundle E over M with a hermitian metric
and a connection Γ such that the curvature is equal to ω. In the coadjoint method of
construction group representations one first defines a Hubert space V = L2(E,ωn) of
square-integrable sections of the line bundle E, [K].

There is an extension G of G which acts in the total space of the bundle E,
lifting the natural G action on the base and preserving the hermitian metric. When
G is semisimple, G is the universal covering group of G. This action defines
an unitary representation of G in V. In general, the representation is reducible.
Sometimes irreducible representations can be obtained quite naturally if the orbit
M has some additional structure. A famous example is the case when G is compact
and semisimple and the orbit has maximal dimension (topologically, M = G/T where
T is a maximal torus). In this case the orbit is a complex manifold, the line bundle
E is holomoφhic and the space of holomorphic sections of E carries an irreducible
unitary representations of G\ this is the Borel-Bott-Weyl theorem. In addition, the
theorem tells us that all unitary irreducible representations can be obtained in this
way.

The Borel-Bott-Weyl theorem has been extended to the case of an affine Kac-
Moody group by Pressley and Segal, [PS]. However, they define the inner product in
the vector space V in an indirect manner. The reason is that in infinite dimensions
the meaning of ωn becomes problematic. In fact, up to now no suitable measure on
the coadjoint orbits of an affine Kac-Moody group is known which would produce
the unitary highest-weight representations.

Another infinite-dimensional example where the coadjoint orbit method has been

successful (and this is the case we want to generalize) is G = Ux, the group of unitary

elements in GL{. The Lie algebra, as a vector space, is now u} = n{ Θ iR. Consider
the coadjoint orbit M through the point ξ,

£(#, a) = — ia with x G u{ and α G i R . (5.3)

The stability group at ξ is D x Sι, where D C Uι consists of operators with zero

off-diagonal blocks. The orbit M = Uι/(D x S1) is the Grassmannian Gr^
Let us compute the symplectic form ω more explicitly. Let F G Gr{ and

u,v G TF GΓJ. The tangent space at F consists of hermitian Hilbert-Schmidt operators
which anticommute with F. Choose X, Y G u1 such that u = [F,X], v = [F,X],
This is always possible since Ux acts transitively on Gr^ The linear form F on u1

corresponding to F = g~ιεg is

F(x, a) = ξ(Aάg(x, a)) = ξ(x\ a - - tr(F - ε)xj = -ia + - tr(F - ε)x , (5.4)

where x' is some element of u{. The form ωF(u,v) is equal to the value of F at
[(X,0),(Y,0)] and thus

ωF(u,v) = -l- trε[[ε,X], [ε,Y]] + %- tr(F - ε)\_X,Y\ = ^ XxF\u,v\. (5.5)
o Z o

Since u,v anticommute with F, this is equal to —%- irFuv.
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The form ω is integral. There is a unique (up to equivalence) complex line bundle
over the coadjoint orbit Gr} with curvature 2πiω. In fact, this line bundle is the dual
determinant bundle DETf. There is a quasi-invariant measure on the base Gxγ and
the square-integrable holomorphic sections carry an irreducible representation of GL 1 ?

[P2].
Let us denote by A the set of pairs (λ, k), where λ = (λ^) is a sequence of integers

labelled by i G Z, k a nonnegative integer, such that Xτ H-> k when i ι—> +oc, λt ι-> 0
when i ^ -oo, and λ i > λ̂  for i > j . For a given λ denote by i0 the smallest
integer such that λ̂  = k.

More general orbits in gl2 can now be formed by fixing (λ, k) e A and setting
β- i l l /Λ/I o lc fΛi f~ (£> I I I A K* I I TΛt* o ^^> o >• (c> \W A T/̂ T* 0 <^ 0

and ξλ,/c(ez?>0) = 0 for i 7̂  j , where i,j £ Z. By restriction, we have also a form
ξλk:ύ[ —> C. We consider a coadjoint orbit G(λ,k) through the point ξλ k.

The stability group Gx k at ξλ k consists of the center Sι and of the block
diagonal unitary matrices commuting with the diagonal matrix diag(λz). The quotient
Mλ k = Ul/Gx k is an infinite-dimensional flag manifold; in the special case when
λ̂  = 1 for i > 0 and λ̂  = 0 for i < 0 we obtain the Grassmannian Grx.

The manifold Mx k has a natural complex structure. It can be written as a quotient
of two complex groups, MXk = GLγ/Kx, where the subgroup Kx consists of
matrices g in GLX such that gτ- = 0 for i < rij, where nJ is the largest index n
for which λ n < λ^, see the picture below.

9 =

For a given weight λ we shall denote the blocks in the stability group G λ k by
Dμ, μ = 0,1,2,.. ., N, where the index μ = 0 corresponds to the infinite block of
rows and columns labelled by i with \ — k, and in the other end μ — N corresponds
to the infinite block of rows and columns labelled by i with λ̂  = 0. The blocks in
between are all of finite size. We denote by λ(μ) the value of the components λ̂  in
theμ: t h block.

In the following discussion it is convenient to make a finite "vacuum subtraction."
Let ε0 be a hermitian operator in H such that ε\ = 1 and the difference ε - ε0 has
finite rank. Then the difference

of cocycles is a coboundary of the 1-cochain β(X) = — \ tr(ε—εo)X, (c—c0) (X, Y) ~
β([X, Y]). We shall now choose ε0 to be the diagonal matrix with one's at the
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positions (ii) for i > i0 and minus one's at the positions (ii) for i < i0. The central

extension glx of glx will be defined now with respect to ε0 instead of ε.

There is a complex line bundle DET*(λ,/c) over Mλk defined as follows. The

sections of DETf(λ, k) are complex valued functions ψ on the group Ux such that

N-\

Φ(gb) = ψ(g) - det(Doq-1) J ] ( d e t D μ ) λ ( ^ , (5.6)

μ-l

where b = (D, q), D is a block diagonal matrix and q is a matrix of the same size
as Do such that Doq~ι has a determinant. Since left and right multiplications in
a group commute, the space of functions with the characteristics (5.6) is invariant
under the left action, thus defining a representation of U{ in the space of sections
of DET*(λ,/c). Since the multiplication in GLX is holomorphic, the space Γλk of

holomorphic sections carries a representation of Uι.
There is a highest weight vector ψλk in Γλk, which is defined by

N-l
λ ( ^ λ ( + 1 ) ( 5 . 7 )

where Cμ is the infinite matrix obtained from gq 1 by taking the rows and columns
labelled by indices of the blocks D o , D 1 ? . . . , Dμ and q is thought of as an element
of Ux by completing qτi = 1 for i < i0, q{- = 0 when i φ j and i < i0 or j < i0. By
elementary properties of determinants, the highest weight vector has the properties
EΊΊψλ h = 0 for i < j , E-φx u = 0 for i > iπ, and EΊ,φx h = XAΦ\ *. for i < in.

The construction above of representations of Uι extends to the larger group U2

with the following modifications. First, we should keep in mind that the operator
q occurring in the formulas is not a constant but a function on the Grassmannian
Gr2 (with base point ε0). For this reason the group action on DET*(λ,/c) is not
holomorphic. The construction of the highest weight vector is the same as in the case
of Ux.

We started from the coadjoint orbits of the group Ux and noticed that the line
bundles and group actions extend with the above mentioned modifications to the larger
group U2. However, the manifolds U2/Kx are not coadjoint orbits of U2. Because of
the larger normal subgroup in the extension, the coadjoint orbits of U2 have roughly
speaking twice the dimension of the coadjoint orbits Ux. To illustrate this point we
consider the case of the orbit Gxx as an example.

Let ξ G gl2 be the linear form defined by ξ(X, Q^oί) = —ia, where we are
using the parametrization at the end of Sect. 3, X G gl2, Q G M 2 4//3, and a G C.
That is, iξ(X, Q, a) is the vacuum expectation value of (X, Q, a) with respect to the
free vacuum. Using (3.11) we conclude that in the coadjoint action by an element
(g,P)~ι G GL2 (we are again dropping the center of GL2 since it does not contribute
to the (co)adjoint action) the form ξ is transported to the form ξg P , given by

iξ P(X,Q,a) — a — -̂  irε[[ε, gXg~ι], [ε,P]] — i tr Q(g~ιεg — ε)

(5.8

-^trX(Sg {εg-8ε-[εΛε,g ιεg]]
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As we noted in Sect. 4, this form can be interpreted as the vacuum expectation value
of (X, ζ), a) with respect to a vacuum on the U2 orbit through the free vacuum. We
also saw that the forms ξgP depend only on G = g~ιεg and [G,g~ιPg], the latter
operator being a vector in TQ Gr2. Thus the coadjoint orbit through ξ can be identified
as the cotangent bundle T* Gr2.

The stability group of ξ in U2 is the semidirect product of D and the abelian group
A of elements (1,P), where P G M2>4/3 commutes with ε. The quotient manifold

U2/(D tx A) is the cotangent bundle T* Gr2. The U2 action on T* Gr2 can be described
as follows. Let P eT£ Gr2 and (ft, Q) e U2. Then

(ft, Q) . (G, P) = (ftGft~!, ftPft"! + [ftGft"*, Q]

+ \ [[ε, ftGft'1 - ftεft"1], ftGft-1] - ± ft[[ε, G], GJft"1). (5.9)

Let (<5G, δP) be a tangent vector to T* Gr2 at the base point (G, P). Then from
(5.9) one can reduce that the vector field on T* Gr2 generated by the element
(I 6GG, \[ε-G, [ε, δGG]] + ± [G, <5P]) in the Lie algebra gl2, when evaluated at
(G, P), is equal to (<5G, <5P). Using the commutation relations (3.8)-(3.9) and inserting
to the formula (5.8) one obtains, after a bit tedious but completely straightforward
algebra, the following formula for the Kirillov form on the coadjoint orbit T* Gr2:

i
, OiGJ — [OiP, o2GJ)

- — tr(ε - G) [^G, 6 2 G]. (5.10)

The first term on the right is the canonical 2-form on a cotangent bundle whereas the
second term (which depends only on data on the Grassmannian) is a generator of the
second cohomology on Gr2, [Q].

To each element X G u2 one can associate the Hamiltonian function fx : Γ* Gr2 —»

R (or by complexification of the Lie algebra, a complex function fx for any X G gl2),

defined by

(5.11)

It satisfies

&x • ΪY = fιx,Y] = Ω(2?x, %y), (5.12)

where we have denoted by S^x the vector field on the coadjoint orbit M = T* Gr2

generated by left translations by X. Denote by {•} the Poisson brackets determined
by the symplectic form Ω. Because of (5.12),

{fχJγ} = fίX,YV (5-13)

In geometric quantization one associates an operator / to each element / G
C°°(M). Choosing a complex line bundle E over M with connection V such that
the curvature of V is equal to 2πiΩ the quantum operator / for any / G C°°(M)
acts on sections of E and is given by

/=^VVf-i/, (5.14)
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where Vf is the Hamiltonian vector field corresponding to /, V / = Ω(Vf, Vj) for

any vector field V.

The above general construction gives a representation of gl2 on sections of E. For

any X <E gl2 one can associate an operator X by

(5.15)

where for brevity we denote Vx — V % , the covariant derivative along the vector
field generated by the Lie algebra action on M.

Proposition 5.16. The formula (5.15) defines a faithful representation of gl2 in the
space of sections Γ(E).

Proof The group U'2 acts clearly effectively on T* Gr2 and therefore to prove that the
representation is faithful we have to check only that the center of gl2 is represented
nontrivially. The Hamiltonian function fc = / ( 0 o,i) corresponding to the central Lie
algebra element c = (0,0, ϊ) is the constant function /C(G, P) — 1. The corresponding
Hamiltonian vector field is then identically zero and so the quantum operator is the
multiplication operator

f=-ifc = -i. (5.17)

By (5.10) the symplectic form is a sum of two pieces Ωo and dθ, where the latter is
the canonical exact 2-form on a cotangent bundle and the former is nonvanishing only
along Gr2. The pull-back of Ωo on Gr2 (with respect to the zero section Gr2 —> T* Gr2)
is the curvature of the determinant bundle DET* divided by 2τrz. Thus we may think
of E as the pull-back of DET* on T* Gr2.

The natural polarization on the cotangent bundle leads to Schrodinger picture of
quantization of the Hamiltonian functions fx.

Theorem 5.18. The space of sections of E which are covariantly constant along the

fibers 6>/T* Gr2 (and can be identified as sections 6>/DET*) is invariant under the gl2

action and so gives representation 6>/gl2 in the space /^(DET*).

Proof. Denoting by A a (local) potential for the curvature 2τπi?0, the quantum
operators can be written as

(5.19)

From (5.8) one can check that Θ(X) - fx is a function of G only for any X e gl2.

Since the local potential A is also a function only on the base Gr2, the operators X

are of the type — 3ZX + a multiplication operator by a function on Gr2. The sections
2π

ψ constant along fibers of T* Gr2 are characterized by V(0 Q Q)ψ = %\§^Q 0)ψ = 0,
for Q G M24β. By the remark above, this property is preserved under the action by
the operators (5.19).
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