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Abstract. We shall give a generalization of the Littlewood-Richardson rule for
U,(g) associated with the classical Lie algebras by use of crystal base. This rule
describes explicitly the decomposition of tensor products of given representations.
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0. Introduction

In representation theory, it is one of the most fundamental problems to decompose
a given representation into the irreducible components. For the Lie algebra gl(n),
we know a very famous rule called the Littlewood—Richardson rule, which gives the
irreducible decomposition of the tensor product of two finite-dimensional irredu-
cible representations. There are various generalizations of this rule to other Lie
algebras (e.g. cf. [B-Z, L, T]). The purpose of this paper is to give an explicit
description of irreducible decomposition of tensor products of finite-dimensional
representations of the g-analogue of universal enveloping algebra associated with
the classical Lie algebras by a new tool “crystal base.”

The notion of the g-analogue of universal enveloping algebras was introduced
by V.G. Drinfeld ([D]) and M. Jimbo ([J]) in 1985 independently. In 1990, the
theory of crystal base was constructed by M. Kashiwara ([K1, K2]). Roughly
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speaking, this is the representation theory of the universal enveloping algebra U ,(g)
at ¢ = 0. In the world at ¢ = 0, various phenomena become much simpler. In
particular, the crystal base has a nice property with respect to tensor products of
given representations (Theorem 1.1.5 and Proposition 3.2.1).

The crystal base has a colored and oriented graph structure, called a crystal
graph (Definition 1.1.7). In [K-N7], we describe all the crystal graphs of finite-
dimensional representations of U,(g) (g = A,, B,, C,, D,). That gives an explicit
parametrization of vertices of the crystal graphs in terms of analogues of semi-
standard tableaux. The description of the rule of irreducible decompositions
depends on the nice property for tensor products and these combinatorial para-
metrizations of crystal base.

The contents of this paper are as follows. In Sect. 1, the definition and several
properties of crystal base are given, in particular, Theorem 1.1.3, Corollary 1.1.4
and Theorem 1.1.5 guarantee the validity of arguments in the later sections. In Sect.
2, we summarize the results of [K-N], which describes all the crystal graphs of
finite-dimensional irreducible representations of U,(g). First, the crystal graphs of
the vector representation and the spin representation are given. Next, the crystal
graphs of the fundamental representations are realized in tensor products of the
vector representations or the spin representations. Finally, by tensor products of
the fundamental weight cases, the crystal graphs in the general case are described.
Namely, we embed the crystal graph B(1) of the irreducible module V(4) with
highest weight A into B(¥V5)®" or B(A) into B(V5)®" ® B(V,,), where V4 is the
vector representation and V;, is the spin representation. Then we describe B(4) as
its image. In Sect. 3, first, we introduce generalized Young diagrams of type g,
which parametrize all finite-dimensional irreducible representations of U,(g). Next,
the following proposition is proved.

Proposition 3.2.1. Let A and p be dominant integral weights of g. For ue B(1) and
ve B(u), the following two conditions are equivalent;

(@) &(u®v)=0 for any i.
(b) &u =0 and &{"**1p =0 for any i.

By Corollary 1.1.4, we have that V(1) ® V(u)is decomposed into V(wt(u ® v))
where u ® v ranges over B(A)® B(u) satisfying the condition (a). By the
condition (b), we know that if u ® v is a highest weight element of B(1) ® B(u),
then u = u,. In Sects. 4 and 5, the second condition of Proposition 3.2.1(b) is
translated in terms of generalized Young diagrams for the special cases Vy ® Vg
and Vy ® V,, and the rules of decomposition of those representations are given.
Those rules are the steps in the procedure for general cases. In Sect. 6, as the
consequence of Sects. 1-5, the procedure to obtain the decomposition of V'y ® Vi is
given, where Y and W are generalized Young diagrams of type g (Theorem 6.3.1
and Corollary 6.3.2).

The rule of decompositions given in this paper coincides with the correspond-
ing rule in the classical case, namely the case at ¢ = 1. So, in the appendix, we shall
give the 1-1 correspondence between the original Littlewood—Richardson rule and
the rule given in this paper for gl(n + 1).

After submitting this paper the author received the preprint “Crystal graphs
and Young tableaux” from Littelmann. In that preprint, he also give descriptions of
crystal graphs and the Littlewood—Richardson rule for 4,, B,, C,, D,, Ec and G, in
terms of the generalized Young tableaux.
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1. Basic Notions of Crystal Base

In this section, we give the basic notion of crystal base.

1.1. Definitions. Let g be a finite-dimensional simple Lie algebra with a Cartan
subalgebra t, the set of simple roots {o;€t*},.; and the set of simple coroots {h;€t}c1,
where 1 is a finite index set. We take an inner product (,) on t* such that («;, ;)€ Z ¢
and {h;, 1) = 2(a;, A)/(a;, ;) for Aet*. Let {A;}ic; be the dual base of {h;} and set
P =Y 7ZA; and P* =) Zh;. Then the g-analogue U (g) is the algebra over Q(q)
generated by e;, f; and q" (he P*) satisfying the following relations:

¢"=1ifh=0and q"q" = """, (L.L1)

q"ejq™" = q<”’“">e- and q"fiq ™" =q =" f;, (1.1.2)
1

Lef;1=196i; - q‘l’ where q; = q*+*) and t; = g | (1.1.3)

b
Y, eejelt ™ = Z P W =0.(i%jand b=1—<{h,a;)), (1.14)
u=0
phere o) = ef/T41 79 = PR, O = = 0V — ) and (KL =
n=1 Nl

The comultiplication 4: U,(g) — U,(g) ® U,(g) is given by 4(¢") = ¢"® ¢",
Adle)=e,@t; '+ 1®e and A(f)=fi®1+®f,. If M and N are U,(g)-
modules, then by this comultiplication M ® N is also U,(g)-module.

For a finite-dimensional U,(g)-module M and AeP we set M; = {ueM;
tiu = q** My} We call M 1ntegrable if M = @M. Then we have

M= @ fOM;ipnKere). (1.1.5)
k20, —(hiy A
We define the operators é;, ﬁ acting on M by é&f; Wy = =f, *=1y and
fif Pu =%y for ue M, 4, N Ker e; and (4, k) as above.

13

Definition 1.1.1. Let A be the ring of rational functions regular at ¢ = 0. A pair (L, B)
is called a crystal base of a finite-dimensional integrable representation M if the
following conditions are satisfied,

(1) L is a free sub-A-module of M such that Q(q) ® 4L = M.

(2) B is a base of the Q-vector space L/qL.

(3 L=@L,, B=]]B,, where L, = LM, and B, = Bn(L;/qL;).
4) f,L < L,and ¢;L = L.

(5) fiB = BU{0} and &B = Bu {0}.

(6) For u,veB and iel, u-evlfandonlyzfv—ﬁ

We call L crystal lattice and B crystal.
Then the following results are proved in [K1] for g = 4,, B,, C,,and D, and in
[K2] in the general case. Let AeP, = {Aet*; {h;,A)eZs,} and V(A) the
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irreducible integrable U,(g)-module generated by the highest weight vector u; with
weight 4. Weset L(A) =Y. Af,, . . . fyuzand B(A) = {f;, . . . f,uymod gL(A)}\ {0}
< L(A)/qL(A), where i; runs over I.

Theorem 1.1.2. (L(1), B(A)) is a crystal base of V(1).

Theorem 1.1.3. If(L, B)is a crystal base of an integrable U ,(g)-module M, then there
is an isomorphism: M = @);V(4;) by which (L, B) = ;(L(4;), B(4;)).

Corollary 1.14. Let M and (L, B) be as above. Then we obtain
M = @ V(wt(b)), where B"={beB;&b=0foranyi}.

beBh

We call an element of B" a highest weight element of B.

Theorem 1.1.5. Let (L;, B;) be a crystal base of an integrable U ,(g)-module M;
(j=12). Set L=L,®4L,cM;®M, and B={b, ®b,; bjeB; (j=1,2)}
c L/qL. Then we have

(1) (L, B) is a crystal base of M1 ® M, .
v _ ﬁb1 ®~b2 if @i(by) > &(b2),
@ Jibr @ ba) = { bi®fb: i @ilby) < siba)

b, ® &b, if ¢i(by) <eibs),
&by ® by if @i(by) = &i(by) .

Here, &(b) = max{k > 0; &b + 0} and ¢,(b) = max{k = 0; f*b + 0}.
Corollary 1.1.6. For bje B; (j = 1, 2), we have
&i(by @ by) = max(ei(by), &(b1) + &(b2) — @i(b1)) ,
@i(by ® by) = max(gi(bz), @i(b1) + @i(b2) — &(b2)) .

Definition 1.1.7. A crystal graph of a crystal base (L, B) is the colored and oriented
graph B, with the arrows: u-%> v if and only if v = fiu.

Let M; (i =1,2) and B be as in Theorem 1.1.5, and B" be the set of highest
weight elements of B. By Corollary 1.1.4 and Theorem 1.1.5, we get

Mi@M,= @ V(wt(b;®b,)).

b1 @ baeBhk

b1 ®by) = {

The aim of this paper is to give the explicit procedure for obtaining such b; and b,.

2. Review of Crystal Graphs

In this section, we shall summarize the results of [K-N7], which gives an explicit
description of crystal graphs of U,(g)-modules (g = 4,, B,, C,, D,). We omit the
rule of arrows.

2.1. Crystals for U, (A,)-modules. We shall treat the A,-case. We set &; = 4,
=My —A;for2<i<nand e, = — (e, + -+ +¢,). Define a; = &; — &4 4.
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The crystal graph B(V) of the vector representation V is easily obtained by
explicit construction. It is labelled by {[ i J;i = 1, ..., n + 1} and the crystal graph
is

L S @1

Here, [ i | has weight ¢;. Graph (2.1.1) implies

§i=5i,j—1 , f:=5i,j' (212)

Let V(Ay) be the irreducible representation with the fundamental weight Ay
(1 £ N < n)as a highest weight. We embed V(A y)into 2 ". Accordingly, B(Ay) is
embedded into B(V)®". We have that B(Ay) consists of [i, |® - - ® [ix | with

1<iy< - <iy<n+ 1LThebaseu,, =[1|®[2|® - ®[ N ]is annihilated

by all &; and it has weight Ay = ¢&; + -+ - + ¢y, then the crystal graph B(Ay) is the
connected component of B(V;)®" containing [ 1]® --- @[N] We write

form®'-‘®eB(VD)®N.

Let A= Zg’zl A, 1= 2L, £+ £1,=n) be a dominant integral weight.
For u, = I €B(An), we denote u;® - Qu,=

® -+ ® B(A1,). We obtain the following:

For 1sk=sp1=si<,
€B(A,)® - @ B(A,, ) tfe{l, ..., n+ 1} satisfies
i <tk and th <k, .

(2.1.3)

An element of B(A) is called a semi-standard A-tableau of shape A. Note that
semi-standard A-tableaux coincide with usual semi-standard tableaux, so in the case
g = gl(n + 1), B(A) is also given by the same rule as the 4,-case.

2.2. Crystals for U,(C,)-modules. Let (e, . . .,e,) be the orthonormal base of the
dual of the Cartan subalgebra of C, such thato; = ¢, — &+ {(1 £ i < n)and a, = 2¢,
are the simple roots. Hence, o, is the long root and a4, . . ., &,— are short roots.
Let {A;}1<i<, be the dual base of {h;}; <;<,. Hence 4, = ¢, + - - - + ¢ (1 <i < n).

The crystal graph B(V5) of the vector representation V is described as follows.
It is labelled by { [Z], E; 1 £i < n}, where E] has weight ¢; and has E has
weight — ;. Its crystal graph is

L A [ 29
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Similarly to the A,-case, the connected component of the crystal graph

B(V5)®" containing uy, =[ 1 |®[ 2 |® - - - ®[ N ] is isomorphic to B(Ay).
We _give the linear order on {i,i; 1<i<n} by 1<2<---n<n<---
< 2 < 1. By using the same notation as in 2.1, we have

i M 1= < <iy=T,
B(Ay) = I eB(V)®Y; ) if iy=p and ii=p, % (222
Lix | then k+(N—-I+1)<Zp

Next, we shall give the crystal of V(A + Ay) with 1 £ M < N < n. By embed-
ding V(Ay + Ay) into V(Apy) ® V(Ay), B(Ay + Ay) is the connected component
of B(Ay) ® B(Ay) containing u,, ® uy,.

€ B(Ay), u ® v will be denoted by

As
'N [—

Definition 2.2.1. For 1 < a = b < nand u, v as above, we say that u ® ve B(Ay) ®
B(Ay) is in the (a, b)-configuration if u ® v satisfies the following, B

there exist 1<p<q<r<s=<M such that i,=a, j,=b, j,=b, jj=a or
i,=a,ig=>b,i,=b,js=ad.

This definition includes the case a =b, p=q and r =s. Now, we define
p(a, b; u®v) = (g — p) + (s — r). We obtain the following;

B(Ay + Ay) =
i | (1) lké]kforl-gkgM
w=|: _7 € B(Ay) ® B(Ay); (2) If w is in the (a,b)-configuration, ) (2.2.3)
Zj& then p(a,b;w)<b —a.

Let A = Z{;l/l,‘ (121, £+ =£1,<n)be adominant integral weight. Using
the same notation as in (2.1.3), we obtain;

Uy @ ug+1€B(Ay, + Agt1)
)® - @ B(A,,);
for any k.

(2.2.4)

An element of B(A) is called a semi-standard C-tableau of shape A.

2.3. Crystals for U,(B,)-modules. Let (g;, €,, . . . , &,) be the orthonormal base of
the dual of the Cartan subalgebra of B, such that o; =& — ¢+, (1 £i<n) and
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a, = &, are simple roots. Hence, a4, . .., ®,—; are long roots and «, is the short
root. Let {A;};<i<, be the dual base of {h;};<i<,. Hence 4, =¢; + - +¢
(i=1,...,n—1and A, =(e; + - + &,)/2

The crystal graph B(V5) of the vector representation V is described as follows.
It is labelled by {[ i [,[ 7 ]; 1 i< n}u{[ o]}, where [ i | has weight &;, [ 7 | has
weight — g; and E has weight 0. The crystal graph of V is

N e RPN g Ly Ry KPPy BN oy |

(2.3.1)

Next, weset w; =¢; + - + ¢ (1 =i < n). Note that w; = A4; (1 £i < n)and
o, = 24,. The representation V(wy) can be embedded into VEN (1 <N <n).
We give the linear order on {i,i; 1 <i < n}u {0} by
1<2< - <n<0<i<---<2<1. (2.3.2)

Then we obtain

M1=Zi =2 2y =,
but any element other than 0
€B(Vg)®Y; cannot appear more than once. . (2.3.3)
(@ if ic=pand i;=p (1 <p=n),
then k+ (N—-I1+1)=<p

Next, we introduce the spin representation which is denoted ¥;,. This is the
finite-dimensional irreducible representation with highest weight A,. This is de-
scribed explicitly by use of the following half-size tableaux. With the linear order on
{1,2,...,n,7,...,2,1} as before, we set

b e{t,2,...,na ..., 2,1},
By, = 3 Q) i< <y, , (2.3.4)
] (3) i and i do not appear simultaneously

Vip = @Pes,, Q(q)v and Ly, = @,ep,, Av. If we define the actions of generators as
in [K-N], V,, = V(4,) and (L, Byp) is a crystal base of V.

Next, we shall give the crystal of V(wy + wy) (1 =M < N = n). V(oy + oy)
can be embedded into V(wy) ® V(wy) uniquely.

Definition 2.3.1.

(1) For 1 <a<b<n, we say that w =u® ve B(wy) ® B(wy) is in the (a,b)-
configuration if w = u ® v satisfies the same condition as Definition 2.2.1.

(2) For1 £ a < n,wesaythatw = u® ve B(wy) ® B(wy) is in the (a, n)-configura-
tion if w = u ® v holds the following,
there exist 1 Sp=<q<r=q+1=s=M such that i,= a, j; = a and one of
the following conditions is satisfied:
() i, and i,( = iy4 1) are n, 0 or .
(i) j, and j.( = j,+1) are n, 0 or A.
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(3) We say that w = u ® ve B(wy) ® B(wy) is in the (n, n)-configuration if there
exist 1 < p <q = M such that i,=nor 0 and j, = 0 or 7.

This definition includes the case a = b, p = g and r = s.
Now, for w in the (a, b)-configuration, we define p(a, b; w) = (¢ — p) + (s — r).
(If a = b = n, we set p(a, b;w) =0.)

We obtain
B(COM + CON) =
N El - w satisfies following
w=u®uv=|:|'|eB(wy)® B(wy); . (23.5)
— s (M.N.1) and (M.N.2)
i P

(M.N.1) i <jifor 1 £k < M, but if i; =0 or j, = 0, then i <.
(M.N.2) If w is in the (a, b)-configuration, then p(a, b; w) < b — a.

We shall consider the crystal of V(wy + 4,) (1 = M < n).

€ B(wy) and v = I €B, = B(4,), u®v will be denoted by

Definition 2.3.2. When uecB(wy) and ve By, have the above expression, for
1<a=<bxnwesaythat w=u® v is in the (a, b)-configuration if w satisfies the
same condition as Definition 2.3.1. We define p(a, b; w) = (g — p) + (s — r). We have

B(wy + 4,) =
i1] )1 (1) ix=Zjifor L<k<M.
w=|:| ' | € B(wy)® Byy; (2) If w is in the (a, b)-configuration,
z then p(a,b;w)<b — a.

Finally, let A be a dominant integral weight.

Theorem 2.3.3. (i) Suppose {h,, 1) is even. We can write A =z,f=1w,k with
Iy £ - £ 1,. We use the same notation as in (2.1.3). Then

uk®uk+IEB(wlk+wlk+1)
1 €B(w,) ® ** ® B(wy,);
for k=1,...,p—1

(2.3.6)
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tain

B(4) = € B(w,)® - - ® B(w,_,) ® By;

Fork=1,...,p—1
uk®uk+1eB(wlk + wlk“) . (2.37)
Up-1 @ uyeB(wy,_, + 4,)

An element of B(A) is called a semi-standard B-tableau of shape .

2.4. Crystals for U, (D,)-modules. Let (e, ¢,, . . . , &,) be the orthonormal base of
the dual of the Cartan subalgebra of D, such that o; = ¢ — ¢, (1 £i < n) and
o, = &,—1 + &, form the set of simple roots. Let {4;};<;<, be the dual base of
{hi}léign' Hence A,"~=81 + -t g (l= 1,.. .,n~2) and An—l =(81 + -
ten—1 —&n)2. Ay = (61 + " + &1 + &)/2.

The crystal graph B(V) of the vector representation V' is the following. It is
labelled by {[ i |,[ 7];1 <i < n}, where[ i |has weight ¢; and [ 7 | has weight — &;.

The crystal graph of Vg is
n—lm n
e N
1 2 n—2 n—2 2 = 1 =
e =L I g ]

n—1

N 7

=] 2.4.1)

Next,wesetw; =¢; + - +g(12is<nyand w11 =6+ " + &1 — &,
Note that w;=4; (1Z2ig£n—2), w,-1=A,-1+4,, w,=24, and
Dp+1 = 2An—1'

The representation V(wy) (1 £ N < n) (respectively V(w, 1)) is embedded into
VEN (respectively ¥ ®"). We give the ordering on {i,i; 1 <i < n} by;

n _ _ _
1<2<-n—1< <n—1<---<23<1. (24.2)
n
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Note that there is no order between n and 7. Using the same expression as before,
we obtain for 1 £ N < n,

(1) iyZiys, for 1Sy <N,
eB(Vp)®Y; Q) if ix=pand ;=p 1<p=n)p, (243)
then k+(N—I1+1)=Zp

( (1) and (2) are the same 3
conditionsm as in (2.4.3)
i |

3) If iy, =n, then n —k is even
B(o,) = <53(V yon, O T0i >

(respectively B(w, 1)) o (respectively odd)
and if iy =n, then n —k is odd

\ (respectively even) J
(2.4.4)

Remark 2.4.1. The condition (1) in (2.4.3) is equivalent to saying that for any
v either i, < i, 4+, or (i, i,+1) = (n, 71) or (7, n).

For the algebra U,(D,), there are two spin representations V{;? and V(). They
are the finite-dimensional irreducible representations with highest weight 4, and
A, -1 respectively. They have the exphclt description as follows. First we give
the order on P = {1,2,...,n,7, 2,1} as (2.4.2). Next, we use the half-size
tableaux and set

B{;)(respectively B, ) =

(1) i;eP,
Q) i <iz< <iyy <y
v=|:]; 3) i and i cannot appear simultaneously, , (24.5)

B 4) If iy = n, then n — k is even (respectively odd)
(5 If iy =n, then n— k is odd (respectively even)

Vif) = @Presw Q(q)vand L) = P,cp Av. If we give the actions of generators as
in [K-N], then V() =~ ¥(4, ) V) = V(4,-,) and (L, B$Y)) is the crystal base
of V{¥.

Next, we shall describe the crystal of V(wy + wy) 1 M <N <n+1). For
u ® ve B(wy) ® B(wy) we use the same expression as before.

Definition 2.4.2. Let 1 =M < N < n + 1 such that (M, N) £+ (n,n + 1).

(1) For1 < a < b < n,we say that u ® ve B(wy) ® B(wy) is in the (a, b)-configura-
tion if u @ v satisfies the same condition as Definition 2.2.1.

(2) Forl = a < n,we say that u ® ve B(wy) ® B(wy) is in the (a, n)-configuration if
u ® v satisfies the following;
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thereexist 1 Sp<qg<r=gq+1=s =< Msuchthat (ip, js) = (a, ) or (a, a) and
one of the following conditions is satisfied:

() i, and i,( = iz1,) are n or u,

(1) j, and j,( = j,+1) are n or A.

If w is in the (a, b)-configuration, we define p(a, b; w) =(q — p) + (s — r).

(3) For 1 £ a < n, we say that u ® ve B(wy) ® B(wy) is in the a-odd-configuration
if u ® v satisfies the following; there exist 1 S p < g <r < s =< M such that (a)
r—q+ lisodd, (b)i,=aand j,=a,(c)j,=nandi,=n,orj, =nand i, =n.

4) For1 < a < n,we say that u ® ve B(wy) ® B(wy) is in the a-even-configuration
if u® v satisfies the following; there exist 1 S p < q<r <5< M such that (a)
r—q+ 1is even, (b) i, = aand j, = a,(c) j,=nand i, = n, or j, =i and i, = .

If weB(wy)® B(wy) is in the a-odd or even-configuration, we define
q(a; w) =s — p. Then we have, for L < M <N <n+ 1, with (M, N) & (n,n + 1).

‘ w satisfies the following
B(wy +oy)=<{w= | :|:|eB(oy)® Bloy); )
— Jum (M.N.1)-(M.N.3).

(2.4.6)

MN.D) i Zjrfor1 k<M.

(M.N.2) If w is in the (a, b)-configuration, then p(a, b; w) < b — a.

(M.N.3) If w is in the a-odd-configuration or the a-even-configuration, then
ga;w)y<n—a.

Next, we shall treat the representations V(wy + 4,) (1 <M <n) and
Vioy + A4,-1) 1 £ N =Zn+ 1, N #+ n). They can be embedded into respectively
V(wy) @ V) and V(wy) ® V) with multiplicity free. For u ® ve B(wy) ® BS
and B(wy) ® B{;’, we use the same expression as in 2.3.

Definition 2.4.3.

() u® veB(wy) ®BY) (1 <M <n)or Bloy) ®B,) (1< N=<n+1,N*n)is
in the (a, b)-configuration (1 £ a < b < n) if u ® v satisfies the same condition as
Definition 2.4.2. (1), (2).

(2) u® ve B(wy) ® BG) (1 £ M < n) or Bloy)® B, (1 £ N < n)is in the a-odd
(respectively even)-configuration (1 < a < n) if u ® v satisfies the same condition
as Definition 2.4.2. (3) (respectively (4)).

p(a, b; w) and q(a; w) are the ones defined in Definition 2.4.2. Then we obtain,

(respectively B(wy + A,-1))

it i w satisfies
w=|:| " | eB(wy)® B s(IMINLL) > (247
E (respectively B(wy) ® BS)) — (M.N.3)

1
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Let A= Z?=1 m;A; (m;eZy,) be a dominant integral weight of D,. Now, we
shall rewrite A by use of w,,, 4, and 4, _ ;. By the definition of w,,, we have A; = w;
lsisn-2), 4,1+ A4,=w,-, 24, =w, and 24,_, = w,,,. Hence, any
Ae P, can be written in one of the following forms;

(W1) A=3" mw; (meZs,).

(W2) A=37 mow; + A, (meZs,).

(W3) A=021 moi + m, s 10,41 (mEZLso).

(W4) 1= z:’;ll mMi@; + My 1 Wpyq + Ay (MeZLsy).

If A is of type (W4), we can write A=, + """ + o, +@,,, + " +
o, + A,y withl =L, £---=l,<n<n+1=1l,,,="-=1,_,. Then for
3
=
w,=|:|eB(w,) 1=<k<gq) and u,=|:|€B;’, we denote u; ® - Qu, =
e
L_IL

w satisfies the

' q-1
).
© (k@l B(w,,)) ® By’ following (1)-(4) (’

(2.4.8)

(1) u, ®ug+1€B(wy, + y,, )foranyk=1,..,p—1,
(2) u,,®u,,+leB(w,p + C‘)n+1),

B) i, ®u+1€BRwy+1), foranyk=p+1,..,q9— 2,
(4) u;—1 @ ugeB(wp+y + Ap-1)-

For A of type (W1)-(W3), we can obtain B(4) similarly. An element of B(A) is
called a semi-standard D-tableau of shape 1.

3. Generalized Young Diagrams

It is well known that arbitrary finite-dimensional irreducible representations of 4,
and C, are characterized by Young diagrams. But it is not true for the B, and D,
cases. In this section we shall introduce a “generalized Young diagram of type
a(g = A4,,, B,, C,, D,)” and characterize arbitrary finite-dimensional irreducible
representations of U,(g) in terms of “generalized Young diagrams.”

3.1. Definition of generalized Young diagrams. For a sequence of half integers I;
(j=1,2,...,n=rank of g), such that [; — ;. 1€Zsy, let Y =(I;, I,...,1,)
mean a diagram which has n rows and a length of the j-th row is /; (includes “-”
length). We associate it with a weight Z;.‘zl Lig;.
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For example, if Y= (I, 15,...,1,) satisfies l;€Z,, then Y is an ordinary
Young diagram. Now we define a “generalized Young diagram of type g.”

Definition 3.1.1. Let Y = (I3, 15, ..., 1,) be a diagram such that [; — l;;,€Z .

(1) g= A4,, C,-case: Y = (I, 1,, ...,1,) is a generalized Young diagram of type A,
and C, if all I; are non-negative integers respectively.

(2) ¢ = B,-case: Y = (I, 1,, .. .,1,) is a generalized Young diagram of type B, if all
I; are non-negative half integers.

(3) g = D,-case: Y = (ly, 15, . ..,1,) is a generalized Young diagram of type D, if all
l; are half integers and 1, 2 1, 2 -+ 2 1,1 2 |l,].

Example 3.1.2. In the case of g = D,, the generalized Young diagram (3, 3,3, — 3)
of type D, is visualized as follows;

533 1) _
222 2) [T

Here, “black box” means
The following proposition is straightforward.

@

Proposition 3.1.3. Let % be the set of generalized Young diagrams of type g = A, B,,
C, and D, and P, the set of dominant integral weights of g. The map ¥: % — P,
defined by Y= (I, ..., l,l)l—»Z;;l l;&; gives an isomorphism from % to P .

Remark 3.14. For Y = (I, ...,1,), the image by ¥ is described as follows;
Z-__-i(lk—lk+1)/1k+ln/1n 1f g=A", C,,,
P(Y)={ drli (e — br ) A + 21,4, if g=B,, (3.1.1)

it o= b ) A + (l—y + 1)A, if g =D,.
Example 3.1.5. The image by ¥ of the generalized Young diagram (3, 3, 3, — %) of
type D4 in Example 3.1.2 is
5 3

3 1
581 +—2'82+§83“§84=A1+2A3+A4€P+ .

3.2. Property of highest weight elements of B(1) ® B(u). The following proposition
is a key for descriptions of a generalization of the Littlewood—Richardson rule.

Proposition 3.2.1. Let 1 and p be dominant integral weights of g. For ue B(1) and
ve B(u), the following two conditions are equivalent;

(@) &;(u®v) =0 for any i.
(b) &u=0and ety =0 for any i.

Proof. By Corollary 1.1.6, the condition (a) is equivalent to
&;(u ® v) = max(e;(u), &(u) + &) — @;(u)) =0 foranyi. (3.2.1)
The condition (b) is equivalent to

g(u)=0 and &)< (h, Ay foranyi. (3.2.2)
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Note that by the definition of ¢;(u) and &;(u), we have

@i(u) — &(u) = Chy, wi(u)) (3.2.3)
If ¢;(u) = O for any i, then wt(u) = A. Therefore, from (3.2.3), we obtain the equiva-
lence of (3.2.1) and (3.2.2). Q.E.D.

4. Decomposition of Vy ® V

In this section, for g = A4,, B,, C, and D,, we shall give combinatorial descriptions
for irreducible decomposition of U,(g)-module V'y ® V5 with the help of crystal
bases. Here, Y is a generalized Young diagram of type g and Vy is the irreducible
U,(g)-module with highest weight ¥(Y). Of course, this result is well-known, but it
is important that we can explain this in terms of crystal bases.

4.1. Lemmas. Let Y =(l,1,,...,1,) be a generalized Young diagram of type
g and uy the highest weight element of B(Vy). The following lemmas play an
important role in this section.

Lemma 4.1.1. Let g be of type A,. For a Young diagram Y = (11,15, ... ,1,) and
eB(Vo)(j=1,2,...,n+ 1), the following (i) and (ii) are equivalent;

() uy ®[j |is a highest weight element of B(Vy ® Vg).

(i) -1 — > 0.

Here, we set Iy = o0 and I, = 0. (If g = gl(n + 1), we consider Y has the
n + 1-th row.)

Proof. Let A be the weight of Y, ie. A = ¥(Y). By Proposition 3.2.1,
uy ®[J | is a highest weight element if and only if &,(] j ]) < {h;, 4> for any i.
4.1.1)
By the crystal graph (2.1.1) of the U,(A,)-module V5, we obtain,

ei() =0 -1- 4.12)
From (4.1.1) and (4.1.2), we obtain that uy ® is always a highest weight element
of B(WVy® Vg)and forj=2,...,n+ 1,
([ ) S (hi, A for any iy ([J]) < <hjm1, A
<> (hj-y, A) is positive . 4.1.3)
Since (h;_y, ) = I;_; — I;, we obtain the equivalence of (i) and (ii). Q.E.D.

The proofs of the following lemmas are quite similar to that of Lemma 4.1.1, so
we omit them.

Lemma 4.1.2. Let g be of type C,, and Y = (1,15, ...,1,) be a Young diagram.

(1) For [j |eB(Va) (j=1,2,...,n), uy®[j | is a highest weight element of
B(Vy®@Va)ifand only if I,y — ;>0 (lo = o).

(2) For [j]eB(Vo) (j=1,2,...,n), uy®|[J | is a highest weight element of
B(Vy® Vo) if and only if l; — lj; > 0 (L+; = 0).
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Lemma 4.1.3. Let g be of type B, and Y = (I, 1, ...,1,) a generalized Young

diagram of type B,.

(1) For [j ]eB(Vo) (j=1,2,...,n), uy®[j | is a highest weight element of
B(Vy® Vo) ifand only if l;_; —I; > 0.

(2) For €B(Vo) (j=1,2,...,n—1), uy®[J ] is a highest weight element of
B(Vy® V) ifand only if I; — l;4; > 0.

(3) For[ 0 |eB(Vy),uy ®[ 0 |is a highest weight element of B(V, ® V) if and only
ifl, >0,

(4) For[ 7 |eB(Va) uy ® is a highest weight element of B(Vy ® V) if and only
ifl,z1

Note that for a generalized Young diagram of type B,, the condition [, > 0 in
(3) is not equivalent to the condition [, = 1 in (4).

Lemma 4.1.4. Let g be of type D, and Y = (I, 1,,...,1,) a generalized Young

diagram of type D,,.

(1) For [j]eB(Vo) (j=1,2,...,n), uy®[j | is a highest weight element of
B(Vy® Vo) ifand only if I;_, — I, > 0.

(2) For[j|eB(Va) (j=1,2,...,n—2), uy®| j|is a highest weight element of
B(Vy® Vo) if and only if l; — ;,, > 0.

(3) For E} €B(Vg),uy ® is a highest weight element of B(Vy ® V) if and only
ifln—l * — ln‘

(4) For eB(Vp), uy ® is a highest weight element of B(Vy ® V) if and
only if [,_1 > |L,].

4.2. For a generalized Young diagram Y = (I}, ,, . . ., 1,) of type g, we shall define
the following notations.
(Yej)=U, ..., h+1,...,L) forj=1,...,n, @2.1)
(Yej)=y,....,;—1,...,1) forj=1,...,n, 422)
GL-LL-1...,I,—1) g=4,,
Y 1= 423
( «—n-+ ) {(11,12,.-->1m1n+1+1) g=g[(n+1), ( )
(ll,"'aln) lfln>0,
= 424
(r=0 {Ubuwhﬂ,—m)ifh=o. 4.24)

Note that the case I, = 0 in (4.2.4) implies that (Y « 0) is not an element of % and
for g = gl(n + 1), we consider that ¥ has n + 1 rows.

Proposition 4.2.1. Let Y = (I3, 15, ...,1,) be a generalized Young diagram of type
g and Vy a finite-dimensional irreducible U ,(g)-module associated to Y. Then we have
@;‘:; V(y(_j) lf g = An or g[(n + 1) E]
VY ® V(j jad @;=0 V(y(_j) @ @;=1 V(y(_j‘) lf g = Bn N (425)
Do Voo n @D Vaey if §=Cp D,

Here if Y is not a generalized Young diagram, then Vy means the 0-dimensional
vector space.
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Proof. By Corollary 1.1.4, it suffices to determine all the highest weight elements of
B(Vy ® V5). By Proposition 3.2.1, if u @ ve B(Vy ® V) is a highest weight ele-
ment, then we have u = uy. Hence, by Lemma 4.1.1-4.1.4 we have already known
all the highest weight elements of B(Vy ® V) in terms of I;’s. We shall restate this
in terms of generalized Young diagrams.

(i) g = 4, (gl(n + 1))-case
The condition [;_; — I; > 0 in Lemma 4.1.1 is equivalent to the condition that
(Y «j) remains a Young diagram. Hence uy ®[ j |is a highest weight element of
B(Vy ® V) if and only if (Y « j) is a Young diagram. It remains to note

wt(uy ®[j ]) = ( > lkak> + & =wt(Y «j).
k=1

(If g=4,, since &; + -+ + g,41 =0, it is true for the case j = n + 1.) Hence we
obtain the case 4, (gl(n + 1))-case.
(i) g = C,-case

Similarly to the A4,-case, by Lemma 4.1.2.(1), uy® is a highest weight
element of B(Vy ® V) if and only if (Y « j) remains a Young diagram. It remains
to note that we(Y « j) = we(uy ® [ ).

The condition [; — [;+; > 0 in Lemma 4.1.2.2) is equivalent to the condition
that (Y « j) remains a Young diagram. Hence uy ® is a highest weight element

of B(Vy ® V) if and only if (Y «j) is a Young diagram. It remains to note that

wt(uy ®[ 7 ]) = < i lk€k> — & =wi(Y <)
k=1

Therefore we get the C,-case.
(i) g = B,-case

Similarly to the C,-case, by Lemma 4.1.3(1) and (2), uy ® eB(Vy® Vg)
(j=1,...,n) satisfies the highest weight condition if and only if (Y «j) is
a generalized Young diagram of type B, and uy® eB(Vy® Vy)
(j=1,...,n— 1)satisfies the highest condition if and only if (¥ « j) is a general-
ized Young diagram of type B,. We have wit(uy ® ) =wt(Y «j) and
wt(uy ®[ 7 ]) = wt(Y « ).

By Lemma 4.1.3.(3), uy ® @ is a highest weight element of B(Vy ® V) if and
only if (¥ « 0) remains a generalized Young diagram of type B,. Both Y ® El
and Y have the same weight Y 7_ | [,

By Lemma 4.1.3.(4), uy ® € B(Vy ® V) is a highest weight element if and

only if [, = 1. Here, the condition [, = 1 is equivalent to the condition that (Y « n)
remains a generalized Young diagram. We have

w(Y®[ 7 ]) = ( i lk8k> — &, = wt(Y 7).
k=1

By these results, we obtain the B,-case.
(iv) g = D,-case

Similarly to the B,-case and the C,-case, by Lemma 4.1.4.(1) and (2), f u ®
(j=1,...,n) (respectively u@(j =1,...,n—2))eB(Vy® V) satisfies the
highest weight condition if and only if (Y « j) (respectively (Y « j)) is a generalized
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Young diagram of type D,. We have wi(uy® ) =wt(Y«j) and
wit(uy ® [ 7 ]) = wt(Y «j). By Lemma 4.1.4.(3), uy ®[ 4 | is a highest weight ele-
ment of B(Vy ® V) if and only if [, & —I,_,. By the definition of generalized
Young diagram of type D,, the condition [, + —I,_ is equivalent to the condition
that(Y«<n)=(ly,...,1l,-1, 1, — 1) remains a generalized Young diagram. We have

wi(Y®[ 7 ]) =< Xn: lkek> — g =wt(Y < 1) .
k

=1

By Lemma 4.1.4.(4), uy ® is a highest weight element of B(Vy ® V) if and
only if I,_; > |l,|. By the definition of generalized Young diagram of type D,, the

condition [, > |l,| is equivalent to the condition that (Y < n — 1) remains
a generalized Young diagram of type D,. It remains to note

wt(Y®p—1) = ( Y lk8k>—£,,_1 =wt(Yen-—1).
k=1

Thus, we obtain the D,-case. Q.E.D.

Example 4.2.2. Forg=Bz and Y=(2,2, 1) = , we consider Vy ® V5. We

(-
have ¥(Y) = 2&; + 26, + &3 = Ay + 243and B(Ve) = {[ 1 |,[ 2 |,[ 3 ].[ 0 |.[ 3 ],
Eiia

| _
@[] (Ye1)=(3,21)= s w @[] (Ye3)=2,2,0 =,
_ _ ]
w®[2]=(Ye2=231x, w®o(re)=21,0=],
w®G|e(e)=222=1] we[fleh=021x,

uy®|I|H(Y<— 0)=2,21)=

Therefore, we get

®[] = ol [ |e[ [ JeHe[]
| | L L

Hence,
@ V(24,) @ V(A; + 24,).



232 T. Nakashima

Example 4.2.3. For g=D, and Y=(2,2,2, — 1) = (. means “-7’), we

consider Vy ® V5. We have Y(Y) = 2¢; + 2¢, + 263 — ¢4 = 345 + A4 and
Bvo)={[]. 2] ] ) ) B B A

|
UY®H(Y(_ 1)=(332’2> _1)': >
uY®H(Y(——2)=(2>3323 _1)Xa

uy®[3 | (Y<3)=(2,23, —1)x,

uY®H(Y(—'4)=(2’29250)= 5

uy®[7 | (Y4 =(222-2= ,

uy®[3 |o(Ye<3)=(2,2,1,-1)= ,
uY®H(Y(_§):(25 1925 —I)X,
uY®H(Y(__1-)=(152’ 27 —1)X
Then, we obtain (we omit V)
|
®[]= ® ® ®
B n

Hence,

@ V(44,) @ V(A, + 243) .
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5. Decomposition of Vy ® ¥V,

For g = B, and D,, there exist “spin representations.” In this section we shall give
combinatorial descriptions for irreducible decomposition of U,(g)-module
Vy ® V, by use of crystal bases.

5.1. Decomposition of U,(B,)-module Vy ® V,,. We have already introduced the
spin representation V,, of U,(B,) in 2.3. In this section we introduce another
description of V, ([Re]).

First we set By, = {v=(i1,i5,...,0); ij= £}, Vo= Pren,, Qg)v and
L, = @uessp Av. For v = (iy, Igy - ,i,) € By, if we define the actions of gener-
ators and the operators &; and f; as follows:

1 n
q"v = gy, where wt(v) =3 ijejforv="_(ir,...,0,), (5.1.1)
ji=1
joj+1
ejv=éjv= (il,..., +, —,...,in) ijz — and ij+1= +, (512)
0 otherwise ,
- joj+l
f}vzf;'l)= (il,...,"‘, +,...,in) l_,=+ and ij+1=_, (513)
0 otherwise ,

forj=1,...,n—1, and

envzénvz{(ila"'>in—l7 '?‘) in= > (514)
0 otherwise ,

fnU =f‘:lvz{(il9"'7in—la i) in= +: (515)
0 otherwise ,

then V, = V(A4,) and (L, B,,) is a crystal base of V.
Note that the correspondence of this description and the description in 2.3 is
given by:

“ + 7 in the j-th row <> j and “-” in the j-th row < j.
Now, for a generalized Young diagram Y =(l,,...,[,)and v = (i, ...,i,)€B,,
we define

1, 1, 1,
(Y+U):=<l1 +§ll,12+512,...,1n+51n>.

The following lemma plays a similar role to Lemmas 4.1.1-4.1.4 in Sect. 4.

Lemma 5.1.1. Let Y = (I, 1,,...,1,) be a generalized Young diagram of type B,
and uy the highest weight element of B(Vy). For v = (iy, i3, . . . , i,) € By, the follow-
ing two statements are equivalent,

(@) uy ® v is a highest weight element of B(Vy ® V).
(b) (Y + v) is a generalized Young diagram of type B,.
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Proof. Let A =)"_, & be the weight of Y. By Proposition 3.2.1, uy ® v is
a highest weight element of B(Vy ® V) if and only if ¢;(v) < {(h;, A) for any j.
Therefore it is enough to show that (Y + v) = (I; + %iy, [ + 3i2, . . ., L, + 3i,) is
not a generalized Young diagram of type B, if and only if ¢;(v) > {h;, A) for some j.
By (5.1.2) and (5.1.4), we have ¢;(v) < 1 for any j.

First we assume that ¢;(v) > {(h;, A) for some j. Then we have

Chj, ) =0 and ¢(v)=1. (5.1.6)
If j = n, then from (5.1.2) and (5.1.6) we have
<hj, l> = O, ij = — and ij+1 = 4. (517)
Since {(h;, Ay =1; — l;4; =0, we obtain
1 1 1 1
lj+§ij=lj—‘2‘<lj+1+§=lj+1 +§ij+1. (5.18)

This implies that (Y + v) is not a generalized Young diagram of type B,.
If j = n, then (5.1.4) and (5.1.6) imply

{hp, 4> =0 and i,= —. (5.1.9)
The condition <h,, A) = 0 is equivalent to I, = 0. Therefore we have
1 1
—iy= —= . 1.1
L + > n > <0 (5.1.10)

This implies that (Y + v) does not satisfy the condition of a generalized Young
diagram of type B, in Definition 3.3.1 (2).

Next we assume that for a generalized Young diagram Y = (I3, 1, ...,1,)
of type B, and v = (iy, iz, . . . , in) €Bep, (Y + 0) = (Iy + %iy, I + 3in, .. ., Iy + Fin)
is not a generalized Young diagram of type B,. One of the following cases can
occur,

1 1

lj+§i,.<l,~+1 + 51 for some j%n, (5.1.11)
1.

L+ 51,, <0. (5.1.12)

Note that (Y + v) always satisfies (I; + 3i;) — (lj+1 + 3ij+1)€Z.
In the case (5.1.11), from the condition I; — I;,; € Z 3, in Definition 3.3.1.(2), we
get

lj=1j+15 lj-_— — and ij+1 = 4. (5113)

This implies that {(h;, 1) = 0 and ¢;(v) = 1. Hence, é;(uy ® v) * 0.
In the case (5.1.12), we have

,=0 and i,= —. (5.1.14)

This implies that {h,, A) = 0 and ¢,(v) = 1. Hence, é,(uy ® v) # 0. Thus we get the
equivalence of (a) and (b). Q.E.D.
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Proposition 5.1.2. Let Y =(ly, 15, ..., 1,) be a generalized Young diagram of type
B,. For Uy (B,)-modules Vy and V,, we obtain;

Vy® Ve = ) Viv+v - (5.1.15)
Here if Y is not a generalized Young diagram, Vy means the O-dimensional vector
space.

Proof. By Proposition 3.2.1 and Lemma 5.1.1, u ® ve B(Vy ® V,) satisfies the
highest weight condition if and only if u = uy and (Y + v) is a generalized Young

diagram of type B,. Since v = (i, iz, . . . , i,) has weight 33" __ iz&,
" 1
wt(uy @ v) = Y, (lk + 3 ik>sk =wt(Y +v). (5.1.16)
k=1
By Corollary 1.1.4, we obtain the desired result. Q.E.D.

Example 5.1.3. Forg=Byand Y=(3,3,%) = H}( = A, + 43)

_ — (+’+a+)’(+’+> )’(+a ’+)a(_a+>+)a
BSP_B(A3) {(+>_>_)>(_7+>~)9(—a_>+)’(_a_a_)‘}
|
Uy ® (4,4, +)=221) = Uy ® (+,—,— )2 1,00=] ]
L
uw®(+,+,—-)2,20= uy @(—,+,—)e(1,2,0)x
l @
uY®(+’—7+)H(291a1):__1 uY®(_>_7+)H(1a1’1)=

Uy @(—,+,+)=(1,2,1)= x uy@(_,_,_)H(I,I,O)=H

Then we get (we omit V)
| |
® ® (-BH

V(Az + A3) ® Vi = V(Ay + 243) @ V(2A,) @ V(A + 245)

fi2
@
®
®

Hence,

V(A + 4,) @ V(243) @ V(A4,) .

5.2. Decomposition of U,(D,) module Vy® V) and Vy® V(). We have

already introduced the two spin representations V(¥ of U,(D,) in 24.
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Similarly to the B,-case we shall give another description of V(¥ ([Re]). First
we set

B (respectively B(,)) = {v = (iy, . . . , in);
ij = 4,0y ...0, = + (respectively —)}, (5.2.1)
Ve = @ Qgv and L = P Av, (5.2.2)
veBP veB(

and if we define the actions of generators on V')’ and the operators &; and f: on
L) as follows, for v = (iy, . . ., i),

1 n
q"v = gy, where wit(v 5 Z ijej, (5.2.3)
j j+1
ejl)=éiv'= (ils"' =+, —,...,i,,) ij= — and ij+1= +, (524)
0 otherwise ,
= . AR Ly
fiv=fiv=<0,...., — + s ij= 4+ and ij4; = —, (5.2.5)
0 otherwise ,
G=1,...,n—1)
n—1 n
ev=¢ev=< (..., +, +) ip-1= — and i,= —, (5.2.6)
0 otherwise ,
~ n—1 n
fv=fw=40,..., = =) b-1=+ and i, = +, (52.7)
0 otherwise ,

then V) = V(A,), V) = V(A,-,) and (L{E, B{Y) is a crystal base of VI re-
spectively. Note that the correspondence between this description and the descrip-
tion in 2.4 is given by,

“ 47 in the j-th row «<>j and “~” in the j-th row <> j .
Lemma 5.2.1. Let Y =(l,...,l,) be a generalized Young diagram of type D, and
uy the highest weight element of B(Vy). For uy and v = (iy, . ..,i,)€ B, the
following two statements are equivalent;
(@ uwy®visa hlghest welght element of B(Vy® V).
®) (Y +0v)=( +3iy, 1, + %iy, ..., 1, + 3i,) is a generalized Young diagram of
type D,.

The proof of this lemma is quite similar to that of Lemma 5.1.1, so we omit it.

Proposition 5.2.2. Let Y be a generalized Young diagram of type D,. For U, (D,)-
modules Vy and VY, we obtain;

Vy® V) = @ Viv+o) s (5.2.8)

v=(i1,..., in)eB)’

Vy@ VY = . P Viv+o) s (5.2.9)

where if Y is not a generalized Young diagram of type D,,, Vy means the 0-dimensional
vector space.
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Proof. By Proposition 3.2.1 and Lemma 5.2.1, u ® ve B(Vy ® V{3)) satisfies the
highest weight condition if and only if u = uy and (Y + v) is a generalized Young

diagram of type D,. The weight of v = (i1, iz, ..., 0,) IS %Z;;l i;¢;. Hence
" 1
Wt(uy®v)= Z (lk+‘2‘lk>€k=W[(Y+ v). (5210)
k=1
Thus, by Corollary 1.1.4, we obtain the desired result. Q.E.D.

Example 5.2.3. For g = D, we consider the decomposition V(A4; + 243)® V).
Ay + 245 corresponds to the generalized Young diagram (2, 1, 1, —1).

We set
|

Y=@21,1,-1)=1{ and B = B(4,)

(+’ +, +, +)> (+7*5‘, +)
_ (+a +a—>_)> (—9 +’_> +)
B (+>'—a +a~)> (_’_*a +, +)

(—7 +a +,—)> (—a_a_a—)
We have

533 1
| - — — —— | =L
uY®(+’ +7 +5 +) <252’2> 2> s

333 3
uy®@(—, +, +, *)""(5,5,5, —§>—E,

311 3
uY®(_—'a T T —)H<§9§7§9 _'2_>= X.
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Then for D, we get. (We omit “V™.)

| JIIH}E
"R s |

V(A 4 243) @ V) = V(Ay + 245 + A3) @ V(24 + A3)
® V(42 + 43) © V(345) .

T

Hence,

6. Decomposition of Vy ® Vy

6.1. In this section we treat general cases. Let Y and W be generalized Young
diagrams of type g( = A,, By, Cy, D,,). We shall give a combinatorial description for
the irreducible decomposition of Vy ® V. In Sects. 4 and 5, we treated special
cases; Vy is the vector representation or the spin representation. By the following
lemma and the way of the construction of the crystal graph, we will know that these
elementary cases play a significant role in general cases.

Lemma 6.1.1. Let V;(j =1, ..., p) be a finite dimensional irreducible representa-
tion of U,(a) (g = A, By, Cuy Dy). Foru; Qu, @ -+ @ ueB(V1 ® - - Q@ V), the
Jollowing two statements are equivalent,

(@) u ®u, ® -+ - uy, is a highest weight element of B(V1 ® -+ - @ V).

(®) uy ®u, ® -+ ®u; is a highest weight element of B(V, ® - -+ ® V;) for any
j=1,...,p.

Proof. (a) follows trivially from (b). Next, we assume (a). For any j we can consider
U Qu® " Quy=U;® " " Quj)@Uj+1® " Quy)eB(V1® - - ®V))
®B(Vj+1 ® - - V,). By Proposition 3.2.1,if (u; @ - - Qu;) @ (Uj+1 ® - - Qup)
satisfies the highest weight condition, u; ® - - - ® u; also satisfies the highest
weight condition. Hence, we obtain (b). Q.E.D.

6.2. Remarks. Now, we give some remarks on the crystal graphs.
Remark 6.2.1.

(a) Let W=(I,1l,,...,1,) be a generalized Young diagram of type g( = 4,, B,
C,, D,) with [;eZ for any jand set m:=[; + - -+ + I,_; + |l,| (= the number
of squares in W). By the way of the construction of B(Vy) in Sect. 2, any
ue B(Vy) can be written in the following form,

u=[a]®[a]® - ®[L]. (62.1)
where [ i, | is an element of B(Vy).
(b) Let W={(l,1,,...,1,) be a generalized Young diagram of type g(g = B,, D,)
with [;€Z + % for any j and set m==(I; = 3) + - + (-1 — 3) + (|1l — 2)
( = the number of squares in W). By the way of the construction of B(Vy) in
Sect. 2, any ue B(Vy) can be written in the following form,

u=[]®[H]® - ®[u]®v, (6.2.2)



Littlewood-Richardson Rule 239

where [ 7, | is an element of B(V) and v is an element of B, or B{).

6.3. Main theorem. Here, by Proposition 4.2.1, Proposition 5.1.2, Proposition
5.2.2, Lemma 6.1.1 and Remark 6.2.1, we obtain the following theorem.

Theorem 6.3.1. (1) Let W and m be as in Remark 6.2.1(a) and Y a generalized Young
diagram of type g (= A,, B,, C,, D,). Then we obtain

Vy® Vi = @ Vi =iy i)y cim) (6.3.1)
[i]e[k]e - ®[i] cB(rw)
where Viyeiyeis.. ... i, IS the O-dimensional vector space if there exists
ke{l,..,m} such that ((((Y«iy)«iy)..).. < i) is not a generalized Young
diagram of type g.
(2) Let W and m be as in Remark 6.2.1(b) and Y a generalized Young diagram of type
g (= B,, D,). Then we obtain

Vy® Vi = @ Vi@ einei..)... cim+oy s (6.3.2)
[i]®[ik]® - ®[i] ®veB(Vy)
where Viy cinyeis)...)... —im+v) IS the O-dimensional vector space if there exists
ke{l,...,m} suchthat (Y < iy)«< i) ...)... «i)isnot a generalized Young
diagram of type g or (Y <«iy)«<iz)...)... < iy, +v) is not a generalized
Young diagram of type g.

Corollary 6.3.2. Let J ={1,2,...,p} be a finite index set and Y and W; (jeJ) be
generalized Young diagrams of type g. We obtain

Vy®@Vw, ® - @ Vi, = @ Vir=um)y=u=...)... <up) » (6.3.3)

u;e B(Vy ) (jeJ)

where for Y and uje B(Vy), if u; is in the form (6.2.1), we define

(Y=u)=((((Yeiy)eiz)...) ... «ip), (6.3.4)
and if u; is in the form (6.2.2), we define
(Y<=u)=(((Yei) i) ...) ... «in) +0) (6.3.5)

and Viyeuyeu=...y... <up) 15 the O-dimensional vector space if there exists jeJ
such that (Y <= uy) cuz) <) <=u;)is not a generalized Young diagram of
type g.

Example 6.3.3. For g =gl(3), Y = | and W= , we consider Vy ® Vyy.
n IEERE 1)1 1]2 1] 12 212
B(Vw) = { 22 2 s 232332 33" ]33] }’

wefr- ()
uy @ H(«(_ '«-1)e3)&1)d>= u)
wof - ((((FF )
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oS ()
wofSF- (P9
o ()3

Hence by Theorem 6.3.1.(1), for gl(3) we obtain (we omit “V™)

[T ]
® ® ® .

®

IR

Example 6.3.4. For g = B,, we consider V(44,)® V(A, + A,), where

4, < (2,2) =, A1+A2©<3 1>=E:1,

22
We set ¥ = and W=Hj. By Theorem 2.3.3 (ii), we have
o] 2] (o] pl2] Pl2] [pfo] o] []2]
2 b 2 b § b 2 b '1‘ b 2 b i b 2 b
B(Vw)=L L_ — L_ L_ L_ S
Qo] Q1] plz) Plz] [T PIT] [[2] [Pl1]
LT 1 I £ I 1 I X I 1 R Y B 11
Hence,

1] 1] 75
uy®@pr—=uy@[1]®(+, H)(Y=D+(+, +) =55 = ;
u @ = uy ®[T]® (+, ) (YD + (+,+)x,

i 1] _(73 [ ]
uY®2 =UY®®(+,—)<—>((Y‘—1)+(+,—))— E,E =L 5

ur @ =y ®F]@ (+, ) (YD) + (+, =),

[

@ =1y ®[E]® (—, +) (YD +(—, +)x,

uy @1 =y ®[T]® (4, +) (Y 0) + (+, +))=<§,§>= ,

[
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Py @ = iy ®[T]@ (4, — ) (Y= 0) 4 (4, —)) =

ol = @[F]@(+, +)o (YD) +(+, +))=<

uy®;0|=uy®|—£|®(—,+)<—->((Ye_())+(_’+))=x’

uY@; TJ=”Y®®(+,+)<—>((Y<—I)+(+,+))=X’

u}’®; i]=L£y<>3(@(‘i‘,—--)<—->((Y<—-§)+(+,_))=<§,%>= Tw’
L (.

u®2§[_u ®®(— +)o(Y<2)+(— +))_<§§>_E

e ’ =) T

@ =y ®[T]@ (+. —)er (YD) + (+. — ),
w ® =1y ®[T]® (—, +) (e +(—, +)x,
__ _ 31
wofH-uweo -, -er-d+ - -n=(53)-[F.
uy®§ I|=:uy®®(_’_)*"((Y@I)_F(_’_))X’

By Theorem 6.3.1.(2), for B, we obtain (we omit “V™).

®H]g_|'@_||® @
()" efHeHef

VA @ V(AL + Ay) = V(AL + 54,) @D V(241 + 34,) @ V(54,)

Hence,

@ V(A +34,)92@ V(2A; + A) D V() @ V(A + 43) .

Appendix. Relation to the Original Littlewood—Richardson Rule

The original description of the Littlewood—Richardson rule for the g = gl(n + 1)-
case is different from ours. In this appendix, we shall give their relation. This
relation is well-known to the specialists (e.g. cf. [W]).

First, we explain the original Littlewood—Richardson rule ([M]).
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For Young diagrams Y=(I;,...,lL,+1)and Z=(my, ..., my4q), Y2 Z if
I; z m;for any j. If Y = Z, the set-theoretic difference W = Y — Z is called a skew
diagram.

Definition A. Let J = {1,2,...,n+ 1} be a finite index set. A finite sequence
5182 '+ 8, (s;€J) is said to be a lattice permutation if the following condition is
satisfied,

#{klsy=iand 1 Sk<r} 2 #{klss=i+1and 1 <k <r}
forany1<iZ<nand 1<r<p.

Let W= Y — Z be a skew diagram and T a semi-standard skew tableau of
shape W with symbols J (see [M]). For a Young diagram Y’ = (I, ..., [,+,), we
say that wt(Tw) = wt(Y”) if the number of symbols j in W is equal to I for any j.
From Ty we derive a sequence s(Ty) by reading the symbols in Ty from the right
to the left in successive row.

Theorem B (the Littlewood—Richardson rule). Let Vy and Vy be irreducible
gl(n + 1)-modules associated with Young diagrams Y and W with n + 1 rows. Then
we obtain

Vy® Vi = &) Vz. (%)

Tz-yis semi-standard,
wt(Tz-y) = wt(W) and
s(Tz-y) is a lattice permutation.

For Young diagrams Y, W and Z in (x), let us define the map ¢ which
associates a semi-standard skew tableau T,_y as in (*) with a semi-standard
tableau of shape W.

@: Ifthereisasymbol k(1 £k =<n+ 1)inthem-throw(l1 Em=<n+ 1)in T5_y,
then a symbol m is written in the k-th row in the diagram W.

Theorem C. For Young diagrams Y and W, we set

Z2Y, wt(Tz_y) = wt(W) and , }

T, W)=T;-y; ) . .
( ) { Zr s(Tz-y) is a lattice permutation .

B"(Y, W) = {beB(Vy), uy ® b is a highest weight element of B(Vy ® Vy)} .
Then @ gives a 1 — 1 correspondence between I (Y, W) and B*(Y, W).

Example D. For g =gl(3), Y =(2,1,0) = | and W=(2,2,0) = , which is

introduced in Sect. 6, we have

1] 1]1] 1 1]
, 2 , 1121, 1 ,

T W) ={ 1

Bh(Y,VV)={11,11,12,12}.
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Hence, we obtain

11]H11
2102 2021
1] 1] —
2 — ,
23
2]
D
1
12
2] s
2]
L 1] 2
1 —
3] 3
2] 2

k in the m-th row — m in the k-th row
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