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Abstract. We shall give a generalization of the Littlewood-Richardson rule for
Uq(o) associated with the classical Lie algebras by use of crystal base. This rule
describes explicitly the decomposition of tensor products of given representations.

Table of Contents

0. Introduction 215
1. Basic Notions of Crystal Base 217
2. Review of Crystal Graphs 218
3. Generalized Young Diagrams 226
4. Decomposition of Vγ ® Vu 228
5. Decomposition of Vγ ® Vsp 233
6. Decomposition of Vγ (x) Vw 238
Appendix. Relation to the Original Littlewood-Richardson Rule . . . . . . 241

0. Introduction

In representation theory, it is one of the most fundamental problems to decompose
a given representation into the irreducible components. For the Lie algebra cjl(rc),
we know a very famous rule called the Littlewood-Richardson rule, which gives the
irreducible decomposition of the tensor product of two finite-dimensional irredu-
cible representations. There are various generalizations of this rule to other Lie
algebras (e.g. cf. [B-Z, L, T]). The purpose of this paper is to give an explicit
description of irreducible decomposition of tensor products of finite-dimensional
representations of the ^-analogue of universal enveloping algebra associated with
the classical Lie algebras by a new tool "crystal base."

The notion of the ^-analogue of universal enveloping algebras was introduced
by V.G. Drinfeld ([D]) and M. Jimbo ([J]) in 1985 independently. In 1990, the
theory of crystal base was constructed by M. Kashiwara ([Kl, K2]). Roughly
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speaking, this is the representation theory of the universal enveloping algebra Uq(g>)
at q = 0. In the world at q — 0, various phenomena become much simpler. In
particular, the crystal base has a nice property with respect to tensor products of
given representations (Theorem 1.1.5 and Proposition 3.2.1).

The crystal base has a colored and oriented graph structure, called a crystal
graph (Definition 1.1.7). In [K-N], we describe all the crystal graphs of finite-
dimensional representations of Uq(§) (g = Am Bn, Cn, Dn). That gives an explicit
parametrization of vertices of the crystal graphs in terms of analogues of semi-
standard tableaux. The description of the rule of irreducible decompositions
depends on the nice property for tensor products and these combinatorial para-
metrizations of crystal base.

The contents of this paper are as follows. In Sect. 1, the definition and several
properties of crystal base are given, in particular, Theorem 1.1.3, Corollary 1.1.4
and Theorem 1.1.5 guarantee the validity of arguments in the later sections. In Sect.
2, we summarize the results of [K-N], which describes all the crystal graphs of
finite-dimensional irreducible representations of Uq(q). First, the crystal graphs of
the vector representation and the spin representation are given. Next, the crystal
graphs of the fundamental representations are realized in tensor products of the
vector representations or the spin representations. Finally, by tensor products of
the fundamental weight cases, the crystal graphs in the general case are described.
Namely, we embed the crystal graph B(λ) of the irreducible module V(λ) with
highest weight λ into B{Vu)®m or B(λ) into B(Va)®m ® £(F s p ), where Vu is the
vector representation and Vsp is the spin representation. Then we describe B(λ) as
its image. In Sect. 3, first, we introduce generalized Young diagrams of type g,
which parametrize all finite-dimensional irreducible representations of Uq(o). Next,
the following proposition is proved.

Proposition 3.2.1. Let λ and μ be dominant integral weights of g. For ueB(λ) and
υeB(μ\ the following two conditions are equivalent;

(a) eι{u ®v) = Ofor any i.
(b) etu = 0 and efhuλy + 1v = Ofor any I

By Corollary 1.1.4, we have that V(λ) (x) V(μ) is decomposed into V(wt(u (x) v))
where u (x) υ ranges over B(λ) ® B(μ) satisfying the condition (a). By the
condition (b), we know that if u (x) v is a highest weight element of B(λ) (x) B(μ\
then u = uλ. In Sects. 4 and 5, the second condition of Proposition 3.2.1(b) is
translated in terms of generalized Young diagrams for the special cases Vγ (x) VΏ

and Vγ ® F s p and the rules of decomposition of those representations are given.
Those rules are the steps in the procedure for general cases. In Sect. 6, as the
consequence of Sects. 1-5, the procedure to obtain the decomposition of Vγ (x) Vw is
given, where Y and W are generalized Young diagrams of type g (Theorem 6.3.1
and Corollary 6.3.2).

The rule of decompositions given in this paper coincides with the correspond-
ing rule in the classical case, namely the case at q = 1. So, in the appendix, we shall
give the 1-1 correspondence between the original Littlewood-Richardson rule and
the rule given in this paper for gl(n + 1).

After submitting this paper the author received the preprint "Crystal graphs
and Young tableaux" from Littelmann. In that preprint, he also give descriptions of
crystal graphs and the Littlewood-Richardson rule for An9 Bn, Cn, Dn, E6 and G2 in
terms of the generalized Young tableaux.
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1. Basic Notions of Crystal Base

In this section, we give the basic notion of crystal base.

1.1. Definitions. Let g be a finite-dimensional simple Lie algebra with a Carton
subalgebra t, the set of simple roots {αt e t * }ieI and the set of simple coroots {hi e t } ί e 7 ,
where I is a finite index set. We take an inner product (,) on t * such that (ah αt ) e Z > 0

and {hi, λ) = 2(αt , λ)/(ai9 a^for /let*. Let {Λi}ieI be the dual base of {hi} and set
P = Y^ZΛi and P* = ^ΓZ/i,. Then the q-analogue Uq(§) is the algebra over Q{q)
generated by euf{ and qh (heP*) satisfying the following relations:

qh=lifh = 0 and qhqh' = qh + h' , (1.1.1)

qhejq-
h = q(h>«J>ej and qhfsq~h = q'<h'aj>fj, (1.1.2)

ίeufj] = δtj ti~ti_ι, where qt = q^^ and tt = q^«i)hi , (1.1.3)

= Σ f\μ)fjfΐ'μ) = 0. (i Φ j and b = 1 - <A(, β j » , (1.1.4)
μ = 0

where e{« = *?/[*],! f\k> =/?/[*]«!, M i = ( ί ? - « , " " ) / ( « < - ί Γ 1 ) β«d [*]*! =

The comultiplication J : Uq(g) -• t/g(g) ® ί/β(g) is given by zl(gft) = qh

q(
and J(/i) =/f ® 1 + tt ®f. If M and Â  are

modules, then by this comultiplication M ® N is also ί/g(g)-module.
For a finite-dimensional L^(g)-module M and λeP, we set M

ί.M = q2i"*>»u}. We call M integrable if M = @Mλ. Then we have

Mλ= φ / i k ) ( M A + t e l n KereO . (1.1.5)

We define the operators ei9 ft acting on M by eiff
)u=ff~1)u and

^/ (. f e )

w =/j k + 1 M, for weM λ + f e α ι n Ker e£ and (λ, fc) as above.

Definition 1.1.1. L^ί y4 fo^ the ring of rational functions regular atq = 0.A pair (L, B)
is called a crystal base of a finite-dimensional integrable representation M if the
following conditions are satisfied;

(1) L is a free sub-A-module of M such that Q(q) ® A L = M.
(2) B is a base of the Q-vector space L/qL.
(3) L = 0 L λ , B = UB*> where Lλ = LnMλ and Bλ = Bn(Lλ/qLλ).
(4) fiL c L9 and etL c L.
(5) fBczBu {0} and etBczBKj {0}.
(6) For u, VEB and iεl,u = etv if and only if v =ftu.

We call L crystal lattice and B crystal.
Then the following results are proved in [Kl] for g = An9 Bn, Cn and Dn and in

[K2] in the general case. Let λeP+ = {Aeί*; (hh λ}eZ^0} and V(λ) the
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irreducible integrable [/ί(g)-module generated by the highest weight vector uλ with
weight λ. We set L(λ) — ]Γ Afh . . .fiuuλ and B(λ) — {fil . . . fikuλmodqL(λ)}\{0}
a L(λ)/qL(λ\ where ij runs over /.

Theorem 1.1.2. (L(λ), B(λ)) is a crystal base of V(λ).

Theorem 1.1.3. If{L, B) is a crystal base of an integrable Uq(o)-module M, then there
is an isomorphism: M ^ ®jV(λj) by which (L, B) ^ 0 J (L(/l/), B(λj)).

Corollary 1.1.4. Let M and (L, B) be as above. Then we obtain

M ^ 0 V(wt(b)l where Bh = {beB; etb = 0 for any i} .
beBh

We call an element of Bh a highest weight element of B.
Theorem 1.1.5. Let (Lj9 Bj) be a crystal base of an integrable Uq(Q)-module Mj
(7 =1,2) . Set L = L1®AL2aM1®M2 and B = {bί®b2; bjSBj (7 = 1,2)}
c L/qL. Then we have

(1) (L, B) is a crystal base of Mλ ® M2 .

\fibi®b2 if φi{bι)>si{b2),

bι ®fb2 if (

ei(b1 ® b2) = <

[eib1®b2 if

Here, s^b) = max{/c ^ 0; e\b φ 0} and φ^b) = max{/c ^ 0; f\b Φ 0}.

Corollary 1.1.6. For bjβBj (j = 1, 2), we have

Φi ® b2) =

b2) =
Definition 1.1.7. A crystal graph of a crystal base (L, B) is the colored and oriented

graph B, with the arrows: u-Uv if and only if v = jjw.

Let Mi (i = 1, 2) and B be as in Theorem 1.1.5, and Bh be the set of highest
weight elements of B. By Corollary 1.1.4 and Theorem 1.1.5, we get

The aim of this paper is to give the explicit procedure for obtaining such b± and b2.

2. Review of Crystal Graphs

In this section, we shall summarize the results of [K-N], which gives an explicit
description of crystal graphs of l/4(g)-modules (cj = An, Bn, Cn, Dn). We omit the
rule of arrows.

2.1. Crystals for Uq(An)-modules. We shall treat the ,4,,-case. We set zx = Al9

Si = Ai+1 — A{ for 2 ^ i ^ n and ε n + i = — (εx + + εn). Define oct = εf — ε ί + 1 .
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The crystal graph B(VΏ) of the vector representation VΏ is easily obtained by
explicit construction. It is labelled by { [ T ] ; i = l , . . . , w + l} and the crystal graph
is

I I I I I I I I

Here, [T] has weight εf. Graph (2.1.1) implies

(2.1.1)

(2.1.2)

Let F(ylN) be the irreducible representation with the fundamental weight ΛN

(1 S N ^ n) as a highest weight. We embed F(τl N ) into V® N. Accordingly, B{ΛN) is

embedded into B(VD)®N. We have that B(ΛN) consists of [7Γ]® ® |j7] with

1 ^ ix < < iN ^ n -f 1. The base w^ = | l | ® | 2 | ® ® | N | is annihilated

by all e{ and it has weight ΛN = εx + - - - + εN, then the crystal graph B(ΛN) is the

connected component of £ ( F D ) Θ i V containing | l | ® ® | N |. We write

for

Let λ = Σi = ίAιt ( 1 ^ / 1 ^ / 2 ^ * * ' ^ lP ύ n) be a dominant integral weight.

F o r Mfc = eB(Aιk), we denote

® ® B(Λιp). We obtain the following:

eB(Λh)i

For 1 S k S P, 1 ^ / ̂  /k,

); if 6 {1,. . . , n + 1} satisfies

St\ and if

(2.1.3)

An element of B(λ) is called a semi-standard A-tableau of shape A. Note that
semi-standard Λ-tableaux coincide with usual semi-standard tableaux, so in the case
Q = gl(n -f 1), B(λ) is also given by the same rule as the ^n-case.

2.2. Crystals for Uq{Cn)-modules. Let (ε l 5 . . . , εn) be the orthonormal base of the
dual of the Cartan subalgebra of Cn such that α£ = ε£ — ε ί + 1 ( l ^ i < n) and απ = 2εn

are the simple roots. Hence, απ is the long root and α l 9 . . . , an-1 are short roots.
Let { Λ j i ^ n b e the dual base of {hi}ι^i^n. Hence Λt = εx + + ε f(l ^ i ^ n).

The crystal graph B(VΏ) of the vector representation FD is described as follows.
It is labelled by { | i |, [ Γ |; 1 ^ / ̂  n}, where | t | has weight εf and has [ Γ | has
weight — βj. Its crystal graph is

(2.2.1)
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Similarly to the ^4n-case, the connected component of the crystal graph

B(VD)®N containing UΛN = | 1 |(χ)|~2~j(g) ® | N | is isomorphic to B(AN).

Wegive the linear order on {i, i; 1 ^ i £Ξ n} by l - < 2 - < n - < n <
-< 2 -< 1. By using the same notation as in 2.1, we have

B(AN) =

(1) l^h< - <ίN^U

eB(VD)®N; (2) if ίk = p and it = p,

then k + (JV - / + 1) S P

(2.2.2)

Next, we shall give the crystal of V(AM 4- AN) with 1 ^ M ^ JV ^ n. By embed-
ding F(τlM + ylN) into V(AM) ® ^(yljv), 5 ( ^ M + ^ N ) is the connected component
of B(AM) ® ^(^liv) containing UΛM (X) W N̂.

For u =

JM

eB(AM) and v = eB(AN\ u®v will be denoted by _ .

JM

Definition 2.2.1. For 1 ^ ύί ^ b ^ n απrf w, v as above, we say that u (g) veB(AM) ®
B(AN) is in the (α, b)-configuratίon ίfu(g)v satisfies the following;
there exist 1 ^p -^ q <r ^ s ^ M such that ip = α, j q = b, j r = b, j s = a or
iP = a, iq = b, ir = 6, j s = a.

This definition includes the case a = b, p = q and r = s. Now, we define
p(a, b; u®v) = (q — p) + (s — r). We obtain the following;

B(AM + AN) =

w =

h

is

Jl (1) ikύh for 1 Sk^M.

(2) If w is in the (α, fo)-configuration,

then p(α, fo; w) < fo — a .

(2.2.3)

Let A = Yfi^ιAu (1 ^ /i ^ * ^ lp S w) be a dominant integral weight. Using
the same notation as in (2.1.3), we obtain;

B(λ) = eB(Ah)® B(Alp);
uk®uk+1eB(Alk + Λk+1)

for any k.

(2.2.4)

An element of B(λ) is called a semi-standard C-tableau of shape λ.

2.3. Crystals for Uq(Bn)-modules. Let (εu ε2> •> £«) be the orthonormal base of
the dual of the Cartan subalgebra of Bn such that αf = ε4 - ε i + 1 (1 ^ i < n) and
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αn = εn are simple roots. Hence, α 1 ? . . . , an_x are long roots and ocn is the short
root. Let {Λ/}i^ n be the dual base of {/?i}i^i^n. Hence At = Si + 4- εf

(i - 1, . . . , n - 1) and ΛB = (ε1 + + εn)/2.

The crystal graph B( Vu) of the vector representation VΏ is described as follows.

It is labelled by {[T], [T] ; 1 ̂  i ^ n} u {| o |}, where [T] has weight εί5 [T] has

weight — Si and | o | has weight 0. The crystal graph of Vu is

i — i 1 i — i 2 w - 1 i — i n i — i n i—^π " ~ 1 2 I - I l i — i

(2.3.1)

f = ε t + + εt (1 ^ i' SΞ n). Note that co; = Λt (1 ^ i < n) and

π = 2/tn. The representation V{ωN) can be embedded into K® w (1 ίS JV ̂  n).
Next, we set ωf =
= 2/tn. The repres
We give the linear order on [i, i; 1 ̂  i ;£ n} u {0} by

Then we obtain

(2.3.2)

B(ωN) =

(1) lUhU'"UiNUU
but any element other than 0

cannot appear more than once.

(2) if ik = p and ix = p (1 ̂  p ^ n),

then fe + (N - / + 1) ̂  p

(2.3.3)

Next, we introduce the spin representation which is denoted Vsp. This is the
finite-dimensional irreducible representation with highest weight Λn. This is de-
scribed explicitly by useof the following half-size tableaux. With the linear order on
{1, 2, . . . , n, n, . . . , 2,1} as before, we set

(1) 1,6(1,2, . . . , rc ,n, . . . , 2 , 1 } ,

(2) i,< - j <ίn,

(3) ί and z do not appear simultaneously

(2.3.4)

^sP = (BveBspQ{q)v and L s p = φt, e j β s p Λυ. If we define the actions of generators as
in [K-N], Vsp £ F(yln) and (L s p, β s p ) is a crystal base of Ksp.

Next, we shall give the crystal of V(ωM + % ) (1 ̂  M ̂  N ^ n). K(ωM -h ωN)
can be embedded into F(ωM) ® V(ωN) uniquely.

Definition 2.3.1.
(1) For I -^ a S b < n, we say that w = u® veB(ωM) (g) B(ωN) is in the (a,b)-

configuration ίfw = u®v satisfies the same condition as Definition 2.2.1.
(2) For 1 ̂  a < n, we say that w = u® ve B(ωM) ® B(ωN) is in the (a, ̂ -configura-

tion ifw = u®v holds the following;
there exist l^p^q<r = q
the following conditions is satisfied:
(i) iq and ir( = iq+ι) are n, 0 or n.

d l

g;
^s^M such that ip = α, j s = a and one of

(ii) j q =jq + 1) are n, 0 or ή.
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(3) We say that w = u (x) veB(ωM) (x) B(ωN) is in the (n, n)-configuration if there
exist 1 rg p < q ^ M such that ip = n or 0 and jg = 0 or ή.

This definition includes the case a = b, p = q and r = s.
Now, for w in the (α, ̂ -configuration, we define p(a, b; w) = (q — p) + (5 — r).

(If α = ί? = 72, we set p(a, b; w) = 0.)
We obtain

B(ωM +

w =

h h

JM

eB(ωM)®B(ωN);
w satisfies following

(M.N.I) and (M.N.2)
. (2.3.5)

(M.N.I) ik ^jk for 1 ^ fc ^ M, but if ίk = 0 or j k = 0, then ik <jk.

(M.N.2) If w is in the (α, fe)-configuration, then p(a, b; w) < b — a.

We shall consider the crystal of V(ωM + An) (1 ^ M ^ n).

For w =

JM

JM

and v = eBsp = B(Λn\ u®v will be denoted by

Definition 2.3.2. When ueB(ωM) and veBsp have the above expression, for
l^a^b^nwe say that w = u® v is in the (a, by configuration if w satisfies the
same condition as Definition 2.3.1. We define p(a, b; w) = (q — p) + (s — r). We have

B(ωM + Λn) =

w =

Jl

JM

(1) hύhfor ί^k^M.

6 B(ωM) ® Bsp; (2) // w is in the (α, b)-configuration,

then p(a, b w) <b — a.

Finally, let λ be a dominant integral weight.

Theorem 2.3.3. (i) Suppose (hn,λ} is even. We can write λ =
hύ ' ' ' ύlp* We use the same notation as in (2.1.3). Then

B(λ) =

VII

tf

We

if- LJ
:/.. e5(«,,)® •• ®B{ωlp);

for k=l,...,p-l

(2.3.6)
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(ii) Suppose </ιπ, λ} is odd. We can write λ = Σk=lωιk + Λn with lχ ^ ^lp-t.

For ukeB{ωlk) (1 ^ k < p) {the same expression as above) and up = •; e # s p , denote

if
if' B s p , ίften we ob-

ίαin

eB{ωh)®

For k = 1, . . . , p — 1

fc + i) >• (2.3.7)

An element of B(λ) is called a semi-standard B-tableau of shape λ.

2.4. Crystals for Uq(Dn)-modules. Let (ε l 5 ε2, . . . , εn) be the orthonormal base of
the dual of the Cartan subalgebra of Dn such that α̂  = ε̂  — ε ί + 1 (1 S i < w) and
an = εn-1 + εn form the set of simple roots. Let {Λi}lύi^n be the dual base of
{ f c j i ^ π Hence Λi = ε1+ — - + st (i = 1, . . . , n - 2) and / ! „ _ ! = (εx +
+ β«-i - β»)/2. Λ = (βi + + ε n - ! + επ)/2.

The crystal graph B( Vo) of the vector representation Vo is the following. It is

labelled by {[T], [T] 1 g i ^ n}, where [T] has weight εf and [T] has weight — εf.

The crystal graph of VΏ is

n - 1
\

n - 2 n - 2

(2.4.1)

Next, we set α>i = εx + + ε, (1 ^ i ^ n) and ωn + 1 = ε1 + + εn_! — εn.
Note that ω{ = At (1 ^ i ^ n - 2), ωΛ_ j. = ΛB_ t + Λ , ωπ = 2yln and

The representation V{ωN) (1 ^ iV ^ n) (respectively F(ωM + 1)) is embedded into

D (respectively F®M). We give the ordering on {i, i; 1 ^ i: ̂  n} by;

!<2<" n-l< * <~n~^\< -•- <2<ί. (2.4.2)n-\< <n-\<
n
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Note that there is no order between n and n. Using the same expression as before,
we obtain for 1 ^ N ^ n,

B(ωN) =

(1) ί v ^; v + i for 1 ^ v<N ,

eB(VΏ)®N; (2) if ik = p and ix = p (1 ^ p ^ n)

then k + (JV - / + 1) ^ p

, (2.4.3)

B(ωn) =

(respectively B(ωn+1))

(1) and (2) are the same

conditionsm as in (2.4.3)

(3) If ik = n, then n — k is even

(respectively odd)

and if ik = ή, then n — k is odd

(respectively even)
(2.4.4)

Remark 2.4.1. The condition (1) in (2.4.3) is equivalent to saying that for any
v either zv -< ίv + 1 , or (iV9 ίv + 1) = (n, n) or (n, n).

For the algebra Uq(Dn\ there are two spin representations V[*] and V[~\ They
are the finite-dimensional irreducible representations with highest weight Λn and
An-i respectively. They have the explicit description as follows. First we give
the order on P = {1, 2, . . . , n, ή9 . . . , 2,1} as (2.4.2). Next, we use the half-size
tableaux and set

^(respectively

v =

<P >) =

( l ) i , e P ,

(2) h<i2< ••• <in-1<iH9

(3) i and i cannot appear simultaneously,

(4) If ik = n, then n — k is even (respectively odd)

(5) If ik = ή, then n — k is odd (respectively even)

(2.4.5)

A±) and £<*> = 4^. If we give the actions of generators as
- ! ) and ( 4 ^ , B^>) is the crystal base

P &ί^ 0
in [K-N], then F<+} ̂  V(Λn), V[^
of V%\

Next, we shall describe the crystal of V(ωM -f ωN) (1 ^ M ^ iV ^ n + 1). For
u (x) veB(ωM) ® B(ωN) we use the same expression as before.

Definition 2.4.2. Let 1 ^ M <; iV ^ n + 1 swcft thai (M, N) φ (n, n + 1).

(1) For 1 -^a^b <n,we say that u (x) veB(ωM) ® B(ωN) is in the (a, b)~configura-
tion ifu(g)v satisfies the same condition as Definition 2.2.1.

(2) For 1 rg a < n, we say that u®υeB(ωM) ® B(ωN) is in the (a, n)-configuration if
u®v satisfies the following',
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there exist l^p^q<r = q-\-l^s^ M such that (ipjs) = (a, a) or (a, a) and
one of the following conditions is satisfied:
(i) iq and ir{ = iq + 1) are n or n,

(ii) j q andjri =jq + 1) are n or ή.
Ifw is in the (a, b)-configuration, we define p(a, b; w) = (q — p) + {s — r).

(3) For 1 ^ a < n, we say that u ® veB(ωM) ® B(ωN) is in the a-odd-configuration
ifu® v satisfies the following', there exist l^p^q<r^s^M such that (a)
r — q + 1 is odd, (b) ίp = a and j s = a, (c) j q = n and ir = ή, or j q = ή and ir = n.

(4) For 1 ^ a < n, we say that u ® veB(ωM) ® B(ωN) is in the a-even-configuration
ifu®υ satisfies the following', there exist \^p^q<r^s^M such that (a)
r — q -h 1 is even, (b) ip= a and j s = a, (c) j q = n and ir = n, or j q = ή and ir = ή.

If weB(ωM)® B(ωN) is in the α-odd or even-configuration, we define
q(a; w) = s - p. Then we have, for 1 ^ M ^ N ^ n + 1, with (M, N) φ (n, n + 1).

B(ωM + ωN) = w =

h

JM

eB(ωM)®B(ωN);
w satisfies the following

(2.4.6)

(M.N.I) ik ^jk for 1 ^ k ^ M.
(M.N.2) If w is in the (a, ̂ -configuration, then p(a, b; w) < b — a.
(M.N.3) If w is in the α-odd-configuration or the α-even-configuration, then
q(a; w) < n — a.

Next, we shall treat the representations V(ωM + An) (1 ^ M ^ n) and
V(ωN + ΛM-i) (1 ^ iV ^ n •+• 1, iV Φ n). They can be embedded into respectively
V(ωM) ® V{

Sp
} and V(ωN) ® V(

s~
} with multiplicity free. For u ® veB(ωM) ® Bi+]

and B(ωN) ® B(

s~\ we use the same expression as in 2.3.

Definition 2.4.3.

(1) u ®veB(ωM) ® B{

s^ (1 ^ M ^ n) or B(ωN) ® B[~] (1 ^ N g n H- 1, N φ n) w
m ί/i£ (α, b)-configuration (1 ^a^b^ή)ifu®v satisfies the same condition as
Definition 2.4.2. (1), (2).

(2) u ®veB(ωM) ® £<+} (1 ^ M ^ n) or B(ωN) ® B{

s~
] (I <L N < n) is in the a-odd

(respectively even)-configuration (l^a^n)ifu®v satisfies the same condition
as Definition 2.4.2. (3) (respectively (4)).
p(a, b; w) and q(a; w) are the ones defined in Definition 2.4.2. Then we obtain,

B(ωM + An) =

(respectively

w =

w satisfies

(M.N.l)

^ J (respectively B{ωM)®Bi;)) - (M.N.3)

h

i

h

(2.4.7)
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Let λ = Σ"=1 niiΛi (m^Z^o) be a dominant integral weight of Dn. Now, we
shall rewrite λ by use of ω M , Λn and Λn- x . By the definition of ω M , we have At = ωt

(l^ί^n- 2), An-1 + Λn = ωM_ 1 ? 2Λn = ωn and 24,-χ = ωn + 1. Hence, any
AeP + can be written in one of the following forms;

(Wl) λ = Σ"iss

(W2) λ = Y»=

( W 3 ) A = Σ ϊ l

(W4) λ = ΣΊ'l niiWi + mn + 1ωn + 1 -h

If λ is of type (W4), we can write λ =
_ι + Λn-i with 1 ?g li ^ ^ / p < n < n + l =

, + + ω Z p + ω ί p + 1 + +
= = L-i. Then for

eB(ωlk) (l<^ and ŵ  = eB(

Sϊi\ we denote wt (x)

I\B(ω l k)) ® Bjp >. Then we obtain,>r

w =
v w satisfies the

' following (l)-(4)

(2.4.8)

any fc =(1) uk®uk+1eB{ωlk + ωlk+ι)ϊ
(2) up®up+1eB{ωlp + ωn+1)9

(3) uk®uk+1eB{2ωn+1\ for any /c = p + 1, . . , q - 2,
(4) uq-1®uqeB(ωn+1+Λn-1).

For λ of type (W1)-(W3), we can obtain B(λ) similarly. An element of B(λ) is
called a semi-standard D-tableau of shape λ.

3. Generalized Young Diagrams

It is well known that arbitrary finite-dimensional irreducible representations of An

and Cn are characterized by Young diagrams. But it is not true for the Bn and Dn

cases. In this section we shall introduce a "generalized Young diagram of type
g(g = An, Bn, CM, Z)J" and characterize arbitrary finite-dimensional irreducible
representations of Uq(q) in terms of "generalized Young diagrams."

3.1. Definition of generalized Young diagrams. For a sequence of half integers /,-
{j = 1,2, . . . , n = rank of g), such that /,- - lj+1eZ^0, let 7 = (/1? l2, . . . , /„)
mean a diagram which has n rows and a length of the j-th row is /,- (includes "-"
length). We associate it with a weight Σ"=i 'jεj
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For example, if Γ = ( ί l 5 Z2, . . . , / „ ) satisfies /,-eZ^o, then Y is an ordinary
Young diagram. N o w we define a "generalized Young diagram of type g."

Definition 3.1.1. Let Y = (lu /2, . . . , /„) be a diagram such that lj — lj+ί e Z ^ 0

(1) Q = An, Cn-case: Y = (ll912, . . . , ln) is a generalized Young diagram of type An

and Cn if all lj are non-negative integers respectively.
(2) g = Bn-case: Y = ( ί i , Z2, . . . , /„) is a generalized Young diagram of type Bn if all

lj are non-negative half integers.
(3) g = Dn-case: Y = (/ l9 /2, . . . , ln) is a generalized Young diagram of type Dn if all

lj are half integers and l± §; Z2 ̂  ^ ln-x ^ |/n|.

Example 3.1.2. In the case of g = D4, the generalized Young diagram (f, f, f, — ^)
of type D 4 is visualized as follows;

5 3 3 _

Here, "black box" means "-".
The following proposition is straightforward.

Proposition 3.1.3. Let <& be the set of generalized Young diagrams of type g = An, Bn,
Cn and Dn and P+ the set of dominant integral weights o/g. The map Ψ: &->&>+
defined by Y = (Z l 5 . . . , /π)i—^Σj=i hεi Qives &n isomorphism from & to P+.

Remark 3.1.4. For Y = (lί9 . . . , /„), the image by Ψ is described as follows;

Ψ{Y) =

ΣΓ=\ (k - lk + i)Λk + lnAn if s = AH9 CH9

ΣΓ=\ (h ~ h+Mk + 2lnΛn if g = BH, (3.1.1)

Example 3.1.5. The image by *F of the generalized Young diagram (f, f, f, — i) of
type D4 in Example 3.1.2 is

+ l 2 Λ A P

5.2. Property of highest weight elements ofB(λ) ® B(μ). The following proposition
is a key for descriptions of a generalization of the Littlewood-Richardson rule.

Proposition 3.2.1. Let λ and μ be dominant integral weights of Q. For ueB(λ) and
veB(μ\ the following two conditions are equivalent;

(a) et(u ®v) = Ofor any i.

(b) e(u = 0 and efhuλ> + 1v = Ofor any i.

Proof By Corollary 1.1.6, the condition (a) is equivalent to

8i(u ® υ) = max(εi(tt), e^u) + e^v) - ψiiμ)) = 0 for any i. (3.2.1)

The condition (b) is equivalent to

Si(u) = 0 and εf(t;) ^ (hh λ) for any i . (3.2.2)
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Note that by the definition of ψi(u) and ε^w), we have

(pi(u) — 8i(u) = {hί9 wt(u)} . (3.2.3)

If ε;(u) = 0 for any i, then wt(u) = λ. Therefore, from (3.2.3), we obtain the equiva-
lence of (3.2.1) and (3.2.2). Q.E.D.

4. Decomposition of Vγ ® VΏ

In this section, for g = An9 £„, Cn and Dn, we shall give combinatorial descriptions
for irreducible decomposition of Ug(g)-module Vγ ® Vu with the help of crystal
bases. Here, Y is a generalized Young diagram of type g and Vγ is the irreducible
l^(g)-module with highest weight Ψ{Y). Of course, this result is well-known, but it
is important that we can explain this in terms of crystal bases.

4.1. Lemmas. Let Y = (Zl5 Z2, . . . , ln) be a generalized Young diagram of type
g and uγ the highest weight element of B(VY). The following lemmas play an
important role in this section.

Lemma 4.1.1. Let g be of type An. For a Young diagram Y — (Z1? ll9 . . . , ln) and
I j I eB(Vu) (j = 1, 2, . . . , ft 4- 1), the following (i) and (ii) are equivalent;

(i) uγ ® | j I is α highest weight element of B(VY ® F D ) .

(ii) / ^ - / , > ( ) .

Here, we set l0 = oo and Zn + 1 = 0. (If g = gl(ft + 1), we consider Y has the
ft + 1-th row.)

Proof Let /I be the weight of Y, i.e. /I = Ψ{Y). By Proposition 3.2.1,

uγ ® [ 7 ] is a highest weight element if and only if e/([T]) ύ {hif λ} for any i.

(4.1.1)

By the crystal graph (2.1.1) of the Uq(An)-modute F α , we obtain,

si([T]) = δi,j-1. (4.1.2)

From (4.1.1) and (4.1.2), we obtain that uγ ® | l | is always a highest weight element
oϊB(Vγ® Vu) and for) = 2,. . . , n + 1,

ε ϊ([T]) ^ <Λf, /ί> for any i o ε J -1((~7~]) ^ (hj-l9 λ}

o(hj-i, λ} is positive . (4.1.3)

Since </ιJ-_1, A> = /j_ x — /,-, we obtain the equivalence of (i) and (ii). Q.E.D.

The proofs of the following lemmas are quite similar to that of Lemma 4.1.1, so
we omit them.

Lemma 4.1.2. Let g be of type Cn and Y = (ll912, . . . , ln) be a Young diagram.

(1) For [ y ] e J 5 ( F ϋ ) (j = 1, 2, . . . , ft), w r ® [ 7 ] is a highest weight element of

B(VY® Vu) if and only iflj-1 ~lj>0 (l0 = oo).

(2) For ^Y\eB(Vu) (j = 1, 2, . . . , ft), Wy®[T] is a highest weight element of

B{VY® Vu) if and only iflj - lj+ί > 0 (ln + 1 = 0).
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L e m m a 4.1.3. Let g be of type Bn and Y = (/1 ? /2, . . . , / „ ) a generalized Young
diagram of type Bn.

(1) For [~Γ]eJB(FG) (j = 1,2, . . . , n\ My® [ 7 ] is a highest weight element of

B{VY ® Vπ) if and only ίflj-ί - lj > 0.

(2) For [ 7 ] eB(VD) (j = 1, 2, . . . , n — 1), uγ ® | j r ] is a highest weight element of

B(VY ® VΏ) if and only iflj - lj+1 > 0.

(3) For [ T ] e B( FD), My (8) | jΓ) is α ftzgftesί wd#/zί e/emenί o / # ( F y ® FD) i/αrcd on/y

ifln>0.

(4) For I « I GB(VU\UY® \ n | is α highest weight element ofB( Vγ® FD) i/αm

Note that for a generalized Young diagram of type Bn, the condition ln > 0 in
(3) is not equivalent to the condition ln ^ 1 in (4).

Lemma 4.1.4. Let cj fee o/ type Dn and Y = (lu Z2, . . . , /„) α generalized Young

diagram of type Dn.

(1) For I j \eB(VD) (j = 1, 2, . . . , n), My (x) | j | is a highest weight element of

B(VY ® F α ) if and only iflj-1 - /,- > 0.

(2) For I j" I EB(Va) (j = 1, 2, . . . , n — 2), My ® | / [ is a highest weight element of

B(VY ® FD) if and only iflj - lj+ί > 0.

(3) For I n I e 5( FG), My ® [ a | is α highest weight element ofB( Vγ® FD) if and only

ifln-l* -In-

(4) For |7Γ=~ϊ| G 5 ( F D ) , My ® | ^ Ί | is α highest weight element of B(VY® FD) i
only if In-i > \ln\.

4.2. For a generalized Young diagram Y = (lχ, ί2? > ̂ «) of type g, we shall define
the following notations.

(Y+-]):= (lu . . . , ίj + 1, . . . , /„) for j = 1, . . . , n , (4.2.1)

(7<-/) := (ii, . . . , /j - 1, . . . , /„) for; = 1, . . . , n , (4.2.2)

fct i , , U , + l) β = »!(-.+ . ) ,

; •» * l > » (4.2.4,
lί9 . . . , / „ _ ! , - o o ) if /„ = 0 .

Note that the case ln = 0 in (4.2.4) implies that (F<- 0) is not an element of <W and
for Q = ql(n + 1), we consider that Y has n + 1 rows.

Proposition 4.2.1. Let Y =(ll9l2, - . ,ln) be a generalized Young diagram of type
g and Vγ a finite-dimensional irreducible Uq(o)-module associated to Y. Then we have

-ί̂ σ-Λ if Q = A n o r Q Ϊ ( n + I ) ,

VΏ s 0 ; = o Vιr^n φ φ ; = 1 F σ . Λ if g = Bn, (4.2.5)

( ; = 1 y^jy Φ ® ; = 1 vσ^7) if g = cκ, Dn.

Here if Y is not a generalized Young diagram, then F y means the 0-dimensional
vector space.
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Proof. By Corollary 1.1.4, it suffices to determine all the highest weight elements of
B(VY ® Vu). By Proposition 3.2.1, if u ® υeB(Vγ ® Vu) is a highest weight ele-
ment, then we have u = uγ. Hence, by Lemma 4.1.1-4.1.4 we have already known
all the highest weight elements of B(VY ® VΏ) in terms of //s. We shall restate this
in terms of generalized Young diagrams.

(i) g = An (gl(n + l))-case
The condition lj-1 — lj > 0 in Lemma 4.1.1 is equivalent to the condition that

(Y*-j) remains a Young diagram. Hence uγ ® j~Γ] is a highest weight element of

B(VY ® VΏ) if and only if (Y<-j) is a Young diagram. It remains to note

wt(uγ <

(If g = ^4n, since εx + + εn +1 = 0, it is true for the case j = n + 1.) Hence we
obtain the case An (gl(rc + l))-case.
(ii) g = Cn-case

Similarly to the ,4n-case, by Lemma 4.1.2.(1), My®[~Γ] is a highest weight

element of B( Vγ ® VΏ) if and only if (Y <- j) remains a Young diagram. It remains

to note that wt(Y<r-j) = wt(uγ ® [~Γ\)>

The condition /,- — /J + 1 > 0 in Lemma 4.1.2.(2) is equivalent to the condition

that (Y<-j) remains a Young diagram. Hence uγ ® [T]is a highest weight element

of B(VY ® FD) if and only if (F<-j) is a Young diagram. It remains to note that

ί n

wt(uγ®\Y\) = I Σ
\k=l

Therefore we get the Cπ-case.
(iii) g = £M-case

Similarly to the Cπ-case, by Lemma 4.1.3(1) and (2), uγ ® [ 7 ] eB(Vγ ® VΏ)

(j = 1,. . . ,n) satisfies the highest weight condition if and only if (Y<-j) is

a generalized Young diagram of type Bn and uγ ® |~7] eB(Vγ® VΏ)

(j = 1, . . . , n — 1) satisfies the highest condition if and only if (Y+-j) is a general-

ized Young diagram of type Bn. We have wt(uγ ® [7]) = wί(7<-ji) and

By Lemma 4.1.3.(3), wγ ® | o | is a highest weight element of B( Vγ ® VΏ) if and
only if (Y*- 0) remains a generalized Young diagram of type Bn. Both Γ ® | o |
and Y have the same weight Σl = i ^εk-

By Lemma 4.1.3.(4), uγ ® | ή | eB(Vγ® VΏ) is a highest weight element if and
only if ln ^ 1. Here, the condition /„ ̂  1 is equivalent to the condition that (Y<- n)
remains a generalized Young diagram. We have

wt(Y® ΠΓΊ) = ( Σ lkεk) -εn = wt(Y+- n) .

By these results, we obtain the
(iv) g = ZVcase

Similarly to the iVcase and the Cn-case, by Lemma 4.1.4.(1) and (2), if u ® [ 7 ]

(j = 1,. . . , ή) (respectively w ® [T] {j = 1, . . . , n — 2))EB(VY ® Vo) satisfies the

highest weight condition if and only if (Y <- j) (respectively (Y <- j)) is a generalized
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Young diagram of type Dn. We have wt(uγ ®j~Γ]) = wt(Y<-j) and
wt(uγ ® [ T ] ) = wί(7<-j). By Lemma 4.1.4.(3), κ y ® | w | is a highest weight ele-
ment of B(VY ® FD) if and only if Zn Φ —Z«-i By the definition of generalized
Young diagram of type Dn, the condition /„ Φ —/n-i is equivalent to the condition
that (Y <- ή) = (Zi , . . . , / „ - 1 , ln ~ 1) remains a generalized Young diagram. We have

fc=i

By Lemma 4.1.4.(4), uγ ® |»^T| is a highest weight element of £( Vγ ® KD) if and

only if ZM_! > |/w|. By the definition of generalized Young diagram of type £>„, the

condition ln-1 > \ln\ is equivalent to the condition that (Y^-n— 1) remains

a generalized Young diagram of type Dn. It remains to note

-e»-i = wt(Y^n-l).

Thus, we obtain the Dπ-case. Q.E.D.

Example 4.2.2. For g = B3 and 7 = (2, 2, 1) =

have Ψ(Y) = 2ε1 + 2ε2 + ε3 = Λ2 + 2/L3

, we consider Vγ® VΏ. We

= {[T] ? [

= (3,2,1) =

0) = (2, 2,1) =

Therefore, we get

®π = φ φ φ φ

Hence,

+Λ2 + 2Λ3) φ φ V(Λ2 + 2Λ3)
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Example 4.2.3. For g = D4 and Y = (2, 2, 2, — 1) =

T. Nakashima

( • means "-"), we

consider Vγ ® Vu. We have Ψ(Y} = 2εx + 2ε2 + 2ε3 - ε4 = 3Λ3 + Λ4 and

= (3,2,2, -1) =

> = (2,3,2, - l ) x ,

4) = (2,2, 2, 0) =

4 ) = ( 2 ,2, 2, - 2) =

= (2 s2,l, -1) =

= (1,2,2, - l)x.

Then, we obtain (we omit V)

Hence,

Λ4) ® Fπ ^ F ^ ! + 3Λ3 + v44) 0 2Λ4)
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5. Decomposition of Vγ ® F s p

For g = Bn and Dn, there exist "spin representations." In this section we shall give
combinatorial descriptions for irreducible decomposition of Uq(Q)-moάu\Q
Vγ (x) F s p by use of crystal bases.

5.1. Decomposition of Uq(Bn)-module F y ® F s p . We have already introduced the
spin representation F s p of Uq(Bn) in 2.3. In this section we introduce another
description of F s p ([Re]).

First we set Bsp = {v = (iu z2, . . . , in); ij = ± }, F s p = @veBspQ(q)v and
L s p = Q)veBspAv. For v = {iί9 i29 . . . , in)eBsp, if we define the actions of gener-
ators and the operators et and ft as follows:

q h v = q < h ' w t ( v ) > v , w h e r e w t ( v ) = - ^ i j β j f o r v = ( i l 9 . . . , i n ) , (5.1.1)
2 7=1

βji? = gjϋ = j {iu . . . , + / - , . . . , i«) 0 = - and i J + 1 = +, (5.1.2)

^ 0 otherwise ,

L, , - / V , . . . , in) ij = + and ij+1 = - , (5.1.3)

0 otherwise ,

for j = 1, . . . , n — 1, and

1 ? . . . , z n - i , + ) i » = - , (5.1.4)
0 otherwise,

f«v=fnv = \(h, . . . Λ - i , - ) « .= + , (5-1.5)
0 otherwise,

then F s p ^ ^(yl,,) and (L s p, 5 s p) is a crystal base of F s p .
Note that the correspondence of this description and the description in 2.3 is

given by:

" + " in the j-ih row <-+ j and "-" in the j-th row <^ j .

Now, for a generalized Young diagram Y = (Zl5 . . . , /„) and υ = (iu . . . , in)eBsp

we define

(Y + υ) := Πi + - h, /2 + - i2, . . Λ 4- - iA .

The following lemma plays a similar role to Lemmas 4.1.1-4.1.4 in Sect. 4.

Lemma 5.1.1. Let Y = (ll9l29 . . . ,ln) be a generalized Young diagram of type Bn

and uγ the highest weight element of B(VY). For v = (iu i2, . . . , in)eBsv the follow-
ing two statements are equivalent,

(a) uΎ ®v is a highest weight element of B(VY (x) F s p ) .
(b) ( 7 + ι;) zs a generalized Young diagram of type Bn.
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Proof. Let λ = Σl=ίlkεk be the weight of Y. By Proposition 3.2.1, uγ®v is
a highest weight element of B(VY ® F s p) if and only if 8j(v) ^ <ft, , λ> for any j .
Therefore it is enough to show that (Y + υ) = (^ + ^ i l 9 Z2 + i i 2 , . . . , ! „ + iΐπ) is
not a generalized Young diagram of type Bn if and only if ε7 (ι?) > <fy, A) for somej.
By (5.1.2) and (5.1.4), we have εj(v) ^ 1 for any/

First we assume that Sj(v) > (hj, λ} for somej. Then we have

(hj9 λ} = 0 and Sj(v) = 1 . (5.1.6)

If j Φ n, then from (5.1.2) and (5.1.6) we have

(hj, λ} = 0, ij — — and ij+1 = + . (5.1.7)

Since (hj9 λ} = Ij — lj+ί = 0, we obtain

This implies that (Y + u) is not a generalized Young diagram of type Bn.
If = n, then (5.1.4) and (5.1.6) imply

<ftn, A> = 0 and in = - . (5.1.9)

The condition <ftn, 2> = 0 is equivalent to ZM = 0. Therefore we have

This implies that (Y + v) does not satisfy the condition of a generalized Young
diagram of type Bn in Definition 3.3.1 (2).

Next we assume that for a generalized Young diagram Y = (ll912, . . . , ln)
of type Bn and v = (i1 ? i2, . . . , in)eBsp,(Y + v) = (/x + i z l 9 1 2 + i ί 2 , 5'» + iί»)
is not a generalized Young diagram of type Bn. One of the following cases can
occur,

h + 2*J '^ lJ+ί + 2 ί j ' + 1 f θ Γ s o m e / + n ' (5.1.11)

ϊ» + | i » < 0 . (5.1.12)

Note that ( 7 + υ) always satisfies (/,- + iij) - ( ί J + 1 + i ϊ j + i ) e Z

In the case (5.1.11), from the condition Z7 — Z7 + 1 e Z ^ 0 in Definition 3.3.1.(2), we
get

lj = lJ+l9 i j = - a n d i j + 1 = + . (5.1.13)

This implies that (hj, λ} = 0 and ε7 (ι;) = 1. Hence, e}{uΎ ® ϋ ) Φ θ .
In the case (5.1.12), we have

JB = 0 and in = - . (5.1.14)

This implies that </ίM, λ} = 0 and επ(ι?) = 1. Hence, £w(uy ® o ) φ O . Thus we get the
equivalence of (a) and (b). Q.E.D.
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Proposition 5.1.2. Let Y = (lί912, . . . 9 ln) be a generalized Young diagram of type
Bn. For Uq(Bn)-modules Vγ and Vsp, we obtain;

φ V(Y + V)
v = (iι,. . . ,in)eBsp

(5.1.15)

Here if Y is not a generalized Young diagram, Vγ means the O-dimensional vector
space.

Proof. By Proposition 3.2.1 and Lemma 5.1.1, u®veB(Vγ® F s p) satisfies the
highest weight condition if and only if M = % and (Y + v) is a generalized Young
diagram of type Bn. Since v = (iu i2, . .., Q has weight i £ * = i ikεk,

wt(uγ ®v) =
k=ί

= wt(Y + v).

By Corollary 1.1.4, we obtain the desired result.

(5.1.16)

Q.E.D.

Example 5.1.3. For g = B3 and Y = (§, | , j) =

My !, 2,0)x

!, U) =

Then we get (we omit V)

•B
Hence,

V{Λ2 2/L3) θ K(2Λ2) θ

V(Λ1+Λ2)®V(2Λ3)®V(Λ2).

5.2. Decomposition of Uq(Dn) module Vγ®V[p and VY®V[~\ We have
already introduced the two spin representations V{

sp of Uq(Dn) in 2.4.
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Similarly to the £π-case we shall give another description of V{

s^ ([Re]). First
we set

^(respectively B£>) = {v = (ίu . . . , in);

ij = ±, ix . . . in = + (respectively - )} , (5.2.1)

= 0 Q(q)v and L<±> = φ Λυ , (5.2.2)

and if we define the actions of generators on ¥[*] and the operators et and ft on
p as follows, for υ = ( i l 5 . . . , zn),

gΛt; = g<*.wt<"»t>, where wt(t ) = - Σ ΨJ > ( 5 2 3 )
2 7=1

f j j + 1

g u = g.ϋ = j (ι1 ? . . . , + , - , . . . , i j ίj = - and iJ + 1 = +, (5.2.4)

^ 0 otherwise,f 7 7
jv =fiV = < (iu . . . , - , + , . . . , iΛ) ΐ7 = + a n d ij+1 = - , (5.2.5)

^ 0 otherwise ,
(j = h . . . ,n - 1)

« - i w

l 5 . . . , + , + ) ίn_! = - and in = - , (5.2.6)

0 otherwise ,

\fnv =fnv = j ( i l 9 . . . , -\ - ) in-x = + and in = + , (5.2.7)
0 otherwise ,

then Vi^ £ V{An\ V[~] ^ F(A,-i) and (L<±\ B***) is a crystal base of V[p re-
spectively. Note that the correspondence between this description and the descrip-
tion in 2.4 is given by,

" 4- " in the j-th row <-> j and "-" in the j-th row ++j .

Lemma 5.2.1. Let Y = (Zl9 . . . , /„) be a generalized Young diagram of type Dn and
uγ the highest weight element of B(VY). For uγ and v = (i1 ? . . . , in)eB[^\ the
following two statements are eguivalent;
(a) uγ® v is a highest weight element of B{VY® V^)-
(b) (Y + v) = (/i -f \iu Z2 + 2**25 >'« + ik) z s a generalized Young diagram of
type Dn.

The proof of this lemma is quite similar to that of Lemma 5.1.1, so we omit it.

Proposition 5.2.2. Let Y be a generalized Young diagram of type Dn. For Uq(Dn)-
modules Vγ and Vi^\ we obtain;

Vy®vi;^ © (/<y +»>' ( 5 1 8 )

Fκ®F<p->s 0 ( Vσ+V), (5.2.9)

where if Y is not a generalized Young diagram of type Dn, Vγ means the O-dίmensional
vector space.
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Proof. By Proposition 3.2.1 and Lemma 5.2.1, u®υeB{Vγ® V^) satisfies the
highest weight condition if and only if u = uγ and (Y + υ) is a generalized Young
diagram of type Dn. The weight of v = (ίu i2, . . . , in) is i Σ " = i hεr Hence

wt(uγ

1
- ik )εk = wt(Y + υ) .

(5.2.10)

Thus, by Corollary 1.1.4, we obtain the desired result. Q.E.D.

Example 5.2.3. For g = D 4 , we consider the decomposition V(Λί -f 2v43)
yli + 2Λ3 corresponds to the generalized Young diagram (2, 1, 1, —1).

We set

and

( " I " > " I " J 5 ) ? I 5 "̂ " J J

We have

x.



238 T. Nakashima

Then for D 4 we get. (We omit "F".)

Hence,

V(AX + 2A*)® + 2/L3

0

6. Decomposition of Vγ ® Vw

6.1. In this section we treat general cases. Let Y and W be generalized Young
diagrams of type g( = An, Bn9 Cπ, Dn). We shall give a combinatorial description for
the irreducible decomposition of F y ® Vw. In Sects. 4 and 5, we treated special
cases; Vw is the vector representation or the spin representation. By the following
lemma and the way of the construction of the crystal graph, we will know that these
elementary cases play a significant role in general cases.

Lemma 6.1.1. Let Vj (j = 1, . . . , p) be a finite dimensional irreducible representa-
• ® Vp\ the

)Vp).

® Vj) for any

tion ofUq{$) (g = An9 Bn, Cn, Dn). For uγ (x) u2 <
following two statements are equivalent;
(a) uγ ® u2 ® ® Up is a highest weight element of B(Vγ ®
(b) Uγ ® u2 ® ® Uj is a highest weight element of B(Vχ ®

j = 1, , P

Proof, (a) follows trivially from (b). Next, we assume (a). For any j we can consider
Wi ® u2 ® ® Up = (u1 ® ® Uj) ® (uj+ x ® ® Up) e B( Vγ ® ® Vj)
® B(Vj+ί ® Vp). By Proposition 3.2.1, iϊ(uί ® ® Uj) ® (w j + 1 ® ® up)
satisfies the highest weight condition, uγ ® ® Uj also satisfies the highest
weight condition. Hence, we obtain (b). Q.E.D.

6.2. Remarks. Now, we give some remarks on the crystal graphs.

Remark 6.2.1.

(a) Let W = (lί912, . . . , /„) be a generalized Young diagram of type g( = An9 Bn,
Cn, Dn) with ijβZ for any; and set m:= lx + + / „ _ ! + |/J ( = the number
of squares in W). By the way of the construction of B(VW) in Sect. 2, any
ueB(Vw) can be written in the following form,

u = Q7] ® I i2 I ® * ® I im [, (6.2.1)

is an element of B(Va).
lί912, . . . , / „ ) be a generalized Young diagram of type g(g = Bn, Dn)
- + i for any j and set m:= (lt - i ) + + (/„_! - i ) + (|/π| - i )

where Π
(b) Let

with
( = the number of squares in WK). By the way of the construction of B(VW) in
Sect. 2, any ueB(Vw) can be written in the following form,

w = ΓVl®ΠΓl® •" ®ΓXΠ®^> (6 2 2 )
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where |j7] is an element of B(VD) and υ is an element of Bsp or Bip\

6.3. Main theorem. Here, by Proposition 4.2.1, Proposition 5.1.2, Proposition
5.2.2, Lemma 6.1.1 and Remark 6.2.1, we obtain the following theorem.

Theorem 6.3.1. (1) Let Wand m be as in Remark 6.2.l(a) and Ya generalized Young
diagram of type g ( = Am Bn, Cn, Dn). Then we obtain

VY®VW^ 0 *W-ω-i2) . . . ) . . . - im)> (6.3.1)
QΓJΘQΓ)®- ®QΓ] εB{vw)

where VmYiΓ.h)^i2)_%),_ <_ivn) is the O-dimensional vector space if there exists
ke{l, . . , m} such that ((((7<- i2) «- i2) . . ) . . <- h) is not a generalized Young
diagram of type g.
(2) Let Wand m be as in Remark 6.2. l(b) and Y a generalized Young diagram of type
g ( = Bn, Dn). Then we obtain

VY®VW^ © *W«-ω-i2>...>...-w+*>> ( 6 3 2 )
QTJΘQΓ]®- ® [L\ ®veB(Vw)

where V(({((γ+-iί)<-i2)...)...+-im)+V)
 ϊ 5 the ̂ -dimensional vector space if there exists

fee {1, . . . , m} such that ( ( (( i f <- zΊ) <- i2) . . . ) . . . <- ifc) zs noί α generalized Young
diagram of type g or ( ( ( ( ( 7 < - Ϊ Ί ) <- i 2 ) . . . ) <~ ?m) + ̂ ) is not a generalized
Young diagram of type g.

Corollary 6.3.2. Let J = {1, 2, . . . , p) be a finite index set and Y and Wj (jeJ) be
generalized Young diagrams of type g. We obtain

vγ®vWι® - - ® vWp s* 0 vmY^uι)<SU2)<Smmm)
UjeB(VWj)(jeJ)

where for Y and UJEB{VWJ\ ifuj is in the form (6.2.1), we define

( 7 < = uj):= ( ( ( ( 7 4 - i O <- i 2 ) . . . ) . . . *- U ,

ϊ/w ; Ϊ5 m the form (6.2.2), we define

(6.3.3)

(6.3.4)

^((((y<=l*1)<=U2)<=...)...<=Mp) ί S

swc/z ί/iαί ((((F<= Mi) <= w2) <=
type g.

Example 6.3.3. For g = gl(3), 7 = Γ Π and 1^ =

• i i ) < - i 2 ) . . . ) . . . < - U + u) (6.3.5)

^ ^-dimensional vector space if there exists jeJ
-) - - <=Uj) is not a generalized Young diagram of

1

2
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2

1

2

1

3

1

2

2

3

, we consider VΎ
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3

1

2

1
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Uγ(g)

Uγ®

uγ®

1

3

1

3

1

3

2

3

2

3

2

3

3 x ,

3 =

X .

Hence by Theorem 6.3.1.(1), for gl(3) we obtain (we omit " F " )

Or)
| 1

® θ

Example 63.4. For g = B2, we consider V(4Λ2) ® F(Λi + Λ2), where

(2, 2) =

We set 7 = and W = U-J. By Theorem 2.3.3 (ii), we have

B(VW) =

Hence,

U y ®

Wy®

Wy®

1| 1 I 111 2 | i | o I m 2

m ' i2i

\2\

IT 2

= uγ ® ΠΠ ® (

\2\

Ψ

My®

My®
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f
u

3 1

2' 2

By Theorem 6.3.1.(2), for B2 we obtain (we omit "K").

Hence,

V(4Λ2) ® K^i + /t2) £ K(^! + 5Λ2) θ K(2Λ! + 3yl2) θ

0 V(ΛX + 3Λ2)®2 0 V{2Λ1 + Λ2) θ K(3Λ2)

Appendix. Relation to the Original Littlewood-Richardson Rule

The original description of the Littlewood-Richardson rule for the g = gl(n + 1)-
case is different from ours. In this appendix, we shall give their relation. This
relation is well-known to the specialists (e.g. cf. [W]).

First, we explain the original Littlewood-Richardson rule ([M]).
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For Young diagrams 7 = (ll9 . . . , ln+1) and Z = {mu . . . , mn + 1 ) , 7 ^ Z if
lj ^ m } for any 7. If 7 ^ Z, the set-theoretic difference W — 7 — Z is called a skew
diagram.

Definition A. Let J = {1, 2, . . . , n + 1} fee α yϊmίe index se£. 4̂ /?raίe sequence
sis2 ' ' ' sp (sj£J) is said to be a lattice permutation if the following condition is
satisfied;

# {k\sk = i and 1 ^ k ^ r) ^ # {fe|sk = i + 1 and 1 rg fe ^ r)

for any 1 ^ i ^ n and 1 ^ r ^ p .

Let ^ = 7 — Z be a skew diagram and 7V a semi-standard skew tableau of
shape PFwith symbols J (see [M]). For a Young diagram Y' = (Γl9 . . . , Γn+1), we
say that wί(Γ^) = wt(Yf) if the number of symbols; in Wis equal to I] for any j .
From Γ^ we derive a sequence s(7V) by reading the symbols in Tw from the right
to the left in successive row.

Theorem B {the Littlewood-Richardson rule). Let Vγ and Vw be irreducible
ql{n + \)-modules associated with Young diagrams Y and W with n -f 1 rows. Then
we obtain

vγ®vw^ φ vz. (*)
Γz_yis semi-standard,
wt(Tz-γ)=wt{W) and

s(Tz-y) is a lattice permutation.

For Young diagrams 7, W and Z in (*), let us define the map Φ which
associates a semi-standard skew tableau Γ z _ y as in (*) with a semi-standard
tableau of shape W.

Φ: If there is a symbol /c (1 rg /c ̂  n + 1) in the m-th row (1 ^ m ^ n + 1) in Γz_ r ,
then a symbol m is written in the fe-th row in the diagram W.

Theorem C. For Young diagrams Y and W9 we set

' s(Tz-γ) is a lattice permutation . j '

Bh(Y, W) = {beB(Vw); uΎ®bisa highest weight element of B(VY® Vw)} .

Then Φ gives a 1 — 1 correspondence between έΓ{Y, W) and Bh{Y, W).

and W = (2,2, 0) =Example D. For g = gl(3), 7 = (2,1, 0) =

introduced in Sect. 6, we have

, W) =

JV) =

, which is

2
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2

1 | 1
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1

1
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Hence, we obtain
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2

2

2

1

2

1 1

1—>•

1

2

1

2

1

2

1

3

Φ:

2

2

1

1

2

1

2

1

1

2

2

3

1

3

2

3

k in the ra-th row i—• m in the fc-th row
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