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Abstract. A complete classification of irreducible unitary representations of a one
parameter deformation S,L(2, C) (0<g<1) of SL(2,C) is given. It shows that in
spite of a popular belief the representation theory for §,L(2, C) is not “a smooth
deformation” of the one for SL(2, C).

0. Introduction

A theory of quantum deformations of the classical locally compact groups still
seems far from being complete. According to [16] one can distinguish a purely
algebraic (Hopf-algebra or Hopf *-algebra) level, topological (C*-algebra) level
and intermediate Hilbert space (i.e. the representation theory) level. For the
compact groups the algebraic and topological approaches are equivalent since the
topological level is well understood and there is a natural way of passing to it from
the algebraic one (see e.g. [14, 15]) via the Hilbert space level. In effect one obtains a
smooth deformation of group structure and its representation theory.

This experience is a source of the popular belief that it is also the case for
general locally compact groups. A class of Pontryagin duals for compact quantum
groups is also well established on the C*-algebra level [8] and seems to confirm
this conviction, but for the non-compact case there is no general theory of
topological quantum deformation at the moment.

The study of other examples indicates that new phenomena can occur which
are not seen on the algebraic level:

— The deformation may not exist on the C*-algebra level (cf. [16] where non-
existence of comultiplication for quantum SU(1,1) group for real values of
deformation parameter was proved).

— The deformation on the C*-algebra level exists under some additional
conditions (e.g. restrictions on spectra of operators involved in the theory (see the
spectral condition in [16] for the case of E(2) — the group of motions of the
Euclidean plane)).
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— The deformation exists on the C*-algebra level but a representation theory is
not similar to the undeformed one. To obtain a similarity one has to impose
smoothness conditions (¢.g. smooth and non-smooth finite-dimensional represent-
ations of the quantum Lorentz group in [8]).

It is clear that a study of concrete examples is very important for the proper
background of the general theory. Investigating known examples one reveals a
crucial role of a Hilbert space level. In the present paper we study irreducible
unitary representations of the quantum Lorentz group [8]. This will be a starting
point as well for the construction of Pontryagin dual (i.e. a quantum group of
“characters”) quantum Lorentz group on the C*-algebra level as for the
development of harmonic analysis in further investigations.

The quantum deformation S, 1(2,C) (0<g<1) of §,L(2,C)=SL(2,C) intro-
duced by Podles and Woronowicz in [8] contains the quantum deformation
S,U(2) of SU(2). Any unitary representation v of S,L(2, C) induces then a unitary
representation v, of S,U(2). Since irreducible (unitary) representations of S,U(2)
are labeled by the integer and half-integer spin parameter se S where

§={0,41,3,2,3,3,...}, ©.1)

let p be a minimal spin occurring in the (unique) decomposition of v, into a direct
sum of irreducible representations. Let for any peS,

be a subset of S. By &, we shall denote for pe S and p+0 an ellipse in C:

&,= {z: =1 [(@°+q~P)cosp+i(qg~?—qP)sin¢] for goe[O,Zn[}

/1+4?
0.3)
and for p=0 a closed interval

Eo=[-)1+4*)/1+4°]. 0.4)
Let
=U6,. (0.5)

pes
Then we shall prove that for any irreducible unitary representation of S,L(2, C) the
value %, of the Casimir operator X for S,L(2, C) belongs to X, and irreducible
unitary representations can be labeled by the minimal spin p and the value %,
analogously as in the case of classical SL(2, C). Let

Z,={(p,z,): P€S, z,€6,},
then we can state our main result
Theorem 0.1. Let g€]0, 1[. There is one to one correspondence between the set &,
and the set of unitary equivalence classes of irreducible unitary representations of
quantum Lorentz group S,L(2,C).

Moreover,
1. there are two one-dimensional representations:

7=(0,)/1+4¢%) and the trivial one 1=(0, —)/1+4?).
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2. If v is an unitary irreducible representation different from t and T with minimal
spin p then it is infinite-dimensional and contains any irreducible unitary represen-
tation of S,U(2) with spin s€ S, with multiplicity one.

To compare this result with the classical one (the case g= 1) let us denote by 2,
the parabola

P,={z: z=2(t>—p*+1)+4ipt for te]— o0, o0[}
for pe S and p=0 and a halfline

Py=1[0, o[
for p=0. Let

= p(ejs 2, 0.6)
and

L, ={(p,z,): PES, 2,€P,}.

Then the value &, of the Casimir operator X (a linear combination of the
Laplace operators) for SL(2,C) in the unitary irreducible representation v of
SL(2, C) belongs to X' and the set of irreducible unitary representations (unitary
equivalence classes) is labeled by #,; (see e.g. [5, pp. 104, 144] or [1, 2]).

. /1 2
Fig. 1 describes the set —lzq for 0<g<1 (upper part) and X, (lower
part). Let us note that

/1+4°
{ &,: p€S, p#O}

q
is a family of cofocal ellipses with focuses in points (—2,0) and (2,0) and

{#,: peS, p+0}

is a family of cofocal parabolas with focus in (2, 0)

All label spaces %, are homeomorphic for 0<g<1 and not homeomorphic
with &,. The limit g— 1 is singular. It corresponds to moving cne focus to infinity
and then representation ¥ disappears (there are also two complementary series in
the deformed case and one of them also disappears in this limit).

Let us observe that if v is an irreducible unitary representation of quantum
Lorentz group then T®uv is also an irreducible unitary representation [this
corresponds to the reflection X, with respect to the point (0,0)].

In essence it was also noticed in the case of irreducible finite-dimensional (non-
unitary) representations of S,L(2,C) [8]. Since in this case the set of values of
Casimir operator is discrete it was possible to divide representations into two
parts — the smooth representations which are continuous deformations of
representations for g=1 and non-smooth one. It was conjectured [8] that this
exhausts all finite-dimensional irreducible representations of S,L(2,C). The
affirmative answer was given in [12].

Such a division is no longer possible in the case of unitary representations and
this shows that also in the case of finite-dimensional representations the non-
smooth ones are also important.
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Fig. 1. 2,

A few remarks on notations: For any C*-algebra B by M(B) we shall denote the
multiplier algebra of B. Let us note that for the algebra of compact operators
CB(H) on a Hilbert space H we have that M(CB(H))=B(H). We shall say that
ypeMor(B,, B,)if p is *-algebra homomorphism y : B; —M(B,) such that y(B,)B,
is dense in B, (see [16, p. 402]).

We shall also use an affiliation relation in the case of “unbounded multiplier” T
and denote it Ty B (cf. [16, § 1]). Then any v € Mor(By, B,) has a unique extension
to *-algebra homomorphism from M(B,) to M(B,) and also to elements affiliated
with B, [16, Theorem 1.2].

Let {B,},.n be a family of finite-dimensional (unital) C*-algebras labeled by a
denumerable set N. Then

B=Y?B,
neN
will denote the (non-unital) C*-algebra which elements are sequences (b,),cx
tending to O at infinity. In this case
M(B) — Z bounded Bn ,

neN
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i.e. be M(B) if b=(b,),.y is a uniformly bounded sequence and by B if be X B,

neN

[16, §1, Example 5]. By Zf‘““eB we shall denote a dense *-algebra in B of

sequences (b,),.y With ﬁmte number of elements different from 0.

In the paper we deal with compact as well as non-compact quantum groups. In
any case quantum group G is a bialgebra with additional “group structure”. A
bialgebra is a pair (R, 4), where R is a C*-algebra and 4e Mor(R, R®R) is a
coassociative comultiplication:

(A®id)4=(1d®4)A.

We shall say that ve M(CB(H)®*R) is a strongly continuous representation of
G =(R, 4) (acting) on the Hilbert space H if

(idH®A)v=vl2vl3 . (0.7)

[We use the leg notation: for any C*-algebras A, B, C and we M(A® B) by w,, we
denote the unique image of w under the canonical morphism

Y1, €Mor(A®B®C(),
where
P1,(a®b)=a@bR®1e M(A®BRC)

for any ae A, b € B, etc.] We shall say that the representation is unitary if element v
is unitary.

Any quantum group G=(R, 4) considered in this paper is a one parameter
deformation of a classical object with deformation parameter g€ ]0, 1[ and has a
2-dimensional fundamental representation

Uy, U
u= < 11 12) .
Uzy Uz
Then the algebra R is generated” by {u;,uf} satisfying some commutation

relations. The multiplication 4 is then deduced from its value on the sets of
generators

Au;j) =u;; Quyj+u;; Quy; .

There is also a counit e and coinverse (antipode) k which can be “extended” from
their values on generators:

e(uij) = 5ij= e(u?}) s
K(uy)=uy,, Kuf)=ul,,

Klugy)=uyy, Kui)=uf,,

1
K(uy)=— 6“12, k(uf,)= —qui,,

1
K(uyy)=—quyy, Ku3)=— augl .

For the precise meaning of “generating” and “extension” in concrete examples we
refer the reader to [8].
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The paper is organized as follows. The first section is selfcontained. It embodies
the idea that the Pontryagin dual quantum group (the universal “space of unitary
characters” for quantum group) play the same role in the representation theory of
quantum group as the Lie algebra in the Lie group theory. One has to replace
derivatives by suitable functionals. This reduces the problem of study of the
unitary representations to the problem (easier in general) of representations of the

“algebra of functions” on the dual group.

Propositions 1.1 and 1.3 states that S,U(2) and S U(2) are mutually Pontryagin
dual groups. This combining with the structural theorem for S,L(2, C) leads to the
description of the algebra of “functions” on the dual group (Propositions 1.4
and 1.5).

To establish a useful framework for the study of representations of this algebra
we develop the method of tensor operators in Sect. 2. Using this we are able to
classify the unitary representations of S,L(2, C) (Propositions 3.1 and 3.2) and to
realize unitary equivalence classes (Theorem 3.3) in the similar way as for the
classical SL(2, C).

1. Quantum Lorentz Group S,L(2, C)

Recently, it was shown that the classical group SL(2,C) admits many one-
parameter non-equivalent deformations (see [8, 18, 19]). In this paper we focus on
the first known.

For g0, 1[ we denote by S,L(2, C) the quantum deformation of SL(2, C)in the
sense of Podles and Woronowicz [8]. This deformation follows from an analog of
the Iwasawa decomposition for SL(2, C) and it contains the well-known quantum
deformation S,U(2) of SU(2) and its Pontryagin dual S U(2) in such a way that
S,L(2,C) is an example of double-group construct10n applied to S,U(2).
Symbolically,

S,L(2,C)=S,U(2)p=<S,U(2). (1.1)

Since our description of unitary representations of S,L(2, C) is based upon this
decomposition we recall in the first part of this section the basic results concerning
S,U(2) and its representation theory. For more information we refer to [13, 8
11, 3].

To abbreviate the notation the compact quantum group S,U(2) will be denoted
by G, its dual §, U(2) (quantum non-compact group) by G, and by G=G <G, the
resulting quantum (non-compact) Lorentz group S,L(2, C).

In the case of G,=(R,, 4,) the algebra R, of “continuous functions” on G, is the
C*-algebra completion of the x-algebra o7, of “smooth continuous functions” on
G., ie. the x-algebra generated by two elements «,,y, such that

“f“c"')’fvc:Ia occoz;*+q2yfyc=l,
UPe=qVde>  OYVE=qyEoe,  PVE=VEYe-

To describe a group structure on G, it is enough to define it on the set of its
generators. The comultiplication 4,.e Mor(R,, R.®R,) follows from the fact that

[ - ?
u”2=< 7 ) (1.3)

Pe o

1.2)
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is a 2-dimensional (unitary) representation of G,, i.e.
Afo)=0.Qu— g7 @7,
A7) =72 +0F @Y, .
Moreover, there exists a counit e,€ Mor(R,, C) given by
efa)=1, ely)=0. (1.5

It is known that unitary irreducible representations of G, are labeled by spin
parameter seS. The corresponding unitary representation u° acts on (2s+1)-
dimensional Hilbert space K* and u°e B(K*)® «/,. The algebra R, of “continuous
functions tending to 0 at infinity” on G, is then the C*-algebra

R,= Y® BK"), (1.6)

seS

(1.4)

i.e. the algebra without unity which means that we deal with non-compact case.
The algebra R, can be generated by “unbounded continuous functions” A; and N,
and then we have only 4,7 R,;, N,nR, (cf [16, Sect. 1, Example 5]. These
operators satisfy the following relations (cf. [8, (1.35)+1.38)]):

A, is positive selfadjoint,

AyN,=qN,A,, 1.7

1
N,NF=NiN,+ ﬁq—z(Aa_z—Ag)-
Let us note that N, differs from n in [8] by the factor (1 — g?). The comultiplication

A,eMor(R,, R,®R,) on G,=(R,, 4,) is defined on generators 4,;, N, by the fact
that (cf. [8, Theorem 5.1])

A; (1—¢3N
Wd=(0d ( Af_l) d) (18)

is a 2-dimensional representation of G, i.e.
44A)=A4,84,,

_ (1.9)
Ad(Nd)=Ad®Nd+Nd®Ad 1.
Moreover, there exists a counit e, Mor(R,, C) defined by
ed(Ad)=1 N ed(Nd)_—'O. (1.10)
The fundamental role in the G -representation theory plays an unitary operator
U= Zbounded u. (111)
seS

Clearly, Ue M(R,®R,). Since (cf. [8, (2.15) and Theorem 3.1 (3.3)])

(idd@AC)U=U12U13 (1.12)

and
(4,8id,)U* =U%*,U%, (1.13)
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it is called a bicharacter (U is a representation of G, acting on R, and U* is a
representation of G, acting on R). This gives a correspondence between the
unitary representations of a group and the representations of an “algebra of
functions” on the Pontryagin dual group.

Proposition 1.1. i) Let v,e M(CB(H)®R,) be a unitary representation of G, acting
on Hilbert space H. Then there exists the unique p,€ Mor(R,, CB(H)) such that

v, =(y,®id,)U . (1.14)

ii) Let p,€ Mor(R,, CB(H)). Thenv, defined by (1.14) belongs to M(CB(H)® R.) and
it is a unitary representation of G..

Proof. The first part of the proposition follows from the more general Theorem 2.1
[8] in the special case of the C*-algebra CB(H). Since U is the unitary operator, the
unitarity of v, in (1.14) is obvious and by simple calculations using (1.12) we get that
v, is the unitary representation of G, and ii) follows. Q.E.D.

Now we shall describe the correspondence v, — 1y, in a more convenient way, i.c.
in terms of

A=vplA4), N=yp4N,).

To this end let’s define linear functionals ¢4, ¢g, and @y on the algebra &/, such
that for any a,be o/,

P alab)= @ [(a)p4(b),  @r(ab)=@g(@)r(b),
¢x(ab)= ¢ (a)pn(b) + ox(a)pr(b).
They are uniquely defined by their values on the set of generators {o, a*, 7, y*} of
the algebra <, (cf. [8, Egs. (5.1), (5.2)] and [9]):
4)=q""=0r(0}), @ ¥)=q"?=0pg),
on0)=—q"%%, @ I)=1=0k(l),
and the other values are 0. (Let us note that our @y differs by the factor (1 — ¢*) from

12 in [8])
Since any element Ty R,= Y ® B(K®) is a sequence (T,),. s, where T, e B(K®) we
have that ses

(1.15)

1/

(1.16)

A;=(A)ses,  Na=(Nyses- (1.17)
It was shown (see the proof of Theorem 5.1 in [8]) that for s€eS,
(de-®p)u)*=4,, (de@oy)u)*=N,, (dxQer)W)*=A4;".
We shall shortly write this as
A4,=(d;®@0)U*, N,=({d,@y)U*, A;'=(d,®@pxU*. (1.18)

A, N belong to B(K*®) and satisfy relations (1.7) so they define the representation of
C* — algebra R, which corresponds to the unitary representation u° of G..
Moreover (cf. [8, Corollary 5.2]), there is the canonical orthonormal basis

{form=—s,—s+1,...,s—1,s} (1.19)
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in K* such that

sfm m’
st,:=q'31/[s—m],,[s+m+1]qf:,+1, (1.20)
N;kfnsl=q_sl/[s+m]q[s_m+ 1]qfr:—1 s
where
1_q2n
[n],= —F" (1.21)

Let us note that the canonical basis (1.19) is determined by (1.20) up to
m-independent complex number of modulus 1 and can be fixed by 1dent1ﬁcat10n of

K* with the subspace of the g-symmetric tensors in ® K'2, Then ff= ® iz
For u'/? (in this case K'/2=C?) we have by [8, (5. 8)] the correspondence

ria=(y). 2= (}).

i f11/ ®f11//z2, f—1—f11/2®f11/2’
fo1 [4f1/12/2®f11//22+f11/22®f11/2]

Now let p,e Mor(R,, CB(H)) and v, be the corresponding unitary representation
of G, acting on H. Since R, is a direct sum of full matrix algebras then

H= Y®H'= Y®K°®H, (1.22)

seS seS

and y,(a,) = a,®idy, € B(H®) for any a, belonging to the subalgebra B(K*) of R,.
The decomposition (1.22) corresponds to the decomposition of v, into a direct sum
of irreducible unitary representations of G, and v, restricted to H* is u*®idy_. The
dimension dim H, is a multiplicity of u* in v, [or equivalently B(K®) in y,]. Let

S(v,):={seS: H*+0} (1.23)

and then for s=1,

and
D= Y finitefys, (1.24)

seS(ve)
Then S(v,) will be called a support of v, (or a support of p,) and D will be called the
natural domain for v, (and y,) since it is a dense linear subset of H invariant under
the action of v, and an invariant essential domain for a selfadjoint operator

A=y, A)= Z( A,®idy, (1.25)
and closed operator
N=yy(Nyj)= 3} N,@idg,, (1.26)

seS(ve)
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and hence for its adjomt N*. 1t is clear that 4, N, and N* satisfy (1.7) on D and
completely determine y,. Now let xe H, then v, (x®1,) € D®,,.27, and

Ax =1y (A)x=(p,®1d,)[(1d,®@ ¢ HJU*]x
=W ®9 JU*x®I)=(1dp®@¢ JF(x®1,).
In the same manner we can compute Nx and we get

Corollary 1.2. Let v.e M(CB(H)®R,) be a unitary representation of G, acting on
the Hilbert space H, y,€ Mor(R,, CB(H)) be the corresponding representation of ‘R,
and D be the natural domain for v,. Let A=y (A,), N=yw,(N,).

Then for any x€D,

Ax=(idp®@¢ ¥ (xR1,),
Nx=(idp®@@nPf(x®1,).
Remark. This shows that in the sense of operators on D we have equality
=({dp®¢ v¥, N=(dp®@on0?.

Let us note that using unitarity of v, and property (1.15) of ¢ 4, @y, and @y we can
also compute that

1.27)

. . . 1
(dp®¢ Jv.=A" L (dp®erplv.=4, (dp®@@yv.=— 5N (1.28)

as for operators on D. Let ¢*(a) = ¢p(a*) for any ¢ € o/, and a € o/, then ¢* € ;. For
On:=@F We get

N*=(id, @ @p+)0. - (1.29)
Since [cf. (1.16)] ¢% =g, k=@, We have by (1.15) that
@n(ab)= ¢ 4(a) (D) + @n-(a)pr(b), (1.30)
and using this
1
(dp @@y} = —aN*. (1.31)

Now we shall prove that G,=S,U(2) is a Pontryagin dual to G,, ie. G,=G..
This statement is not true for general compact quantum group and is closely
related to the fact that the Haar measure h, may not be faithful on the whole R, but
this does not occur in the case of S,U(2).

Proposition 1.3. i) Let v,€ M(CB(H)®R,) be a unitary representation of G, acting
on Hilbert space H.
Then there exists the unique yp,€ Mor(R,, CB(H)) such that

vy =1,id,®y )U*, (1.32)

where 1, is a flip 1,: R,® B(H)—»B(H)®R,.
ii) Let p.€ Mor (R, CB(H)).

Then v, defined by (1.32) belongs to M(CB(H)®R,) and is a unitary represen-
tation of G,.
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Proof. The unitarity of U* implies that the operator v, defined by (1.32) is unitary
and simple calculation using the bicharacter property (1.13) shows that it is a
representation of G,.

Now we shall prove i). Let v, be a unitary element of

M(CBH)®R,)=M ( Z:B CB(H)®B(KS)> = ZS""““““ B(H)®B(K®)

and n,e Mor(R,, B(K*)) be the canonical projection then

— bounded s
vg= v°,
ses

where v*=(idy®=)v,. Choosing for any seS the canonical orthonormal basis
(1.19)in K* we get the isomorphism B(K®) ~ M 5, 1(C). Let {mj;} be the matrix units
for M, ,(C) then v°'e M, ,(B(H)) and

(Us)* = Z x?j@ m?j
LJ

for some xj;€ B(H). Analogously, for U= Y"*""¥*¢4* we get
sesS

uw= Z_"%@afj,
i j

where aj;€.9/, are matrix elements of u°. Since the matrix elements of the
irreducible unitary representations of G, form a linear basis of the vector space 27,
[14, Theorem 5.7(1)] then the map v, : .«/,— B(H) defined by

pday)=x; (1.33)

ij

is linear. We have to prove that if v, is a representation of G, then vy, is a
multiplicative and *-preserving map. The multiplicativity of y, follows from the
fact that

(4,81d)U=U,;3U, ;= Z y m?j®mf’,j’®a§:j‘afj

L850, Jo i’y J
and

(dp® 405 = (V) T30 T2 = ) Z L x?:j’x§j®m?j®m?:j'

S$,8,18, ], ]
SO
wc(a?«' j'a?j) = xf', j'xfj = Wc(affl j’)wc(ng)

for any s,5"€S.
Now for s=1/2 the representation u'/? is given by (1.3) so

1/2y% — 1‘pc(occ) - qIPc(y;k))
v <wc(yc) wla®) ) M (B(H)). (1.34)

Using the multiplicativity of y, and unitarity of u!/2

<wc(<xc) —qwc(yz“)>( pa¥) %(?2")) =<IH 0) (135)
wlv)  wdoed) ) \—apdvd  wde) 0 Iy '

we get
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in M,(B(H)). Since v, is unitary then (v*/*)* in (1.34) is an unitary matrix in
M ,(B(H)) and from (1.35) we get '
( wood) wc(yi.")) _ (wc(occ) —qwc(?z“)>“‘
—qpr) W) ) wded)
_ <1Pc(0€c) —qpy¥ )>* _ < Pooe)* %(%)*)
vy wded) —qpy)* )

and (X)) =y (a)*, p.(r¥)=vp(y.)*. This means that y,: o/, — B(H) is the unital

e
s-homomorphism. Moreover, (v!/?)* is the unitary matrix of the form i qac* )
so a=vyJx,), c=yy.) has to satisfy the relations (1.2) (cf. [8] remark after (1.33))
and y_has the unique extension to a C*-representation of R, in B(H) [13, Theorem
1.1]. Since R, is the unital C*-algebra this implies that y.e Mor(R,, CB(H)) and
v¥ =1,id,®y)U. This proves the existence of y, satisfying (1.32). The uniqueness
of y, follows from the fact that any y, € Mor(R,, CB(H)) is uniquely defined by its
values on &/, but if y, satisfies (1.32) it has to satisfy (1.33) which completely
determines y, on &7,. Q.E.D.

Remark. Propositions 1.1 and 1.3 show that G, and G, are mutually Pontryagin
dual groups. Let a denote one of the letters ¢ or d and ¢é=d, d=c. Then the
correspondence v,— 1, is natural in the sense that for any unitary representations
v, 0 of G, acting on the Hilbert spaces H, and H,, respectively and
corresponding representations pi, p? of R, we have

{te B(H, Hy): (@ L" =vP(t®1,)}
={teB(H,, H,): tpV(x)=pP(x)t for all xe R,}

(cf. Remark preceding §4 in [8]). In particular, unitary representation v, of G, is
irreducible if and only if the representation v, of R, is irreducible. Let us note also
that any operator t € B(H,, H,) intertwines representations v{" and v{* if and only
if it maps natural domains into itself t: D, —»D, and for any yeD,,

WAy =P Ay, PNy =pP(Nty,
pO(NHy=pP(NHy.

The last part of this section we devote to the description of unitary
representations of quantum Lorentz group in terms of the representations of G,
and G,. Let G=(R, 4) be the quantum Lorentz group. The algebra of “continuous
functions tending to 0 at infinity” on G is

R=R.QR,.
If
G RIR,~>R,QNR.
is given by
FHa®x)=U(x®@a)U*, (1.36)
where U is the bicharacter (1.11) then
A4=(1d,®6®id,)(4.®4,).
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The counit is given by e=e.®e, (cf. (4.9), (4.16), (4.17), and Theorem 4.1 in [8]).

Let p,=id.®e,; and p,=e . ®id, then p.e Mor(R,R.), p,€ Mor(R,R,). They
correspond to the embeddings G,— G, G,—G. The structural theorem for unitary
representations of G is related to these embeddings.

Proposition 1.4. i) Let ve M(CB(H)®*R) be a unitary representation of G acting on
the Hilbert space H and let

v,=([dg®pJv, v;=(dg®p,v. (1.37)

Thenv,e M(CB(H)®®R,), v,€ M(CB(H)®R,) and they are the unitary represen-
tations of G, and G, respectively, acting on the Hilbert space H satisfying the
compatibility condition

(v2)12(v)13=(dg®F)(v)12(Va)13 (1.38)

and
v=(0c)12(v4)13 - (1.39)
ii) Let v.e M(CB(H)®®R,), v,€ M(CB(H)® R,) be the unitary representations of
G, and G, respectively, acting on the same Hilbert space H and satisfying the
compatibility condition (1.38).
Then v defined by (1.39) belongs to M(CB(H)®R) and is the unitary representa-
tion of G.

Proof. The arguments used in the proof of Theorem 4.4 in [8] for the case of finite-
dimensional representations of G are still valid. One has to check the unitarity
condition only but this is obvious because p, and p, are morphisms. Q.E.D.

This proposition reduces the study of unitary representations of G to the study
of the pairs of unitary representations of G.and G, respectively, acting in the same
Hilbert space and satisfying the compatibility condition (1.38). In view of
Propositions 1.1 and 1.3 and Corollary 1.2 we would like to replace the unitary
representations v,, v, by corresponding representations y,, . of algebras R, and
R., respectively. The main problem is to express the compatibility condition (1.38)
in terms of p, and y,. A partial solution to this was given in [8, Proposition 4.5].

Let y,.e Mor(R,, CB(H)) corresponds to v, and let for aeR,,

a*yp.:=(p id)4(a), vy *a:=1(d.Qy)4(a),
where 7. is a flip 7.: R.® B(H)—»B(H)®R,.

It was proved [?3, Proposition 4.5] that v, and v, satisfy compatibility condition
(1.38) if and only if (@* P, =0, %) (1.40)
for any ae{o.a¥, y.,7*}. To abbreviate the notation we shall denote

a=ypla), 7=v).
Then o€ B(H), y€ B(H) and they satisfy relations (1.2). Now (1.40) reads
@®o,—g7*®7 v, =v(a®%, — gy ®Y7),
@*®@af —qy @y .= va*®@oF —q7*®7,),
(®a +a*®7 v, =0 (2®7.+7®7),
(*@uF +aQ@yFv. =v0* Q¥ +7*®,).

(1.41)
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We have

Proposition 1.5. Let v.e M(CB(H),'R,) and v,e M(CB(H),R,) be the unitary
representations of G, and G, acting on the same Hilbert space H and let

D= ZfiniteHs= ZfiniteKs®H
seS(ve) seS(ve) i

be the natural domain (1.24) for v,. Let y4, . be the corresponding representations of
algebras R, and R, respectively on H and

A=y A), N=yyN,,

a=pl0), Y=y,

be the generators of these representations (i.e. A and N have the form (1.25) so they
satisfy relations

(1.42)

A=A4*>0,
AN=¢gNA, (1.43)
1

A—Z_AZ
— )

NN*=N*N+ 1

on D and
a*at+y*y=1Iy,
ao* +qy*y=1Iy, (1.44)
ay=qyo, yy*=y*y, oy*=qy*a

on H).

Then the following conditions are equivalent:
i) v, and v, satisfy the compatibility condition (1.38).
ii) The operator

t= (‘;‘ - ‘f* ) € M,(B(H)) (1.45)

is an (unitary) intertwining operator for the unitary representations
VO =")330)13,  VP=(0)13'?),5
acting on H=H®K'?, i.e.
(®IVI=V2(®I,). (1.46)

iii) a:D—D for any ae{a,a*,p,y*} and the following relations

1
Aa=aA, Ay=ayA,

1
No=qaN —qy*4, Ny=yN+a(<x*A~aA“), (1.47)

1
No*= 5a*N+ éy*A‘l, Ny*=y*N

are satisfied on D.
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Proof. Let us identify A= H®K'/>= H@® H. Then using (1.3) the condition (1.46)

means that
<vc 0><a®ac—qv®v2", —qv*®ac—qa*®v2">
0 0@y +y®0F,  —qy*@y.+oa*@oF

=<a®ac—qy*®yc, —qy*®a3‘—qoc®y:“> (vc 0)
Ry +y®%, —P®Y +a*®ar Ve

and this are exactly the relations (1.41) so i) and ii) are equivalent. Now the
intertwiner property (1.46) is equivalent to the statement that ¢ maps the natural
domains D,,D, for V" and V?, respectively, into itself and intertwines the
generators 4, N , and 4,, N, of the corresponding representations 4", p{?. Since

D,=D®K'=D@®D=D,,

then by (1.45) a(D)CD for any ae{a,oa*p,y*}. Moreover, using (1.28) and
properties (1.15) and (1.16) of functionals ¢, ¢g, and @, we get

1 =(idb,®<0R)Vc“’=q—”2<g q(ll) =(idy, ®p)V¥=4,,

o~

. _ gN o0
N1=—‘I(ld1‘)1®(ﬂN)Vc(l)=q 1/2(A N>’

. _ N 0
N2= _q(ldfh@(pN)V;(Z):q 12 (A—x qN>'
Now relations t4,=A,t, tN,=N,t are the same as relations (1.47) so the
equivalence of ii) and iii) follows. Q.E.D.

Let us note that Egs. (1.43), (1.44), and (1.47) imply that an algebra of continuous
functions tending to 0 at infinity on a dual group G of the quantum Lorentz group
G is “generated” by {4, N,a,y} so it contains the algebras R, R, but this is not
the tensor product of them. Let us denote it symbolically by

R=R.OR,.

Then one can define 4=4,04,, é=e,0e,, and & =k, Ok, which will impose the
Hopf #-algebra structure on R or equivalently it will define the Pontryagin dual
group G on the Hopf *-algebra level. Since G, and G, are mutually Pontryagin
dual groups one could expect that the quantum Lorentz group is selfdual, but as
we see it is not the case. A Hopf algebra structure was recently studied in [10, 6].

Proposition 1.5 reduces the problem of classification of the unitary representa-
tions of quantum Lorentz group to the problem of classification of four operators
{A,N,o,y} satisfying on D the relations (1.43), (1.44), and (1.47). For operators A
and N it is clear. To incorporate operators o and y into this scheme we use the
method of tensor operators.

2. Tensor Operators

2.1. Basic Notions and Operations

Let v.e M(CB(H)®R,) be a unitary representation of G, acting on the Hilbert
space H, y, be the corresponding representation of R, and

A=y A4s), N=pNy)
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be the generators of this representation. Let
D= zfiniteHs= ZfiniteKs®Hs (21)

seS(ve) seS(vc)

be the natural domain for v,. We shall consider an *-algebra of linear (in general
unbounded) operators (cf. [4])

L*(D)={T: Dy=D, D12 D, T(D)CD, T*D)CD}. (2.2)

Clearly, any Te L* (D) is a closeable operator on H. There is an induced action of
G, on the *-algebra L*(D)

V(T):=v(T®I ¥ for any TeL*(D) (2.3)
since it is easy to check that
(iduw)@Ac)Vc:(Vc@idc)Vc-

Taking in mind (1.28), (1.15), (1.29), (1.30), and (1.31) we get for generators 4, N, N*
of the corresponding representation of R,

AT)=ATA™ !,

(T — -1 41
N(T)=NTA '—qA™'TN, 24

. 1
NY(T)=N*TA '— - A 'TN*.
q
In what follows we shall consider s-tensor operators, i.e. sets of operators which
transforms under the action of ¥, according to the representation u° of G.. Since we

will be interested only in the case of s=0 and s=1 we shall restrict our definition of
s-tensor operators to this particular case.

Definition 2.1. i) An operator X e L*(D) is called a scalar operator if
Vi X)=v/(X®I ¥ =X®I,. 2.5)

The set of all scalar operators will be denoted by .7 (D).
ii) A triplet

i
Y=Y |, (2.6)
Y,
where Y, Y,, Y_; belong to L*(D) is called a vector operator if
VY)(xQ®IL) =vYV;®I ¥ (x®I.) = ke(_% o Yx@uy; 2.7)

for je{—1,0,1} and any xeD.
The set of all vector operators will be denoted by 7 (D).
Using (2.4) and (1.20) we see that

1. X e 7 °D) if and only if

AX=XA, NX=XN, N*X=XN* (2.8)
on D. This implies that 7 °(D) is a *-algebra.
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2. YeZ YD) if and only if
1
AY,=g¥d, AYo=Yod, AY.,= Y4,

1 i Vit
NY,= YN, NTH= VNt ;q YA,

(2.9)
/1+4* V1+4°
NY,=Y,N+ ;rq YA, N*Y,=Y,N*+ ;q Y, A,
1 2
NY.,=qV. N+V ;q YA, N*Y_, =qY_,N*
on D. Clearly, 7 (D) is a vector space and also a bimodule over 7 °(D).
For any Ye Z (D) let us define
—qY*
Y\
Y=Y, | = : . (2.10)
Y, i
Then using (2.9) it is easy to show that the map
TYD)aY—-Y'eT YD)

is an antilinear involution in J (D).
Since the tensor product of two u'! representations of G, decomposes into a
direct sum u’@u’ ®u? one can expect that there exist two bilinear maps

TYD)x T D)>(Y, Z)—~Y+Ze T D) 2.11)
and
T D)x TYD)s(Y,Z)—»YxZeT (D). (2.12)
This is really the case and using (2.8), (2.9) one can check that operations
Y, Z,
Yo |¢| Z, =—-(1;Y_IZI+YOZO—qYIZ_1, (2.13)
Yy, \z_,
n Z, YoZ,—4a*Y,Z,
Y | x| 2 |= %q A2~ 12 )+(1—)%Z,| (214
Y, Z_ Y—1Zo—‘12YoZ—1

called the scalar product and the vector product of vector operators satisfy
requirements (2.11) and (2.12), respectively.

2.2. Basic Maps
Tensor operators on D are intertwiners for the appropriate actions of G.. We use

this fact to describe a structure of such operators and related operations described
above.
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Let X € 7 °(D) be a scalar operator on the natural domain D for the unitary
representation v, of G, [i.e. D has the form (2.1)]. Then by (2.5) it is an intertwining
operator for v, on D. Since X is closeable and v, restricted to H*is u*®1y_and u’is
an irreducible representation of G, then

X= Y I.®X), (2.15)

seS(ve)
where ®2(X)e B(H,) is a bounded operator on H, for any s e S(v,). In what follows
we shall identify K* for s>1 as the g-symmetric part of ® K'? where K'? is a

2-dimensional carrier Hilbert space of the fundamental representatlon u'? [cf.
(1.3)]. For s=1 we shall abbreviate K' =K. Let { f;5:m= —s, —s+1,...,s— 1,5} be
the canonical basis (1.19) in K*. For Y €. (D) let us define a map

®(Y): K®D—D,
(Y)(f;' ®x)=Yx.

It is clear using (2.7) that @&(Y) is an intertwining operator for the G, actions by

u'®v, on K®D and v, on D. Since for any seS the tensor product of
s+1

representations u' and u® has a decomposition into a direct sum @ u¥ we

s’=|s—1}
define a proximity relations for spins s, s’ € S. We shall say that s’ is near s and denote
it by '~ s whenever u* is contained in the tensor product of u' and u*. This means

that

(2.16)

se{s—1,s,s+1} for s=1,
s'~s if and only if | s'€{1/2,3/2} for s=1/2, (2.17)
s'=1 for s=0.

To describe in more detail the structure of operator &(Y) and operations
mentioned previously we shall fix some intertwiners for G, actions. To this end we
use technique of diagrams.

By one vertical line we denote an element of K1/2, Since u'?@u'/? =u’@u! and
the corresponding decomposition is

K1/2®K1/2 KO@KI

(this corresponds to the decomposition into g-antisymmetric and g-symmetric
tensors) then there are two intertwiners:

E:K°=C-K'?®@K'?, E:K'"?@K!'"?>-C. (2.18)
We shall denote them by
E=A, E=V (2.19)
and fix as
E(1) f11/2®f11/2 4f11//22®f11/2a (2.20)
and
E(f17,®f)=0=E(f{f ®fi)5)>

1
El(f11/2®f1 /2)— - a» El(fll/ ®f11/2 =1l.

(2.21)
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/\/ - | - \/\ 2.22)

1 2
E-E - O _ e (2.23)

Let us define an intertwiner

One can check that

and

O'ZK1/2®K1/2—)K1/2®K1/2
by

l + q‘%X ) (2.24)

Then o satisfies a quadratic equation
1
o2 +(q 3% —q'*)o— ‘ =0

and ¢ has two eigenvalues: g'/? on K =K and —q~ %2 on K°=C. One can also
check that ¢ satisfies the braid equation. Using (2.24) and (2.22) we have

AN WV e

2s
Let xe () K'/? then xe K® if and only if
n=1

2s lines

m Hl - o, 229

where E’ is applied to any pair (i,i+ 1) of lines.
We shall also need a symmetrization operator (intertwiners)

P s s KMPQK 5K Y, W, KQK KL,

Since K**% and K**! can be identified as subspaces of K*?®K* and K®K®,
respectively, we can take

2s lines 2s lines

N 1 2s y
s sre= I 2 LH\H l 1 ‘ , (2.27)
pl’s ‘l=0 . .

sym
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2s
where p; ;= Y ¢*/ is a normalization factor,
j=o

2s lines

2. j{i’-k;ZS
sym ] RSN

[—[ l l l— Jlines K lines

and p, (= q'**® is a normalization factor. They are projections as
Jsk=0,j+k=<2s
can be seen using (2.26) and (2.24). In particular,

1 -:qu X . (2.29)

¥, KQK'>K*

2s Imes

lP(s+ 1)s=

Now we fix intertwiners

for s'~s: . -~
S ' Vs \/ \ ¥is—1s \// (2.30)
[ T
] HTHT
and let

O:C-K®K, O*:K®K-C, T:K-K®K

be fixed operators given by

o
@1 - /\ = , (2.31)
K®K
K®K
@*l = \/ =—q \\// (2.32)
C .
K
Tj - (2.33)
K®K

Now for Ye 7 (D)
#(Y):K®D= Y K®K®H,~ Y K'®H,

seS(ve) s eS(ve)
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can be written as
AY)= Y Y, @P:(Y),

s’,seS(ve)
s'~s

611

(2.34)

where & (Y)e B(H,, H,) for s,s"€ S(v.), s’ ~s and completely determine &(Y):

K®H' KQRK'®H,

4>(Y)1 =~Pslsl laﬁ,sm .

H* K*® H,
Since
1
@(1)=—af—l1®f11+f01®f01—‘1f11®f—11
and
1
Tf11= 5 (f01®f11—‘12f11®f01),
/1+q
1
Tf01=m[q(f—11®f11—f11®f—11)+(1_qz)f01®f01]9
1
Tf—11=—z(f—11®f01-‘12f01®f51)
V1+4q
we get by (2.16) for Y, Z e 7 (D)
C®D
[C] id
K®K®D D
id l(b(Z):JVY-Z
K ® D D
ld)(Y)
D
and
K® D
Tl id
K®&®/B K®D
idl ltp(Z) = l‘D(YXZ)
K ® D D

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)
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Moreover, since for xe D
HY)*x= Y fi®Y*x

je{-1,0,1}
and
@*(f11®fjl)= _qéj,—l s
O*(fo ®f)=0;0,
1
@*(f—11®fjl)= - 551&—1
we have
K ® D
J lcb(v)* K®D
K®K®D = l«p(w) . (2.40)
@*l lid D
C ®D

Now we can compute ®X(Y « Z), &L (Y x Z), and ®L(Y") in terms of @} (Y) and
¢sl’s(z)

a) The Scalar Product of Vector Operators. From Egs. (2.15), (2.16), (2.13) using
(2.38) and (2.36) we have

C ® K°®H,
01 ‘lid
K®H, KQK® K ® H,
idl I@g’(v.m—s ; s:dl lw“ l Lo(Z)
K°®H, K K¥ ® Hy
lwssr l ol (¥)
K ® H;
$0
PY2Z)= . .SZWS AsysPsl( V)P (Z) (2.41)
where
C ® K*
2] id
K®KQ K’ K*
i llpsrs = Agy's idl . (2.42)
K ® K* K*
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The Ay for s'~s in (2.42) can be computed and

_ [2s+3],
Ass+1)s— q3[25+1]q’
[25+2],
5= 5 ——5—2—— for s>0, 2.43
A+, 2.43)
A 1 for s=>1.

s(s—1)s= — —

For more details see Appendix.
b) The Vector Product of Vector Operators. We compute @L(Y x Z). Using
definition (2.14) and Egs. (2.39), (2.37), (2.36) we have

K ® K'®H,
T l jid
KQK'QH, K®K ® K’QH,

Wl Jd%fs(Y xz) = )y 1 lw ld%usa)
. S"~s

N

K* ® H, v~ K @ K ® H,
l‘f’s'su ltpg"s"(Y)
K° ® H,
and
¢sl's(Y X Z) = Z Qs's"s¢s1’s"(Y)¢;"s(Z) ’ (244)
where
K ® K*
T lid
K®K ® K* K®K?
idl lWS”s =0sss I‘Ps’s . (245)
K ® K°* K®
K~

One can compute g, for s'~s", s" ~s, s'~ s (see Appendix):

q
Q(s—l)(s—l)s:‘m for s21, oy-1=1 for s21,

[2s],[2s+3], [25+4]
=— fi = =— :
Qs(s+1)s [23+1]q[25+2]q or sz0, Qs+ 1)(s+ 1)s q(1+q2)[2s+2]q P
[2s+2], 14q4st2
g = — s d— | =1 =————— fi
G T T g, D ST g, T
q
Qs+ 1)ss = 1+q2 . (246)
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¢) The Adjoint of Vector Operator. From (2.40), (2.10) and since
Y= Y (Pu)*®@Pu(Y)*,

we get
K ®K ® H,
KQK'®H; idl 1?‘ l«bs‘slwv
veu| ld’é'm - KQK®K'®H, . (2.47)
K*® H, @*l ‘[id lid
C ® K"®H,
The computation of
K ® K*
idl lv'* K®K*
KQK®K* =y, ls" (2.48)
e
C ® K*
gives (cf. Appendix):
w(s+1)s=—%, =1,  Og_1s=—4¢. (2.49)

Comparing this with (2.47) one obtains:

1
‘p(ls+ 1)s(YT) = _6 gpsl(s+ 1)(Y)* s

DY) =D (Y)*, (2.50)
cp(ls— 1)s(YT) =- q¢sl(s— 1)(Y)* .

At the end let us remark that since .7 (D) is a bimodule over .7 °(D) we have for
YeZ'D)and Xe7°D) that Y- XeZ (D) and X - Ye T (D),
Py (Y - X)= 03 (Y))(X),

L v 0 , (2.51)
¢s’s(X Y) - ¢s'(X)¢s's(Y) .

3. Irreducible Unitary Representations

This section is devoted mainly to the proof of Theorem 0.1. We describe all
irreducible unitary representations of quantum Lorentz group, i.e. irreducible
families of four operators {a,y, 4, N} satisfying relations (1.43), (1.44), and (1.47).
Let us define

C=1_:—(12[(1—q2)2N*N+q2A2+A"2], (3.1)
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1— 2
‘%NA
z, 1 Vi+4
2=\ Zy | = |~ [0 -PNN 44724 |, (3.2)
_ T pNxy
q)/1+q¢*
1
X=———=T[q1-¢*)y)N—(q*a*A+ad™ )], (33)
/1+4q
and
v (1—gqHa*N +y*4~1
1
1
Y=| Y, | =| —=[d1 —¢*yN+(*A—ad"1)]|. (3.4
V1+4*
' 1
yA

Using (1.43), (1.44), and (1.47) one can check that operators C, X satisfy (2.8) and
Z,Y satisfy (2.9) so

CeTD), XeT%D), ZeT'D), YeT(D).

The operator C is essentially selfadjoint on D and commutes with 4, N, and N* so
it is a Casimir operator for S,U(2). Since the action of operators 4 and N on D is
known, then using (1.25), (1.26), and (1.20) one can compute [cf. (2.15)] that

?%(C)=Cily, for seS(v,),
~25 4s+2 3.5
= 4 v'vq ) (11_:_:2 ) for seS. G

Taking into account that H* is invariant space for 4, N, and N* we see that & (Z)
can be 0 only if s'=s then by (2.30) and (2.34) we have

D} (2)=0sZln, for seS@,),
! (3.6)

Z, for seS,
/1+4*

so d(Z)= Yy Y RZly,.
seS(ve)
Using again commutation relations (1.43), (1.44), and (1.47) one checks that X

commutes with 4, N, o, y, and their adjoints so it is a Casimir operator for S,L(2, C).
Moreover, A, N, «, y and their adjoints are bounded on H*for any se S(v,) and H* is
invariant subspace for X so X is a normal operator and D is an essential domain
for it. Now relations (1.43), (1.44), (1.47) imply

X*=X - C+Y-Z, (3.7)
Y =)/1+PYXZ—¢*Y-C, (3.8)

YeY=X?—(1+4%I, (3.9
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1—q?
/1+4*

This shows that the set of operators {4, N, «, y} satisfying (1.43), (1.44), and (1.47)

can be replaced by the set {4, N, X, Y}, Y,, Y_,} of operators satisfying (2.9) and
(3.7)~3.10). For irreducible set of operators we have an additional condition that

YxY=

X-Y. (3.10)

X=%,I, forsome complex number Z,eC. (3.11)

Remark. Let us note that the C*-algebra associated with quantum spheres of
Podles [7] can be generated equivalently by coordinates of vector operator Y such

that Y'=Y, YeY=oI, YxY=2Y

for some real ¢ and 4. We see that in our case the C*-algebra generated by
coordinates of Y and Y' in the case of an irreducible unitary representation of G
will correspond to “complexification” of quantum sphere.

Let p denote a minimal spin in the unitary representation v,, i.e.

p=min{s: se S(v,)}, (3.12)

then Egs. (3.7) and (3.8) by using (2.50), (2.41), (2.44), and (3.5), (3.6) can be expressed
in terms of the corresponding mappings and we get for se S(v,):

'%,(;kIHs='%.OCSIHS+isssgs¢sls(Y)9 (313)

1
- aQsl(w 1)(Y)* = [I/ 1 +‘129(s+ l)ssgjs_qzc2]¢(1s+1)s(Y) > (3.14)
PUY)*=[/1+¢°0ssZ,— > CIP(Y) — %o Z ] g, » (3.15)
—qPss— 1\ Y)* = [/ 144705 1)sZs — 1> CP(s— 1y Y) - (3.16)

Let us note that &, _ ; (Y) =0 whenever s < p+ 1. Analogously, Egs. (3.9) and (3.10)
lead to
As(s + 1)s¢s1{s + 1)(Y)¢(ls + l)s(Y) + )“sssdssls(Y)z + As(s - 1)s¢s1(s -1 )(Y)Q(ls - l)s(Y)
=23 (1443, (317)

Osis+1 )s¢s1(s + 1)(Y)¢(1s +1s(Y)+ 05 D5(Y)* + Os(s—1 )stl(s -1 )(Y)(D(ls ~1ys(Y)

= %%OCD}S(Y), (3.18)
Os+1)(s+ 1)s‘p(1s +1)(s+ 1)(Y)¢(1s +1ys(Y) + Qs + 1)ss¢(1s +1 )s(Y)‘psls(Y)

Sl PPTRN (3.19)

/1+4*

Q- 16— 1)sPs= 1)s= V)P s = 1)) + 05— 1)5sPis - n(Y)PL(Y)
1 _ a2
= L 2,0L_,Y). (3.20)

/1+4*

At first let us observe that for an irreducible representation v by (3.14)(3.16)
the support (1.23) of corresponding v, is contained in the set S, [cf. (0.2)].
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Moreover, since A, Z,+0 for s>0 by (2.43) and (3.6) then (3.13) determines
®L(Y). For s=0 (it can occur only if p=0) there is no A, [the map &{(Y) does
not exist since 0 is not near 0] and (3.13) is an additional condition for Z. Since
by (3.5) Co=1 we see that if p=0 then Z,=%,, i.e. Z, has to be real. In what
follows we shall consider separately two cases: p>0 and p=0. Since the
decomposition of v, into direct sum of irreducible representations is unique it is
clear that the minimal spin p is invariant of unitary equivalence. We shall denote
also S(v)=S(v,) and call it the support of v.

Proposition 3.1.1) Let v be an unitary irreducible representation of quantum Lorentz
group G with minimal spin p> 0 and let &, be the value of Casimir operator X for v.
Then %‘0 € gp.

ii) Let Z,€ &, for some peS and p>0.

Then there exists a unique (up to unitary equivalence) irreducible unitary
representation v of G with minimal spin p and for which the value of Casimir operator
X is Z,.

Moreover S(v)=S, and for any se S(v)dimH,=1.

Proof. From (3.13) we get for s=p

Zo—C.Z,
¢3S(Y)=02/ss1 Hy with @ss=_°_~s_0.

A’sssgs
Now for s=p from (3.17) and (3.18) we get the minimal equations
}'p(p+ 1)p<p:7(p+ 1)(Y)¢(lp+ 1)p(Y) + ;I'ppp(p;p(Y)z = [%‘g - (1 + qz)]IHp ’ (322)

1—q?
Op(p+ l)quxl:(p + 1)(Y)¢(1p + l)p(Y) te ppp(ptlm(Y)z = l/~
144>

(3.21)

Z,®(Y). (3.23)

Eliminating @}, +1/((Y)®{,+1),(Y) from (3.22), (3.23) and substituting %, from
(3.21) and using (3.6) and (2.43) we get the additional condition on %,:

_ 2—4p 1— 4p\2

4+ g\ - @4 F)=T L

1+4?
which implies that Z, €&, and this proves i).
Now let Z, € &, for some p>0, ie. [cf. (0.3)]
Zo=———[(¢”+q ) cosp+ig "~ ¢)sing] (3.24)

Vitd

for some ¢@e[0,2n[. To prove the existence of v one has to show that
Eqgs. (3.13)—(3.20) have an unique solution under the condition that v has to be
irreducible. From (3.22) using (3.24), (3.6), and (2.43) we get

q°—q - . 9 °+q - .
@/ss=_q|:q—(s+l)+qs+1(qp+q p)COS§0+lq_(s+1)_qs+1(q ”—q")sm(p].

(3.25)

=S S

Then Eq. (3.15) is fulfilled identically. From (3.14) we get

Py y(V)* =424 1Y) (3.26)
and (3.16) imply that for s>p,

a1 (Y)* =D 1)(Y) (327
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which is equivalent (3.26) by passing to adjoint and replacing s—s+ 1. Taking this
into account let for s=p,
Rs+ = ¢.:(s+ 1)(Y)¢(1s+ l)s(Y) = q2s+ 3[q)(ls+ l)s(Y)l2 ’ (328)
and for s>p
Ry =05, (V)P 1Y) =g~ *T Vo) (Y)1?, (3.29)

then R} 20and R; =0. On the other hand since ®(Y) is known then (3.17), (3.18)
is the set of linear equations for R}, R, and we get

L [s+p+11,[s—p+1],
[2s+2],[25+3],

x[(g*t +q V> —4cos? ]Iy, . (3.30)

|¢(1s+ l)s(Y)l2 = q

4s+4 [s+ p]q[s _p]q
[Zs]q[ZS'f- l]q

The minimal value of (¢°+¢7%) is 2 for s=0 s0 [P, ,)(Y)|?>0 for s=p and
|- 1)s(Y)[>>0 for s>p. We denote

19— 1)s(Y)I* =g [(@*+q~)* —4cos’@lly,.  (331)

[S+P+1}q[s‘l7+1]q +1 —(s+1)\2 2
% = STi4g™® —4 32

@<s_1,s=q““|/[lf%s]’f[g[;;f]]: [(¢"+4~")—4cosg]. (3:33)

Let now e, #0 be a normalized vector in H . Then e, is an eigenvector for @} (Y)
with the eigenvalue %,,. Using (3.30) we see that @, , ,,,(Y)e, +0 and normalizing

it we get the unit vector e, such that

Do+ 11p(Yep =Y 4 1)€p+1 -
Now Eq. (3.19) shows that e, is an eigenvector for @, ,,+1,(Y) with the
eigenvalue %, ), +1)- Moreover by (3.28)

1 2p+3
Ppip+ 1) (Y)epr1=0""""Yp i 1)pp-

In the same manner we can define e, , , and by induction we see that starting from a
unit vector e, e H, we get for se S, a unit vector e;e H, such that

oL (Y)e, =% e,
‘p(ls+ 1)s(Y)?s =¥ s+ 1)€s+1> (p(ls “(Y)es= Yis—1)5€s-1-
Let H be a vector space spaned by e,. Clearly dimH;=1 and
D'=Y K°‘®H,CD

seSp
is invariant under the action of 4, N, N*, Y, Y;* (j= —1,0,1) so by irreducibility
D'=D since D’ is the natural domain for the action of v on the invariant subspace
H= Y® K*®H, and H,=H, for all seS,. This ends the proof of ii). Q.E.D.

seSp
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For minimal spin p=0 we have

Proposition 3.2. i) Let v be an unitary irreducible representation of quantum Lorentz
group G with minimal spin p=0 and let X, be the value of Casimir operator X for v.
Then %, € &,.

i) Let € é,.

Then there exists a unique (up to unitary equivalence) irreducible unitary
representation v of G with minimal spin p=0 and for which the value of Casimir
operator X is %,.

Moreover

1. If o= +|/1+q* then v is a 1-dimensional representation.
2. If Zoel-)1+4* |/ 1+4*[ then S(v)=S, and for any se S(v) dimH,=1.

Proof. If vis an irreducible unitary representation of G with minimal spin p=0 then

we know that &, is real. Using the fact that [cf. (2.43)] Ag10= —% Eq.(3.17) gives

3
241 (V)01o(V) =g [+~ 23], (3.34)
q
Now from (3.14) and (3.5), (3.6) for s=0 we get as before [cf. (3.26)] that
®:(Y)=q>®},(Y) and
1
[D16(Y) =7 [(1+q%)— 23]y, (3.35)

has to be =0 so %, € &,. This proves i).
Let &,€&,. Then we can write

Xo=)/1+q*cosgp for some ¢e[0,2n[. (3.36)

Let us assume that %, = +]/1+¢*. Then by (3.34),(3.35) ®],(Y)=0and ®;,(Y) =0
so H°=K°®H,=H, is invariant under the action of Y, Y}* (j=—1,0,1) and
Y;=0 on H. Since by (1.25), (1.26), (1.20) A=1, N=0=N* on H° and by (3.4)
Y_,=74=y=0 we have by (1.44) that o= +1. From (3.3) we get

{A4,N,0,7}={1,0,1,0} for Zy=—)/14+4,
{A,N,0,7}={1,0,—1,0} for Z,=)/1+q>.

Since in any case {4, N,a,y} is the set of commuting operators it is clear that
dimH®=1.

We assume now that [%,| <|/14¢*. Then we can argue as in the case p>0. For
s>0 we get by (3.13) and (3.36), B

SLY)=H, I, with @ss=—(1+q2)%cos¢. (3.38)

(3.37)

Using this we get for se S(v):
[s+1]7

126+ (VI =47 [2s+2],[2s+3],

—(g+q~ ") cos?plly,, (3.39)

[s]; oL s
(57,025 17, L4 T4 )y

—(g+q~ ") cos® ]Iy, . (3.40)

[(qs+ 1 +q—(s+ 1))2

'cp(ls—1)s(Y)|2=q4s+4
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Since in this case cos? ¢ <1 we see that @ ;,(Y)+0 for s€ S, and for s>0 also
@ 1)(Y)+0. In the same manner as before we can construct a set of normalized
vectors {e,:e,€ H, for s€S,} such that

¢sls (Y) es = q‘?/SSeS >
¢(ls+ l)s(Y)es =Y 5+ 1)s€s+1> ‘p(ls— s(Y)es=¥ s-1)€s-1,
where %, is given by (3.37) and
[s+1]?

— s+1 —(s+1)2 __ —-1)2 2 41
Ys+1s=4 [2S+2]q[2s+3]q[(q +q )*—(q+4q )‘cos ¢], (3.41)
Yo=Y U (g —(qrqoostel,  (342)
(s=1)s [2s],[2s+1], ’

and we conclude that S(v)=S, and dim H;=1 for any s € §,,. This ends the proof of
i) Q.E.D.

The proof of Theorem 0.1 is now a straightforward corollary.

Remark. Let v be an unitary representation of G and X be the corresponding
Casimir operator. Then X is normal operator and it is clear that SpX is an
invariant of unitary equivalence. Let X = () &, then above propositions show

peS
that SpX C 2, Moreover SpX and multiplicities does not completely determine the

representation since for Z,=+]/1+¢* and Z,=+ (¢**+q*/?) there are

q2

two types of nonequivalent irreducible unitary representations: the minimal spin
pe{0,1} or pe{0,1]2} respectively. It is also clear that the minimal spin p is also
invariant of unitary equivalence so for irreducible representations it is not a
function of %,.

The last part of this section we devote to the description of the irreducible unitary
representations of quantum Lorentz group in terms of operators {4, N,a,7}. Let
us note that if v is an irreducible unitary representation of the quantum Lorentz

group G with minimal spin pe S acting on the Hilbert space H= Y ® H* then for
seS(v)

any seS(v)=S, the space H® is canonically isomorphic to K° (remember that

dimH =1):
=1 K3 x-x®e,e K"QH,=H®.

We shall identify elements of H® with elements of K*® by this isomorphism. Using
this we have

Theorem 3.3. i) Let v be an unitary irreducible representation of the quantum
Lorentz group G with minimal spin pe S and Casimir operator value Z, € &, (i.e.
q - o .
———= (" +q P)cosp+ilqg " —q")sing] £,
p>0
a2V 1+4%

//1+4* cose Jor p=0

for some ¢ €[0,2xn[) acting on the Hilbert space H=-Y® H".
seS(v)
Then there exists for any s€ S, an orthonormal basis

{fom=—s,—s+1,...,s—1,s}

(3.43)
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(cf. (1.19)) in H® such that

where

b+ic,=

Afrrsz=qm .

621

Nfm=q" %)/ [s—m][s+m+1]fm+1, (3.44)
N*fm=q )/ [s+m][s—m+1],fn_1,

(Xf,;s,:q—-s [S-m]q[s+m]qas— lfrfl_l

m

myg=m g m—
. [q—q—qﬁlbs'*‘lq*ifq_g_‘qﬂlcs]frz

1—q?

s—1

(x*f"slz__qs [S-m]q[s-*-m]qas—l m

-m m

s+ 1

—qs“[/[s—m+1]q[s+m+1]qas s

, (3.45)

q+q " 4 "—q s
— [*q +1bs‘l"_1__71'2_~qs+lcst|fm

1—¢°

+q7* Y s—m+1],[s+m+1],q,

'yfr::q—ml/[s_"m]q[s—km_1]qas—1frrsl:}

+)/[s+ml [s—m+1],(b,+ic)fs_

s+1 (3.46)

m ’

+¢" Y Is—m+1][s—m+2],a,f31, (3.47)

'y*fr::qm‘/[s_m]q[s—m_ 1]qas— lfr::—}

+)/[s—m] [s+m+ 1] (by—ic)fs . .
i1 (3.48)

+q " Y [s+m+1][s+m+2],a

2(s+1) 1 _ +1
q [S+p+ ]q[s p ]q [(qs+1+q—s—

[2s+21,  [2s+11,025+3],

)2 —4cos? ]

for p>0,

qZ(s+1) [S+1]2
[2s+2]1,V [2s+11,[25+3],

(1-4%¢° .
(g1 +g7em) @ T4 cose
. (U-a) _ _
+l(1—q28)(1_q2(s+1))(q P_gP)sing for
(1-¢%¢°

(g+q Y)cose for

(1 +q2s)(1 +q2(s+1))

[(qs+1+q—s—1)2_

(@+4q™")* cos’ ]
for p=0 (3.49)

p>0 (3.50)

p=0.

ii) Let peS and ¢@e[0,2n[ be fixed. Then operators {A,N,o,y} defined by
(3.44)—(3.48) satisfy the commutation relations (1.43),(1.44),(1.47)on D= Y K°and

seSp
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they describe an irreducible unitary representation v of G with minimal spin p and
Casimir operator value (3.43).

Proof. Let {f5:m=—s,—s+1,...,s} be the orthonormal basis (1.19) in K*~ H*
then (3.44) is clear by (1.20) and (1.25), (1.26). To compute (3.46) and (3.47) let us
remark that from (3.4) and (3.3) we get

y=Y A1, e (Y,—X)a~! (3.51)
V1+q*
SO
Vf,3= Y-y fms (3:52)
¥ fn=—e——= (Yo Su—Zo /) (3.53)

F

and it is enough to compute Y_, £ and Y, 5. By the definitions (2.16) and (2.34) we
know that for je {—1,0,1},

ijri = ¢(Y) (f;l ®fr:) = lP(s - l)s(f;'1 ®fri)@(s —1)s + lPss(fj1 ®frz)@ss
+ ¥+ 0 S s+ 1)s (3.54)

and for j= —1,0 we have to compute ¥, (f;' ®f,) for s'~s. At first using (2.30),
(2.28), (2.27), and (2.21) we can compute

T(s—l)s(fl fs)—T s— 1 s

2s—

YR =—T (3.55)
V2],
q4s 1 +q2
¥ s s(f —1 ®fss)= f:j ! .
e V2s+10,02s+2,
Now we can use the fact that ¥, is an intertwining operator for u'®u* and u*,
us'(q’s’s®1c)=('Ps's®lc)(u1®us)' (356)

Applying @u« to both sides of (3.56) and using (1.29), (1.30), (1.28) we get
NV =Y, (NT®A,+ A7 '@NY)
and since N¥f!, =0 then we get a recurrence formula
NIP (f21®fm=a¥ed f21ONF L) (3.57)
Starting with m=s by (3.55) and (1.20) we obtain from (3.57):

1 —1
Pl 80= 5] L,y

_ s+m_2]/[s+m]q[s—m+ 1]
q 2sT;

o St [ m+1] [S m+2]q s+ 1
'P(s+1)s(f—11®fm)_q2( )V [2s+1],[2s+2], Iz

V(f21®fn)= -1 (3.58)
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Combining this with (3.54), (3.52) and using (3.25), (3.32), (3.33) or (3.38), (3.41),
(3.42) we arrive at (3.47).
Now we are ready to compute also ¥, (fo ®f:). Applying ¢y to both sides of
(3.56) and using (1.28), (1.15) we get
Ns’qls’s= 'Ils's(Nl ®As+ Al_ ! ®Ns) .

By (1.20) and (3.58) this gives

+m— + 9L =
Vol fi ®F) =~/ T+ 47" [tzrf]—u[[zmll ’

1_ 2(s+m)1+ 2 + 4s+2
Vo (fi®f)=—"1 (4s z) 1 (3.59)
g1 —g™))/1+4

[s—m+1][s+m+1]
1 s\ 2, s+m q q r£s+1
Ve @) =)/T+4% ‘/ s+,

This by (3.54), (3.53) and (3.32), (3.33), (3.25) or (3.38), (3.41), (3.42) leads to (3.46).
Taking adjoints in (3.47) and (3.46) we get (3.48) and (3.45). This proves i). One can
check by computations that the operators {4, N,a,y} defined by (3.44)—(3.48)
satisfy the commutation relations (1.43),(1.44),(1.47)on D= Y K" Itis clear that

seSp
the minimal spin is p and using (3.3) we get (3.43). Using Proposition 1.5 and
Remark after the proof of Proposition 1.3 we end the proof of ii). =~ Q.E.D.

A. Appendix

In this section we give examples of calculations of coefficients listed in Sect. 2.

a) The Scalar Product of Vector Operators. By using the properties of maps
previously defined we compute for example A, ;)s and this means that we have to
compute diagram (2.42) for s'=s+ 1. Using the definition (2.27) and the fact that
p1,s=[2s+1], we shall compute at first a simpler diagram

2s lines

1 1 S 2
H = Do, 5T OLHW' H

o) ||| -
[2s+1],\q q qj=0q o
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where

[2s+2],

_m- (A.1)

Q25=

In the second row we have used (2.27), (2.23) and since o has the eigenvalue ¢g*/? on
symmetric tensors we got the last equality.
Using this we have from (2.30) and (2.31)

2s lines 2s lines 2s lines
—_— —_———

1 1
1 N/ 5@

2s lines 2s lines

! 1
=—EQ25+1® -~ =_EQ25+1Q2s I [ ‘ | ‘

where we used (2.29) to omit the first symmetrization and

1 [25+3]
)'s(s+ 1)s— _§Q2s+ 1Q25= _m
q

The rest values can be obtained in the same manner.
b) The Vector Product of Vector Operators. We compute diagram (2.45) in the case

QSSS'
Using (2.29), property (2.22) and again (2.29) we get

2s lines 25 lines 2s Ines
—_—— —_——

e
o \) l
[Cam

o = ]+

14+¢>

sym sym sym

2s lines

C\) 2q \/ 2q ) \/

o ]+ = Qe+ 5
+ 1+q2 P <Q23 1+ (12

sym
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where in the second equality we used the fact that on the symmetric tensors

2s hines
2s lines

vm

From (A.2) and (A.1) we obtain then

2q > 1+q4s+2
Qsss = Qs— + = 3 rA o
<2 BREYE q(1+¢*) [2s],

¢) The Adjoint of Vector Operator. The computation of (2.48) is simple. We use the
fact that the diagram for ¥¥, comes from the diagram for ¥ by reflecting it in a

horizontal line. By (2.20), (2.21) we have (E')* = —é E. This implies that symmetri-

zation is unchanged by this operation since it uses a selfadjoint o [cf. (2.24)].
Taking this into account we get for example for w, ,); by (2.30) and (2.32),

K&K I

idl l Pis+1)

1
K®K®Ks+1 =q_2_

N ——t pomn
@*J Jid
C ® Ks+1
1
=(=9— =— ,
q

where we used property (2.22). From this by (2.30) w4 ;)= — %
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