
Commun. Math. Phys. 152, 591-626 (1993) Communications IΠ

Mathematical
Physics

© Springer-Verlag 1993

Irreducible Unitary Representations
of Quantum Lorentz Group

Wieslaw Pusz

Department of Mathematical Methods in Physics, Faculty of Physics, University of Warsaw,
Hoza 74, PL 00-682 Warsaw, Poland

Received June 15, 1992

Abstract. A complete classification of irreducible unitary representations of a one
parameter deformation SqL(2,C) (0<q< 1) of SL(2,C) is given. It shows that in
spite of a popular belief the representation theory for SqL(2, C) is not "a smooth
deformation" of the one for SL(2, C).

0. Introduction

A theory of quantum deformations of the classical locally compact groups still
seems far from being complete. According to [16] one can distinguish a purely
algebraic (Hopf-algebra or Hopf *-algebra) level, topological (C*-algebra) level
and intermediate Hubert space (i.e. the representation theory) level. For the
compact groups the algebraic and topological approaches are equivalent since the
topological level is well understood and there is a natural way of passing to it from
the algebraic one (see e.g. [14,15]) via the Hubert space level. In effect one obtains a
smooth deformation of group structure and its representation theory.

This experience is a source of the popular belief that it is also the case for
general locally compact groups. A class of Pontryagin duals for compact quantum
groups is also well established on the C*-algebra level [8] and seems to confirm
this conviction, but for the non-compact case there is no general theory of
topological quantum deformation at the moment.

The study of other examples indicates that new phenomena can occur which
are not seen on the algebraic level:
- The deformation may not exist on the C*-algebra level (cf. [16] where non-
existence of comultiplication for quantum S17(1,1) group for real values of
deformation parameter was proved).
- The deformation on the C*-algebra level exists under some additional
conditions (e.g. restrictions on spectra of operators involved in the theory (see the
spectral condition in [16] for the case of E(2) - the group of motions of the
Euclidean plane)).
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- The deformation exists on the C*-algebra level but a representation theory is
not similar to the undeformed one. To obtain a similarity one has to impose
smoothness conditions (e.g. smooth and non-smooth finite-dimensional represent-
ations of the quantum Lorentz group in [8]).

It is clear that a study of concrete examples is very important for the proper
background of the general theory. Investigating known examples one reveals a
crucial role of a Hubert space level. In the present paper we study irreducible
unitary representations of the quantum Lorentz group [8], This will be a starting
point as well for the construction of Pontryagin dual (i.e. a quantum group of
"characters") quantum Lorentz group on the C*-algebra level as for the
development of harmonic analysis in further investigations.

The quantum deformation SqL(2,C) (0<^r<l) of SίL(2,C) = SL(2,C) intro-
duced by Podles and Woronowicz in [8] contains the quantum deformation
SqU(2) of SU(2). Any unitary representation υ of SqL(2, C) induces then a unitary
representation vc of SqU(2). Since irreducible (unitary) representations of SqU(2)
are labeled by the integer and half-integer spin parameter seS where

S = {0,il,f,2,f,3,...}, (0.1)

let p be a minimal spin occurring in the (unique) decomposition of vc into a direct
sum of irreducible representations. Let for any peS,

p ..} (0.2)

be a subset of S. By Sp we shall denote for peS and p + 0 an ellipse in C:

g= <z: z=-^=!=l(qp + q-p)cosφ + i(q~p-qp)smφ] for φe[0,2π[

(0.3)

and for p = 0 a closed interval

<̂o = [ - l / l+€ 2 , l / l+<Z 2 ] (0-4)

Let

Σq={jSp. (0.5)
peS

Then we shall prove that for any irreducible unitary representation of SqL(2, C) the
value &0 of the Casimir operator X for SqL(2, C) belongs to Σq and irreducible
unitary representations can be labeled by the minimal spin p and the value &0

analogously as in the case of classical 5L(2, C). Let

then we can state our main result

Theorem 0.1. Let #e]0,1[. There is one to one correspondence between the set ££q

and the set of unitary equivalence classes of irreducible unitary representations of
quantum Lorentz group SqL(2, C).

Moreover,
1. there are two one-dimensional representations:

f=(0, l / l+g 2 ) and the trivial one τ = (0, — 1
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2. // v is an unitary irreducible representation different from τ and τ with minimal
spin p then it is infinite-dimensional and contains any irreducible unitary represen-
tation of SqU(2) with spin seSp with multiplicity one.

To compare this result with the classical one (the case q = 1) let us denote by έ?p

the parabola

&>p = {z: z = 2{t2-p2 + l) + 4ίpt for ίe]-oo,oo[}

for p e S and p φ 0 and a halfline

^o = [0,oo[

for p = 0. Let

Σι=\)9p (0.6)
peS

and

Then the value &0 of the Casimir operator X (a linear combination of the
Laplace operators) for SL(2, C) in the unitary irreducible representation v of
SL(2, C) belongs to Σί and the set of irreducible unitary representations (unitary
equivalence classes) is labeled by <£γ (see e.g. [5, pp. 104, 144] or [1, 2]).

Fig. 1 describes the set - Σq for 0<q<l (upper part) and Σ1 (lower
part). Let us note that

P: pεS,

is a family of cofocal ellipses with focuses in points (— 2,0) and (2,0) and

{3Pp:peS, p + 0}

is a family of cofocal parabolas with focus in (2,0)
All label spaces £fq are homeomorphic for 0 < q < 1 and not homeomorphic

with 3?γ. The limit q-^\ is singular. It corresponds to moving one focus to infinity
and then representation τ disappears (there are also two complementary series in
the deformed case and one of them also disappears in this limit).

Let us observe that if v is an irreducible unitary representation of quantum
Lorentz group then τ®v is also an irreducible unitary representation [this
corresponds to the reflection Σq with respect to the point (0,0)].

In essence it was also noticed in the case of irreducible finite-dimensional (non-
unitary) representations of SqL(2, C) [8]. Since in this case the set of values of
Casimir operator is discrete it was possible to divide representations into two
parts - the smooth representations which are continuous deformations of
representations for q = \ and non-smooth one. It was conjectured [8] that this
exhausts all finite-dimensional irreducible representations of SqL(2,C). The
affirmative answer was given in [12].

Such a division is no longer possible in the case of unitary representations and
this shows that also in the case of finite-dimensional representations the non-
smooth ones are also important.
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p=2

p = 3/2

Fig. 1. Σq

A few remarks on notations: For any C*-algebra B by M(B) we shall denote the
multiplier algebra of B. Let us note that for the algebra of compact operators
CB(H) on a Hubert space H we have that M(CB{H)) = B(H). We shall say that
ψ e Mor(51? B2) if ψ is *-algebra homomorphism ψ: Bx -+M(B2) such that ψ(B1)B2

is dense in B2 (see [16, p. 402]).
We shall also use an affiliation relation in the case of "unbounded multiplier" T

and denote it TηB (cf. [16, § 1]). Then any ψ e Mor(β l 5 B2) has a unique extension
to *-algebra homomorphism from M(Bt) to M(B2) and also to elements affiliated
with Bί [16, Theorem 1.2].

Let {BM}πeN be a family of finite-dimensional (unital) C*-algebras labeled by a
denumerable set N. Then

will denote the (non-unital) C*-algebra which elements are sequences (bn)neN

tending to 0 at infinity. In this case

M(B)= b ^
neN
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i.e. beM(B) if b = (bn)neN is a uniformly bounded sequence and bηB if be X Bn

neN

[16, §1, Example 5]. By £ f i n i t e £ n we shall denote a dense *-algebra in B of
neN

sequences (bn)neN with finite number of elements different from 0.
In the paper we deal with compact as well as non-compact quantum groups. In

any case quantum group G is a bialgebra with additional "group structure". A
bialgebra is a pair (%A), where 9ί is a C*-algebra and A eMor(9ΐ, 91® 91) is a
coassociative comultiplication:

(A ® id) A = (id® A) A.

We shall say that veM(CB(H)®9l) is a strongly continuous representation of
G = (% A) (acting) on the Hubert space H if

(idH®A)v = vi2v13. (0.7)

[We use the leg notation: for any C*-algebras A, B, C and w e M(A®B) by w12 we
denote the unique image of w under the canonical morphism

ψ12eMoτ(A®B®C),

where

ψ12(a®b) = a®b®IceM(A®B®C)

for any aeA,beB, etc.] We shall say that the representation is unitary if element v
is unitary.

Any quantum group G = (9Ϊ, A) considered in this paper is a one parameter
deformation of a classical object with deformation parameter ge]0,1[ and has a
2-dimensional fundamental representation

ίulx uί2

\u21 u22

Then the algebra 9Ϊ is "generated" by {wl7-,w*} satisfying some commutation
relations. The multiplication A is then deduced from its value on the sets of
generators

There is also a counit e and coinverse (antipode) K which can be "extended" from
their values on generators:

Φ l 2 ) = - "Mil > Φ * 2 ) = - ίKl2 ,

Φn)= -Wiι> Φ * i ) = - ~w*i

For the precise meaning of "generating" and "extension" in concrete examples we
refer the reader to [8].
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The paper is organized as follows. The first section is selfcontained. It embodies
the idea that the Pontryagin dual quantum group (the universal "space of unitary
characters" for quantum group) play the same role in the representation theory of
quantum group as the Lie algebra in the Lie group theory. One has to replace
derivatives by suitable functionals. This reduces the problem of study of the
unitary representations to the problem (easier in general) of representations of the
"algebra of functions" on the dual group.

Propositions 1.1 and 1.3 states that SqU(2) and SqU(2) are mutually Pontryagin
dual groups. This combining with the structural theorem for SqL(2, C) leads to the
description of the algebra of "functions" on the dual group (Propositions 1.4
and 1.5).

To establish a useful framework for the study of representations of this algebra
we develop the method of tensor operators in Sect. 2. Using this we are able to
classify the unitary representations of SqL(2, C) (Propositions 3.1 and 3.2) and to
realize unitary equivalence classes (Theorem 3.3) in the similar way as for the
classical SL(2, C).

1. Quantum Lorentz Group SqL{2, Q

Recently, it was shown that the classical group SL(2, C) admits many one-
parameter non-equivalent deformations (see [8,18,19]). In this paper we focus on
the first known.

For q e ]0,1 [ we denote by SqL(2, C) the quantum deformation of SL(2, C) in the
sense of Podles and Woronowicz [8]. This deformation follows from an analog of
the Iwasawa decomposition for SL(2, C) and it contains the well-known quantum
deformation SqU(2) of SU(2) and its Pontryagin dual SqU(2) in such a way that
SqL(2,C) is an example of double-group construction applied to SqU(2).
Symbolically,

SqL(2,C) = SqU(2)xSqU(2). (1.1)

Since our description of unitary representations of SqL(2, C) is based upon this
decomposition we recall in the first part of this section the basic results concerning
SqU(2) and its representation theory. For more information we refer to [13, 8,
11,3].

To abbreviate the notation the compact quantum group SqU(2) will be denoted
by Gc, its dual Sq U(2) (quantum non-compact group) by Gd and by G = GcxGd the
resulting quantum (non-compact) Lorentz group SqL(2, C).

In the case of Gc = (5RC, Ac) the algebra %c of "continuous functions'" on Gc is the
C*-algebra completion of the *-algebra $£c of "smooth continuous functions" on
Gc, i.e. the *-algebra generated by two elements αc, yc such that

αc*αc + γ*γc = /, αcα* + q2y*yc = /,

αcyc = qJΛ, αcy * = qy*occ, ycyf = yfyc.

To describe a group structure on Gc it is enough to define it on the set of its
generators. The comultiplication Δc e Mor(SRc, 9ίc(x)ίRc) follows from the fact that

f) (1.3)
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is a 2-dimensional (unitary) representation of Gc, i.e.

AJpίc) = Gcc<8)occ-qγ*®γc9

Moreover, there exists a counit eceMor(9ΐc, C) given by

ec(occ) = U ec(yc) = 0. (1.5)

It is known that unitary irreducible representations of Gc are labeled by spin
parameter sεS. The corresponding unitary representation us acts on (2s+ 1)-
dimensional Hubert space Ks and useB(Ks)®stfc. The algebra 9ld of "continuous
functions tending to 0 at infinity on Gd is then the C*-algebra

Kd= Σ@B(KS), (1.6)
seS

i.e. the algebra without unity which means that we deal with non-compact case.
The algebra 9ϊd can be generated by "unbounded continuous functions" Ad and Nd

and then we have only Adη9id, Ndη9ld (cf. [16, Sect. 1, Example 5]. These
operators satisfy the following relations (cf. [8, (1.35)—(1.38)]):

Λd is positive selfadjoint,

AdNd = qNdΛd, (1.7)

Let us note that Nd differs from n in [8] by the factor (1 — q2). The comultiplication
zl^eMor^j , 9td®9td) on Gd = ($ldiAd) is defined on generators Ad,Nd by the fact
that (cf. [8, Theorem 5.1])

is a 2-dimensional representation of Gd, i.e.

1

Moreover, there exists a counit ed e Morί̂ R,,, C) defined by

ed{Ad) = \, eANJ = 0. (1.10)

The fundamental role in the Gc-representation theory plays an unitary operator

U= £ b o u n d e d u s . (1.11)
seS

Clearly, UeM(Wd®9Q. Since (cf. [8, (2.15) and Theorem 3.1 (3.3)])

(idd® AJU=U12U13 (1.12)

and

7* = Uΐ3Ut3 (1.13)
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it is called a bicharacter (U is a representation of Gc acting on 9id and U* is a
representation of Gd acting on 9ϊc). This gives a correspondence between the
unitary representations of a group and the representations of an "algebra of
functions" on the Pontryagin dual group.

Proposition 1.1. i) Let vceM(CB(H)®9{c) be a unitary representation of Gc acting
on Hubert space H. Then there exists the unique ψ?deMor(9id, CB(H)) such that

vc = (ψd(g)idc)U. (1.14)

ii) Let xpd e Mor(9ld, CB(H)). Then vc defined by (1.14) belongs to M(CB(H)®9lc) and
it is a unitary representation of Gc.

Proof. The first part of the proposition follows from the more general Theorem 2.1
[8] in the special case of the C*-algebra CB(H). Since U is the unitary operator, the
unitarity of vc in (1.14) is obvious and by simple calculations using (1.12) we get that
vc is the unitary representation of Gc and ii) follows. Q.E.D.

Now we shall describe the correspondence vc-+ψd in a more convenient way, i.e.
in terms of

A = ψd(Ad), N = ψd(Nd).

To this end let's define linear functionals φA, φR, a n d ΨN o n the algebra s/c such
that for any a,bes/c9

φA(ab) = φA(a)φA(b), φR(ab) = φR(a)φR(b),

φN(ab) = φA(a)φN(b) + φN(a)φR(b).

They are uniquely defined by their values on the set of generators {α, α*, γ,7*} of
the algebra s4c (cf. [8, Eqs. (5.1), (5.2)] and [9]):

φA{*c) = cill2 = φRW), <PA(*?) = q-1/2 = <pj!ti,

9 * ( y ) = - « - 3 / 2 , φA(Ic)=l=φR(Q,

and the other values are 0. (Let us note that our φN differs by the factor (1 — q2) from

{12 in [8].)
Since any element Tη % = Σ® B{KS) is a sequence (T s) s e S, where Ts e B{KS) we

have that seS

S, Nd = (Ns)seS. (1.17)

It was shown (see the proof of Theorem 5.1 in [8]) that for 5 6 S,

(idκs® φ A)(us)* = As, (idκs®φN)(uT = Ns, (idκs®φR)(us)* = A^.

We shall shortly write this as

Ad = (idd®φJU*9 Nd = (idd®φN)U*, A^1 =(ιdd®φR)U*. (1.18)

As9 Ns belong to B(KS) and satisfy relations (1.7) so they define the representation of
C* - algebra 9ίd which corresponds to the unitary representation us of Gc.
Moreover (cf. [8, Corollary 5.2]), there is the canonical orthonormal basis

m = - 5 , - s + l,..., 5-1,5} (1.19)
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in Ks such that

(1.20)

where

\-q2n

Let us note that the canonical basis (1.19) is determined by (1.20) up to
m-independent complex number of modulus 1 and can be fixed by identification of

2s 2s

Ks with the subspace of the ^-symmetric tensors in (x) K1/2. Then / / = (x) //A2.

For w1/2 (in this case Ki/2 = C2) we have by [8,(5.8)] the correspondence

and then for 5 = 1,

fl_f 1/2^ fl/2 fl _fl/2 /σv/Ί/2
Jl — Jl/2 yyJl/2 •> J-l—J-l/2{&J-l/2>

1

Now let ^ e Mor(9ϊd, CB{H)) and fc be the corresponding unitary representation
of Gc acting on # . Since 5Rd is a direct sum of full matrix algebras then

H= Σ ® t f s = Σ®KS®HS (1.22)
seS seS

and φίJ(αs) = α s®idH β6B(/ί s) for any as belonging to the subalgebra B(KS) of 9ld.
The decomposition (1.22) corresponds to the decomposition of vc into a direct sum
of irreducible unitary representations of Gc and vc restricted to Hs is us®idHs. The
dimension dimHs is a multiplicity of ws in υc [or equivalently 5(KS) in φ j . Let

(1.23)

and

D= X " i
seS(t;c)

Then iS(fc) will be called a support of vc (or a support of ψd) and D will be called the
natural domain for υc (and ψd) since it is a dense linear subset of H invariant under
the action of vc and an invariant essential domain for a selfadjoint operator

A = ψd(Λd) = Σ As®idHs (1.25)
seS(t;c)

and closed operator

= Σ Ns®idHs, (1.26)
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and hence for its adjoint N*. It is clear that A, N, and JV* satisfy (1.7) on D and
completely determine ψd. Now let xeHs, then φ ® / J e D ® a , g 4 and

Ax = ψd(Ad)x = (

In the same manner we can compute Nx and we get

Corollary 1.2. Lei i;ceM(CB(if)®9tc) foe α unitary representation of Gc acting on
the Hilbert space H, ψd e M o r ^ ^ , CB(H)) be the corresponding representation of 9ίd

and D be the natural domain for vc. Let A = ψd(Ad\ N = ψd(Nd).
Then for any xeD,

Ax = (idD(x) φA)v*(x(S)Ir) •>
(1.27)

Nx = (idD®φN)vf(x®Ic).

Remark. This shows that in the sense of operators on D we have equality

A = (idD (x) φA)υf, N = (idD (x) φN)vf.

Let us note that using unitarity of υc and property (1.15) of φA, φN, and φR we can
also compute that

(idD®φ^)ί;c = ̂ 4~1, (idD®φR)vc = A, (idD®φN)vc= N (1.28)
4

as for operators on D. Let φ*(a) = φ(α*) for any φ e srf'c and aesrfc then φ* e sί'c. For
φN*: = φ* we get

AT* = (idI)(8)<joN )t;c. (1.29)

Since [cf. (1.16)] φ * = φ Λ , ΨR = ΨA w e have by (1.15) that

φm{ab) = φA{a)φm{b) + φm(a)φR{b), (1.30)

and using this

(idD®φN*)vf=--N*. (1.31)

Now we shall prove that Gc = SqU(2) is a Pontryagin dual to Gd, i.e. Gd = Gc.
This statement is not true for general compact quantum group and is closely
related to the fact that the Haar measure hc may not be faithful on the whole 5RC but
this does not occur in the case of SqU(2).

Proposition 1.3. i) Let vdeM(CB(H)(g)9id) be a unitary representation of Gd acting
on Hilbert space H.

Then there exists the unique i/JceMor(9ϊc, CB(H)) such that

vd = τd(idd®ψc)U*, (1.32)

where τd is a flip τd:
ii) LetψceMoτ(%,CB(H)).

Then vd defined by (1.32) belongs to M(CB(H)®9{d) and is a unitary represen-
tation of Gd.
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Proof. The unitarity of U* implies that the operator vd defined by (1.32) is unitary
and simple calculation using the bicharacter property (1.13) shows that it is a
representation of Gd.

Now we shall prove i). Let vd be a unitary element of

M(CB{H)®<${d) = M(Σ® CB(H)®B(KS)\ = £boundedB{H)®B(KS)
\seS ) seS

and πseMor(5Rd,B(KS)) be the canonical projection then

Vd= ^bounded y S ?

seS

where vs = (idH®πs)vd. Choosing for any seS the canonical orthonormal basis
(1.19) in Ks we get the isomorphism B(KS) ~ M2s+ i(C). Let {m^ } be the matrix units
for M2s+1(C) then vseM2s+1(B(H)) and

for some x? e£(#). Analogously, for U= £ b o u n d e d

M

s we get
seS

where α 7 e j / c are matrix elements of us. Since the matrix elements of the
irreducible unitary representations of Gc form a linear basis of the vector space s/c

[14, Theorem 5.7(1)] then the map \pc\srfc^B(H) defined by

ψMj) = xϊj (1.33)

is linear. We have to prove that if vd is a representation of Gd then ψc is a
multiplicative and *-preserving map. The multiplicativity of ψc follows from the
fact that

( A d ® i d c ) U = U 2 3 U ί 3 = Σ n j j
s,s',i,j,ϊ,j'

and

(idH® AM = (vd)Uvd)Ϊ2 = Σ 4yA& K® "ti r
s,s',i,j,ϊ,ϊ

so

Ψc(aίΊ>aϊj) = xf'fXΪj = Ψc(4r)ψMj)

for any s, sf e S.
Now for s= 1/2 the representation u1/2 is given by (1.3) so

Using the multiplicativity of ψc and unitarity of M1 / 2 we get

cQ - q ψ c { y * ) \ ( ψ M ) ψc(γf)\ ( I H 0

o ij ( 1 3 5 )
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in M2(B(H)). Since vd is unitary then (t;1/2)* in (1.34) is an unitary matrix in
M2(B(H)) and from (1.35) we get

(αc) -qψc(y*)\* = / ψc(otc)* ψc(yc)*

(yc) ΨM)J \-<IΨM)* ψc(<*ϊ)*.

and tpc(α*) = φc(αc)*, ψc(yf) = ψc(yc)*. This means that ψc:stfc-+B(H) is the unital
/β QQ

*-homomorphism. Moreover, (i;1/2)* is the unitary matrix of the form
\c a

so a = ψc((xc), c = ψc(yc) has to satisfy the relations (1.2) (cf. [8] remark after (1.33))
and ψc has the unique extension to a C*-representation of 9ίc in B(H) [13, Theorem
1.1]. Since % is the unital C*-algebra this implies that y;ceMor(9ίc, CB(H)) and
ϋ* = τd(idd®ψc)U. This proves the existence of xpc satisfying (1.32). The uniqueness
of ψc follows from the fact that any ψc e Mor(9ίc, CB(H)) is uniquely defined by its
values on stc but if ψc satisfies (1.32) it has to satisfy (1.33) which completely
determines ψc on sίc. Q.E.D.
Remark. Propositions 1.1 and 1.3 show that Gc and Gd are mutually Pontryagin
dual groups. Let a denote one of the letters c or d and c = d, cί=c. Then the
correspondence va^>ψά is natural in the sense that for any unitary representations
v^Kv™ of Ga acting on the Hubert spaces H1 and H2, respectively and
corresponding representations ψ^, ψ{

ά

2) of 9lά we have

{teB(HuH2): (t®iyv = v(a

2\t®Ia)}

= {teB(HuH2): tψ£\x) = ψ£\x)t for all xe%}

(cf. Remark preceding § 4 in [8]). In particular, unitary representation va of Ga is
irreducible if and only if the representation ψά of Mά is irreducible. Let us note also
that any operator t e B(HU H2) intertwines representations v[ι) and v[2) if and only
if it maps natural domains into itself t\D1-±D2 and for any yeD1,

¥ΛAd)y = ψf\Ad)ty, ttfWy = ψd

2\Nd)ty,

The last part of this section we devote to the description of unitary
representations of quantum Lorentz group in terms of the representations of Gc

and Gd. Let G = (% A) be the quantum Lorentz group. The algebra of "continuous
functions tending to 0 at infinity" on G is

If

σ:<

is given by

σ(a<g)x)=U(x®a)U* 9 (1.36)

where U is the bicharacter (1.11) then

Δ=(iάc®σ®iάd)(Ac®Δd).
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The counit is given by e = ec®ed (cf. (4.9), (4.16), (4.17), and Theorem 4.1 in [8]).
Let pc = idc®ed and pd = ec®idd then pceMor(9ΐ,9ΐc), p d eMor(9ΐ ,9y. They

correspond to the embeddings GC^G, Gd^G. The structural theorem for unitary
representations of G is related to these embeddings.

Proposition 1.4. i) Let v e M{CB(H)®yί) be a unitary representation of G acting on
the Hubert space H and let

vc = (idH®pc)v, vd = (idH®pd)v. (1.37)

Then vc e M{CB(H)®SRC), vd e M{CB{H)®%) and they are the unitary represen-
tations of Gc and Gd, respectively, acting on the Hubert space H satisfying the
compatibility condition

(vd)i2(vc)i3 = (idH®σ)(Vc)i2(Vd)i3 (1-38)

v = MM13. (1.39)

ii) Let vc e M(Cl?(i7)(x)9ΐc), vd e M{CB{H)®yid) be the unitary representations of
Gc and Gd, respectively, acting on the same Hubert space H and satisfying the
compatibility condition (1.38).

Then v defined by (1.39) belongs to M(CB(H)®9i) and is the unitary representa-
tion of G.

Proof. The arguments used in the proof of Theorem 4.4 in [8] for the case of finite-
dimensional representations of G are still valid. One has to check the unitarity
condition only but this is obvious because pc and pd are morphisms. Q.E.D.

This proposition reduces the study of unitary representations of G to the study
of the pairs of unitary representations of Gc and Gd, respectively, acting in the same
Hubert space and satisfying the compatibility condition (1.38). In view of
Propositions 1.1 and 1.3 and Corollary 1.2 we would like to replace the unitary
representations va vd by corresponding representations ψd, ψc of algebras 9ίd and
9ΪC, respectively. The main problem is to express the compatibility condition (1.38)
in terms of xpd and ψc. A partial solution to this was given in [8, Proposition 4.5].

Let ψceMor(9lc, CB(H)) corresponds to vd and let for αe9l c ,

a * ψc: = (ψc®idc)Δc(a), ψc * a: = τc(idc®ψc)Ac(a),

where τc is a flip τ c : y{c®B(H)->B(H)®9lc.
It was proved [8, Proposition 4.5] that vc and vd satisfy compatibility condition

(1.38) if and only if

(a*xpc)vc = vc(ψc*a) (1.40)

for any αe{αc,α*,7c,y*}. To abbreviate the notation we shall denote

α = φc(αc), y = ψc(yc).

Then aeB(H), yeB(H) and they satisfy relations (1.2). Now (1.40) reads

(α ® ac — qy * ® yc)vc = vc(<x ® ac — qy ® y*),

(α*® α* — qy®yf)vc = t?c(α*® α* — qy*® yc),
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We have

Proposition 1.5. Let ι;ceM(C£(iϊ),9ϊc) and vd e M{CB(H\ 9td) be the unitary
representations of Gc and Gd acting on the same Hubert space H and let

D=
seS(vc) seS(vc)

be the natural domain (1.24) for vc. Let ψd9 ψc be the corresponding representations of
algebras 9id and 9ΪC, respectively on H and

(1.42)
= ψd(Ad), N

cc = ψc(<xc), y=ψ c (y c )

be the generators of these representations (i.e. A and N have the form (1.25) so they
satisfy relations

A = A*>0,

AN = qNA,

1
(A~2-A2)

on D and

onH).
Then the following conditions are equivalent:

i) vc and vd satisfy the compatibility condition (1.38).
ii) The operator

t =
α -qγΆ

eM2(B(H))

is an (unitary) intertwining operator for the unitary representations

acting on H = H®K1/2, i.e.

iii) a.D^D for any ae{α,α*,y,y*} and the following relations

Aa = aA, Ay= -yA,

= qocN-qy*A, Ny = yN+ -
q

9

are satisfied on D.

(1.43)

(1.44)

(1.45)

(1.46)

(1.47)
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Proof Let us identify H = H®K112 = H®H. Then using (1.3) the condition (1.46)
means that

ίυc 0\/α(x)αc —gyφ'y*, — qy*®ccc —

0 vj \ α® f *

/α(g)αc — qy*

\ 0L*®yc + y®ac, — gy®y* + α*®α* / \0 ι;c

and this are exactly the relations (1.41) so i) and ii) are equivalent. Now the
intertwiner property (1.46) is equivalent to the statement that t maps the natural
domains D^D^for Vc

{1) and Vc

{2\ respectively, into itself and intertwines the
generators Au Nx and A2, N2 of the corresponding representations \pd

ι\ ψd

2\ Since

then by (1.45) a(D)cD for any αe{α,α*,y,y*}. Moreover, using (1.28) and
properties (1.15) and (1.16) of functionals φA, φR9 and φN we get

q°N)
Now relations tA1=A2t, tN1=N2t are the same as relations (1.47) so the
equivalence of ii) and iii) follows. Q.E.D.

Let us note that Eqs. (1.43), (1.44), and (1.47) imply that an algebra of continuous
functions tending to 0 at infinity on a dual group G of the quantum Lorentz group
G is "generated" by {A, N, α, y} so it contains the algebras 9ΪC, 9ΐd, but this is not
the tensor product of them. Let us denote it symbolically by

Then one can define A=AcQAd, έ = ecQed, and κ = κcQκd which will impose the
Hopf *-algebra structure on 9i or equivalently it will define the Pontryagin dual
group G on the Hopf *-algebra level. Since Gc and Gd are mutually Pontryagin
dual groups one could expect that the quantum Lorentz group is selfdual, but as
we see it is not the case. A Hopf algebra structure was recently studied in [10, 6].

Proposition 1.5 reduces the problem of classification of the unitary representa-
tions of quantum Lorentz group to the problem of classification of four operators
{A,N,a,y} satisfying on D the relations (1.43), (1.44), and (1.47). For operators A
and N it is clear. To incorporate operators α and y into this scheme we use the
method of tensor operators.

2. Tensor Operators

2J. Basic Notions and Operations

Let fceM(CB(#)(x)9ίc) be a unitary representation of Gc acting on the Hubert
space H, ψd be the corresponding representation of 9ΐd and

A = ψd(Ad), N = ψd(Nd)
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be the generators of this representation. Let

Π v'Πmte Tjs xp finite Ί>^s/r>.ττ /Λ -J\

Lf= 2^ •" 2 J -**• 09 i * s l~ -U
seS(fc) seS(υc)

be the natural domain for vc. We shall consider an *-algebra of linear (in general
unbounded) operators (cf. [4])

L+(D) = {T: DT = D, D Γ θ D , T(D)cD, T*(D)cD}. (2.2)

Clearly, any TeL+(D) is a closeable operator on H. There is an induced action of
Gc on the *-algebra L+(D)

Vc(T): = vc(T®Ic)υf for any TeL+(D) (2.3)

since it is easy to check that

Taking in mind (1.28), (1.15), (1.29), (1.30), and (1.31) we get for generators A, ft, ft*
of the corresponding representation of 9ld,

) = ATA~\

= NTA~1-qA-1TN9

1 1 - 1

q

In what follows we shall consider s-tensor operators, i.e. sets of operators which
transforms under the action of Vc according to the representation us of Gc. Since we
will be interested only in the case of 5= 0 and s = 1 we shall restrict our definition of
s-tensor operators to this particular case.

Definition 2.1. i) An operator XeL+(D) is called a scalar operator if

VC(X) = vc(X®Ic)vf = X®IC. (2.5)

The set of all scalar operators will be denoted by 3Γ°(D).
ii) A triplet

»-£).
where Yl9 Yo, Y_ί belong to L+(D) is called a vector operator if

3 C J C fce{-l,0,l}

for je{ —1,0,1} and any xeD.
The set of all vector operators will be denoted by ZΓX(D).
Using (2.4) and (1.20) we see that

1. J f6^°(D)i f and only if

AX = XA, NX = XN, Λί*X = X/V* (2.8)

on D. This implies that ^°(D) is a *-algebra.
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2. Ye#~\D)if and only if

, A YQ = YQA ,

i = -Y1N9 N*YX = - YXN* +
Q 9

YXA,

Y0A,

Y_XA9

607

(2.9)

Y0A,

on D. Clearly, 3Γι(D) is a vector space and also a bimodule over JΓ°(
For any Ye^HD) let us define

Then using (2.9) it is easy to show that the map

(2.10)

is an antilinear involution in 2Γγ(J)\
Since the tensor product of two u1 representations of Gc decomposes into a

direct sum w0®^1©^2 one can expect that there exist two bilinear maps

and

F \ΰ) x 2Γ\ΰ) 3 (Y,Z)^YxZe y\ΰ). (2.12)

This is really the case and using (2.8), (2.9) one can check that operations

Yi
\ I 1

(2.13)

-q2)Y0Z0\ (2.14)

called the scalar product and the vector product of vector operators satisfy
requirements (2.11) and (2.12), respectively.

2.2. Basic Maps

Tensor operators on D are intertwiners for the appropriate actions of Gc. We use
this fact to describe a structure of such operators and related operations described
above.
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Let X e ^~°(D) be a scalar operator on the natural domain D for the unitary
representation vc of Gc [i.e. D has the form (2.1)]. Then by (2.5) it is an intertwining
operator for vc on D. Since X is closeable and vc restricted to Hs is us®lHs and us is
an irreducible representation of Gc then

X= Σ /*.®Φ?(*), (2.15)
seS(vc)

where Φs(X)e5(i/s) is a bounded operator on Hs for any 5eS(vc). In what follows
22s

we shall identify Ks for s ^ 1 as the ^-symmetric part of (x) K1/2 where X 1 / 2 is a

2-dimensional carrier Hubert space of the fundamental representation uί/2 [cf.
(1.3)]. For s = l we shall abbreviate X X = X . Let { / ^ : m = - s , - s + 1 , ...,s-l,s} be
the canonical basis (1.19) in Ks. For Ye3Γι(D) let us define a map

(2.16)

It is clear using (2.7) that Φ(Y) is an intertwining operator for the Gc actions by
uι®vc on K®D and vc on D. Since for any seS the tensor product of

s + l
representations w1 and us has a decomposition into a direct sum 0 ws' we

s' = | s - l |

define a proximity relations for spins s, sf e S. We shall say that s' is near s and denote
it by s' ~ s whenever us> is contained in the tensor product of u1 and us. This means
that

( s'e{s-t,s,s + l} for s ^ l ,

s'~s if and only if I 5'e{ 1/2,3/2} for s = l/2, (2.17)

l s ' = l for s = 0.
To describe in more detail the structure of operator Φ(Y) and operations
mentioned previously we shall fix some intertwiners for Gc actions. To this end we
use technique of diagrams.

By one vertical line we denote an element of K1/2. Since w1/2(χ)u1/2 = w 0 ©^ 1 and
the corresponding decomposition is

(this corresponds to the decomposition into ^-antisymmetric and ^-symmetric
tensors) then there are two intertwiners:

, E':Kί/2®K1/2->C. (2.18)

We shall denote them by

E=/\, F=V (2.19)

and fix as

W)=f±lϊ,2®ftlZ-<lf$®nι}i2, (2.20)
and

1/2 Q9J-1/2) — I
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One can check that

and

EE =

Let us define an intertwiner

by

σ - Λ
Then σ satisfies a quadratic equation

609

(2.22)

(2.23)

(2.24)

1

and σ has two eigenvalues: q1/2 on K1 =K and — q~3/2 on K° = C. One can also
check that σ satisfies the braid equation. Using (2.24) and (2.22) we have

(2.25)

2s

Let X<Ξ (x) K1/2 then xeKs if and only if

- 0,

where E is applied to any pair (f, i +1) of lines.
We shall also need a symmetrization operator (intertwiners)

Ψis+i)s:KV2®Ks-+Ks+K Ψis+ί)s:K®Ks^Ks+1.

Since Ks+* and Ks+1 can be identified as subspaces of K1/2®KS and
respectively, we can take

(2.26)

U
(2.27)
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2s

where pγ s= £ q2jr is a normalization factor,
j=o

I . !ym. I
h.

(2.28)

and p2,s

= Σ q(2j+k) is a normalization factor. They are projections as
j,k = 0,j + k^2s

can be seen using (2.26) and (2.24). In particular,

(2.29)

Λ
Now we fix intertwiners

for s'~s:

and let

Θ\C->K®K,

be fixed operators given by

C

•i -
κ®κ

:K®K^C, T:K->K®K

c -

Nowfor

seS(vc) s'eS(vc)

KS'®HS,

(2.30)

(2.31)

(2.32)

(2.33)
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can be written as

= Σ
s',seS(vc)

611

(2.34)

where Φ^S(Y)EB(HS,HS>) for s,s'eS(vc)9 sr~s and completely determine Φ(Y):

K®HS K®KS®HS

Since

and

Φ(Y) = Ψ

Hs> K

-μ -

(2.35)

(2.36)

-11®/i1 -//®/-1) + (1 -q2)fo ®/o] , (2.37)

we get by (2.16) for

and

C (x) D

id

D

id I | φ ( Z ) = Y Z

® D D
—v

Φ(Y)

K®K®]1 K®D

Φ(Z) =

K ® D

Φ(Y)

(2.38)

(2.39)
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Moreover, since for x e D

and

Φ(Y)*x=

we have

1

K (x) D

(2.40)

Now we can compute ΦS°(Y Z), Φ^(Y x Z), and Φ^(Yf) in terms of Φ^(Y) and

a) The Scalar Product of Vector Operators. From Eqs. (2.15), (2.16), (2.13) using

(2.38) and (2.36) we have CQK-QH

KS®HS

id Φ£(Y Z) =

so

where

Xs

ΦS°(Y.Z)=

c ® κs

κs

i v

(2.41)

(2.42)
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The λss>s for s' ~ s in (2.42) can be computed and

C 2 S " ' " J 4 for s > 0 , (2.43)
5SS <?2(l+<?2)[2s]

1

λs(s-l)s= f ° Γ S ^ l .

For more details see Appendix.
b) The Vector Product of Vector Operators. We compute Φ^(Y x Z). Using
definition (2.14) and Eqs. (2.39), (2.37), (2.36) we have

K (x) KS®HS

K®K (g)

id

s"
 s

's"~s> K

Ks (x) Hs,
and

Φl>s{Y x Z) = Σ Qss'sΦls'WΦl'siZ), (2.44)
s":S",~S,s ~s

where

Ks K®KS

s»s =QsW's \ψs's. (2.45)

A. (X/ Λ- Λ-

k

One can compute ρs.s»s for s'~s", s"~5, s'~s (see Appendix):

β(.- l )( .- l ) .= ϊ ^ 2 f θ Γ S ^ 1 ' β * - D . = 1 f θ Γ S ^ 1 '

_ C25+4],
ρ -

Γ2s + 2] l + < 7 ( 4 s + 2 )

iτ?ϊ2iϊ; f o r s ^ ' g-=-, (i+^)[2,] f o r s > 0 '
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c) The Adjoint of Vector Operator. From (2.40), (2.10) and since

Φ(Y)* = Σ ( ^ ^
s1 ,s:s' ~s

we get

(2.47)ψ

The computation of

gives (cf. Appendix):

ω(

Comparing this with

-1
Ί<ΓS' 6

J

i d

1

S + l ) s -

(2.47)

S®H

J

1
K(g)l
" v

C

1

one

s

s'

® X s '

' s s

obtains:

K

idj

-K

--ωs

®

®1
-v

•I
C

K

. Ks (

' 1"

( s - 1,

g) H s

Φί.'(Y)
ψ

®iJ s '

® H S .

(2.48)

(2.49)

(2.50)

At the end let us remark that since SΓx{ΰ) is a bimodule over ^"°(ί)) we have for
\ and I e J 0 ( D ) that YXe^\D) and X 1

3. Irreducible Unitary Representations

This section is devoted mainly to the proof of Theorem 0.1. We describe all
irreducible unitary representations of quantum Lorentz group, i.e. irreducible
families of four operators {a,y,A,N} satisfying relations (1.43), (1.44), and (1.47).
Let us define

(3.1)
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i+q2
-NA

1+q2

:N*A

(3.2)

(3.3)

and

Y =
/l+q2

γA

(3.4)

Using (1.43), (1.44), and (1.47) one can check that operators C, X satisfy (2.8) and
Z,Y satisfy (2.9) so

CeΓ°(D), Xe^°(D), Ze^ι{D), YeJ'(D).

The operator C is essentially selfadjoint on D and commutes with A, N, and N* so
it is a Casimir operator for SqU(2). Since the action of operators A and N on D is
known, then using (1.25), (1.26), and (1.20) one can compute [cf. (2.15)] that

for seS(ve),

q~2s(l+q4s+2)

Cs=*—f±4 for seS.
1+q2

(3.5)

Taking into account that Hs is invariant space for A, N, and N* we see that Φl
can be φθ only if s' = s then by (2.30) and (2.34) we have

q(q~2s-q2s)

for

for seS,
(3.6)

soΦ(Z)=
seS(vc)

Using again commutation relations (1.43), (1.44), and (1.47) one checks that X
commutes with A, N9 α, y, and their adjoints so it is a Casimir operator for SqL(2, C).
Moreover, A, N, α, y and their adjoints are bounded on Hs for any s e S(vc) and Hs is
invariant subspace for X so X is a normal operator and D is an essential domain
for it. Now relations (1.43), (1.44), (1.47) imply

X =X'(^-\-\ /J, (3.7)

Y* = ]/i+q2YxZ-q2Y C, (3.8)

Y.Y=ΛT 2 -(l+q 2 )/, (3.9)
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(3.10)

This shows that the set of operators {A, N, α, y} satisfying (1.43), (1.44), and (1.47)
can be replaced by the set {A,N,X, Yί9 Yo, Y_x} of operators satisfying (2.9) and
(3.7)-(3.10). For irreducible set of operators we have an additional condition that

for some complex number f o e C . (3.11)

Remark. Let us note that the C*-algebra associated with quantum spheres of
Podles [7] can be generated equivalently by coordinates of vector operator Y such

t h a t Yf = Y, Y Y = ρ/, Y x Y = /lY

for some real ρ and λ. We see that in our case the C*-algebra generated by
coordinates of Y and Yf in the case of an irreducible unitary representation of G
will correspond to "complexifϊcation" of quantum sphere.

Let p denote a minimal spin in the unitary representation vc9 i.e.

= min{s: seS(vc)}, (3.12)

then Eqs. (3.7) and (3.8) by using (2.50), (2.41), (2.44), and (3.5), (3.6) can be expressed
in terms of the corresponding mappings and we get for seS(vc):

(3.13)

(3.14)

(3.15)

Let us note that Φ j . 1)S(Y) = 0 whenever s<p + l. Analogously, Eqs. (3.9) and (3.10)
lead to

(3.17)

(3.18)

(3.19)

(3.20)

At first let us observe that for an irreducible representation v by (3.14)—(3.16)
the support (1.23) of corresponding vc is contained in the set Sp [cf. (0.2)].
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Moreover, since λsss&sή=Q for s > 0 by (2.43) and (3.6) then (3.13) determines
ΦlJY). For s = 0 (it can occur only if p = 0) there is no λ0Q0 [the map ΦQOOO does
not exist since 0 is not near 0] and (3.13) is an additional condition for 3CQ. Since
by (3.5) C 0 = l we see that if p = 0 then ^ 0 = $"0, i.e. SC0 has to be real. In what
follows we shall consider separately two cases: p>0 and p = 0. Since the
decomposition of vc into direct sum of irreducible representations is unique it is
clear that the minimal spin p is invariant of unitary equivalence. We shall denote
also S(v) = S(vc) and call it the support of v.

Proposition 3.1. i) Let v be an unitary irreducible representation of quantum Lorentz
group G with minimal spin p>0 and let 3£0 be the value of Casimir operator X for v.

ii) Let SCoeSp for some peS and p>0.
Then there exists a unique (up to unitary equivalence) irreducible unitary

representation vofG with minimal spin p and for which the value of Casimir operator
X is #o

Moreover S{v)~Sp and for any seS(v)dimHs=ί.

Proof. From (3.13) we get for s^p

Φl{Y)=®JHs with <Sfa=
X°~Cf\ (3.21)

Now for s=p from (3.17) and (3.18) we get the minimal equations

pppΦpp(Y)2 = \βl - (1 + q2)VHp, (3.22)

4 (3.23)

Eliminating Φ^p + 1 )(Y)Φ^+ 1 ) p(Y) from (3.22), (3.23) and substituting <8fpp from
(3.21) and using (3.6) and (2.43) we get the additional condition on SC0\

2- 4p/4 __

which implies that 2C0 e Sp and this proves i).
Now let Xoeδp for some p > 0 , i.e. [cf. (0.3)]

(3.24)

for some φe[0,2π[. To prove the existence of v one has to show that
Eqs. (3.13)—(3.20) have an unique solution under the condition that v has to be
irreducible. From (3.22) using (3.24), (3.6), and (2.43) we get

(3.25)
Then Eq. (3.15) is fulfilled identically. From (3.14) we get

<s + i )(Y)* = ̂ 2 s + 3^(S +i)s(Y) (3-26)

and (3.16) imply that for s>p,

ί 2 s + 1 Φi ( s - 1 )(Y)* = Φ(1

s-i)S(Y) (3-27)
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which is equivalent (3.26) by passing to adjoint and replacing s->s + 1 . Taking this
into account let for s^p,

^ j ) ^ ) ( 3 . 2 8 )

and for 5 > p
1 i ( 2 + 1 ) U 2 (3.29)

then i?s

+ ^ 0 and R; ^ 0. On the other hand since Φ*S(Y) is known then (3.17), (3.18)
is the set of linear equations for R*,R^ and we get

ί(qs+1 + q"<s+ υ ) 2 -4cos 2 ψ]I H s • (3.30)

. (3.31)

The minimal value of {qs + q~s) is 2 for 5 = 0 so |Φ (

1

s + 1 ) s(Y)| 2>0 for s^p and
2 > 0 f o r S > P W e denote

- ( 3 J 2 )

Let now ep # 0 be a normalized vector in Hp. Then ep is an eigenvector for Φpp(Y)
with the eigenvalue <gfpp. Using (3.30) we see that Φ^+\)P(Y)ep φ 0 and normalizing
it we get the unit vector ep+ί such that

Now Eq. (3.19) shows that ep+1 is an eigenvector for Φ Q , + I ) ( P + I ) O 0 with the
eigenvalue ^ ( p + 1 ) ( p + 1). Moreover by (3.28)

In the same manner we can define ep+2 and by induction we see that starting from a
unit vector ep e Hp we get for s e Sp a unit vector es e Hs such that

Let H's be a vector space spaned by es. Clearly dimH's=Ί and

D'= £ KS®H'SCD
seSp

is invariant under the action of A, N, N*, Yj9 Yf {j=—ί9 0,1) so by irreducibility
D' = D since D' is the natural domain for the action of v on the invariant subspace
H= Σ® X s ®i/; and H; = HS for all seSp. This ends the proof of ii). Q.E.D.
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For minimal spin p = 0we have

Proposition 3.2. i) Let v be an unitary irreducible representation of quantum Lorentz
group G with minimal spin p = 0 and let SC0 be the value ofCasimir operator X for v.
ThenSCoeSo.
ii) Let^oeSo.

Then there exists a unique (up to unitary equivalence) irreducible unitary
representation v of G with minimal spin p = 0 and for which the value of Casimίr
operator X is S£Q.
Moreover

1. If SC0 = ±]/ί+q2 then v is a ί-dimensίonal representation.

2. If # o e ] - ] / l + g 2 , }/l+q2l then S(v) = S0 and for any seS(v) dim# s = l.

Proof, lΐv is an irreducible unitary representation of G with minimal spin p = 0 then

we know that $C0 is real. Using the fact that [cf. (2.43)] λOίO = ^ Eq. (3.17) gives

3

 q

Φ έ i ( Y ) Φ ί o W = ? | Γ [ ( l + ^ ) - ^ o 2 ] . (3.34)

Now from (3.14) and (3.5), (3.6) for s = 0 we get as before [cf. (3.26)] that
Φji(Y) = <73ΦϊoW and

\ΦUn2=\m+q2)-nVH0 (3.35)
q

has to be ^ 0 so XQeS0. This proves i).
Let 3CQ e So. Then we can write

SCQ = γί+q2 cos φ for some φ e [0,2π[. (3.36)

Let us assume that 3C0 = ± }/l+q2. Then by (3.34), (3.35) Φ\0(V) = 0 and Φjx(Y) = 0
so H° = K°®H0 = H0 is invariant under the action of Yp Yf (/'= —1,0,1) and
Yj = 0 on H°. Since by (1.25), (1.26), (1.20) A = l, N = 0 = N* on H° and by (3.4)
γ_ί=yA = y = 0 we have by (1.44) that α= ± 1 . From (3.3) we get

μ,JV,α,y} = {l,0,l,0} for f o = - / ϊ + ? ,
(3.37)

μ,JV,α,y} = {l,0,-l,0} for %0 = ]/\+q2.

Since in any case {A, N, α, y} is the set of commuting operators it is clear that
°

We assume now that | ^ 0 | < | / l +q2. Then we can argue as in the case p>0. For
s>0 we get by (3.13) and (3.36),

Λ <r-4s

with <Wss=-(ί+q2) _ J + 1 ) \ + 1 cos<p. (3.38)

Using this we get for seS(υ):

(3.39)

(3.40)
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Since in this case cos2φ< 1 we see that Φ(s+i)S(Y) + 0 for seSo and for s>0 also
Φl-1)s(Y) + 0. In the same manner as before we can construct a set of normalized
vectors {es:eseHs for seSo} such that

where ^ s s is given by (3.37) and

) 2 c Q S V ] ? (3.41)

(3 4 2 )

and we conclude that S(v) = So and dimHs = 1 for any s e So. This ends the proof of
ii). Q.E.D.

The proof of Theorem 0.1 is now a straightforward corollary.

Remark. Let v be an unitary representation of G and X be the corresponding
Casimir operator. Then X is normal operator and it is clear that SpX is an
invariant of unitary equivalence. Let Σq = (J Sp then above propositions show

peS

that SpX C Σq. Moreover SpX and multiplicities does not completely determine the

representation since for %0 = +)/\+q2 and 3C0 = ±-7= (q3/2+q1/2) there are

1/1+21
two types of nonequivalent irreducible unitary representations: the minimal spin
pe {0,1} or pe {0,1|2} respectively. It is also clear that the minimal spin p is also
invariant of unitary equivalence so for irreducible representations it is not a
function of 3£0.
The last part of this section we devote to the description of the irreducible unitary
representations of quantum Lorentz group in terms of operators {̂ 4, JV, α, y}. Let
us note that if v is an irreducible unitary representation of the quantum Lorentz
group G with minimal spin peS acting on the Hubert space H = £ θ Hs then for

seS(v)

any seS(v) = Sp the space Hs is canonically isomorphic to Ks (remember that
i m I ί s = >'

We shall identify elements of Hs with elements of Xs by this isomorphism. Using
this we have

Theorem 3.3. i) Let v be an unitary irreducible representation of the quantum
Lorentz group G with minimal spin peS and Casimir operator value &0eSp {i.e.

\{qP + qηcosφ + i{qpqp)smφ] for > 0

(3.43)
for p =

for some φ e [0,2π[) acting on the Hilbert space H= £® Hs.
seS(v)

Then there exists for any seSp an orthonormal basis

{f£:m= -s, -s + ί, ...,s-ί,s}
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(cf. (1.19); in Hs such that

621

/m+l !

q-m_qm

''IT'
-qs + '[

«*/m= -

1
1-q2 Wz

7m+l

where

a =

[2s+3],

(3.44)

(3.45)

(3.46)

(3-47)

(3.48)

for p = 0 (3.49)

p)cosφ

(i-^ 2 s)(i-^ s + 1V
/or p > 0 (3.50)

ii) Let peS and φe[0,2π[ be fixed. Then operators {A,N,oc,γ} defined by

(3.44)-(3.48) satisfy the commutation relations (1.43), (1.44), (1.47) on D = £ Ks and
S



622 W. Pusz

they describe an irreducible unitary representation v of G with minimal spin p and
Casίmίr operator value (3.43).

Proof Let {/^:m= — s, - s + 1, ...,s} be the orthonormal basis (1.19) in KS~HS

then (3.44) is clear by (1.20) and (1.25), (1.26). To compute (3.46) and (3.47) let us
remark that from (3.4) and (3.3) we get

(3.51)

so

f\+q2

(3.52)

(3.53)

and it is enough to compute Y_ 1

know that for;e{-1,0,1},
and Yof£. By the definitions (2.16) and (2.34) we

and for j= - 1 , 0 we have to compute Ψ^f/
(2.28), (2.27), and (2.21) we can compute

(3.54)

for s'~s. At first using (2.30),

Ψ ( f1

Ύ{s-l)s\J -

Λ-i 5 (3.55)

fs+l
τJs-\ '

Now we can use the fact that Ψss is an intertwining operator for uι®us and us',

Applying φm to both sides of (3.56) and using (1.29), (1.30), (1.28) we get

and since N\fl^ = 0 then we get a recurrence formula

Starting with m = s by (3.55) and (1.20) we obtain from (3.57):

Γ2sT
(3.58)

Ψ , + 1
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Combining this with (3.54), (3.52) and using (3.25), (3.32), (3.33) or (3.38), (3.41),
(3.42) we arrive at (3.47).

Now we are ready to compute also Ψs>s{fo ®/m) Applying φN to both sides of
(3.56) and using (1.28), (1.15) we get

Ns> Ψss = ΨA

By (1.20) and (3.58) this gives

(3.59)

s+1

This by (3.54), (3.53) and (3.32), (3.33), (3.25) or (3.38), (3.41), (3.42) leads to (3.46).
Taking adjoints in (3.47) and (3.46) we get (3.48) and (3.45). This proves i). One can
check by computations that the operators {A,N,oc,γ} defined by (3.44)-(3.48)
satisfy the commutation relations (1.43), (1.44), (1.47) on D = £ Ks. It is clear that

seSp
p

the minimal spin is p and using (3.3) we get (3.43). Using Proposition 1.5 and
Remark after the proof of Proposition 1.3 we end the proof of ii). Q.E.D.

A. Appendix

In this section we give examples of calculations of coefficients listed in Sect. 2.

a) The Scalar Product of Vector Operators. By using the properties of maps
previously defined we compute for example λs(s+ 1 ) s and this means that we have to
compute diagram (2.42) for s' = s +1. Using the definition (2.27) and the fact that
p x s = [2s+l]g we shall compute at first a simpler diagram

2s

Σ
7 = 1

-1/2 u

ί2s



624 W. Pusz

where

[2s
(A.1)

In the second row we have used (2.27), (2.23) and since σ has the eigenvalue q112 on
symmetric tensors we got the last equality.

Using this we have from (2.30) and (2.31)

I sym
1

q
] = - -

q

3 = — Qls+lQls

where we used (2.29) to omit the first symmetrization and

X Jn 0 [

The rest values can be obtained in the same manner.
b) The Vector Product of Vector Operators. We compute diagram (2.45) in the case

Qsss-

Using (2.29), property (2.22) and again (2.29) we get

I I I I I I I I M I N I M I I I I I I

2q
ί+q2

Γ l I I I I T T

sym J

(A.2)
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where in the second equality we used the fact that on the symmetric tensors

From (A.2) and (A.I) we obtain then

2q
= 62.-

^4-5+2

q(l+q2)ί2sV

c) The Adjoint of Vector Operator. The computation of (2.48) is simple. We use the

fact that the diagram for Ψfs, comes from the diagram for Ψss by reflecting it in a

horizontal line. By (2.20), (2.21) we have (£')* = — E . This implies that symmetri-
Q

zation is unchanged by this operation since it uses a selfadjoint σ [cf. (2.24)].

Taking this into account we get for example for ω ( s + 1 ) s by (2.30) and (2.32),

=(-q)7

where we used property (2.22). From this by (2.30) ω ( s + 1 ) s = .
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