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Abstract. We consider inIR"* !, n>2, the non-linear Klein-Gordon equation. We
prove for such an equation that there is a neighbourhood of zero in a Hilbert space
of initial conditions for which the Cauchy problem has global solutions and on
which there is asymptotic completeness. The inverse of the wave operator
linearizes the non-linear equation. If, moreover, the equation is manifestly
Poincaré covariant then the non-linear representation of the Poincaré Lie
algebra, associated with the non-linear Klein-Gordon equation is integrated to a
non-linear representation of the Poincaré group on an invariant neighbourhood
of zero in the Hilbert space. This representation is linearized by the inverse of the
wave operator. The Hilbert space is, in both cases, the closure of the space of the
differentiable vectors for the linear representation of the Poincaré group,
associated with the Klein-Gordon equation, with respect to a norm defined by the
representation of the enveloping algebra.

1. Introduction

The problem of the existence of global solutions for the non-linear Klein-Gordon
equation

(O+m?oe(t,x)=P <(p(t, x), % o(t, x), Volt, x)) , m*>0, 1.1
2
o

n=1, has been studied by various authors during the last two decades under
different hypotheses on P and n. It is difficult to give here an exhaustive description
of the results already obtained and we shall only mention some of the results
which, we believe, are the most significant for the case where P is a C* function
vanishing at zero together with its first derivatives.

E —A, and

1

a n
teR, xeR", ¢(t,x)eC, V=(04,...,0,), O;==—, A=Y 92, OJ
i=1
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For n= 13, the existence of global solutions was first established by Simon [6] for
data given at t= o0 and then by Simon, Taflin [7] for data at t= oo for coupled
Klein-Gordon equations with several masses, Klainerman [4] for data at t=0 and
Shatah [5] for data at t=0. The method used in the papers [6, 7] was that of
linearization of the non-linear equation in the sense introduced in [1]. The main
difficulty to solve was to establish time decrease properties for the second order
term in the perturbation series of the wave operator composed with the time
evolution of the linear Klein-Gordon equation. In fact, the quadratic term of the
evolution group of (1.1) appears as a coboundary of the quadratic term of the wave
operator. The higher order terms were then directly obtained from the Yang-
Feldman-Kaillén equation (cf. [7, Eq. (1.1")]) by simply using the L* estimate for
free solutions and common Sobolev estimates. The construction of the wave
operator gave existence of global solutions of Eq. (1.1) for small final conditions
®o> Po, With P, ¢ € CP(IR?), where [ is the Fourier transform of f. The method of
[4] was based on a new L*>— L* estimate for the inhomogeneous Klein-Gordon
equation which gave existence of global solutions of Eq. (1.1) for small initial
conditions ¢, ¢, € CP(R?). The result of [4] also applies to the case of systems of
Klein-Gordon equations with arbitrary combinations of masses. A common
drawback of references [6, 7, 4] is that asymptotic completeness cannot be
established on the sets of data that were considered. The method of article [ 5] was
basically the same as that of [6], with in addition the use of an energy estimate.

For n=2, Hormander [2] proved that the life-span T, of a solution of Eq. (1.1)
with initial conditions ¢,==¢uy, Go=¢&liy, o, o€ CF(R?), €20 at t=0 satisfies
elogT,—» oo as ¢—0. The method in [2] is based on L?—L® estimates of [4]
adapted to n=2 and on a symbolic calculus giving approximate solutions.

In the present paper we prove that in the case n>2, Eq.(1.1) has global
solutions for small initial-conditions ¢,, € F(R"), the space of (C-valued)
functions decreasing rapidly together with all their derivatives. As we shall see later
in this introduction, it is natural, because of group theoretical reasons, to take the
space S (R")@ F(R") as the space of initial conditions for Eq. (1.1). We prove that
there is a neighbourhood of zero in #(R"@® £ (IR") on which we have asymptotic
completeness.

To keep this article within a reasonable length, we shall impose two restrictions
on P:

i) P is a polynomial,
i) P is covariant under Poincaré transformations.

Concerning the proofs of the above result, n=2 represents the worst case. For
this reason we only prove the results for n=2. However, they are valid for n =2 and
without the restrictions i) and ii). In fact, when n > 3 we can follow the same proof
except that the norm gy defined by (4.10) shall contain the factor (14 ¢)"2. When
Eq. (1.1) is not Poincaré covariant the proof is still valid taking care of the fact that
the equation changes under the Poincaré group action. This will be discussed in
the appendix. In fact, we restrict our redaction to the covariant case for purely
aesthetic reasons. When P is a C* function, which is not a polynomial it can be
considered as the sum of a polynomial of degree 3 and a C* function with a zero of
fourth order at zero. We can follow our method to obtain the scattering operator
up to order 3 and then use classical methods for the rest term. In this case the
scattering operator is not necessarily an analytic function of the data.



Cauchy Problem for Non-Linear Klein-Gordon Equations 435

We write Eq. (1.1) as an evolution equation by introducing the variable a(t)
=(a.(t),a_(0)):
aft)= () +ei(—iV)e(t), e==1, (1.2)

where w(—iV)=(m*—4)'/? and ¢(t, x)= %(p(t, x). The inverse of transformation
of (1.2) is

o(t)=Qio(—iV) Ya,()—a_(t), ¢B)=2"(a,(O)+a_(1). (1.3)
Equation (1.1) then reads

d
2r A=io(=iV)(a.(t), —a-(0)+(Fla(t)), Fa®), (1.4)

where

F(a(t) = P(o(2), (1), V (1))
=P(Qic(—iV)) " Ha+(O)—a-(1),27 '(a+ () +a-(1)),
ie(=iV) ™V (a.(t)—a—(1). (1.5)

Let I={P,M,;|0=u<n 0<a<f=<n} beastandard basis of the Poincaré
Lie algebra p=RR"*'&so(n,1) in 1+n dimensions. P, is the time translation
generator, P;, 1 <i<n, the space translation generators, M;;, 1 <i< j<n, the space
rotation generators and M; the boost generators. When n=2 we define R=M,,
and N;=M,;, i=1,2. We define a linear representation T' of p in
E,=SRYDZ(R") by:

Tp( [+, f-) =i =iV)(f+, —f-), (1.6a)
To(fes [-)=0(f+.f-), 1<i<n, (1.6b)
Tbllij(f+af—)=mij(f+sf—)5 m;;=x;0;—~x;0;, (1.60)

Tho(fo [ =(0(— V)5, o, —id —iP)x;f2),  1SjSn.  (16d)

T! is the differential of a continuous representation of the Poincaré group
2,=R"*1gS0(n, 1) in the space E=L*(R", C)® L*(R", ) and E , is the space of
differentiable vectors for this representation (cf. [8]). Suppose given once for all an
order on the set II. Then, in the universal enveloping algebra U(p) of p, the subset
IT' of all the products X§:X%... X3¢, where X;ell, 0=q;, 1<i<d and X, <X,
<...<X,, is well known to be a basis of U(p). If Y=X4%'...X%eIl' we define
|Y|=|a|= Y «;.LetE, ieN bethecompletion of E, with respect to the norm
d

157<

Ifle=C ¥ ISR, (1.7)
Yell',|Y| i
where Ty}, Ye U(p) is defined by the canonical extension of T* to the enveloping
algebra U(p) of p.
We next define the non-linear analytic representation T of p on E, in the sense
of [1], obtained by the fact that Eq. (1.1) is manifestly covariant:

Th=T{+Ty, Xep, (1.8)



436 J. C. H. Simon and E. Taflin

where T! is given by (1.6) and for feE_,

T )=(F(f), F(f)), (1.92)
T.(=0, T, (N)=0, (1.9b)
Toao, () =(;F(f), x;F(f), 1Zj<n. (1.9¢)

The homogeneous part of T of degree [ will be denoted by T'.

We can extend the linear map X + Ty, from p the vector space of all mappings
from E , to E ., to the enveloping algebra U(p) by defining inductively T; =1, for 1
being the identity element in U(p), Tyyx by

Tix(N)=((PT)(SNTx(f)), for YeU(p) and Xep. (1.10)

Here (DA)(f) denotes the Fréchet derivative of 4 at f. In the following, when A, B
are differential maps we shall define DA.B by (DA.B)(f)=((DA)(f))(B(f)). This
inductive definition gives a linear map T of U(p) into the space of polynomial
operators on E_. In fact, the vector field Ty, X ep defines a linear differential
operator £y of degree at most one on the space C*(E,), by xF=DF.Ty,
FeC*®(E,). The fact that X — Ty is a non-linear representation of p implies that
X +— &, is a linear representation of p on the space of linear differential operators
of degree at most one on C®(E ). This linear continuous representation has a
canonical extension Y+ &, to U(p) on the space of linear differential operators of
arbitrary order on C*(E ). If #y, Ye U(p) is the part of £, of degree not higher than
one, then Y- 7y is a linear map of U(p) into the space of linear partial differential
operators of degree at most one on C®(E_). Let Ye U(p). We write Y=Z+a,
where aeC-1 and Z has no component on C€-1 [relative to the natural
graduation of U(p)]. Then the previous definition of Ty gives #yF =DF.T,+aF,
which proves that Y+ T; is a linear map on U(p).
As in (1.8) we define Ty, Ye U(p) by

=T+ Ty, (1.11)
where T3 is the linear part of T;.
The linear map X — exp(tPy)X exp(—tP,), teIR is an automorphism of p,

leaving all the elements of the standard basis of p invariant, except M;, j=1,...,n,
for which

exp(tPo)M;exp(—tPo)=Mg;+tP;. (1.12)
For Ye U(p) and teR let Y(t)e U(p) be defined by
Y(t)=exp(tP,)Yexp(—tP,). (1.13)
If a(t) is solution of (1.4) we have
d
7 Tro(a()=Teoyalt), (1.14)

because %a(t)= Ty (a(t)), % Y(t)=[P,, Y(¢)] and definition (1.10) gives:

d
2t Tro(a®)=Tiy(a(t) +(D Ty Tpo) (alt)

= Tipo, yay(a@(t)) + Tyyp (alt))
= T}’OY(t)(a(t)) .
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The evolution equation (1.4) is obtained from (1.14) with Y=1:

d

7 a(t)=Tp (a(?)). (1.15)

We shall now outline the method used to prove the existence of solutions for
Eq. (1.4). The idea is to construct for N large enough an invertible analytic map
A:Oy— Ey, defined on a neighbourhood @y of zero in Ey which intertwines the
linear representation T' and the non-linear representation T of p in the sense of

[1], ie.
DAT!=Ty-A, Xep. (1.16)

The solutions of Eq. (1.4), with initial conditions a(0), at t=0, in a sufficiently
small neighbourhood O of zero in E, are then given by

at)=A(V,A"'a0), 20, V,=exp(tTp), (1.17)

provided that ¥,4~(a(0)) e O, for t=0.

In this paper we have chosen A to be one of the two non-linear wave operators
for Eq. (1.4), namely the one which is formally defined by the Yang-Feldman-
Kaillén equation

A=I— [V_Tp cAoVds, I=identity. (1.18)
0

The main difficulty to prove the existence of a solution A for (1.18) which is an
injection A4: 0, —E, is due to the presence of a quadratic term in T, . We prove
the existence of A2 by using the enveloping algebra method developed in [6]
namely

A= —(THTLRI+IQTL) + TAT2)
X <m2——27}10®T1}0+2j§l 7}1j®T,}j>_l, (1.19)
where we have used the fact that 7}2j=0 for 1< j<n. The operator
m—2TL® TP10+2J_§1 TE®Ti e LE, QE,, E,QF.,),

where ® denotes the projective tensor product, is invertible. Using elementary
facts about pseudo-differentiable operators, it is established in Theorem 3.7, that
the linear map f—A*g®f) from E to E is continuous for
ge Who(R)@W**(R"?! if k is sufficiently large. We then prove that
A%(V,g®V,f) has the following time decay properties:

||A2(I/tg®Kf)||E§Cg,f(1+|t|)_n/2’ tG]R,
1A*(Ve®V.)wo.w@wo.»<C, (1 +t) ™", teR.

The higher order terms of A can now be obtained directly from Eq. (1.18) by
iteration, using only L® estimates for V,f and usual Sobolev inequalities. If we
choose N sufficiently large this gives, for each a,, € Ey sufficiently small, a solution
a(t)=A(Va,)eE, t=0 of Eq. (1.4), i.e. Eq. (1.14) with Y=1.

! For 1=p=< and keN, the Sobolev space W*P(R" is the Banach space of functions
f:R">C, being in L?(IR™) together with their first k derivatives
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The next step consists to apply the above method to Eq. (1.14) with Ye U(p).
This implies that Ty(a(t)) € E and we prove that (Theorem 2.15)

la@) g, =F N( 2 Ty(a(O))Ilf;)” 2

YeIl', Y| <N
where F), is a positive function bounded by a polynomial, and a,, is sufficiently
smallin Ey. We can now conclude that A(Oy) C Ey if N is sufficiently large, and that
Ahasalocal inverse on a neighbourhood @y of zero in E,. This shows that Eq. (1.4)
has a solution t+a(t), t=0 for each a(0)e Oy and that lim (V_,a(t))=a, € Oy.

t>w
Instead of considering Eq. (1.18), we could have considered the corresponding
equation for the scattering problem at = — oo, so we can conclude that there is a
neighbourhood 0% of zero in Ey, such that Eq. (1.4) has a solution ¢ — a(t), t € R for
each a(0) € 0%. In addition ¢ can be chosen such that there are neighbourhoods
O of zero in Ey and analytic wave operators Q, (here Q, = A) with the following
property (asymptotic completeness): Q,: (05— 0% is an analytic bijection.
Finally, we state in this paragraph the main results of this article. If @ (resp. O') is
an open neighbourhood in a Banach space B (resp. B'), let #(0, ¢') denotes the
space of analytic functions from @ to ¢, endowed with the topology of uniform
convergence on closed bounded subsets of 0.

Theorem 1.1. For n>2 there exists N, 20 and a neighbourhood 0% of zero in Ey,
such that, if Of=Eyn03, for NN, and 0%, =E ,n0OY,, then:

i) T defined by (1.8) is a non-linear analytic Lie-algebra representation on E°. For
Xepand N2N,, Ty:Ey,,—Ey and Ty:Ey—Ey are analytic maps.

i) T is the differential of a unique global non-linear analytic representation U of
Py, ie. U(0)€ O}, forge Py, 0€ R, and the map g+ U,- .U, is continuous from P,
into the space # (0%, Ey, ), where U* is the linear part of U.

iii) For N=N,, the map g—U,-.U, is continuous from P, into the space
'}f(@](\)h EN)

iv) 0% is the set of differentiable vectors of U.

The representation U of #, has, according to the next theorem, at least two
invertible linearization operators 25 and Q~', where Q. and Q_ are the two
wave operators for the evolution equation (1.15).

Theorem 1.2. With the notation of Theorem 1.1, N, can be chosen such that there
exists two analytic invertible maps Q , : Oy — 0y, and Q_ : Oy -0y, where Oy and
Oy, are open neighbourhoods of zero in Ey,, satisfying the following properties:

) U,oQ,=Q,0U}, for e=+ and geP,, where U' is the linear part of U.

i) If N=N,, then Q,: 0%—0Y% is an invertible analytic map.

iii) If h(t)=exp(tP,), teIR then

tl_l'lel'.}o I Une(€2:(60) — U;(t)g =0
for e=+1 and 0e0%,.

Theorem 1.1 and Theorem 1.2 give in particular the solution of the Cauchy
problem at ¢t =0 and solve the scattering problem for the evolution equation (1.15).

Theorem 1.3. In the situation of Theorem 1.2 the equation

S o)=Toel0),  o0)=005.,, N2N,
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has a unique C* solution t+— v(t)€ Ey, teR. Moreover,
lim [lo(t)— V.2 '(0)| =0,
t—e0

where V,=exp(tTp,).

Translation of the first part of Theorem 1.3 to Eq. (1.1) gives the following
existence result for the non-linear Klein-Gordon equation:

Theorem 1.4. Let P be a polynomial satisfying P(0)=0, DP(0)=0, let n=2 and let
Eq. (1.1) be relativistic covariant. Then there are neighbourhoods 0,0 of zero in
F(R") such that for each initial conditions (¢, ¢o) € O x O there is a unique solution

e C®R xR") of Eq.(1.1) such that ¢(0,x)=@q(x) and %(o(t, X);=0=Po(x) for
xeR"

2. Properties of the Non-Linear Representation

In this paragraph we deduce estimates for Ty(f;®...®f,), n=2, Ye U(p), and
f;€E,. We then deduce an explicit expression of Tyy for X ep and Ye U(p).
Let us introduce the spaces E, i =0, as the completions of E, for the norms

(s f g = 1 f4 Iy + [ /- L=, 21

and

1Sl =
Y

We introduce the notation E* = Eg’. Occasionally, we shall use in this paragraph
the notation

By =0y((—iV)"", By=0y(w(=iV)"!, Bi=(a(—iV))""', B,=I.(22)
We have for N0 and j=1,2,3,4:

IB;if lex = Cull f £ »
IIijIIE;@éCN(_ X 10:f 1l ege + Hfligﬁ) =Gyl S leg., - (2.3)

5 Nl i1,

ell

Here we have used the fact that ||(w(—iV)) " 'g| .= < C|lg|l .. By commuting the
elements in the standard basis IT of p, we obtain for f=(f,,f_)eE, and N=0:

1/2
If IIENéCN<'aIZ<NIIX“5”f II%) SCVIf gy s (2.4)
IBISN
1f e <C, |Z<N [X°0°f || o < Ciyll fl 50, , - (2.5)
!A§§+1

For later reference, we also note that
IaéL 10°f len S Cu, L1 =) 2f | gy S Cy 1 IaéL 10 gy, - (2.6)
We denote the set
{(a, B,ie)|a, e N, i€{1,2,3,4}", ce{—1, +1}", |¢|<N, |BISN'},
by D(N, N',n), where N,N’,neN.
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Lemma 2.1. Let N>0,n=2, and fi,..., f,e E,. Then
| T2 (f 1®”'®f;1)”EN§CN,nD(NZN ) I1x*0%((B;, f1,2,)- By, fu o) | 2wz (2.7)

and

ITR(1®--- ® Sl ey
SChn by » ||xaéw((Bi1f1,a,)- BiJue)2we,  J=1,2. (2.8)

D(N+1,N

Proof. It follows from definition (1.9a) of Tp,, n=2 that each component of
Tp(/1®...® f,) is a sum of terms C; (B;, f; .,)---(B; f,..), where C; ,€ C. The first
of the inequalities (2.4) applied to each of these terms gives inequality (2.7).
Inequality (2.8) follows in a similar way from definition (1.9¢) of Ty..

We have similar inequalities for the E7 estimates of T". As the proof is almost
the same and simple, we only state the result for later reference.

Lemma 2.2. Let N=0,n=2, and f,, ..., f,€ E,. Then
1T (fi®. - ®feg=<Cnn ¥  [x*0(B; f1.0)---Bifoe)lowa (29)
D(N,N+1,n)

and

ITR,(/1®...® fo)ll e
SChpn 2 Ix*0%(B;, f1,e)- - Bi fo,e) Loy, j=1,2. (2.10)

D(N+1,N+1,n)

As Ty, X e pis a polynomial from E  to E,, Proposition 10 of [1] and the next
theorem show that T is the differential of a unique analytic representation of the
Poincaré group.

Theorem 2.3. If n=2, N 22, and X is an element of the standard basis Il of p, then

1T ey < Cronll fllEy -
Proof. According to the definition of Ty and Lemma 2.1,

IR SCrn 3 (B S Bufulms - 1D

Leibnitz formula for 8 on a product implies that the terms inside the summation
sign are bounded by

I B,))=Cyn Y IX0"B;,f,).- ("B, 1) | o - 2.12)

1+...+Bn

Introduce
J(@% B1s s B )= 11X%(0" By, £;,)-- (0" By, £ ) 2wy -
Let N=2.1If | f|=|B4|+...+|B,|=2 and | B;| =2 for some 1< j<n, then ;=0
for I#j and (using [|g L =®2 = Clgllw2.2r2)
J, Bys - B S Cn”xaj(aﬁjBiJﬂj)”u [T 1x*fe w2

1%
where a; +... +a,=a. We choose a, ..., a, such that |a;| <2 and oy <1, which is
possible as |o; |+ ... +|a,| £3. Then J(a, By, ..., B, ) < C, |l f | &,, where we have used
(2.3)and (2.4). If | 5| £2 and | ;) =1 for 1 £] < n, then there exist r, s such that | §;| =0
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for l=#r, I+s. In this case
J@ By -oer B D) S Col| x* 0P B, f, |l sl x*0%B; f, | 14 ,1;1 Ix*B;, fy w22

l*¥s

where a, + ... +a,=a. We choose a5, ..., o, such that |o,| 2, |o| < 2, and || =0 for
I%r,s. The Sobolev inequality | gl +g2 = Cllglw1. 2wz gives now J(a, By, ..., B, i)
=C,ll f g, also in this case. Thus this inequality is true for all «, g, ..., B, with
jo <3 and |B,|+... +| B, =2, which together with (2.11) and (2.12) prove that
ITX(N e, = Call £ 1%,

Let N=3. Then

J@ By, Bo)SC,  min  [Ix¥0PB, f, ll12 [] IXM0PBy f, llw2.2. (213)
<j=<n j
wit e k
Since N23,n2>2,and || +... +(B.|=|B| £ N, we can choose j in (2.13) such that
|Bil+2=<[N/2]+2=<N for I+ j, [N/2] being the integer part of N/2. We now
choose « such that |o;] <N and || <1 for I3 j. Then, according to (2.4) and (2.3)

||x"‘f6ﬂfBijfgj”L2éC”f“EN-
Commutating x* and 1—4 for [+ we get
[x*0% By, f w22 S CIl f Il g -

Inequality (2.12) now gives
N _, 1x%(0"B;, £;,)-- (0P B; £l Lamey < Chv,all f Iy »

1+...+B8n

which together with inequality (2.11) proves the theorem.

We shall now make explicit the structure of Ty, when X e p and Ye U(p). This
will permit us to study Eq. (1.14).

For L=z0 and p=1 a set 9(L, p) of p-tuples n=(#,,...,n,) is defined by:
a) If L=0 then %(0, p)={(0, ...,0)}, where 0 is the empty set.
b) If L=1 then

Y(L,p)= {(’71, "'3np)|niCNL’ U =Ny, ’7;‘“’7;':@ for i*j},
15izp

where N ={1,...,L}.

For g;=cardn; =1, 1 <i< p, we introduce the notation

Mi={0 1> .. % 4.}, Where o, <o ,<..<a (2.14)

i,q;*
For L21, Xy,..., X, €p and n=(y,, ...,n,) € 9(L, p) we define Y, Y,, ..., Y,e U(p)
by, Y=X,,...,X,,

X if cardpy;=21 and Y,=1 if u,=0, (215

@i, 17 *""2 i, g,

Y,=X

where 1 is the unit element in U(p). For L=0 we define Y=1and Y,=1.Let f be a
function of Z,,...,Z,eU(p). Then g(n)=f(Yy,...,Y,) defines a function of
ne%(L, p). We introduce the notation ' by

Y,p

Y gm= YZ;f(Yl,..., Y,).

ne%(L, p)
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Theorem 2.4. Let YeU(p) and Xep. If Y=1o0r Y=X X,,...,X,, |21, then
= X YTRIN®..Qn). (2.16)
s P

1<psn
ny+..+np=n
Proof. Let YeII'. If Y=1, then formula (2.16) is reduced to Ty, =Ty. As X1=X,
(2.16) is true in this case. Suppose that formula (2.16) is true for |Y|=Land let Z e p.
According to the definition (1.10) we then have Tyy, = D Tyy.T,, which gives, with
I,=®I,

Tho= Y THU®T *'®L_, ).

Tivz= X ) Y Ry ®..Q17)
n 1=psk Y,p
=1 m+..+np=k

X(IRT; ¥ @I _y-y). (217

We sum over ¢ in (2.17). Then
Tivz= ) N (Ll YR .QTyr+...
s P

1<k<n 1<p=k
ny+..+np=k

LA TRRDT T3 N .. QT +...

+RT®...QDTyr- T;7**Y). (2.18)
Let
Cy,= Y TROT TTMYOTE®...@T).
1=k<n 1<p=sk
ny+..+np=k
We observe that Y = Y , which gives

Let g=n,+...+n,. Then

n
—k+
DT T HT:®...QT!
k=p ni+..+np=k
ni21

n k—1
=Yy ¥ O Y .9y

k=p q=p—1 nat..+np=q
njél
"ot “ k k+1 n
- - n
= ¥ Y DIy T )® Y 7'®...QTyr
q=p—1 k=q+1 ny+...+np=gq
n;=z1
n—1
= Y O, ) "® ¥ THR.QT
q=p—1 n2+...+np=gq
n—1

y T Ty ®...QTy?
q=p—1 ny+..+np=¢q
= Y TuTe..0T.

nyt..+np=n
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This gives
Cy,= Y TERT:®..QN).
1<psn nmi+...+np=n
This formula and the corresponding formulas for the other terms in (2.16) gives:
Tivz= X Y YH(®Te..®%;
s P

1<psn ny+...+np=n

+TEOT,®... T

+ QT ®...Q0 Ty7). (2.19)

Let Y'=YZ. Then |Y’'|= L+ 1. Each collection 13,15, ..., 1, for Y’ is obtained from
a collection 14,1, ...,n, for Y by defining for some [, 1 </< p,

m=mu{L+1} and nj=n, if i*l. (2.20)
This fact and (2.19) give
Tiy= X 2 Y RTY®...0 ),

1<psn my+..+np=n Y',p
which proves that (2.16) is true for |Y|=L+1 if it is true for |Y|=L. Hence by
induction (2.16) is true for |Y|=0 as it is true for |[Y|=0.

Corollary 2.5. Let 121, YeU(p), Xep, and X;ep, 1Zi<p. If Y=1 or
Y=X,X,,....,X,, then

Tiy=3% Y T(\Q(TY1®---®TY,,)-
pzl Y,p

Proof. According to Theorem 2.4,
Tyy= Y Y Y 1,2’ TTY®...Q T}‘;’) .
s P

n21 1<psn m+..+n,=n

Changing the order of summation we obtain
Ty= Y L 2 Y T ®...QTyr)

p21 n2p ni+..+np=n Y,p
=3 3 Y THE..®T)
s P

pz1 nix1

15isp
=Y YTUTL,®..®T,).
pz1 Y,p

Expressions (1.6a)1.6d), (1.9a)«1.9¢) of Ty, X e p and Theorem 2.4 lead to an
explicit expression for Ty, Ye U(p), suitable for establishing estimates. For
Y=X,...X,, where L=1 and where X, ... X, eIl, let £(Y) be the number of
factorsequalto Ror N, or N,in Y. For Y=1,let #(Y)=0.For B;, 1 <i<4 defined
by (22)’ let ga = {Bla BZ: B3a B4}

Theorem 2.6. Let Y=X, ... X;, where L=1 and X, ... X €Il. Let 2 be a basis of
the space of differential operators on R? with constant coefficients. If n>1 and
feE, then the gy-th component of Ty(f) is:

(TH(Neo=_ Y. (CPAY,2,0,D,¢)
- a,0,D,¢

+C{A(Y, o, Q, D, e)igg( —iV))x* lﬁl (QD.f.), (2.21)
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where the sum is taken over || 20, aeIN?, Qe ?", De #", and e {—1,1}". The
coefficients CI(Y, o, Q, D, &) € C satisfy:

(i) Only a finite number of C{XY,a,Q,D,¢) are not equal to zero, in the sum
of (2.21),

(i) C{AY, Q,D,e)=0,if Z ngQz>|Yl k—3d,,

(ii)) CI(Y, a,Q,D,&)=0, if loc|>$(Y)

where 6,=0if n=1and 6,=1if n=2.

Proof. It follows from expressions (1.6a)~(1.6d) and (1.9a)—(1.9¢) that the theorem
is true for M = 1. Suppose that it is true for L< L, for some L, =1 and let X be an

element of the standard basis of p.
Let X=P;, j=1,2. Then formula (2.16) of Theorem 2.4 and the induction

hypothesis give:
(Ter(f Neo= (T, T2(f ey
= 3 (CP(Y,0,0.D.0)+C{(Y,a,0, D, olisge(~i¥))

X (x%0;+ [0, x*]) ,ljl (QD.f.,). (2.22)

Let y,=(1,0), ,=(0,1). Then [J,x*]=ax*"%. We define, for QY
=ZII(Q1: s Q=15 0iQs, -, Q)
C(P;Y, 0,0, D, ¢)
=C"(Y,a,Q,D,e)+CM(Y, a+ Vi QY. D, e)(o;+1) (2.23)
and C{" is equal to zero for other values of the variables. According to the

1nduct10n hypothesis, only a ﬁmte number of the coefficients C{’(P;Y, o, QV, D, ¢)
are non-vanishing, C{"(P;Y, o, Q'”, D, ¢)=0 if

) degQ%”=1<Zl<ndeng+1>IY|—k—5,,+1=|P,.Y|—k—5,,,

1<7<n
and C{(P;Y,a, 0¥, D, &) =0 if |a| > L(P;Y) = Z(Y). This proves that statements (i),
(ii), and (iii) are true when the value of the first variable in C{ is P;Y.

Let X=N;, j=1,2. We first consider the term TN Ty in formula (2.16) of
Theorem 2.4. For th1s term formula (2.21) gives:

(T D= 5, (CONY,2.0.D.0lcoe ~i7)xpx" [T (@Dif)

+CP(Y, 5,0, D,)(—x;(m* — A)+ )" 1 QDS

where [w,x;]=—0;0~"' has been used. Since [J;,x*]=0,x""" [02,x]
= oo — 1)x“ 2y"+oc *~ g, we obtain

BBO=_ 5, (002,000~ [1 @D
+ C(I”)(Y’ o, Q, Da 8) (xa+yj(_m2 + A) + x"‘aj

+

: <x“-2vk+wak<ar1>+xa-vk+wakak>+xa“"’>

M1

1

||::|=

| (@D zﬂ,)) (2.24)
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We define
d(ll)(iaNja Y,%Q,Dsﬁ)=Cg')(Y,“—?p Q:D,S) (225)

and d{’(1, X, Y, «, Q, D, ¢) by identifying the coefficients in the expression
Z(C‘{"(Y, a—7;Q,D,e)(—m*+4)+ C{(Y, 0, Q', D, £)9;
&

2
+ Z ((ak + 2)(ak + l)c(ln)()’, o + 2Yk - yj9 Qla Ds 8)
k=1
+ (o + DCY(Y, a7, =7, Q', D, £)dy)

+(;+1)CP(Y, 247, Q', D, 8)) zl—_[1 (Qig)
= %dg‘)(:l’Nj! Y’ a, QaDs 8)11;[1 (ngl)a gl’ LRRE] gney(]Rz)3 (226)

where we have defined C{"(Y, B, Q’, D, ¢)=0if B;<0 for some 1 <i<n. Expressions
(2.24), (2.25), and (2.26) give:

(TI\}JTYn(f))so = QZD (dgl)(Ia Nja Ya &, Q> D’ 8)

+d{(1,N;, Y, 0, Q, D, e)igge( — iV))x* ﬁ QDf,). (2.27)
1=1

Since there is, according to the induction hypothesis and statement (i) of the
theorem, only a finite number of non-vanishing terms in the sum on the left-hand
side of (2.26), there is only a finite number of coefficients d(1, N »Y,0,0,D,¢)
which are not equal to zero. By statement (ii) of the theorem it follows that
dg)(1, N, Y,0,Q,D,6)=0 if Z degQ,>(N~Y|—5 =|Y|+1-4,, because the

coefficient of (—m?+ A) H (Q,g,) Vanlshes if Z degQ,>|Yl—1—5 If |o]—

> #(Y), then the left- hand s1de of (2.26) is zero Hence d(1,N;, Y,0,Q,D,e)=0if
| > L(Y)+1=2Z(N,Y). It follows directly from (2.25) that only a finite number of
the coefficients d‘”)(1 N, Y,0,0,D,¢) are non zero for given Y and that

dP(1,N, Y, 2,0,D,8)= 0if T degQy>|¥|-6,=IN,Y|~1~3,or|a]> £(Y)+1

=%(N;Y). To sum up, 1fp 1 and n=1, then
a) for only a finite number of the coefficients d{’(p,N;, Y, «,Q, D, ) %0,
b) d?(p.N, Y,2,0,D,6)=0,if Y degQ,>[N,Y|—k—5,,

<I<

1=<I=n
¢) d(p,N;Y,0,Q,D,8)=0,if |Y|>Z(N,Y).
We next consider the terms

T('®..®Tyr), 2<psn, n+..+n,=n,
in the expression (2.16). Here Y;,..., Y, are as in Theorem 2.4. For UeE,, let
vo=(2ic(— Vi) Yu, —u_), vl—alvo, vz—azvo, v3=2"Y(u, +u_). Then, accord-
ing to definition (1.9¢) of T,

( T,é’j(u))a0 =X JZ b, ... v, e==%1, (2.28)
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where b(i)e €, i€ {0,1,2,3}" and b(j) is symmetric in iy, ...,i,. It is convenient to
introduce for Z € U(p):

(S2MNo=Qiex(—iV) " (TANN)+ —(TAS))-), (2.29)
SZM1 =27 U(TLN+ +(TLN)-), (2.30)

and S;(f)=((Sz(f))os (Sz(f )1)- . ]
It follows from the induction hypothesis and from (2.21) that if Ze U(p)isa

product of elements of the standard basis of p and |Z|< L, then
SHMo=_ 3 CUZ%0.D.0 [] @Dif) 31)
and
SHMi=_ 3, CHZ20.D.0x [1@DS). az1.  (3)

As we have already proved the theorem for T} 7, the induction hypothesis implies:

(@ jS%(f ))0 = (SPVJ z(f )o

= Y C@PZ,aQ,De)x" H (Q:D, 1), (2.33)
a,Q,D,¢
where j=1,2, y;=(1,0), and y,=(0,1).
Let
agz) = C(1q) , a(sq) = C((;z)
and

aZ,a,Q0,D,6)=C(P"Z,0,0,D,¢), j=1,2.

It is readily verified that, if g=1 then
(a') only a finite number of the coefficients a{’(Z, «, Q, D, ¢) %0,

(v) a9(Z,0,0,D,6)=01f ¥ deg0,> (2]

(©) a¥(Z,0,Q,D,e)=0 if |oz|>££’(Z)
According to (2.28) we have for p>2:

(TR (T7(N)®-..QTy?(/))),
_ ijxauw... ) 15[ a, (Y, o, 0, D), g®)
k=1

< 11 (@D, .34
where the sum is taken over i, o'V, ..., a(?, QU ... . Q® DM | D@ 1 ® We
define for p=2:

d?(p,N;,Y,2,Q,D,6)=0 (2.35)
and
d§(p,N; Y, 2,0,D,¢)

=y ) [T a,(H, %, %, D, o9), (2:36)

Y,p a=y,+aD+. . +aP k=
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where 0=0V®...@07, D=DV®...@DP, e=(eV,...,&,....eP, ..., &) d,
k=0,1 so defined satisfy the properties (a), (b), and (c) for 2<p=<n. This is
obvious for k=1. Property (a) follows from (a’) in the case k=0. Since

Y, degQ,= Y deg0 and |Y|= Y |¥,

1£7%n 15ksp 15T2m 15k

itfollows thatif Y degQ,>|Y]|, there exists g, dependingon Y;,...,Y,, 1<q=p
1<0<n
suchthat Y degQ{®>|Y,|. But then g; (Y, «?, 0@, D@, %) =0, which proves

1120,
that d(p, N;, Y, «,Q, D,&)=0.If p> 2 then n> 2. Therefore, property (b) is true for
p=2 and k=0. Similarly, since |¢|= Y ||+ 1 according to (2.36) and since

1<T<p

Z(N;Y)=1+ Y Z(Y)itfollowsthatd{(p,N; Y, «Q,D,e)=0if |a| > L(N;Y).

1£7p
This proves that property (c) is true p =2 and k=0. Hence the properties (a), (b), (c)
are true for n=1, p=1. We now define, for n>1
CP(N;Y,0,0,D,¢)= Zl d(p,N;Y,2,Q,D,¢). (2.37)

p=

C{" so defined satisfy (2.21) by construction, with N ;Y instead of Y. Since (a), (b),

and (c)are true forn 21, p2 1 it follows that C{" satisfy properties (i), (ii), and (iii) of

the theorem with N;Y instead of Y.

The cases X =P, and X =R are so similar that we omit them.

This proves that the theorem is true for L< L+ 1, and hence by induction for
every L=1.

Corollary 2.7. Let f,, ..., f,€ E,,. Then, in the situation of Theorem 2.6

(B®...®f),
= . J, . (CO(Y%,2,0.D,8)+ C{(Y, 4,0, D, olicgeo—i7 )

X lljl (Qllel,a,)'

Differentiation in (2.21) gives this result since the coefficients are symmetric.
We now turn to the problem of proving that the linear group representation
with differential T! and that the analytic group representation with differential T
do have the same differential vectors in the sense of [1] in a sufficiently small
neighbourhood of zero in E, though T is not the differential of a smooth
representation.
For NeN,letaye Eforall Ye U(p)suchthat Y=1or Y=X,,...,X,;,1SL=N,
where X, ..., X eIl. We introduce
onla)= ( ZN Ilayllf;)”z, N20. (2.38)

Yl
We note that according to definition (1.7) of | ||z, we have

oNT (N=1flgy, N=ZO0. (2.39)

Lemma 2.8. Let feE,, L>1andlet Y=X,...,X, where X,..., X €ll.
If L=1, then

1T S Coll f g g (T =A)S 161 +1I(1 = A)f (2:40)
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If L2 and ¥ (Y)<|Y|—1, then
IT(NeS CLl(1 = A0S || g, | (1 — 42O |
X (1411 =) Of [ gy, (2.41)
where ([s] denoting the integer part of seR)

Y]

a(Y)=|Y|-1—2(Y), b(Y)= [7—1] +2.

The constants C;, and x;, L=0 are independent of f.
Proof. According to (2.21) we estimate

= @D . for 5 degQis|YI—1, lISZ(Y) (242)
= L2 sl=n
and
=“w(—il7)x“lH1(QzDzﬁ,) ; for 2 degQ,=|Y|-2, |o=2(Y).
= L <i<n

(2.43)

As |o(—iV)g| 2= Clgllw:.2, it follows that estimates of 5 will be obtained from
estimates of . Hence we only give estimates of &. First,let L=1. Then degQ,=0 for
1=1<n, so

800 D= 1T @DifL)|

<C, %D, £, ﬁ ||D,f£,||w

SCIX D LA =Df1E, (2.44)

where we have used ||D, f, [l .« = Cl[(1 —=A)D,f, |l .= C'[|[(1 — A)f || . It follows from
(2.4) and (2.3) that

[%*(Dy fe )l L2 S 1% Dy ) S CID SNl SCNL f Nl gy -
This and (2.44) give, as |¢| < Z(Y):
8, Q,D,e,m) S Cyll f | gy, I(1 =D fIE S (2.45)

where the constant C, depends on «,Q,D,e. As already pointed out in the
beginning of this proof we then also have

1(e, Q. D, Z,m) S Coll f 1l 4o | 1 = A 15 (2.46)

Let the degree of the polynomials Ty, X € p be bounded by y, + 2. It follows now,
after summation in a, Q, D, ¢, n, from (2.45), (2.46), and Theorem 2.6 that

1T NNEZColl flpe I =Df 1A+ 1A= DS |, [YI=1,

which proves (2.40). Secondly, let L>2 and let £(Y)<|Y|— 1. After a permutation
of 1,...,n, we have

degQ,<degQ, =|Y[-1
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1Y]—1
2
0,0, D,e. ) SCIQiD, £, 2 [T 10Dl

in (2.42). Since in this case deg Q, < [ ] for 2<1<n, we get from (2.42),

As

8o, Q,D,e,m) S C,ll(1 = A | g, I (1 = EDS |7, (2.47)
where the constant C, depends on o, Q, D, ¢. Similarly, we have

1o, Q, D, &, ) S C,l(1 = A *Of |l 0 (1 = AFPOL 71 (2.48)

Let the degree of the polynomials Ty, |Y|=L be bounded by y; +2. As before, it
now follows, after summation on «, Q, D, &, n, from (2.47), (2.48), and Theorem 2.6
that

1T = CLl( = )OS g, o, 11 = 42O |
x (1 +11(1 =2 Df g, )=, |Y|=L.
This proves (2.41).

Lemma 29. Let feE,, L=2 and let Y=X,,...,X, where X,..., X ell. If
L(Y)=|Y| then

1Tl
SCylf Iy, - JA= O g, (1 + 1A= Of | Dy (2.49)
where
b'(Y)= [m%] +1, b(Y)= [%} +2.

The constants Cy, and xy| are independent of f.

Proof. As in the proof of Lemma 2.9 it is sufficient to estimate & defined by (2.42).
According to (2.42) we have after a permutation,

degQ,=degQ, =|Y|—-1, 1=I=n. (2.50)
then
10D, f llL» = Cll(1 — A)Q,D, £l 2
SCIA-DQflle
SCN(A—=POf g,  2=I<n,
and as

1x(Q1 Dy fo )l = @1 Dy e 2 CID, Q4 [ .,
=CQyflg,,=C"I —A)’i*“mang(Y)
we obtain for |Y|=2 and L(Y)<|Y|—1:

{(e,Q,D,e,n)=

< I (@Dif.)

L2

S 1%°Q4 Dy £, l21X7Q2D5 £, I oo ﬁ 10D follpe s (251)
=3
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where f+y=o and where the product over / is absent if n=2. We choose f and y
such that

Bl=IYl-1, D=1, (2.52)
which is possible as |¢| < Z(Y)=]Y]. It follows from (2.4), (2.50), and (2.52) that
HxﬂQlle;:, 2= ||xﬂQ1D1f”E§C|Y|—1”leHE,y,_1-

This gives together with (2.3) (and with a new constant Cy,_,):
1X°Q1 D1 fo 2= Cryy =11 f Iy - (2.53)
Similarly, we obtain, using moreover that | g . < C|[/(1—4)gl|.2, that degQ' <1,

where Q' =[x?,1— 4] and that degQ, < [[Y{Z_ ,
1x7Q2D5 £, L= S CI(1 = )X"Q, D, f,, | 2
SCxQ(1 =D, fllg+12°Q2D2 f 1)
SCHA= AP0 g, . (2.54)

[Y|—1

As degQ, = |: }, for I=>3 we have

10D, L= S CI(1 = DA, | 2 SC (1= AF*POf |p, 123, (2.59)
Inequalities (2.51), (2.53), (2.54), and (2.55), give for n=>2:

n

{@,0,D,e,)=Cyl fllgyy, - 11— 4P Df |Ig, LLIA= *Of g, (2.56)

where C, depends on «, Q, D, ¢ and where the product over [ is absent if n=2. As
indicated in the proof of Lemma 2.8, inequality (2.56) implies that

n

1@, Q,D,e M) S C,ll fllg,y, - 11— A Vf ||, L= HFOf g, (257)

Let the degree of the polynomials T, be bounded by Xy +2 for given |Y|.
Inequality (2.49) now follows from (2.57), similarly as in the proof of (2.40).

Remark 2.10. It follows from the proof of Lemma 2.8 and Lemma 2.9:
i) that Ty(f) in (2.40) is well defined for fe F=L2 (R?)® L2 (IR?) (resp.E) and if

(1—A4)feE [resp.if feEgyy, and (1—-A4)feE]; (2.58)
ii) that T,(f) in (2.41) is well defined for feF (resp. E) and if
1= WY=YfeE and (1—A)P*VfcE
[resp. if (1—A4)**"feEyy, and (1—4)*"VfeE]; (2.59)
iii) that Ty(f) in (2.49) is well defined for feF (resp. E) and if
(1—=A¢W=YfecE and (1-A4)*"VfecE
[resp. if feEy_; and (1—4}*®~YfeE, and (1—4)**VfeE]. (2.60)

Corollary 2.11. Inequality (2.40) (resp. (2.41), resp. (2.49) ) is true if condition (2.58)
(resp. (2.59), resp. (2.60) ) is satisfied.
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Lemma 2.12. Let K>0, feE, and (1-A)feE. If |[1—A)f|z<K and if K is
sufficiently small, then

Hflle, @ (TN=3 flg, - (2.61)

Proof. 1t follows from (1.11) and (2.39) that
1 1e, =0T (NE 0T+ 0 (T(), (2.62)
P TN NS s, + 0:(T)). (2.63)

Let Y be as in Lemma 2.8, with L=1. Then (2.40) gives
o(T()= (ng I Ty(f)!l%)”z
gcwu-4ng1+mr—thV« ) MW@WJ”%
DES!

recalling that T, =0. Since Z(Y)<|Y|, we get

2T CIA =D |0+ 1A= DS 111 f Vg, -
Choosing K such that CK(1+K)** =1, we get

Sol(T(f))f AVAPR

which, together with (2.62) and (2.63), proves the lemma.
Before stating the next lemma we remark that for N =1, it makes sense to say

that feE is such that < Z< (sol(aaT(f))y)l/z <. (2.64)

As a matter of fact it follows from the definition of Ty, that Tp,=Tp,=0" for
y=(0,7,,7,) and then by (2.64) and the definition of g, that

11— 4PNV < oo0. (2.65)

It fol]ows from (2.65) and Remark 2.10 that if N =1, then T;(f) is well defined in

L2 . ®L2, for |Y|<2 and that if N>2 then T,(f) is well defined in F for
|Y|§N+2 As T}(f) is well defined in F for |Y| < N +1 it follows that T,(f) € F for
|Y|SN+1. Hence, 0°Ty(f)= Tpep(f) is locally square-integrable for |Y|<1 and
(] <N.

Lemma 2.13. Let feE,and let oy, ,(f)= < y (g/ol(a"‘T(j“)))z)”2 <00, N=1. Then
la|<N

1A= AY2f g, < (en+1 (/) + 1 f£)Ch, (2.66)
where Cy is a polynomial in |(1— AN Vf | ..
Proof. 1t follows from (2.6) and the definition of norms that
A =aN2f g, < CNI IZN 10°f e, = Cx MZSN 1Ty 0°f e, (2.67)

al = =
lYj=1

where Y is the unit element in U(p) or an element of II. Since |Y|< 1, we have for
some constants C(Y, a, B):

[Y,PF]= ¥ C(Y,a B)PF,
Bl = el
where B=(Bo, B1, B,) and P? = PopPh: P82 Hence

" =0Ty + | |Z| IC(Y, o B)Tps
Bl=|a
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which shows, together with (2.67), that
“(1_A)N/2f“E1§CNI |Z<N 16* T3S e » (2.68)
[Yi=1

with Cy redefined. As T=T'+T, we obtain from definition (2.38) of the
norm g, :

(1 —=ANfllg, = Chlon+1(f)+ | IZ 10°T(f)g)-

al =
Y=

N

1
It follows from the definition (1.10) that 8*Ty(f)= Tpey(f), so the last inequality
gives:

(1= A)"2f ||, < Cxlon+1(f) + , <ZN+1 ITAS) ) (2.69)

s
If |Z| =0, then T,(f)=0.If |Z] =1, then it follows from Lemma 2.8, with L =0, that
ITANNEZ CLl £ g 10— Df 10+ 11— A)f 5/ (2.70)

For Z in the domain of summation in (2.69) and {Z| =2, we have £(Z)<1<(Z] - 1.
Hence in this case Lemma 2.8 with L=2 give

1T N Ciggl(1 = APV |5 (1= )P |
x(1+ (A= FOf gz, |Z]22, 2.71)
where b(Z)=[(Z|—1)/2]+2. As a matter of fact
(1 — 22D S ClI(1 = APFA=Df |,

Using that H(Z)<N+1 for N>1 and |Z]| <N +1, we obtain (2.70) and (2.71). It
follows from (2.70) and (2.71) that

> ITANNeSHMI(A = FN DL DI = AF DS g, (272)

12| <7+
K(Z)=<1

where Hy is polynomial with H(0)=0. Inequalities (2.69) and (2.72) give, with Hy
redefined by a multiplicative factor:

(A= N2f | g, < Cnow e () + Hyll(1=APNOf g, N21. (273)
After iteration of inequality (2.73) we obtain for N>1:
(A=A f |l g, S Fp(I(1 = AN Vf [ Doy 4 1(f)
+Gy(I(1 = FNIL ) f g, » 2.74)

where Fyand Gy are polynomials and G has a zero of order N at zero. This proves
the lemma.

Theorem 2.14. If fe E, N=1 and gy, (T(f))< o0, then
[ ley . S@n+ o (TUN+ 1S 16)Cx+1
where Cy ., is a polynomial in oy, (T(f)) and || f | g,
Proof. It follows from T=T"+ T and (2.39) that
1 s = @n+ (T NS @xs d(TCO+ o 1(T). (2.75)
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Similarly, as in the proof of Lemma 2.13 we obtain from Lemma 2.8 and Lemma

2.9 that _ 1
: On e TN NS e 1A= f | Hy(I(1 = 22N VS | ),

where Hy is a polynomial. Observing that for gy, , in Lemma 2.13 we have
on+1(f) S on+1(T(f)) we get from the last inequality and Lemma 2.13:

o A TN le@n (TUN+ 1 f ) HI (A= AEN VS ), (2.76)

where we have redefined the polynomial H . It follows from inequalities (2.75) and
(2.76) that

[f ey, S 0n+1(T(f))
+Hy([(1 =22V VS [ )@+ (TUND+ 1S 1) 1 f ey

S(@N 1 (TUN+ IS e )A+Fy i@y TODI S Nle)s 277

where Fy , , is a polynomial. Iteration of inequality (2.77) now proves the theorem.
We can now prove that the linear operators Ty}, Ye U(p) are bounded by the
nonlinear operators T, on a neighbourhood of zero in E,.

Theorem 2.15. Let fe E,N 22, o (T(f)) < 0. Thereis K >0, independent of N and
f, such that if |(1—A4)f||g=K, then

I f ey < @ MTUNHM2MT(f)) s
where Hy is a polynomial independent of f.

Proof. According to Lemma 2.12, we choose K >0 sufficiently small such that
I fllg, <20 (T() =20 5(T(f)). It follows now from Theorem 2.14 that

[ fllex 30MT(f)Cy

where Cy is a polynomial in g y(T(f)) and | f'||g,. We can choose (a, b)— Cy(a, b)
such that it is monotonically increasing in each variable for a,b6>0. Let Hy(a)
=3Cy(a, 2a). This proves the theorem.

It follows from Theorem 2.15 that there is a neighbourhood O of zeroin E, such
that the differentiable vectors in O of the nonlinear analytic group representation
Uin E,, defined by T are the same as those of the linear group representation §!
defined by T*. To be more specific let 2 be the Poincaré group in 1 + 2 dimensions.
According to Definition 7 of [1], a differentiable vector of Uis an element feE,
such that the map g U,(f) is C* from a neighbourhood of the identity in 2
to E,.

Corollary 2.16. There is a neighbourhood O of zero in E, such that ONE , are the
differentiable vectors of U contained in O.

Proof. Let Ox={g€E,; |glg, <K}, K>0andlet fe O be a differentiable vector
of U. Differentiation of g—»U(g) at g=e, the identify in Z,, in the directions
X150 X, X;€p gives the result Ty(f), Y=X,X,, ..., X;. Since f is a differentiable
vector, this shows that Ty(f) € E, for each Ye U(p). In particular, g (T(f)) < oo for
each N =0. Since |[(1—4)f =l f |l g, <K it now follows from Theorem 2.15 that
I fllgy < oo for k sufficiently small. Hence fe E, nUy.

Let fe E,,nOx and let K be such that U, is analytic on Oy for each g in a
neighbourhood of the identity in &,. It follows from Theorem 2.6 that Ty:E ,—E
for each Ye U(p), which shows that the map g— U (f) is C* at g=e and hence in
a neighbourhood of e.
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3. The Second Order Term in the Linearization Map

The second order term of the equation
TycA=DA Ty, Xep, (3.1
gives as usual:
A~ AATHQI+IQT{)=—-T¢, Xep. (3.2)

We will prove that there is a unique solution A2 e L(®>Ey, Ey) if N is sufficiently
large and that A%(V,f ®V, f), where V,=exp(tTp,) has certain decrease properties in
E and E® norms.

We shall denote by wy(k)=(M?+k|*)*?, M>0, ,,=w.

Lemma 3.1. If Ml >O, M2>0, )-> _M1M2 dnd
O(p1,p2)=A+ @ (PO, (P2))—P1*P2>  P1sP2 eR?,

then
1) Q(Pl,P2)§/1+M11M2>0, L
i) a) Q(p1, P2) 2 A+ 3 M50y (p1)0a,(p2) ™" if 420,
M M,+21 2 L.
b) Q(pppz)é—A/—I—]W—EMszl(PﬂwMz(Pz) if —MM,<1<0,
1M

i) [V25722(0(p122)) ™| S Copmgas(p2™ ™ 0y (1) ™"V, 1y my 20,
Proof. For statement i) it is sufficient, due to Lorentz invariance to consider the
case where p,=0. Then
O(p1,0)=A+wy (p1) M2 A+ M M,>0.
For statement ii) we observe that

Opr (1), (P2) = P1* P2 Z Opr (P1)0ar,(P2) — P11 | P2l
2 CUMl(Pl)(wMz(Pz)" |p2l)
M2
(p)———
ML 0, (P2) + P2l
> 1M2 le(pl)

=27 2wy,(p)’

which proves the statement if 120. If —M; M, <1<0, then, using i) and ii) with
A=0, we get

A
Q(p1,p2)=4— W(WM,(P1)WM2(P2) —Pp1°P2)

+< )(le(pl)wMz(p2) P1°P2)

1\

(1 )(wm(pl)wm(pz) -

(143

v

) Msz,(P1)wM2(P2)
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which proves statement ii) for — M, M, <1<0. To prove statement iii) we first
observe that, for p,,p, e R?, n, =0, n, 20,

(Vo Vo2 Q(p1, P2 S Cnl,nszl(pl)l _"‘wMz(Pz)l ", (33)
Leibnitz rule gives:

ny+ny

1 _ - -
T IS R DR e e

[jl=n2 (34)

ny+ny

1 - r—n r—n
|7pn11|7pnzz—Q(pl ) écm,nz 20 (Q(p15p2) ¢ +1)60M,(P1) lez(Pz) 2.
sF2 r=

Statement i) and inequality (3.4) give (with a new C,_ ,,):
1 <C e (wMz(l’z)

=™ S0 \ow,(ph)
ny+ny

=Cn1,n2 ZO wM1(pl)_("l+l)COM2(p2
r=

vy

r+1
D1 D2 Q ) le(pl)r_nlez(pZ)r-nz

)2r+ 1—ny

S Crim@u(D2)* " T gy (py)~ ™Y,
which proves statement iii) of the lemma.
Lemma 3.2. Let ¢,¢,,6,= +1, p,,p,€IR% Then
i) lleax(p1 +p2) —&10(p1) —£20(P2) ™| S Cox(p,)?, (3.5)

ii) [VriVr(ew(py + pa) —€10(py) —&,00(p,)) |
< Cypn@(pr)*™ T 200(py) M (3.6)

Proof. As the two cases e= +1 and e= —1 are similar we only consider the case
e= +1. Let Q be defined by (with M, =M,=m in Lemma 2.1)

Q(p1,p2)=(p)0(Pr) =Py P2+ 36180m%, e, 6,=1. 3.7)
Then, by Lemma 2.1:
O(p,p)z3m* and Q(p,,p))Zim’o(p)a(p) ™",  ene,=+1. (3.8)
Let
R, o(P1sP2) =(0(py +Pps)—&:10(py) —&,0(p)) '

Then
R, .(Pypy)=— o(py +py)+€,0(py) +&,0(p,)
senfL o 8132”’2+2w(P1)w(Pz)—23152P1'Pz "
So,
w(p+p,)+e,w(p)+e,w
R, .(P1,P2)= —&12, (p1+Pp2 10(py)+& (Pz)' (3.9)

20(e1p15€2D2)
Using inequality (3.8), we get

2 ) 2
[Re,,,(P1, P2 = W(w(p—ﬁ;))w(—p) +a(p,)+ ‘zf’; 2 ) (3.10)
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Now, since
w(k,)o(k,) = ‘;niw(k +ky),  kyk,eR?, 3.11)
we get
2 ()2 a(p,) )
R, (P, P — | E=0(py)* + o(py) +
R, e,(P1: P2l m2< (p2) (p2) o(py)
2 (Y2 2 1
<< (Ve 2 2o 1 2 (3.12)
=m2<m +m>w(p2) =mcw(p2) )

which proves statement i) of the lemma. To prove statement ii) we first note that by
Leibnitz formula and (3.9):

Vo VoeRe, ey DS Cy HZ V51V (20(e1 P15 £2P2)) ™|

ny
|jl=n2

|V;fl7;22(w(171 +p)—e0(p)—e0(p)), (313
where i=(i;,i,) and j=(j,, j,). Using inequality
IP'a(p)| < Cfe(p))' ™'
and using (3.11) with k; =p, +p,, k, = —p, we get

|V;:12 Vp]zz(w(lh +p)I= Ciz +j2(w(P1 + Pz))1 TR

cu(pz))i”‘”"1 L
<Cj ., , D=1,
- <w(l’1) 2V )2

Hence, for i, +j, =0,
| Vi V“(CU(P1 +p)I = Ci+ izw(l’z)l Tt jz(i’(lh)1 TR, (3.14)

P1 P2
For I=1,2 and i, +j, =0, we also have,

V27 i2(@(p)| S Ciy 4 ,0(pa)' T2 () 2752 (3.15)

Pt p2
Statement iii) of Lemma 3.1 and inequalities (3.13), (3.14), and (3.15) give:

IVI’nll VpnzzREl,ez(pla Pz)l
SCom 2 a(p)* I a(py) T Ta(p,y)t 2t 2a(py)t T

I|=n
1jl=n2

_S_ Cn;,nzw(pz)

2ny+ny+2

(U(pl)_”1 H

which proves statement ii) of the lemma.
Introduce the functions

s e1, sz(P1sP2)=(3w(P1 "'172)“‘9 w(pl)_gzw(pZ))_l (3 16)

&¢,6,= 11, py,p, R As, according to Lemma 3.2, the functions 4, ,, ,, are
polynomially bounded together with their derivatives, we can define the linear
functions c, ,, ,,: (R?)+ C*(R*xR?) by

(Coven, e NN D)= [ €% 7, o, o,(p, k) f (K} (3.17)
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For meR, let S"(IR* x R?) be the Fréchet space of symbols f satisfying
Vef(xpI=Cs (1+Ip)""",  st20.

Theorem 3.3. If fe #(R?), then c,,, ,(f)eS°(R* xR?) and
PV ConalMEPISC( 5 7S li=) o)™, (18)

SSIS2t+s+
5,620, x,peR?, ¢,¢;,6,=+1.

Proof. For simplicity we omit the indices ¢, ¢,,¢, of d and c. For given s,1>0 set
a=2t+8. Then

2n,+n,4+2—a<-3, for 0<n,<t and 0=<n,=<3.

Lemma 3.2 now gives that

Vi Vo(d(p 1, p2)o(P2) ™) = Coo(p2) Po(py) ™™, (3.19)
0<n,<t, 0<n, <3, which shows that (with a new constant C,)
EL Vo Vo (d(py, P2)eo(p2) ™ Ndp, = Co(py) ™™, (3.20)
for 0<n,<t,0<n,<3, a=2t+8. Introduce
Gix,p)= | e*"*d(p,K)o(k)™“dk. (3.21)
R2

Let g:IR?— € be a polynomial of degree <3. Then, according to (3.20) (with a new
constant C,)

4V, Golx, P =[ €™ *q(—i%)d(p, k)oo(k)~“dk|
= [lg(—=i%)d(p, k)eo(k) ~“|dk = C,o(py) ™ Q. (3:22)

where Q is the absolute value of the largest coefficient of q. As (3.22) is true for all g,
this gives

[IV:G(x, pldx<Cio(p) ™", a=2t+8. (3.23)

It follows from the definitions of ¢(f) and G, that
eVe(N)x, p)=2m) " H(,Gul -, p)) * (P =iV )*f)(- )(x),

where * is the convolution in the argument of the place of the dot. Inequality (3.23)
and Young’s inequality give

VeV N, P = Coll Voo =iV )f || Loeo(p) ™",

for a=2t+8. As a is even we obtain (with a new constant C,)

2t+s+8

1/2
IVEVJ(C(f))(x,P)Iéct< py IIV’f||§«»> a(p)”™*,

=S

which proves the theorem.

Theorem 3.4. Let f,, f, € #(R?) and let
ge,el,ez(k) = Ide,ahaz(ps k_p)fl(p)f2(k_p)dp s £81,6,= + 1.
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Then
p 12
18e,e1,2.ll 2 = C< X IV Hiw) I f2ll (3.24)
and 4 1/2
||g£,£1.£z“L2§C< ;0 I stzllfw) I fulle2 s (3.29)

for some ¢=0 and C =0, which are independent of f, and f,.

Remark 3.5. i) Similar estimates are true if d is replaced by V' ¥;2d. One only has to
change g, and || f;[| .- can be replaced by [|(1—V)"""2f;] ..
ii) If ae C*(IR? x IR?) is polynomially bounded together with its derivatives and

(k)= [ a(p,k—p)/y(p)f(k—p)dp
then

q 1/2
Ilglle§C<s;0 I Vsﬁllﬁ«») A=) "2fill2, G J)=(1,2) or (2,1)

and

a 12/ ¢ 1/2
|Ig”L°°§C< ;0 V3£ IIiw> < ZO [ V’lelfm)

for some g and [.

Proof of Theorem 2.4. As the proofs of the two inequalities are analogous, we only
consider the case of (3.25). We introduce

1 ip-x

g)=5_1 (c(f2) (x, )e® *fi(p)dp, (3.26)

T R2
where c is defined by (3.16). According to Theorem 3.3, ¢(f,)e S~ (R x R), so it
follows from Theorem 18.1.11 of [3] that ||g| .. = C'| fi || .2, Where the constant C’
depends only on a finite number (independent of f;) of seminorms in
S™!}(IR* x IR?). This means that there exist s, =0 and ¢, =0 such that

C= O<Z< sup w(p) [V (c(f2))(x, p)l.
0Zizi T
It now follows from inequality (3.18) that
Cs c,0< | V’fznzm)“z,
2to +ls%(+) 821

where C, is independent of f,. Inequality (3.25) follows by choosing
q=2ty+ 5, +8 and by defining C=C,,.
We have a similar result for the estimate of the L® norm of g, ., ...

Theorem 3.6. Let g, ., ., be asin Theorem 3.4. Then there are q' and C' independent
of f, and f, such that

q 1/2 q’ 12
llgs,el,azlle§C’< z| Vsz“%w) ( Ll stzllim> ; (3.27)

where ¢,6,,6,= * 1.
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Proof. For simplicity we omit the indices ¢, ¢;,¢,. For b=0 introduce

(Fy(f2))(x, y)= [ c(f2)(x, p)e’? Yax(p) *dy. (328)
Then, according to (3.26),
g(x)= [ (Fy(f)) 6, x = y)(@(—iV)°f1) ()dy . (329)

It follows from Theorem 3.3 that

2t+

8 12
I V’fz”%w) a(p)™'7?,

1=0

75(c(f2) (%, p)o(p) "= C, <

which shows that Vic(f,)(x, p)w(p)*is L' in p, if b=3, and that
2a}
1

+8 1/2
1yl I(Fb(fZ))(xay)|§C|u|< =ZO IIV’leliw) , b23, (3.30)

where a=(xy,®,). This gives

1/2
[IFs(f))(x, y)ldy =C (;Z: 17'f, Ilioo> , bz3. (3.31)

By (3.29) we have

(o)l = S IF (L)%, Wldyllax(=iP)f [l o s
which together with (3.31) gives

14 1/2
lgx)I=C (l;) 171 l|%w> leo(—=iP)f Il oo -

Choosing b=4 we get inequality (3.27) with ¢'=14.
We now turn to the resolution of Eq. (3.2). Let f;=(f;., fi-) e ZR?*)DF(R?),
i=1,2. Let D, ,, ., be the map of #(R*)—F(IR*) defined by

(Ds,21,2,81982) (P1, P2) = id,, 5. o,(P1> P2)E1(P1)E:(P2) (3.32)

g1,8,€ L(R?), where d, ,, ,, is given by (3.16). We define 42, =+, on
(SRHSISR)B(SR)DS(R*)=E,QE,,
by
ANfi®f)= ¥ . T D,y f16,® f2,)- (3.33)

£1,82=

Let AX(f,® f)=(4+(/i® /o), A_(f1® f2)). As Tz, € L(E ,®E,, E,;) it follows that
AXNfi®f))€E,,. It follows like in [6] that A% is a solution of Eq.(3.2) in
L(E,®E,E,)

Theorem 3.7. There exist constants q,q’, C,C' independent of f,, f, € E, such that

1/2
14%(fi®f)le=C (sgo Vs ||,23.,°> I£2lle 5 (3:34)

4 1/2
1A2(f2® )= C<s§0 IVsfs lléw> Ifille (3.35)
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and

q 1/2 / ¢ 1/2
|!A2(f1®f2)IIEw§C’<s§0 IIV%II?;«») <s§O IIV‘f21|§w> . (3.36)

Proof. Let us consider a term

TPZ()Da,sl,sz(flh@fZaz)

in the construction (3.33). Due to the definition (1.9a) of T, this term is a linear
combination of terms h:

)= [d, ., .., k— )1 (P)82(k—p),
where g; is one of the elements
1 0;
aﬁe,, fie,a _(;fiei .

According to Theorem 3.4 and Theorem 3.6 we then have:

q 1/2
Ilhlle§C< ;0 | nglllfoo> lg2llLzs

q 1/2
IIhIILz§C< ZO I ngzllfoo> lgilles

and

q 1/2 / ¢ 1/2
llhllméc’(;o HVSglnzw> (;0 nVngnzw> ,

with C, (', q,q" independent of g; and g,. Since
V)™ r[| o  ClI7 ]| o

forre #(IR?), we can replace g; by f,, in the L* norms of the preceding estimates of
h if we replace g by g+ 1. Using the fact that ||g;[| .. < || fi,,ll.2 < || fillg We obtain
(with new constants C and C’)

a+1 12
IIhIILéC( ;0 IV Iliw> I f2lE>

z

qg+1
l
s=0

1/2
IIhIle_S_-C< stzllf«:) Ifille>

and
g +1 1/2 /g’ +1 1/2
IIhIILm§C’< ;0 IVsfy Iliw> < ;0 I VszlIiw) .
This proves the theorem after redefining q.

Corollary 3.8. There are y and C independent of f,, f, € E,, such that

IAA(V:®V)(/1® 1)k
sCA+9 ' min(l fillel f2lle, 1 fillg N fallD),  £20,



Cauchy Problem for Non-Linear Klein-Gordon Equations 461

and

IAX(VOV(1®fIe==CA+0) 2 fillg ) follg,,  t20.
Proof. According to [2] we have
IVVfill Lo = VIV il Lo
SCA+) IV fille, =CA+) 7 fillg,. , -
The corollary now follows from Theorem 3.7.

Theorem 3.9. There exist Cy independent of f1, f, € E, and y, independent of f1, f>,
N =0 such that

1) ”Az(f1®f2)”ENSCN Z rmn(”f1H)s,,l|)f2|hs,.2+,c0 \|f1”£,.+xo”f2||5,,)

2’

ii) if, moreover, f; =/, f then A 2(f®f)“ENSCN”f”EN”f”E N2 3% o
iii) if, moreover, N is suffciently large then | A*(f®f)| EN<CN|] f

Proof. Let Sy=T{ ®I+IQ® Ty for X ep and let Sy, Y e p be the natural extension
to the enveloping algebra. As

TiA2=A%Sy,— T}, Xep,
one proves by induction that for Y=X, ... X,, X;ep,
THA? = 4°S, T3Sy, .,
- Txll TX22SX3...X,‘_ e Txll ...Xn-szzn_ 1SX,._ TX11 i Xno lTxl,. . (3.37)
Hence by the definition of the space E; we have
1Ty (i ® ) e S NAPSU /1@ L)l e+ [ Ty, Sx, . x,(f1 @Sk,

+l szzsxg...x,.(ﬂ ®f)g, +
- F T Sk (i® ),

+T(i® )k, -, (3.38)
If Z=X,, ... X,, then there are numerical constants C(Z,, Z,) such that
SAN®L)= ¥ C(Zy, Z) (T )BT, 1)) (3.39)
12 =1Z1] +|22|

Let Y=X;X;,,...X,, 1=ZiZ<n. Then, according to (3.39) the term
I T2Sy, . (fi®f)llg,_, in (3.38) can be bounded by a sum of terms

IC(Z 1, ZN (T )T ), » Where |Z|+]|Z,|=n—i. (3.40)
It follows from Lemma 2.1 that

IT(TZ, SOR(TE, L)k,
=Ci, ( Y min(IT; fille, | T, o s, | T2, foll, | T, o HE,-.H)) :

Jitj2=i—1

T3, f1 e, | T‘lef2||Ejz+3§ I fi llEj‘“,‘lllelE,. vats (3.42)
and >

VT folle, I TA fills, o S fills, oy sl ol o, (3.43)



462 J. C. H. Simon and E. Taflin

Inserting (3.42) and (3.43) into inequality (3.41) and then summing up the terms in
(3.40) over q, and q, such that g, +g,=n—1i, we get
1T Sy, ([i® I,
=C - Z ) lmin(”fl ”qu!”fz”Esz ol IE; .4 +3||f2||Ej va)
}1 Jzél_ 2 1 1 2 2
q1+qa=n~—i

We obtain after a change of summation variables:

1728y, (1® L)l
=G Y min(|| f1llg, | f2ll,, . 5 1 f1llg, o 51 S2 ] E,) 5 (3.44)

ny+ny<n—

for 1 <i<n, where Sy_, =Id. For the remaining term, | A*(Sy(f; ® f2))| g, on the
right-hand side of (3.38), equality (3.39) gives:

1A S f/i®LMeSC Y, _ 1AX(T;, )BTz, L)l -

Zi|+|Z2

Using Corollary 3.8 and denoting by ¢;=|Z,|, we obtain
1A2SHfi® LI =C, Y min(lfillg, I f2]g,. ., 1 fill,. ] f2]l5,)-(345)

q1tq2=n

Choosing y,=3 and y, =y, inequalities (3.38), (3.44), and (3.45) give:
I A/, ® f)e=C, Py min(|| fyllg, | f2lle, v s 111 Ep o 1 f2]l 5, ) - (3:46)

By the definition of Ey this proves that
14%(/i® ey =Cx % Nmin(||f1 I, I S2ll By o W1y o I f2N ) 5 (B4T)

ny+ny<

N

N N
which proves the first inequality of the theorem. If n, = > thenn, < 5 =< Ii?] +1

. N N [N )
and if n, > > then n, < 5 < [5} +1. This proves that

Wi (f e S N 1S N JS N S NS NS Wy -
0

Hence by (3.47) (with a new Cy)
142 ® ey SCall F sy f gy .,

. N
which proves the second statement of the theorem. Choosing N = l:—z-] +xo+1,
we get

1A2(fi® [ en S Chll f 12y »
which proves the third statement of the theorem.

4. The Linearization Operator

In order to construct a linearization operator of the nonlinear representation T of
p, we consider equality (1.14) in E satisfied for a sufficiently differentiable solution a
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of (1.15)

d
i Ty a1(®) = Tpoyplai (), t=20, 4.1)

with Y(t) given by (1.13) for YeII'.
Introduce, for YelII':

ay(t)= TY(t)(al(t)) . 4.2)

Corollary 2.5 and (4.1) then give

S aO=Tal)+ T T 084 O+ Trfas@), (4
where :
Tpoyla (1) = n;3 YZ; Tp(ay,()® ... @ay,(1)). (4.4)

According to the definition of the sum Y, Egs. (4.3) and (4.4) define for given

Y,
N =0, an evolution equation for the varialg]es {ay}y|<n> Where YeII' and aye E
for |Y| < N. As mentioned in the introduction, we have chosen the linearization
operator to be a solution of Eq.(1.18). We therefore study the existence of
solutions of (4.3) for which there is 6 € E such that

lim V_,a,(t)=0,€E for |Y|<N, (4.5)
t— 0

where 0y = T;0. To do this we first subtract from a the terms of order one and

two in 6.
Let x be as in Corollary 3.8. We define for N=N,=2y, |Y|<N and O Ey:

a(O)=Vhy=VTy0, aP)= 3 A*V0y,®@Vby,), teR. (46
Y,2

When needed, we shall write a{(6,t), i=1, 2, to indicate the dependence of a on 0.
Lemma 4.1. If N>N, and O E,, then
PMaPO)SCy1+1)71013,.  120.

Proof. Let |Y|Z N in (4.6). According to definition (2.15) of Y; and Y, we have
|Y;|+|Y,|=|Y|=N in (4.6).

a) Let|Y;|=|Y,|. Then |Y;|S N and |Y,| < [%] . It follows now from Corollary 3.8
that

1A%(Viby,®Viy,) [ e= C(1 + 1) |0y, £ll O, I,
éC;VHGHEN||0”E[I_v]+X(1+t)_1a 120,

. . N N N
where we have used the equality 0, = T;!0. Since [7} +x= 5 + 70 <N, we
obtain

1A2(Vi0y, @ Viby ) e = Chll O, (1 +0)7",  120. 4.7)
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b) If |Y;|<|Y,|, then we deduce similarly that (4.7) is true.
Summation over Y;, ¥, now proves the lemma.
For N=N,, |Y|<N and 6€E,, we introduce

by(t)=ay(t)—a{ () —a(t), t20. (4.8)
Supposing that the map t— ay(t)e E is C' and using (3.2), Eq. (4.3) gives:

SbAO=TEb O+ 5 TAfal)
‘2’(t)®a‘2’(t)+a“’(t)@byz(t)+byl(t)®a‘”(t)
+af @by, () + by, (V@aFt) + by () ®by (1))

+ T y(b(t)+ aV(t) + a P ), ¢20. (4.9)

Let &y, N 20, be the Hilbert space of elements f,eE for [Y|<N, YelIl' and

satisfying 0*fy = fpey for |2/ +|Y| < N. The normin &y is g y defined by (2.38). Let
be the Banach space of continuous functions from [0, o[ to &y with norm

an(b)=sup (1 +1)pn(b(®)), bey. (4.10)

(O®af)(1)+aP () @ay Xt)

We next introduce functions F, G, H, U which will be proven to be polynomial
maps of Ey x %y into By, for N sufficiently large. For |Y|<N, YeII', e Ey and
t=0, let
(Fy0.0)()= Y  Taaf ®afXt)+af)O)@by, (1))
£ -2
+ Y Taaf)O)®af)(1)+ by, ()®af (1)
Y, 2
Y2 slY|-2

+ Z To((@2)0)+ by, ()@ (@) @by, (1)), (4.11)

(Gy(6,b))(1)= YZ; Ti (ay () ®af)(t))
¥y(>1¥]-2
+ Y Tiaf))®(a)), (4.12)
71> 1] -2

(Hy(6,b))(1)= YZ; Tp(af ) ())®by,(t)
[¥.[>1¥]-2
+ Y22 Tp(by (D)) ®(aF (1), (4.13)
¥2]>]¥|-2

and let

(Uy(0,b))(t) = Tpoy(b(t)+a(t) + a®2)) . (4.14)
Equation (4.9) now reads:

%by(t) = Tp,by(t) + (Fy(6,b)+ Gy(0,b) + Hy(0,b) + Uy(0,b))(r),  (4.15)

where O € Ey, is given, be %y is unknown, |Y|< N, t=0 and N is sufficiently large.
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Lemma 4.2. There exists No=0 such that for N>N,,
PN(FO, b)) = Cy(1 +0)2(I01Z, + 101%, +an()?), (4.16)
- and
PM(GO,0)(O) = Cy1+6) 211011z, , (4.17)
where € Ey and be By.

Proof. Let o.and f be continuous function from [0, co[ into &y. Then ay(t) and Sy(t)
are elements of E for |Y|< N. Introduce for |Y;],|Y,| < N:

(fro, v:(0 D))= Tfory, ()@ By (1)) (4.18)
According to inequality (2.7) of Lemma 2.1 we get:
I fysv:(06 B = CZ (B, 0ty (£))e,(Bi, By, (), | 2
éC’(lert)_2 Z@ 312113(0+S)2”Ba]’1(s)”E°°” By,9)lp), (4.19)

Be

where | Boty, (0 | B, (0l can be replaced by [ty (051 BBy (0)] - f ay(t) = 1)
=V,0y, 0€Ey, then using || Vg] .. <C(1+]t))” 'l gl z,, we have

I Bay ()]l goo = | V;BOyl po < C(1 +) " | BOylg,,  t20.
Hence, it follows from (2.3) that (with a new C):
IBa(®)ll g < C(1 +1)™ |0yl g,

=(1+97"0llg,, ., BeA. (4.20)
According to (4.19) and (4.20):
ICfys, v, @, YOI S CA+0) 7201, .\, div,1(B)s (4.21)
where 20 and e %)y, Similarly, we have
ICfy,, v, aNOIe< CA+0 2101 g, ., iy, (@) (4.22)

fort=0and a € %,y,,. Since o(t) € £y, we have by definition Aoy(t) = apzy(t) + 0tpzy(2).
This gives

| Baty, (8)l| g= = CII(1 — 4)Bary (1) [ e = C' (1 — Aty (1)

= C(lloy, @Ol g+ llopzy ()] g+ llotpzy, (O] £)- (4.23)
It follows from the last inequality and inequality (4.19) that
1Sy, v BY@N < CA+8)2qpy, 1+ 2()q)v,(B) s (4.24)
for t20, e By, +, and Be ABy,. Similarly,
ISy, vl YOI S CA+6) 2y, (0,1 + 2(B) (4.25)

for t20, xeBy,, and e By, 4.
We first consider the case of F. Let |Y;| <|Y|—2 as in the first sum on the right-
hand side of (4.11). If

ay()=ay(t),  Bylt)=aP(t)+Dby(t),
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then (4.21) gives, as 2+Y;|<|Y|< N and |Y,|<N:
YZ; I(fy,,v,(@®,a®+b) (O]

I¥:[=1¥] -2
SCN(1+8) 72101l gy qn(a® +b)
SCN(1+0)72(10] g (an(@®) +qnb)),  t20. (4.26)
Similarly, we obtain for the second sum on the right-hand side of (4.11), where
Y| £1Y]-2: , 2 "
yZZ I(fy,.r,(@®+b,a)N@)
I¥2| <17 -2
SC(1+0)72]0] gy(an(@®) +and),  t20. (4.27)
For the third sum in (4.11), we first consider the terms with |Y;|=|Y,|. Then
|Y;|£N and |Y,]+2< N +2<N for N>N,=3. Let Ny=3. It now follows
from (4.25) that
YZ; I(fy,.v(a®+b,a® +b))(®)|

1¥51Z|Y2l
S Cy(1+1)7(gpa® + b))
SCM1+1) 72 (gpa®P) +gpb))*,  t20. (4.28)

The estimate (4.28) and its analog for |Y;| <|Y,|, obtained from (4.24), give for t = 0:
YZ; I(fy,.r(a® +b,a® + b)) = Cy{(1 +1) " Hgn(@®)+qu(b))*.  (4.29)

It now follows from estimates (4.26), (4.27), and (4.29) that for N>N,=3:

1+ M(F O, b)(2)
< Cx(l101 4 (an(a®) + qu(b)) + (qn(a@®) + qu(b)))
S (11011 g,an(@®) + 1101 5, qn(b) + (gn(@®))* +(gn(b))?).- (4.30)
Inequality (4.30) and Lemma 4.1 give (with a new Cy):
A+ 6 pr(FO, b)) < C(110113, + 10113, + 10115, an(b) + (an(b))?)
SCyIBIE, + 110115, + 1015, +(an(B)?)-

This proves inequality (4.16).

We now turn to the proof of inequality (4.17). First, let |Y,|>|Y|—2 as in the
second sum on the right-hand side of (4.12) and let a=a® and B=a"). It then
follows from inequality (4.19) that

YZZ’ I1(fy,,r,@®, @) (@)l

¥21>1¥]-2
SCy1+1)72 BZ@ sup ((145)*|Baf )] 5101 5,y,) - (4.31)

According to (2.3) we have
I Ba?)(s)l| g = C( :Zl , 10:a85) | g + 1aF(S) | o) - (4.32)



Cauchy Problem for Non-Linear Klein-Gordon Equations 467
Using equality 0;A%(f®g)=A®((0,/)®g)+ A (f®0;g) it follows from (4.32),
the definition (4.6) of a® and Corollary 3.8 that for |Y;|<1:

”Ba(yz1 (5)|g==C(1+5)2 ZZZI .21: ) (10,02, ”E“” 0z, ”E,O+ 162z, “Exo”aiezz ”Exo) )

for some y,=0. Hence, for |Y;|<1:
[Baf)(s)l e < C(1 +5)" 201z, (4.33)

where N is redefined such that it also satisfies Ny =y, +2. Since No <N, |,|< N,
|Y;|<1 we obtain from (4.31) and (4.33),

Y I(fy,, v (a®, aNOIe= Cx(1+8)"2[1012,, NZNo.
1¥2>1¥] -2
Similarly, we obtain that
YZ; ISy, v (@D, aOIe = Ch1 +0)72101Z,, NZNo. (4.35)
1v4]>1¥| -2

Inequalities (4.33) and (4.35) prove that (4.17) is true, which proves the lemma.
Lemma 4.3. If N=0, then
©N(HO, b)) = Cy(1+)" [0l ,an(b),
for € Ey ., and be By.
Proof. According to (4.21)

1Sy, v(@2, D)= C(L+8)72(10ll, , . dyy1(B)- (4.36)
Hence, since |Y;],|Y,| S N, we get
T M@ B)OlSCA+0 2005 anb). @43
174> -2

Similarly, we obtain
2 ICfy, rb, @NON e < Cxl1 +8) 20l g,, . ,qn(D).- (4.38)

171]>1¥] -2
Inequalities (4.37) and (4.38) prove the lemma.
Lemma 4.4. There exist Ny =0 and yy=0 such that
(U0, b)®) = Cy(1+0)2(101F,+ 101%,+an(b)*) (1 + 6] g, + gnb)),

fort20, N=N,, O Ey and be By.
Proof. Let YelI', |[Y|<N, n=3 and let T (ay,()®...®ay (1) be a term in (4.4).
Then there is v such that | Y,| 2| Y| for 1 < j<n. It follows that |Y}| < |:I—;|] < [%] ,
fqr j#*v.Hence |Y}|+2=< N for N2 N, =3 and j+v. Inequality (2.7) of Lemma 2.1
gives:

I Tp,(ay,(O)®...®ay, (D)= CN; 1By, ay,(0)l g 11 IByay()lg-,  (4.39)
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where i€ {1,2,3,4}". According to (4.20), (4.23) with a® =0 and Lemma 4.1 we
have:

I1B:,a%, @)l g SCAL+ )01,y , SCA+) 0]l g, (4.40)
and
B, ()| g < C1yy 4+ 2(aP () S Cop(@P ) SCA+0)7H0]F,,  (4.41)

where N, has been chosen sufficiently large. Similarly, using (4.23) we obtain for
I+,

IBi,by ()| g < C(1+12) " qn(b). (4.42)
Since ||B; ay,(t)llg < Cllay (t)llg, we have for a=a'"+a'® +b:

I1B;,ay, O e < C(10]l g, + (1 +6)" 611F,+(1 +1) 7" qn(b))
< C(10]1g,+ 1012, +qnb)), NZNo, (4.43)

where N, has been chosen sufficiently large. Here we have used Lemma 4.1 for the
term a@. Inequalities (4.39) to (4.43) give:

I TE(ay,()D...®ay, (1) £
SCA+) V(10 g, + 101F,+aub)", 120, N2=N,. (444

Since Tp, is a polynomial, we obtain from (4.4) and (4.44):

I Tor@®() +a(0) + b)) 5
< T YT ar0)®...®ar,0)l;

S C+0)72(101F,+ 1012, + qn®)*) (1 + 0]l 5, + an(B)*,

where yy is sufficiently large and N = N,,. This proves the lemma.

There is a loss of two degrees in the scale of the seminorms in the estimate of
H(6, b)in Lemma 4.3. This makes it impossible to prove the existence of solutions b
of Eq. (4.15) directly by using the method of Picard in a Banach space. However, as
we shall see, the properties of 4% permit us to overcome this difficulty by a
transformation of Eq. (4.15).

For N sufficiently large, let 6 € Ey and let t — b(t) € &y, t =0 be a C?! solution of
Eq. (4.15). Let T3 (a' () ® by, (1)) be a term in the first sum of (4.13). Then, it follows
from Eqgs. (3.2) and (4.15) that:

Ly 42V0y, @by (1)
dt ! 2
—V_(— T A(V,0y, @by (0)
L A(TE®I+I® TL)(Vby, @by, (1)
+ A2(Vt9y1 ®(FY2(9, b)+ GYZ(H, b)+ HYZ(G, b)+ UY2(0> b))(t))
= V—tﬁo(l/;BYl@sz(t))
+ V_tAz(V,HY1 ®(FY2(0, b)+ GYZ(Q, b)+ HYZ(O, b)+ Uy, (0,b)()).
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Hence

V_ Ta(V:0y,®by,(1)
d
= 2 VoA (V8y, @by (1)
— V,AX(V,0y,®(Fy,(0,b)+ Gy (0,b)+ Hy (0,b) + Uy (0, b)) (). (4.45)
Similarly, we get for the terms in the second sum of (4.13):
V_ Ti(by ()® Viy,)
d
= V- Aby, (0®Vy)
—V_,A*((Fy,(0,b)+ Gy,(0,b)+ Hy,(0,b) + Uy, (0, b)) () ® V,0y,) . (4.46)
Introduce, for t=0:
(#(0,b)(1)= YZ; A(af)t)®by, (1)
1¥4]>]¥]-2
Y Ab08d). 120, (44
1¥2]>1¥] - 2
and

(h(6,b))(2)
=— YZ; A*(ay )(t)®(Fy,(0,b)+ Gy,(0,b)+ Hy (0, b) + Uy, (0, b))(t))
[Ya>1Y]-2
— Y A*(Fy,(6,b)+Gy,(0,b)+ Hy (6,b) + Uy (6, b)) () ®af )(t)).
Y2 4.4

|Y2|> Y] -2

8)
According to (4.45) and (4.46) we then have:
d
Vo (Hy(0,0)(0)=V_(h(0,D) 1)+ = V-(F¥(0,b)(), t20.  (449)
Substitution of (4.50) into (4.15) and then integration in ¢ give:
by(t)=(F+(6,b))(¥)
- OIO Vi (Fy(6,b)+ Gy(6, b) + hy(6, b) + U(6, b))(s)ds, (4.50)

where e Ey, be By, |Y|SN, t=0, and N is sufficiently large.
Introduce

(Ky(6, b)) (1) =(F+(6, b))(®)
— oj? V,_(Fy(6,b)+ Gy(0,b)+ hy(0,b) + U (6, b))(s)ds.  (4.51)
Equation (4.50) then reads
b=K(,b), (4.52)

where be %y, 0 Ey, and N=N, for some N,=>0.
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Theorem 4.5. There exists Ny =0 such that K is a polynomial map from Ey x &y into
By and

N an(K(8, b)) < Cp(|0]1 2+ an(®)*) (1 + 1|6 g + gn(B)*™,
for NN, and some constants Cy and yy.

Proof. The proof of this theorem is similar to the proof of the preceding lemmas in
many details. For this reason we will omit several details.

Let |Y;|>|Y|—2. Then, in the first sum on the right-hand side of (4.47) and
(4.48), we have |Y,|<1 and |Y;|<|Y| < N. Inequality (3.35) of Theorem 3.7 gives:

[ 4%(@f ) ) @by, () ;= C lla“’(t)llz; Z [0%by (O) ]| g=o -

Since b € #y we have 0°by, = b,,.,,y2 The Sobolev 1nequa11ty | fllge = C Z 10%f |l

and [af)()| < 10] g, now give: al=2
4% ) )®by, ()l e< CA+)1[10]l g, qno(b) s (4.53)

for t=0, N> N,, where we have chosen N,=3+q. Similarly, we obtain

| A%(af Xt)®(Fy, (6, b)+ Gy, (6, b)+ Hy,(6,b)+ Uy, (6, b)) (1))l ¢
S C|0] (9 n ((F(6, 0))(1) + 62 5,(G(6, b))(D))

+ 9 (H(0, b)) (1)) + (U0, b))(2)) - (4.54)

Choosmg N, sufficiently large and using the fact that l|(9||EN +2qn0(b)
< 31012y, ..+ ny(b)), it follows from Lemmas 4.2, 4.3, and 4.4 that

£ ((F(0, b))(1) + 9 n,(G(6, D) (2)) + o w(H(B, b)) (1)) + 92 5,(U(6, D)) (1))
SCxn 1+ X012, ., + 10115y, + dnoBY)A+ 101l £, + dno(B) .
This inequality and inequality (4.55) give after redefinition of N, and yy,:
14%(@$)(t)®(Fy,(6, b) + Gy, (6, b) + Hy (0, b) + Uy (6, b)) (1)) | &
SCxno(1+07 210110113, + 1011 Zy, +an (b))

X(1+0llgy, +an b)Y, N2No, 120. (4.55)
Inequality (4.54) and its analog for |Y,|>|Y|—2 give:
an(F(0,0) < Cy [0l gydn,(b), N=N,. (4.56)

Inequality (4.56) and its analog for |Y,|>|Y|—2 give:

Ou((h(6, D)(B) = Ch(1 + 1) 210, (1011E,, + 1011y, + dno(0)?)
X1+ 10]py +ano®)™, 120, N2No. (4.57)

It follows from the definition (4.52) of K that
an(K(0, b)) = gn(#(6, b))
+ ‘zl‘flzllo) (1 + %@ N(F(6, b)+ G(6,b)+ h(6, b))+ U(6, b))(t)). (4.58)
Lemmas 4.2 and 4.4 and inequalities (4.57), (4.58), (4.59) give:
an(K(8,b) = Cx(I101Z, +qn(®))(1 + 0] g +an(B)*™, N2ZN,,

where yy is redefined. This proves the theorem.
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Theorem 4.6. There exists Ny =0 such that if N=N,, then there exists an open
neighbourhood Oy of zero in Ey such that the equation b= K(0,b) has a unique
solution b(0) € By, for each 0 € Oy. The functionb: Oy— By is analytic and has a zero
of order three at 0=0. We choose 0, i= N, such that 0;, ,C0,.

Proof. According to Theorem 4.5, K: Ey X By—%y, N2 N, is an analytic map
with a zero of order at least two at the point (6, b)=(0,0). The map R defined by
R(0,b)=b— K(0, b)is then an analytic map from Ey x %y to #y and D,R(0,0)is the
identity map on %,. Here D, denotes the derivative with respect to the second
argument. Since Ey and %, are Banach spaces it follows from the implicit mapping
theorem that there exists a neighbourhood @y, of zero in Ej, for which the equation
R(0,b)=0 has a unique analytic solution b:0y—%y. K(0,b) considered as a
polynomial in b has an expansion

K(0,b)= ¥ ki(0,b)+ko(0),

where b— k,(6, b) is a monomial of degree n from 4, into itself. It follows from the
definition of K that the polynomial 6 — k(6) has a zero of order three at § =0 and
that the polynomial 8+ k,(6, b) has a zero of order at least one. Since the unique
solution 6+ b(6) of equation b(6)=K(6, b(9)) satisfies b(6)=0, it now follows by
identification of the n-homogeneous parts, n=1 of b(6)= K(6, b(0)), that 0+ b(6)
has a zero of order three at =0. Finally, we redefine Oy by OynOy_N...NO,.
This proves the theorem.

For N sufficiently large, we can now deduce the existence of C! solutions
t—a(t) € éy, t 20 with given scattering data at t = o, of Eq. (4.3). To indicate the 6
dependence of a(t) we shall write (a(0))(t). We introduce for N =0 the Banach space
oy of continuous functions f:IR* —&y with norm

1)l = sup o(f(2),  N20. (4.59)

Theorem 4.7. Let O and b be as in Theorem 4.6. There exists No=0 such that if
N2 N, and a(6)=a"(0)+a®(0) + b(6), O € Oy, then

i) a:0y—sy is an analytic map,

i) lim P (@O)(®)— (@ @)®)=0 for Oe by,

iii) if 0Oy, ,, then t+—(a(0))(t) € &y, t =0 is the unique C* solution of Egq.(4.3)
satisfying the condition ii). In addition d(6) € o5 , where (a(0))(t)= %(a(@))(t).

Proof. We define N, which is larger than that of Lemma 4.1 and that of
Theorem 4.6.

It follows trivially from definition (4.6) of a'® that it is analytic from Ey to o/ .
According to Lemma 4.1 the map 6 a'®(6) is analytic from E to o/y and
according to Theorem 4.5 the map 6+ b(6) is analytic from O to 8y and hence a
fortiori to oy . This proves statement 1i).

Since a—a=a® + b, Lemma 4.1 and Theorem 4.6 give for 0 e Oy:

Pn(a0)(0)— @O ®) = o (@@O)(1) + P (BO)(1)
S(1+87 1 (Cyl0IZ, +anb(©), t20.

This proves statement ii), because b(f) e By according to Theorem 4.6.
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Let € Oy ,. It follows from (4.6) that a{(6) = a§) ,(6). Hence it follows as in the
proof of statement i) that a@?(0)e.«/y. According to Theorem 4.6, b(O)E.%\,Jrl
which shows that the right-hand side of Eq. (4.15) is a continuous mapping in ¢
from [0, o[ to &y. b(6) is a solution of Eq. (4.52) so, by construction, it is also a
solution of Eq. (4.15). This proves that b(6) € /5 . The function ¢+ (a(0))(t) € &y is
then by construction a C* solution of Eq. (4.3). The uniqueness of this solution
follows from the uniqueness of b in Theorem 4.6. This proves statement iii).

The next theorem will permit us to solve the Cauchy problem of Eq. (4.3) with
Y=1at t=0.

Theorem 4.8. There exists No=2 such that for N=ZN,, 0 (a,(0))(0) is an
invertible analytic map from Oy onto O, where O and Oy are open neighbourhoods
of zero in Ey. Further Oy, COy.

Proof. We can choose N, in Theorem 4.7 such that N, = 2. According to Theorem
4.7 the map 0+ (a(6))(0) is analytic from Oy to &y. We choose Oy, small enough so
that oy (@@)(t)=<K, t=0, where K is given by Theorem 2.15. Since
(1 = A)(a1(O)O) £ = 9 wo((a(0))(0)) and 0 4((a(0))(0)) < o0, Theorem 2.15 gives that
[(a;(0))(0)|| g, < c0. This proves that 8+ (a;(0))(0) is an analytic map from Oy to
Ej. Denote this map by 4: Oy— Ey. We have DA(0)=1, I =identity in Ey. By the
inverse mapping theorem there exists an open neighbourhood Oy of zero on which
A~1! exists and is analytic. We redefine Oy such that A:0y— 0y is an analytic
bijection. The last property is true if Oy, , is redefined by Oy, ;nOy and Oy, ; by
Oy 410 0y.

Theorem 4.7 and Theorem 4.8 are the main tools we need to solve the Cauchy
problem for Eq. (1.15) with data at t =0. Let us introduce the Banach space 7y of
continuous functions f:IR—&y, with norm

1 W= sup pf(), N2O0. (4.60)
Introduce also the equation
@y (0)(0)= Tooy(y (u:(O)®),  teR, (4.61)
with data
uy(0)0)=Ty(0)eE, |Y|=N, (4.62)

where (uy(0))(t) = Ty, (u1(0)) (), (15 (0))(t) = %(uy(ﬁ))(t), and YeIT'. It follows like in
(4.3)and (4.4) that Eq. (4.61) is an evolution equation for the unknown (u(0))(t) € &y.

Theorem 4.9. There exist Nq=0, open nelghbourhoods O%y> Onos On, 0f zeroinEy,,
analytic maps u: (DNO-»&{NO, Q. (9N0—>(0N0, Q_ (9N —»(ON and for N>N0 open
neighbourhoods 0%, Oy, Oy of zero in Ey, with (9N+1C(9N, Ox+1COx, Oy 1COx
such that:

) u:0%- sy is analytic,

i) The maps Q, :05% —0%, Q_:0y —»0% are analytic bijections and

Jim p(@O)O—VT'QENO)=0 for 00},

iii) t+> u(B))(t)e &y, 0€ O, , is the unique C' solution of Eq.(4.61) with initial
conditions (4.62),



Cauchy Problem for Non-Linear Klein-Gordon Equations 473

iv) if 003, then (u(0))(t)eEy for teR and the map t+—> V_[u,(0))(t) defines a
continuous functionint fromIR into the space of analytic functions from O3 into E,.

Proof. Let us choose N§ which is not smaller than N, of Theorem 4.7 or Theorem
4.8. For N> N¢ we define Oy as the intersection of Oy from Theorem 4.7 and
Theorem 4.8. It then follows from Theorem 4.8 that 6+ Q_(6)=(a,(0))(0) is an
invertible analytic map from Oy onto 0% y, N=Ng, where 0% y=Q,(0y). For
a(f) given by Theorem 4.7 we denote a*(6)=a(h).

There is an analog of Theorem 4.7 for Eq.(4.1) with t<0, obtained by
considering instead of (4.5) solutions a™(6) satisfying

lim V_/(ay (0)(t)=0y=Ty;0cE for |Y|<N.
t—>—

As above we then obtain N, Oy for N= N, and the invertible analytic map Q _
from Oy onto 0% y, where Q_(0)=(aj (0))(0).

We define Ny =max(Ng, Ng), O3 =0% yn0° yand we redefine 05 and Oy by
On =Q71(0%) and Oy =QZ1(0%), which are open subsets of the old ones. They are
neighbourhoods of zero in Ey since Q,,(0)=0.

For 0 e (3, we now define u(6) by

@©O)(0)=(@"(Q:'O)@) for t=0 (4.63)
and
w@)()=(a"(Q-'0)() for t<O. (4.64)

Since (a*(0))(0)=T(Q2.(0)), 0Oy and (a~(0))(0)=T(Q_(0)), 6Oy we have
@t (Q:10)0)=(a" (2:10)(0)=T(®) in &y for Oe®y. This proves that
t— (u(0))(t) is continuous at t=0 and that (u(6))(0)= T(0), so (4.62) is satisfied.

Statements i) and iii) of the theorem and the equality in the statement (ii) of the
theorem now follow from the corresponding statements of Theorem 4.8 and its
analog for t<0.

To prove statement iv) of the theorem we remark that we have already fixed 09,
by the definition of @} in the proof of Theorem 4.8, such that

11— A)(af (R OND) = o (@@ ONE) =K

for t>0 and € Q,(0x)= 0% and similarly for ¢t <0. Here K is given by Theorem
2.15. Hence |(1—4)u,(0)(@®)|z=K for teR. By statement i) it follows that
P Mu(0)(1) < oo for B OF and teR, so by Theorem 2.15 we have |[(u())(1)l g,
< 0o0. The map 6+ (u(f))(¢) is analytic according to statement i). The continuity
follows from the integral equation corresponding to Eq. (1.15). This proves the
theorem.

Theorem 4.10. There exists N' 20 such that, if 0%, Oy., Oy. are given by Theorem 4.9,
then
i) it is possible to choose 0% =ENn0%., Ox = ExnOx., Oy = EynOy. in Theorem
49 for Nz N/,
ii) the invertible analytic maps Q, : O5.—0%., Q_: Oy — 0%, satisfy

DQ, Ti=Ty-Q, on % ., and for Xep,

where e= +

i)

iii) if 0% =03,nE,, 0} =0%E,, 05=03nE,, then @, (0F)=0°.
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Proof. Let N'=N,+2, where N, is given by Theorem 4.9 and redefine 03 .,
i=0,1,2,e=0, +, — to be the interior of the closure in Ey,,; of Ey,+;n0O%.. The
open neighbourhood 0%, ; of zero in Ey ,; is included in the one defined in
Theorem 4.9. Let 0% be given by Theorem 4.9 for N = N'. Then the conclusion of
that theorem is valid for the sequence Oy, Oy, +1, ..., Oy, ..., €=0, +, —.

Let us first consider statement ii) for Q, . Let € Oy, , ;. Then Q  (6) € Oy, , , and
Ti0eEy, +1, 50 0—DQ ,(6)-(Tx 6) and 61— (T~ Q.,)(6) are analytic functions from
Oy,+1 to Ey,. According to the definition of Oy, . ,, it is dense in Oy, .. Let
6 € Oy,+, and let X e p. It follows from definition (1.10) and statement ii) and iii) of
Theorem 4.7 that a; (0) is the unique solution of the equation

*(ax(9))(t) DTp((ai (0)(®) - (ax (O))(r), 20, (4.65)

with [ay(0))(t)—V,T;#6||;—0 as t—oo. Introduce ay(0)=Da; (0)-(T¢6). Then
differentiation in 0 of the equation

(a1 0)(t)=Tp,((a; (0))(®)
gives
i(“x 0)(©)=DTp (a7 (0))(®)) - (25 (0))(t). (4.66)
Since lim V._(a} (6))()=0, it follows that

ex OO —V:Tx0l;—>0 as t—oo. (4.67)

It follows from Eq. (4.61), condition (4.62) and the uniqueness of the solution of
Eq. (4.66) that ay (6)= o5 (6).
Since according to (4.2), (a5 (0))(0)= Ty((a; (0))(0), we get by the definition of
ax (0) and by the definition Q. (0)=(a{ (6))(0) that

Tx((a1 (0))(0)= Tx(Q ., (6)) =(Da; (6) - (T3 0))(0)=DQ..(6) - (T} 6),

0€ Oy, +,. By continuity it now follows that this inequality is true for 0 Oy, as
On,+21s dense in Oy, ;. This proves the statement ii) for the case of Q.. The case
of Q_ is so similar that we omit it.

We next consider statement i) in the case of O . Since the map Q,:08—0y is
analytic, so is the map Q, :05 -0y for N>N'. Let 0e0y. ., L=1 and let
X4 ..., X €p. The map 0 —Fy, x,.. XL(H) obtained by differentiation of
Q. (ON +1— 0Oy at 0, first in the direction T 6, then in the direction T,0, ..., and
finally, in the dlrectlon Ty, is analytic from Oy, to Ey.. We prove that in E:

Fy,  x(0)=TyoA@), Y=X,X,..X,, 0€Oy,, A=0Q,. (468

For L=1 it follows from Theorem 4.9 that (4.68) is true. Suppose it is true for L.
Then, for Y=X,,..., X;:

Fxl,...,x“l(e)_(DFxl ‘..,x,_(e))'(TleHe)
=(D(Ty - A)(0) - (Ty, , ,0)=(DT{A(0)) - (DA®)- Ty, , ,9).
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By statement ii) and definition (1.10) we get:

..... x40 =(DTHAWO)) - Tx, . ,(A0) = Tyx,.. (4(0)),

which proves (4.68) by induction.

We had already chosen Oy, in the proof of Theorem 4.8 such that
(1 —=DR2.(0)| =K, where K is given by Theorem 2.15. If e Oy, N =N, then it
follows from (4.68) that p N(T(Q+(9))< 0. Theorem 2.15 now gives that
240l gy < 0. This proves that Q, : Oy - Ey is analytlc Furthermore, by the
definition of 04 and 0 it follows that Q_(Ox)= 0% as Q. (Or.) = 0%.. This proves
together with (4.68) that statement ii) of Theorem 4.9 is true. We omit to prove the
remaining points of statement i). Statement iii) is evident as Q,(0F)
= () Q.(0y). This proves the theorem.

NzN’

We next turn to the proof of the results stated in paragraph one.

Proof of Theorem 1.1. Statement i) is a direct consequence of Theorem 23.
Let p e C*(R xIR?) be a solution of Eq. (1.1). The map g+ ¢, defined by

¢g(z) = (p(A N l(z - a)) > g= (a’ A) s z= (ta X)

defines an action Z, on solutions of Eq. (1.1), which by the transformation (1.2)
defines a continuous action g~ v, of %, on solutions v of

L o)=To ), teR,  t)eEy,es.

Let us define Ug(v(O))—v (O) and we redefine O3, as the union of the sets Ug((ON )
over g € %,, where Oy, is Oy, given by Theorem 4.10 and Ny is N'. O3 = Eyn 0y, is
then an open neighbourhood of zero in E for N> N,,. It follows from statements i)
and iv) of Theorem 4.9 and from statement i) of Theorem 4.10 applied to Oy, that
the map g U,-.U, is continuous from &, into the space of analytic functions
from 0% into Ey. By construction U,: 0% —»(9,?,0, SO Ug 1U, is an analytic map
d

s Uyy=Txo U a5 for g(s)=exp(sX)
and X ep. This proves statements ii) and iii). Statement iv) follows from Corollary
2.16 and by translation by U,. This proves Theorem 1.1.

Proof of Theorem 1.2. Since the differential of U is T and the differential of U! is
T it follows from part ii) of Theorem 4.10, where we have chosen N, > N, that for
given ge@o there exists a neighbourhood ¢, of zero in Ey, such that Q LU,

=U} Q7" in O,. By analytic extension this equahty is true on O3, Wthh also
proves that Q7 * 1s defined on 0. In fact, this follows from the construction of 0§,

and the uniqueness of the solutions of the scattering problem in statement ii) of
Theorem 4.9. We define Oy by Oy, =27 '(03,). Similarly we define Q_ and Oy,. It
follows from statement ii) of Theorem 4.9 that Q,: 05— 0% is analytic as well as its
inverse. This proves statements i) and ii) of the theorem Statement iii) follows from
statement ii) of Theorem 4.9 and by the construction of Of,. This proves
Theorem 1.2.

Proof of Theorem 1.3 and Theorem 1.4. Theorem 1.3 is a particular case of
Theorem 1.2. Let O e 0% and let its image under the transformation (1.3) be ¢, @,.
After a change of ¢,, ¢, on a set of measure zero, o, o€ L (R?). The map

from (0% onto Ey. We have by construction —
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0 (¢, o) s0 defined is continuous and invertible. Define 0'C F(R?) x #(R?) as
the image of this map. ¢’ is an open nelghbourhood of zero in #(R?) x #(R?).
There exist two neighbourhoods 0, € of zero in #(IR?) such that ® x O C ¢". For
(9o, Po)€ O X O it follows from Theorem 1.3 that there exists a C! solution

. d . -
t—v(t)e Ey, teR, for each N =0 of the equation I u(t)= Tp (v()). Differentiation

in t of this equation shows that the map t—v(t)e Ey, N=0 is C*. Hence by
transformation (1.3) we obtain (after a change on a set of measure zero) a solution
peC®(R xR?) of Eq.(1.1) which satisfies the given initial conditions.

Appendix

As it was already mentioned in the introduction, the methods developed in this
paper also give existence of global solutions for time telR and asymptotic
completeness for Eq. (1.1) when it is not covariant under the action of the Poincaré
group. In this case the inverse of the wave operator only linearizes the nonlinear
representation of the space-time translation group R"*!. From the point of view
of fundamental physics, the Poincaré covariant case is certainly more natural than
the R"*! covariant case. Moreover, the stronger results in the Poincaré covariant
case are more difficult to prove, although the hypothesis in the R"** covariant
case are weaker. But, as the results for the R"* ! covariant case follow, without any
essential change in the proof of this paper and as the R"* ! covariant case could be
interesting for readers mainly focused on partial differential equations, we give an
outline of the proof when Eq. (1.1) is not necessarily covariant under the Poincaré
group %,.

Suppose that P is such that Eq. (1.1) is not Poincaré covariant. Even in this case
Eq. (1.1) is R"*! covariant. Let first P be an analytic function. We define the Lie
algebra representatlon T¢, X eponE_ asin(1.6) and the Hilbert spaces E;,ie N as
in(1.7). Ty= Ty + Ty, X e p is defined by formulas (1.8)and (1.9). If X, YeR"*!, the
radical of p, then [Ty, Ty]=0, where [Ty, T,]=DTy - Ty— DTy - Tx. Hence TX isa
nonlinear representation of R"*!. But, according to the hypothesis that Eq. (1.1) is
not Poincaré covariant, [Ty, Ty] =+ Tjx, y}, for some X, Yep, so Ty is no more a
nonlinear representation of p. The linear map X+ Ty, X €p is extended to the
tensor algebra #(p) by formula (1.10): Tyx=DTy - Ty, X €p, Yet(p), T, =1. Here it is
not possible to pass to the quotient space to obtain a map from U(p) to the space of
polynomials on E . Now we consider that Y(t) e t(p). Then (1.12) to (1.15) are true,
but there is no chance to find a solution 4 of (1.16) for all X e p. However, (1.16)
turn out to have a solution for any X eR"*?, the radical of p. Formulas (1.17) to
(1.19) still hold. To obtain Theorem 2.15, we change definition (2.38) of gy as

pi@)=0 layl D2,

where the sum is taken over all elements of degree at most N belonging to the basis
of t(p) built from the standard basis of p by tensor products.

Theorem 3.9 is obtained by a direct calculation of the commutator
T} A% — A%Sy, Yet(p), where Sy =T ®I+I® Ty. Theorem 1.1 has the following
analog:
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Theorem 1.1’. For n=2 there exists Ny =0 and a neighbourhood 0%, of zeroin Ey,
such that, if O3=Eyn0y, for N2N, and 0%, =E N0y, then:

i) Ty, XeR"*!defined by (1.8)isa nonlmear analytic Lze-algebra representation
on 0%. For XeR"*'ason,1)=p, Ty:0%,,—Ey and Ty:0%—Ey are analytic
maps.

i) Ty, XeR"*! is the differential of a unique global nonlinear analytic group
representation U of R"*!, je. U (9)6(9 for geR"", 0%, and the map
g U,-1U, is continuous from ]R”i into the space %((ONO, Ey.), where U is the
linear part of U.

iii) For N2 N,, the map g U}-.U, is continuous from R"*' into the space
H (O, Ey).

We note that the counterpart of statement iv) of Theorem 1.1 is no longer true
for the R"*! covariant case. We can only conclude that 02 is a set of differentiable
vectors for gi— U, geR"", but not the set of all differentiable vectors.

Theorem 1.2, stating the existence of wave operators, still holds if % is replaced
by R"**. Theorem 1.3 and Theorem 1.4, stating the existence of global solutions
for telR, then remain true as they are formulated. They are as a matter of fact
particular cases of Theorem 1.1’ and Theorem 1.2. We also note that Theorem 1.4
can be formulated with Hilbert space nelghbourhoods of initial conditions
Oy sy %X O0yy i, N= N, being the image of 09, , under the transformation (1.3) and
solution t — ¢(t) € Oy, t € R. This follows immediately from Theorem 1.3. Theorem
1.4 as it is formulated with @ x 0, is as a matter of fact more difficult, because one
has to prove that the intersection of the family {Oy x 0 NINZ No. is a neighbourhood
in #(R3) x #(R3). The sets Oy x Oy are neighbourhoods in weighted energy
spaces.

Let us finally relax the hypothesis of analyticity of P in Eq. (1.1) and only
require that P is C*. Then the above modified results, i.e., Theorem 1.1, Theorem
1.2 with R**! instead of #,, and Theorems 1.3 and 1.4, are still true if, in their
formulation, analytic is systematically replaced by C*.

To sum up, as it was noted in the introduction, we have proved the existence of
global solutions for teIR, the existence of C® invertible wave operators and
asymptotic completeness for the massive Klein-Gordon equation (1.1) with the
most general C® non-linearity P on a set of small initial conditions, being a
neighbourhood of zero in a weighted energy space.
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