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Abstract. We prove a center-stable manifold theorem for a class of differential
equations in (infinite-dimensional) Banach spaces.

1. Introduction

The center-stable manifold theorem is a standard tool in analyzing the behavior of
a differentiable dynamical system in the vicinity of a stationary point. In its usual
formulation, this theorem applies to smooth maps or flows in (finite or infinite-
dimensional) Banach spaces (see for example Ruelle [1]). This framework is,
however, too restrictive for many interesting applications, especially in the realm of
partial differential equations. Indeed, even in the simple example of the heat
equation dtu = Au, the solution curves do not define a flow in the function space,
but only a semiflow, and no general theorem seems to be available in such cases.
Moreover, in some elliptic differential problems where the spectrum of the linear
operator is unbounded in the unstable direction, it is not even possible to associate
a semiflow with the equation, since arbitrarily small initial data may diverge in
arbitrarily short times. Nevertheless, center manifold techniques have been success-
fully applied to such problems, see Mielke [2].

It is thus important to formulate a center-stable manifold theorem directly for
the differential equation itself, with no reference to any flow possibly associated
with it. In this paper, we prove such a theorem for a class of equations characterized
by weak assumptions on the linear operator in the right-hand side, but imposing
relatively restrictive conditions on the nonlinear terms (smoothness). The main
motivation for this paper was to provide the mathematical apparatus for the
companion paper, written jointly with J.-P. Eckmann [9], where the results
presented here are applied to the problem of constructing front solutions for
the Ginzburg-Landau equation with complex amplitudes. Our approach follows
closely Eckmann and Wayne [3], but provides additional information on the
regularity in time of the solutions. Analogous results for more general non-
linearities and for non-autonomous equations can be found in Mielke [2,4, 5]. For
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a recent review of center manifold theory in infinite dimensions, see Vanderbauw-
hede and Iooss [6].

Let δ be a (real or complex) Banach space, A a linear operator in S, and
/: $ -• δ a smooth map vanishing at the origin. We consider the autonomous
differential equation in δ,

j t z ( t ) = A z ( t ) + f ( z ( t ) ) 9 ί ^ O . (1.1)

We are interested in the behavior of the solutions in a sufficiently small neighbor-
hood of the fixed point z = 0. Our assumptions are:

Al) (On the linear operator) The Banach space δ is the direct sum of two closed,
^-invariant subspaces δs, δu, and the corresponding restrictions As = A\gSi

Au = A\gu generate strongly continuous semigroups eAS\ e~Aut for t ^ 0.
Furthermore, there are real numbers Xs < λu such that

sup I I e A H \ e ~ λ H < oo, sup | | e ~ A u t | | e χ u t < oo .

A2) (On the non-linear term) The map / is of class Ck for some (not necessarily
integer) k> 1, and verifies /(0) = 0, Df(0) = 0.

A3) (On the spectral gap) lϊλs ^ 0, we also assume that λu > kλs and that Ss has the
Ck extension property.

For comments on these assumptions, see the remarks below. In view of A1, we
can write any z e S as a pair (zs, zu) with zs e Ss and zu e δu. Going to an equivalent
norm, we may (and do) assume that || z || = max( || zs ||, || z" ||) for all z e δ, and that
|| eAH || ^ eχs\ || e~AU% || ^ e~χuχ for all t e R + (see Pazy [3], Sect. 1.5). For all r > 0,
we denote by Bs

r, Bu

r, Br the balls of radius r around the origin in δ\ Su,
£ respectively, and by Q)(A% Q)(AU\ 2 (A) the domains of the operators A\ Au, A.
Finally, if βe(λ\λu) and if z:R+-+$> is continuous, we define ||z||0 =
supt^0\\z(t)\\e~βt. With these notations, we can formulate our main result:

Theorem 1.1. (Local center-stable manifold theorem). Assume that the conditions
Al, A2, A3 above are fulfilled.

Stable case (λs < 0): Let β e (λ\ λu\ β^O Thenjor sufficiently small r > 0, there is
a (unique) Ck maph: Bs

r -• Bu

r with h(0) = 0, Dh(0) = 0, whose graph 1T a Br (the
local stable manifold) has the following properties:

a) (Invarίance) For all zoei^ such that z%e<3(As\ there exists a unique solution z(t)
ofEq.(l.l) such that z(0) = z0, z(t)e i^ for all ί e R + and \\z\\β < oo.

b) (Uniqueness) Ifz(t) is any solution ofEq. (l.l) such that z(t) e Brfor all t e R+ and
\\z\\β < oo, then z(t)e Y* for all ί e R + .

Center-stable case (λs ^ 0): For sufficiently small r > 0, there is a Ck map h: Bs

r -• Bu

r

with h(0) = 0, Dh(0) = 0, whose graph Ψ* c Br (the local center-stable manifold) has
the following properties:

a) (Invariance) For all zoei^ such that z%eΘ(As\ there exists a C1 curve
z: [0, oo) -• δ with z(0) = z0 such that, as long as z(t) e Br, then z(t) e Ψ~ and
Eq. (1.1) holds. If moreover z(t) e Brfor all t e R +, then z(t) is the unique solution
of Eq. (1.1) with these properties.
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b) (Uniqueness) If z(t) is any solution of Eq. (1.1) such that z(t) e Brfor all t e R+,
then z(t) eΨ" for all ί e R+.

Remarks
1) By a solution of Eq. (1.1), we always mean a classical solution, that is, a continu-

ous function z: [0, oo) -• <? such that, for all t > 0, z(ί) is continuously differenti-
able, z(t) e 2{A) and Eq. (1.1) is verified.

2) The Assumption Al implies that Λs, Au are closed, densely defined linear
operators in <fs, δu

9 whose spectra are contained in the half-planes
{w e CI Re(w) ^ Λ5}, {w 6 C | Re(w) ^ λ"} respectively (Hille-Yosida theorem).
Note that we do not assume that A itself generates a semigroup. As a conse-
quence, the Cauchy problem for Eq. (1.1) is very awkward: in general, this
equation does not define a semiflow at all, even in a neighborhood of 0 and for
small values of t. Thus, the existence of solutions with initial condition on the
manifold Ψ* is part of the assertion of the theorem. Note also that we do not
suppose the semigroups eAS\ e~Aut to be analytic.

3) In the Assumption A2, we denote by Ck (with k = n + α , n e N * , αe(0,1]) the
class of n times differentiable functions whose nih derivative is Holder continu-
ous with exponent α. For example, we mean by C 2 the space of once differenti-
able functions with Lipschitz derivative. By %>k a Cfc, we mean the class of
functions with bounded derivatives up to order k.

4) In the Assumption A3, the Banach space Ss is said to have the Ck extension
property if there is a %>k function χ: Ss -» [0,1] equal to 1 in the unit ball B\ and
vanishing outside the ball BS

R for some R > 1 (see Ruelle [1], Bonic and
Frampton [8]). Any Hubert space or finite-dimensional Banach space has the
Ck extension property for all k.

We shall give a complete proof of Theorem 1.1 in the case k e (1, 2] only; higher
order differentiability of the manifold y can be proved recursively along the same
lines. Using additional assumptions on the non-linearity /, we first (Sect. 2) state
a global version of our result (Theorem 2.1), and prove it by successive applications
of the Contraction Mapping Principle. Then (Sect. 3), we show how Theorem 1.1
follows from Theorem 2.1 by restricting the system to the ball Br (stable case) and
by "cutting off" the non-linear terms (center-stable case). In conclusion (Sect. 4), we
state the corresponding version of the center manifold theorem (Theorem 4.1).
Except for some basic facts in semigroup theory, the proofs are elementary and
completely self-contained.

2. The Global Center-Stable Manifold Theorem

In this section, we prove a global version of Theorem 1.1 in the case k e (1, 2]. For
convenience, we assume from the outset that we are given two Banach spaces
{S\ || IIs), {δ\ II IIul and we define δ as the direct sum SS®SU equipped with the
norm ||z| | = max(| |z s | | s, 11 zu \\u) for all z = {z\zu)e δ. Re writing Eq. (1.1) in the form

^ z\z«), (2.1)

we express our hypotheses as follows:
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HI) The linear operators As: £s-+£s and - Au: £u->£u define strongly con-
tinuous semigroups eAH, e~Aut for t ^ 0. Moreover, there exist real numbers
λs < λu and Ds, Du ^ 1 such that

| | ^ S ί | | s ύ Dseλs\ \\e-Aut\\u ^ Due~λut,

for all t ^ 0.
H2) The functions f*\δ-*δ* and/": δ -> δu are globally Lipschitz and vanish at

the origin: / s(0) = 0, /"(0) = 0, and

wr(z)~r(z)\\sύιs\\z-n, i i r ω - f u m u ύ ι u \ \ z - n ,

for all z, zeS.
H3) The functions / s , / " are (Frechet) differentiable, and the derivatives Dfs, Dfu

are globally Holder (for some exponent αe(0, 1]) and vanish at the origin:
Dfs(0) = 0, Dfu(0) = 0, and

|| Dfs(z) - Dfs(z) || S Ls || z - z ||α, || D/"(z) - Dfu(z) || ^ L" || z - z f ,

for all z, ze δ.

Theorem 2.1. (Global center-stable manifold theorem). Given A\ AUJSJU verifying
the hypotheses HI, H2, H3 above, assume that there exists a β e (λ\ λu) such that the
conditions Cl, C2 below are fulfilled. Then there exist a (unique) map h: $s -> $u and
a (unique) semiflow φ: R + x Ss -• ^ s wiί/z the following properties:

i) hisCι+\ Λ(0) = 0, ( )
ii) 0,(0 is C° m ί G R+ and C 1 + a in ξ e £s; also, φt(0) = 0, Dφt(0) = eAH.

iii) n(^(τl5)) c ^(Au) and ^ ( ^ ( / l s ) ) c 9(As)for all t ^ 0.
iv) For all ξe@(As\ φt(ξ) is C1 in t and z(t) = (φt(ξ\ h(φt(ξ))) is a solution of

Eq. (2.1) satisfying \\z\\β < oo.
v) Ifz(t) is any solution ofEq. (2.1) such that \\z\\β < oo, then z(t) = (φt(ξ)9 h(φt(ξ)))

for some ξ e $s.

Remarks. We recall that 3ι(As\ Q)(AU) are the (dense) domains of the operators
AS,AU, and that | |z| |^ = sup^oll^Wlk'^ The conditions Cl, C2, are defined in
Lemma 2.8 and Lemma 2.10 below; they are fulfilled if λu > (1 + a)λs and if the
Lipschitz constants /s, /" are sufficiently small.

Since the proof of Theorem 2.1 is somewhat lengthy, we shall divide it into
several pieces. In a first stage (Sect. 2.1), we show the existence of solutions z(t) of
Eq. (2.1) with || z 1̂  < oo. As we shall see, all these solutions lie on the graph of some
map h: Ss -> δu. In Sect. 2.2, we prove the differentiability of this map and of the
semiflow defined on its graph by Eq. (2.1).

2.1. Existence of Solutions. We want to prove the existence of solutions z(t) of
Eq. (2.1) with || z ||^ < oo for some β e (λ\ λu). The basic observation is that all these
solutions (if they exist) must satisfy an integral equation.
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Lemma 2.2. Ifz(t) is a solution ofEq. (2.1) such that l i m ^ + „ ||zu(t) \\ e~λH = 0, then
z(t) verifies the integral equation

t

zs{t) = eΛHξ + J eΛHt-τ)fs(z(τ))dτ ,
o

z"(t)=-]e-A"T(z(t + τ))dx, (2.2)
0

with ξ = zs(0)e£s.

Proof. Fix t > 0, and define x(τ) = eAS(t~τ)zs(τ\ for 0 ^ τ ^ ί. The function x(τ) is
continuous on [0, ί] and since zs(τ) e ^ ( ^ s ) for all τ > 0, x(τ) is also differentiable
on (0, t) with derivative given by χ'(τ) = eA'{t~τ)(dzs/dt - Aszs)(τ) = eΛS{t~τ)fs(z(τ)).
Thus, integrating over τ e [0, ί] and noting that x(ί) = zs(ή, x{0) = eAstξ, we obtain
the first line of Eq. (2.2).

Similarly, define y(τ) = e~AU{τ~t)zu(τ\ for τ ^ t ^ 0. As above, y'{τ) = e~
Au^-^

fu(z(τ)) for all τ > ί. Integrating over τ e [ί, Γ], we find for all T > t,

T

In view of HI, the first term in the right-hand side goes to zero by assumption as
Γ-> oo, and we obtain the second line of Eq. (2.2). D

Definition. For all β e (λs, λu\ we define

Dsls Dulu

Rβ = max
J-λ"9λu-β

The. main result of this subsection is:

Proposition 2.3. Suppose that the hypotheses H I , H2, H3 are fulfilled, and assume
that there exists a βe{λ\ λu) such that Rβ < 1. Then,for all ξ e@{AS\ Eq. (2.1) has
a unique solution z(t) such that zs(0) = ξ and \\ z \\β < oo. Moreover, z(t) is the unique
continuous solution of Eq. (2.2) such that \\z\\β < oo.

The first step in proving this proposition is to show that Eq. (2.2) has a unique
solution for all ξ e Ss.

Lemma 2.4. Assume that there exists a βe(λs,λu) such that Rβ < 1. Then, for all
ξ e Ss, the integral equation Eq. (2.2) has a unique continuous solution z(t) such that
\\z\\β<co; moreover, \\z\\β£ Ds\\ξ\\s.

Proof Fix ξ E <T, and consider the Banach space Lβ = {z e C°(R +, δ)\ \\ z \\β < oo}
equipped with the norm ||z||^. For all z e Lβ, denote by Tz the right-hand side of
Eq. (2.2) (as a function of t). We shall show that T is a contraction in Lβ and maps
the ball \\z\\β S Ds\\ξ\\s into itself.

First, it is not difficult to see that, for all z e Lβ, (Tz)(ή is a continuous function
of t. Next, using HI, H2, we find for all t e R+,

| |(7z) s(ί)| | s ^ Dseλst\\ξ\\s + \Dseλs^Πs\\z\\βe^dτ
o

Dsls

^ Dseλst\\ξ\\s + — - \\z\\^ - eλst)
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DΨ „
s'β-λ*

00 JΛUΊU

UTzT(t)\\u ύ J D«e-λuΨ\\z\\βe^dτ = ̂ — — ||z||, ,
o λ -P

so that \\Tz\\β<^max(Ds\\ξ\\s,Rβ\\z\\β)< oo. This means that T maps Lβ into
itself. Furthermore, if || z ||^ ^Ds\\ξ | | s, then also || Tz\\β^ Ds || ξ | | s, since ^ < 1.

Finally, we bound the difference (Tz)(t) - (Tz){t) for all zJeLβ. The "in-
homogeneous term" eAstξ of Eq. (2.2) drops in this calculation, and we obtain as
above

/ nsιs Γ}uiu

||(7z)(ί)-(7z)(ί)||^Λnax

so that \\Tz — Tz\\β ^ Rβ\\z - z\\β. This means that T: Lβ -+ Lβ is a contraction.
D

We next observe that the solution z(t) of Eq. (2.2) is also a solution of Eq. (2.1)
as soon as it is continuously differentiable.

Lemma 2.5. Let z(t) be the solution ofEq. (2.2) given by Lemma 2.4,/or some ξ e Ss.
The following assertions are equivalent:

i) z(t) is continuously differentiable for all t > 0.
ii) For all t > 0, z{t) e 2{A) and t —• Az{t) is continuous.

iii) z(t) is a solution of Eq. (2.1).

Proof For all 0 < ε < ί, we have the identities

- {z\t + ε) - zs(ή) = - (eASε - l)zs(t) + - } eΛs^τψ(z(t + τ))dτ ,
ε ε ε o

- (z"(ί) - z"(ί - ε)) = -(1 - e-Λ"e)zu(ή + - ] e-A"(ε-τ)f"{z(t - τ))dτ ,
S £ G o

which follow easily from Eq. (2.2). Let us consider the first equation. As ε -> 0, the
last term in the right-hand side converges to/s(z(ί)), the first one to Aszs(t) provided
that zs{t)s9{As\ and the left-hand side to D + zs(t) (the right-hand derivative of
zs(ή) provided that zs is differentiable from the right at ί. Thus, if zs(t) is C 1 for t > 0,
then zs(ήe@(As) for all ί > 0 and (dzs/dή(ή = Aszs(ή +fs(z(ή); in particular,
t -> Aszs(t) is continuous. Conversely, if zs(t) e Q){AS) and t -> Aszs(t) is continuous
for t > 0, then zs{i) is differentiable from the right for all t > 0 and
D + zs(t) = Aszs(t) -\-f(z(ή) is continuous, so that zs is C 1 . If both cases, zs(t) verifies
the first line of Eq. (2.1). Now, repeating the argument with zu(t) (second equation),
we conclude the proof of Lemma 2.5. D

According to this result, the proof of Proposition 2.3 will be complete if we
show that the solution z(ή of Eq. (2.2) is C 1 when ξ = zs(0) e @{AS). We shall first
show that z(t) is Lipschitz in t (Lemma 2.6). Then, using this result, we shall prove
the differentiability (Lemma 2.7).
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Lemma 2.6. Let z(t) be the solution ofEq. (2.2) given by Lemma 2.4. For ε > 0, define

yβ = sup (*"* || z(t + ε ) - z ( t ) | | ) .

Ifξε ®(A% then yε = (9{ε) asε^O.

Proof. First of all, we note that yε^\\z\\β(l + eβε) < oo. Next, using Eq. (2.2), we
obtain for all ε > 0,

zs(t + ε) - zs{t) = eAst«eASε - l)ξ + { eAsiε-τ)fs(z{τ))dτ

z\t + ε) - z"(ί) = - J e-ΛUτ(f(z(t + τ + β)) -/^(z(ί + τ)))dτ .
0

If £ e ^(yl s), the quantity in brackets { } behaves like ε(Asξ +/ s(z(0))) + o(e) as
ε -> 0. We thus find

ε) - zs(t)\\s S Dseλst{ε\\Λsξ +/ s(z(0)) | | s + o{ε)} +]
o

oo

e) _ z « ( ί ) | | M g J

o(e)

DU1U

Λ —

As a consequence, we have yε ^ ^ y ε + εD s || ̂ 4sξ +/ s(z(0)) | | s + o(ε). Since ^ < 1,
this means that yε = Θ(ε) as ε -> 0. D

Lemma 2.7. Lei z(ί) be the solution of Eq. (2.2) given by Lemma 2.4. //£ e <3(A%
then z(t) is continuously differentiable for all t ^ 0.

Proof First of all, we can assume without loss of generality that the Holder
exponent α of Df\ Dfu (cf. H3) is so small that, if we set

\β if β S 0 '

then
/ DΨ Dulu \

Rn = max , ^ < 1 .
\β-λs λu-βj

Next, we differentiate Eq. (2.2) formally with respect to the time. Since ξ e
we find

Dzs(t) = eAst(Asξ +/s(z(0))) + ]eAS(t-τ)Dfs(z(τ))-Dz(τ)dτ ,
o

Dzu(t) = - ] e~AUτDfu(z(t + τ))-Dz(t + τ)dτ , (2.3)
o
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where Dzs = dzs/dt, Dzu = dzu/dt and Dz = (Dzs, Dzu). Now, we can consider
Eq. (2.3) as an equation for the unknown function Dz(t\ given z(t) the solution of
Eq. (2.2). A moment's reflection shows that Eqs. (2.3) and (2.2) are integral equa-
tions of the same form: the only difference is that the Lipschitz functions / s , / " have
been replaced by the bounded linear maps Df\ Dfu. Thus, since Rβ < 1, Lemma 2.4
implies that Eq. (2.3) has a unique solution Dz e Lβ.

It remains to show that the solution Dz(t) of Eq. (2.3) is the derivative of z(ί). In
order to do that, we define for all ε > 0,

δe = sup(έΓ* || z(t + ε) - z(t) - εDz(t) | | ) .

From Lemma 2.6, we know that δε = Θ(ε) as ε->0. We shall see that, in fact,
δε = o(ε) as ε -> 0. This will prove that Dz(t) is the right-hand derivative of z(ί), and
since Dz e Lβ is continuous, this will complete the proof of Lemma 2.7.

Using Eqs. (2.2), (2.3), we obtain for all ε > 0,

zs(t + ε) - zs(t) - εDzs(ή

ε)) -f(z(τ)) - Df\z{τ))-(z{τ + ε) - z(τ)))dτ

+ J eAS('-τ)Df{z(τ))-{z{τ + ε) - z(τ) - εDz{τ))dτ .
o

Clearly, the quantity in brackets { } is o(e) as ε -> 0. On the other hand, using the
Mean Value Theorem, we have

| |/ s (z(τ + ε)) -/ s (z(τ)) - Df(z(τ))-(z(τ + ε) - z (τ)) | | .

^ || z(τ + ε) - z(τ) || sup || Df{w) - Df(z(τ)) || ,
weΓ

where Γ <= $ is the segment (straight line) joining z(τ) and z(τ -f- ε). So, using H3
and Lemma 2.6, this term is bounded by Ls(yεe

βτγ + α ^ Uyl +<xeβτ. Finally, we also
have

S(z(τ)) (z(τ + ε) - z(τ) - εDz(τ))|| s ύ lsδ

Combining these estimates, we find

~ / DSLS Dsls \

\\z°(t + ε) - z\t) - εDz°(t)\\s ̂  e<"( -, y δ

1 + α + ^ δt + o(ε) .

Similar calculations for z"(ί) yield

llz«( ί + β ) _ zu{t)

— p λ u — β

Since (by Lemma 2.6) y\ + α = o(ε) as ε -> 0, we conclude that δε ^ Rβδε + o(ε). This
means that δε = o(ε) as ε -+ 0. D
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2.2. The Center-Stable Manifold. According to Lemma 2.4, all solutions of
Eq. (2.2) with || z \\β < oo are contained in the graph of the map ft: Ss -• Su defined
by h(ξ) = z"(0), where (zs(ί), zu(t)) is the unique solution of Eq. (2.2) for which
zs(0) = ξ. We are thus led to look for solutions of Eqs. (2.1) and (2.2) of the form
z(t) = (φt(ξ\ h(φt(ξ))\ with φ a semiflow in Ss. In view of Eq. (2.2), ft and φ must
verify the integral equations

φt(ξ) = eAstξ + J eAS«-τ)fs{φτ{ξ\ h{φv(ξ)))dτ ,
o

h(ξ) = - J e-AUT(φτ(ξ), h{φτ(ξ)))dt . (2.4)
0

In this subsection, we shall show the existence of a unique solution ft, φt of Eq. (2.4)
in suitable function spaces. The graph of ft will be referred to as the center-stable
manifold.

We first introduce the function spaces for ft and φ. For σ e [0, 1], β e (λ\ λu\ we
define

Hσ = { f t : < r ^ < T | f t ( 0 ) = 0; \\h(ξ) - h(ξ)\\u £σ\\ξ- ξ\\89 Vξ, ξe£s} ,

^(0) = 0 Vί e R + φ is continuous in ί;

\\Φt(ξ) ~ ΦtiOWs ύ Dse^\\ξ- ξ\\S9 Vί e R + , Vξ, ( f e ^ 5 } .

As is easily verified, Hσ and Kβ are complete metric spaces if equipped with the
distances

M h , f , . s u p m ^ . , « A Λ . s u p s u p
ξ Φ O IIC Us ί ^ o ξ Φ O

With these definitions, we have the following result (see also [3]):

Lemma 2.8. If β e (2s, 2") and ι/

(CD σ

then Eq. (2.4) /zαs α unique solution h, φ in HσxKβ.

Proof. To simplify the notations, we set/J(£) = / s ( ί , A(«) and/,"© =/"(?, h(ξ))
for all ξ G Ss. Now, for all /ι e Hσ, φ e Kβ, we define

φ\(ξ) =
0

We shall show that, if the condition Cl is fulfilled, the map (F, G) is a contraction in
i/σ x Kβ and thus has a unique fixed point.
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We first show that F(h,φ)eHσ. Since heHσ and σ^ 1, fu

h: £s-+£u is
Lipschitz with the same constant /" as /" (this follows from the definition of the
norm in $). As a consequence,

\\F(Kφ)(ξ)-F(kφ)(ξ)\\u^] \\e-AUτUn(φτ(ξ))-n(φτ(ξ))\\udτ
o

^ J { D u e ~ λ U τ ) l u D s e ^ \ \ ξ - ζ\\sdτ = ^ - D s \ \ ξ - ξ\\s .
0 Λ — p

Thus, the integral defining F(h,φ) converges absolutely, and (by definition of σ) we
have \\F(Kφ)(ξ)-F(h,φ)(ξ)\\u^σ\\ξ-ξ\\s for all ξ9 ξ e g\ Since obviously
F(h9 φ)(0) = 0, this means that F(h, φ) e Hσ.

We next show that G(/z, φ)e Kβ. It follows immediately from the definitions
that G(h, φ)0{ξ) = ξ, G{K φ)t(0) = 0, and that G(Λ, φ)t(ξ) is continuous in t for all
ξ e i s . As above, f\: S>s -• ̂ s is Lipschitz with the same constant 7s as/ s , and

~ ξ)L + J \\eAS(t-τ)\\s\\fs

h(φτ(ξ)) -fi(φτ(ξ))hdτ
0

^ D°eλst\\ξ - ξ\\, + $(Dseλs«-*)l°Dselh\\ξ- ξ\\sdτ
0

= Ds\\ξ- ξ\\Ieλs' + -^js{eβt - eλH)\ ύ O V | | ^ - ξ\\,,

for all ί e R+ and all ξ, ξe i s . This means that G(h,φ)eKβ.
It remains to show that F and G are contractions. Let h,heHσ and φ, φ e Kβ;

for all ξ e Ss, we have

ύ lu\\ΦM) - toll, ^ l"dκ(Φ, Φ)eβτU\\s,

WftiΦM)) -fl(ΦM))\\u S lu\\HΦM)) - h(Φ~τ(ξ))L ^ ludH(h, h)Dse^\\ξ\\s,

\\fuk(Φτ(ξ)) -Γϊ{ΦM))\\uύ l"Ds(dH(h, h) + dκ(φ, $))e>τ\\ξ\\.,

the last line following from the preceding ones by the triangle inequality. We thus
find

\\F(h,φ)(ξ)-F(hJ)(ξ)\\u^]\\e-A"*\\u\\fUΦM))-fl(ΦM))\\udτ
0

In the same way, we have

WfttΦΛξ)) -fl(ΦΛξ))L S lsD°(dH(h, h) + dκ(φ,

\\G(h, φ)t(ξ) ~ G(h, φ)t(ξ)l ύ ] \\eAS(t~τ)L\\fl(φτ(ξ)) ~fl(Φτ(ξ))\\sdτ
0

r\sρ
D*(dH(K h) + dκ(φ, $))e»\\ξ\\s.
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(Note that the "inhomogeneous term" eAHξ of Eq. (2.4) drops in this calculation.)
Combining these results, we see that

dH(F(h, φ), F(h, Φ)) + dκ(G(h, φ), G{h, Φ)) ύ 2σ(dH(h, h) + dκ(φ, φ)) ,

for all h, he Hσ and all φ9 φ e Kβ. Since σ < 1/2 by Cl, this means that (F, G) is
a contraction in Hσ x Kβ. D

We next point out the relation between the solutions of Eqs. (2.4) and (2.2):

Lemma 2.9. Let h e Hσ, φ eKβ be the solution of Eq. (2.4) given by Lemma 2.8.
Then φtι+t2 = Φti ° Φt2 f

or att h> h e R+, and, for all ξ e i\ the function z(t) =
(φt(ζ), h(φt(ξ))) is the unique solution of Eq. (2.2) in the sense of Lemma 2.4.

Proof Since φt is a solution of Eq. (2.4), it is not difficult to see that

ίi

φtι(φt2(ξ)) - φtl+t2(ξ) = J eAS(tl-τ)(fs

h(φτ(φt2(ξ))) -fs

h(φτ+t2(ξ)))dτ ,
o

for all ξ e $s and all ί b ί 2 e R + . Let

K= sup sup s u p ί e jτ—\\ΦtAΦt2(ζ)) ~ Φti+t2(ζ)\\ί
ί i^O ί 2 ^ 0 ξΦ 0 \ II C Us

Clearly, K ^ 2(DS)2 < oo, since φ e Kβ. Now, it follows from the identity above
that

o

ΓΛS IS Tζ

< Keβ{tί+t2)IIξ|| < — eβitί+t2)IIξ\\

Hence K ^ K/29 so that K = 0; this proves the semigroup property for φt. Using
this result, it is now obvious from Eq. (2.4) that z(t) = (φt(ζ% h(φt(ξ))) verifies
Eq. (2.2). Note also that Cl ensures that Rβ < 1. D

We now show that h, φ (given by Lemma 2.8) are differentiate with respect to
ξ e $s, and that the derivatives Dh, Dφ are Holder continuous with exponent α. In
order to do that, we follow the same strategy as in the proof of Lemma 2.7. First,
differentiating Eq. (2.4) formally with respect to ξ, we obtain

t

Dφt(ξ) = eAH + J eAS(t-τ)Dfs

h(φτ(ξ))'{Dφτ(ξ), Dh(φτ(ξ)) Dφτ(ξ))dτ ,

Dh(ξ) = - J e-AUτDn(φτ(ξ))'(Dφτ(ξ), Dh{φτ{ξ)) DφM))dτ , (2.5)
o

where Dfu

h(ξ) = Dfu(ζ, h(ξ)) and Dfh(ξ) = Df(ξ, h(ξ)). We then consider Eq. (2.5)
as an equation for the unknown functions Dh, Dφ, given, h, φ as denned by
Eq. (2.4). Appropriate function spaces for Dh, Dφ are:

Ha,p = {Dh: SS^<£{SS, Su)\Dh{0) = 0; \\Dh(ξ)\\ ^ σ,

|| Dh(ξ) - Dh(ξ) || ^ p |K - I'll ί, V£, ξe Ss) ,
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Kβ,p = {Dφ: R + x S' ->£?{S s, δ ) | £><^0(ξ) = 1, V£ e «fs;

Z)<£t(0) = e-4"', Vί e R + D(/> is strongly continuous in ί, V<̂  € δs;

\\Dφt(ξ) ~ Dφt(ξ)\\ ^ pe*\\ ξ - I'll;, Vί e R + , V& f e

for some sufficiently large p > 0. Here and in the sequel, we write

\β{\ + α) if j8 > 0

As is easily verified, Hat/) and KβtP are complete metric spaces if equipped with the
distances

dgiph, Dh') = sup \\Dh(ξ) - Dh'(ξ)\\ ,

di(Dφ,Dφ') = supsup(e-"W((£) - Dφ',(ξ)\\).
ί^O ξeis

With these definitions, we have the following result:

Lemma 2.10. Let h e Hσ9φ e Kβ be the solution of Eq. (2.4) given by Lemma 2.8.
Assume furthermore that β e (λs, λu) and that

(C2)

Eq. (2.5) /zαs α unique solution Dh, Dφ in Hσp x i?/?,p, ί/p is sufficiently large.

Proof. For all D/z eHσ,β, Dφe KβfP, we define

F(DKDφ)(ζ) = -]e-AUτDtt(φτ(ξ))-(Dφτ(ξ\Dh(φτ(ξ))-Dφτ(ξ))dτ ,
o

G Φ M Ψ ) , © = e ^ + j ^ ( | - τ ) ί>/ί(^( ί)) (Dφτ(ξ),Dh(φτ(ξ)) Dφτ(ξ))dτ ,
0

where the integrals in the right-hand side are only strongly convergent in
<£(β\ Su\ <e{£\gs) respectively. We shall show that, provided that p is suffi-
ciently large, the map (F, G) is a contraction in Hσp x KβtP9 and thus has a unique
fixed point.

We first show that F(Dh, Dφ) e ifσ,p, G{Dh, Dφ) e KβtP. Clearly, G(Dh, Dφ)0

= eAS\ G(Dh, Dφ)t{ξ) is strongly continuous in ί, and since D/"(0) = 0, Dfs(0) = 0,
we see that F{Dh, Dφ){0) = 0, G(Dh, Dφ)t(0) = 1. Furthermore, for all ξ e Ss and all
ίGR + ,wehave| |D/^)| | ύluΛ\Dfs

h{ξ)\\ ^l\\\Dφt{ζ)\\ ύDseβ\\\Dh(ξ)\\ ^σ
thus

\\F(DKDφ)(ξ)\\ ^ ]Due~λUτluDseβτdτ ^ ^ ^ ^ s ^ σ ,
Λ — p0

ί

^ DsβΛSί + J Dseλs(t-τ)lsDseβτ dτ

(eβt - eλst)j S Dseβt .
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Finally, for all ξ,ξeis and all τ e R + , we have

\\Dφτ{ξ)-Dφt(ξ)\\Zpe>'\\ξ-ξ\\',,

\\Dh(φτ(ξ)) - Dh(φτ(ξ))\\ S p(Dseβτ\\ξ- I ' D " ,

\\Dh(φτ(ξ)) Dφτ(ξ) - Dh(φτ(ξ)) Dφτ(ξ)\\ S 2(Ds)1+"pe^\\ξ- ξ\\'s ,

WViΦM)) ~ m '(Φτ(ξ))\\ ^ L" Weβτ\\ ξ - ξ\\sT •

Therefore, we find

\\F(Dh,Dφ)(ξ)-F(Dh,Dφ)(ξ)\\

D"T" D"l"
4Ύ 4Ύ

lλu-β λu-β
\\G(Dh,Dφ)t(ξ)-G(Dh,Dφ)t(ξ)\\

DSLS Dsls )
(D°y+° + 2 - j - — (Dη1+°p \e* \\ξ - ξ ιι .

β λ JLβ — λs β — λ

In view of C2, the quantities in brackets { } are smaller than p, if p is sufficiently

large. This means that F(Dh, Dφ)eHσ,pi G(Dh, Dφ) e KβtP.^
We now show the contraction property. Let Dh, Dh' e Hσp, Dφ, Dφ' e KβtP.

For all ξ e Ss and all τ e R+, we have

\\Dφx{ξ)-Dφ'Xζ)\\ ^

\\Dh(φτ(ξ)) - Dh'(φτ(ξ))\\ £ ds(Dh,Dh') ,

\\Dh{φτ(ξ)) Dφτ(ξ) - Dh'(φτ(ξ)) Dφ'τ(ξ)\\ £

where A = dπ(Dh, Dh') + diψφ, Dφ'). Therefore, we easily find

|| F(DK Dφ)(ξ) - F(Dh\ Dφ')(ξ) \\ ^ -^~β DSA ^ σA
A — β

|| G(Dh, Dφ)t(ξ) ~ G(Dh'9 Dφ')t(ξ) \\ ^ ^ j s DsAe^ ^ σΔe",

so that

du(ΠDK Dφ\ F(Dh'9 Dφ')) + d£{G(DK Dφ\ G{Dh\ Dφ'))

g 2σ{dή{DK Dh') + dκ(Dφ, Dφ')) ,

for all Dh9 Dh' e Hσ>p and all Dφ, Dφ' e Kβ,p. Since 2σ < 1, this means that (F, G)

is a contraction in Hσ>p x KβtP. D

It remains to verify that Dh, Dφ are the derivatives of ft, φ:

Lemma 2.11. Under the assumptions of Lemma 2.8 and Lemma 2.10, the solution
(h, φ) ofEq. (2.4) in Hσ x Kβ is differentiqble with respect to ξeSs, and its derivative
(Dh, Dφ) is the solution of Eq. (2.5) in Hσ,p xKβiP.
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Proof. Let h e Hσ, φ e Kβ be the solution of Eq. (2.4), and Dh eHσ>fnDφe KβiP be
the solution of Eq. (2.5). We have to show that Dh is the derivative of h and Dφ the
derivative of φ. For all ε > 0, we define η(ε) = max^^ε), η2{ε)\ where

ih(e) = sup sup \\h(ξ + k)-h(ξ)-Dh(ξ) k\\u,
ξei* ||fc||=e

η2(ε) = sup sup sup (\\φt(ξ + k) - φt(ξ) - Dφt(ξ)'k\\se-^ .
ξeSs r^O \\k\\ = ε

By construction, η(ε) ̂  2Dsε for all ε > 0. We shall show that, in fact,
η(ε) = Θ(ε1+*\ and this will prove Lemma 2.11.

Let k 6 S\ || ft || = ε. In view of Eqs. (2.4) and (2.5), we have the identity

h(ξ + k)- h(ξ) = _ f e ~ A U

0

•(ΦΛξ + h

00

0

•{Λ(Φτ«H

0 - ΦM h

DMΦM))-

(φM + k))-h(φM)))}dτ

•{ΦM + k) — φM) — DφM)'K

h(φτ(ξ + k)) - h(φτ(ξ)) - Dh(φτ(ξ)) Dφτ(ξ) k)dτ .

We have to estimate the various terms in the right-hand side. In the first integral,
we use the Mean Value Theorem to bound the expression in brackets { } by

|| φτ{ξ + k)- φτ(ξ) II, sup || Df(z) - Df"h(φM)) II ,
zeΓ

where Γ c £ is the segment joining {φτ{ξ)9 h(φτ(ξ))) and (φτ(ξ + k\ h(φτ(ξ + k)));
we thus obtain the bound Lu(Dseβτε)1+<*. For the second integral, we note that

\\φτ(ξ + k)- φτ(ξ) ~ Dφτ(ξ) k\\s ^ η(ε)eβ\

and we rewrite the last line as

h(φτ(ξ + k)) - h(φτ(ξ)) - Dh(φτ(ξ)) (φτ(ξ + k)- ΦM))

+ Dh{φτ{ξ))'iΦM + k) - φτ(ξ) - Dφτ(ξ) k) .

Using again the Mean Value Theorem, the first line of this expression can be
bounded by

\\ΦM + k)- ΦM)L sup \\Dh(w) - Dh(φM))\\,
weΓ'

where Γ' a $s is now the segment joining ΦM) a n d ΦM + k);Jhis yields the
bound ρ(Dseβτεγ+a. The second line is simply bounded by ση{ε)eβτ.

Combining all these estimates, we obtain for all ξ e Ss and all ke$s with
||fe||=β,

\\h(ξ + k)-h(ξ)-Dh(ξ) k\\u^ *~ ^ • - - / ^ . - - . . . Dulu

λ"-β λ"-β
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By similar calculations, we also find for all t e R+,

\\φt(ξ + k)- φt(ξ) ~ Dφt(ξ)'k\\s ^ / ' [ V ) η{)

Using C2 and the definition of η(ε)9 we conclude that η(ε) = Θ(ε1+a). D

Using all these results, it is now easy to complete the proof of the global
center-stable manifold theorem.

Proof of Theorem 2.1. Let heHσ, φsKβ be the solution of Eq. (2.4) given by
Lemma 2.8. In view of Lemma 2.9, Lemma 2.11, only the last three assertions of
Theorem 2.1 remain to be proved. If ξe@(As\ then z(t) = (φt(ξ),h(φt(ξ))) is
a solution of Eq. (2.2) by Lemma 2.9, hence a solution of Eq. (2.1) by Proposi-
tion 2.3. In particular, t -• φt(ξ) is C 1 , φt(ξ) e @{AS) for all t and h(ξ) = h(φo(ξ)) e
Q){AU). This proves iii) and iv). On the other hand, if z(t) is any solution of Eq. (2.1)
such that \\z\\β < oo, we know from Lemma 2.2 that z(t) verifies Eq. (2.2) with
ξ = zs(0). By uniqueness of the solutions of this equation, we must have
z(t) = (φt(ξ\ h(φt(ξ))). This proves v). D

2.3. Continuous Dependence on Parameters. The approach we used in proving
Theorem 2.1 makes it easy to obtain additional information about the center-
stable manifold. As an example, we shall state here a continuity result which is
useful in applications. Suppose that we are given two systems like Eq. (2.1), defined
by two collections (As

u Au

u f\, fί), {A\, Au

2, / s

2, f\) verifying the hypotheses HI,
H2 with the same constants D\ Du and P, lu. Assume also that the condition Cl of
Lemma 2.8 is fulfilled for some βe(λs, λu\ and denote by (hu φx\ (h2, φi) the
solutions of Eq. (2.4) corresponding to the systems 1, 2 respectively. The following
result says that hu h2 and φl9 φ2 are close to each other if Au A2 and fί9 f2 are:

Proposition 2.12. Under the assumptions above, if

sup \\eA^ - eA^\\se"XBt ^ Dsε, sup \\e~AU^ - e~AU^\\ue~λut ^ Duε ,

sup — IIA (z) -Mz) IIs ̂  1% sup — IIA 00 -Ai(z) II„ g /"β,
z Φ 0 \\Z II z φ 0 II Z II

for some ε > 0, ί/î n

, /τ 1 ^ ^ Dsε , Z)sε

1 — 2σ' ' 1 — 2σ

Proo/ Let zl = max(dH(hl9 h2\ άκ{φγ, φ2)\ In view of Eq. (2.4), we have

00

= - ί e-Λ"T2(φ2,τ(ξ),h2(φ2,τ(ξ)))dτ ,
0
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for all ξ e <SS. As a consequence,

<ς J ||e-^Y« _ e-Λχ L | | / « ( ^ l t ( ξ ) , M4>
0

Proceeding as in the proof of Lemma 2.8, it is easy to bound each of the first two
terms in the right-hand side by εσ|| ζ \\s. Moreover, since

the third term is bound by 2σΔ \\ξ\\s. We thus find

dH(hi9h2) ύ 2σε + 2σΔ .

Similar calculations for φl9 φ2 yield

Combining these results and recalling that 2σ < 1 ^ Ds, we see that
Δ S Dsε + 2σΔ, or Δ ^ Dss/(1 - 2σ). D

3. Proof of the Local Center-Stable Manifold Theorem

Using the results of Sect. 2, we now prove the local center-stable manifold theorem
(Theorem 1.1) in the case k e (1, 2]. It turns out to be convenient to deal with the
cases λs < 0, λs ^ 0 separately.

3.1. The Stable Case λs < 0. We first state a variant of Theorem 2.1 which is
adapted to our present purposes.

Corollary 3.1. Assume that there exists anr > 0 such that the hypotheses H2, H3 of
Theorem 2.1 are verified for z, z restricted to the ball Br = Bs

rxBu

r^ S. Assume also
that HI holds with Ds = 1, λs < 0, and that the conditions Cl, C2 are fulfilled for some
β e (λs, λu\ β ^ 0. Then there exist a (unique) map h\Bs

r^Bu

r and a (unique) semiflow
φ: R+ x Bs

r -> Bs

r with the same properties (i), (ii), (iii) as in Theorem 2.1, and

iv) For all ξ e 9(AS) n Bs

r, φt(ξ) isCUnt and z(t) = (φt(ξ\ h(φt(ξ))) is a solution of
Eq. (2.1) such that z(t)eBrfor all t eR+ and \\z\\β < oo.

v) Ifz(t) is any solution ofEq. (2.1) such that z(t) e Brfor all t e R+ and \\z\\β < oo,
then z(t) = (φt(ξ\ h(φt(ξ)))for some ξ e Bs

r.

Sketch of the proof The idea is to repeat the whole proof of Theorem 2.1 while
restricting the various definitions and equations to the ball Br a $, where the
non-linear terms satisfy H2, H3. For example, it is easy to verify that all results of
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Sect. 2.1 remain valid when restricted to the family of curves z(t) which stay in Br

for all t e R+. The crucial point is to check that this property is left invariant by the
right-hand side of Eq. (2.2); but this follows from Lemma 2.4, since Ds = 1 and
β ^ 0. Similarly, in Sect. 2.2, we consider the function spaces Hσ(r\ Kβ(r) obtained
by replacing everywhere $s by B\ in the definitions of Hσ, Kβ. Using Lemma 2.8, it
is easy to see that the right-hand side of Eq. (2.4) is a contraction in Hσ(r) x Kβ(r\
and thus has a unique fixed point h, φ. The differentiability of h, φ with respect to
ξe B\ is shown in the same way, by regarding Eq. (2.5) as a fixed point problem in
Hσ,p(r) x KβtP(r). Combining these results as in Theorem 2.1, we conclude the proof
of Corollary 3.1. D

We are now able to prove Theorem 1.1 in the case λs < 0. In view of the
Assumption A2 (with k = 1 + α, α e (0,1]), there is an r0 > 0 such that the derivat-
ives Df\ Dfu are (globally) α-Hόlder in the ball Bro <= δ, for some Holder constants
L\ Lu. For all r ̂  r0, we define

ls(r) = sup ||Dfs(z) ||, lu{r) = sup ||Df«(z) || .
zeBr zeBr

Clearly, P(r), ίM(r) ~ rα as r -> 0. So, given jff e (λ\ λu) such that j8 ^ 0, we can choose
r > 0 so small that

/ /s(r) lu{r) \

\β-λs'λ»-βjσ = max | , — ) < - .

Since Ds = Du = 1 by choice of the norms in Ss, δu

9 this implies that the conditions
Cl, C2 are fulfilled with Zs = ls(r) and lu = lu(r). As a consequence, restricting the
system (2.1) to the ball Bra<f>, we can apply Corollary 3.1 and we obtain a
map he Hσ(r) and a semiflow φ e Kβ(r) with the desired properties. In particular,
h is C\ ft(0) = 0, Dh(0) = 0, and the assertions (a), (b) in Theorem 1.1 follow from
(iv), (v) in Corollary 3.1. D

3.2. The Center-Stable Case λs ^ 0. Again, we begin with a variant of The-
orem 2.1:

Corollary 3.2. Assume that there exists an r > 0 such that the hypotheses H2, H3 of
Theorem 2.1 are verified for z, z restricted to the cylinder Γ x β r

M c ^ and such that
fs(z) = 0, /"(z) = Ofor all z$Bs

rxδu. Assume also that HI holds and that the
conditions Cl, C2 are fulfilled for some β e (λs, λu). Then there exist a map h: Ss -> δu

and a semiflow φ'.R+xS>s^S>s with the same properties (i), (ii), (iii) as in
Theorem 2.1, and

iv) For all ξ e Θ{AS\ φt{ξ) is C1 in t and z{t) = {φt{ξ)9 h{φt{ξ))) is a solution of
Eq. (2.1) satisfying \\z\\β < GO.

v) Ifz(t) is any solution ofEq. (2.1) such that z(t) eBr = Bs

rx Bu

rfor all t e R +, then
z(t) = (φt(ξ), h(φt(ξ)))for some ξ e B8

r.

Sketch of the proof Adapting the results of Sect. 2 to the present case needs
some care, because now we have no control on the non-linear terms / s, / " in the
region 01 — Bs

γx(βu\Bu

r). In Sect. 2.2, this causes no trouble, because /5, / " and
their derivatives Df\ Dfu only appear in expressions like fs

h'
u(ξ) =fs'u(ξ, h(ξ)\
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Dfiu(ξ) = Dfs>u(ξ, h(ξ)\ where heHσ for some σ ^ 1. But / | , /JJ are Lipschitz on
$s, and D/J, D/JJ are a-Hόlder, since the graph of h does not intersect the
"forbidden" region 0%. So, all the machinery of Sect 2.2 works, and we obtain a map
heHσ and a semiflow φeKβ such that DheHσtP, DφeKβtP and Eq. (2.4) is
verified.

In Sect. 2.1 however, not all results remain true, since in general a curve
z(ί) with | | z | | ^< oo intersects the region &. Nevertheless, if ξeQ)(As) and if
z(t) = (φt(ξ)9 h(φt(ξ)))9 then z ( ί ) φ ^ for all ί ε R+ and z(ί) is a solution of Eq. (2.2)
by Lemma 2.9. So, using Lemma 2.5, Lemma 2.6, Lemma 2.7, we see that z(t) is C 1

in ί and verifies Eq. (2.1). This proves (iv). On the other hand, if z(t) is any solution
of Eq. (2.1) such that z(t) φ & for all ί e R + (for example, if z(t) e Br for all t ε R +),
then by Lemma 2.2 z(ί) is a solution of Eq. (2.2) with ξ = zs(0). As we have seen,
z(t) = {φt(ξ\ h(φt(ξ))) is also a solution of Eq. (2.2) such that z(t) φ 3t for all t e R+,
and using the uniqueness part of Lemma 2.4 (contraction property of the map T\
we conclude that z(t) = z(ί). This proves (v). D

We are now able to prove Theorem 1.1 in the case λs ^ 0. First of all, since (by
A3) λu > kλs with k = 1 + α, we can choose β e (λs, λu) such that β = β(ί + α)
G (As, AM). Since ^ s has the C x + α extension property, there exist a radius # > 1 and
a function χ: Ss -* [0, 1] such that χ © = 1 if ί ε J3Ϊ, χ(ί) = 0 if ξ$Ba

R, χ is
Lipschitz with constant lχ < oo and Dχ is α-Hόlder with constant Lχ < oo. If
F(r), /"(r) are as in Sect. 3.1, and if Is(r) = (1 + Rlχ)ls(Rr), ΐu(r) = (1 + Rlχ)lu(Rr), we
can assume that

by taking r sufficiently small. We next define the "localized functions" gs\ $ -*δs

g\z\ zu) =f\z\ z")χ(zs/rl gu{z\ z") =/"(zs, z»)χ(zs/r) .

Clearly, ^ s, gfM are C 1 + α, coincide with / s , /" in the ball Br c (f, and vanish for all
z$Bs

Rrx$u. Moreover, it is straightforward to verifyΛthat, in the cylinder
£sxBu

Rrαg, Q\ gu are Lipschitz with constants ίs(r), ί"(r), and Dg\ Dgu are
α-Hόlder for some constants L s, Lu.

So, we can apply Corollary 3.2 with r replaced by Rr, fs'u replaced by gs'u in
Eq. (2.1), Dsu replaced by 1 in HI, ls>u replaced by ΐs>u(r) in H2, and Lsu replaced by
L s '" in H3. The conditions Cl, C2 are fulfilled by the choice of r. We thus obtain
a map he Hσ and a semiflow φ e Kβ corresponding to the system (2.1) with f\fu

replaced by g\ gu; in particular, h is Cfc, h (0) = 0 and Dh(0) = 0. Restricting h to the
ball BrαS and recalling that / s , / " and g\ gu coincide in this domain, we see that
the assertions (a), (b) in Theorem 1.1 follow from (iv), (v) in Corollary 3.2. D

4. The Center Manifold Theorem

In conclusion, we state (without an explicit proof) the center manifold theorem in
the same setting as Theorem 1.1. Instead of Al, A3, we assume:

AΓ) The Banach space S is the direct sum of three closed, ^4-invariant subspaces
S\ S\ $u. The corresponding restrictions As = A\gs, Ac = Aβc, Au = A\Su
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define two strongly continuous semigroups eAS\ e~Auχ (t ^ 0) and a strongly
continuous group eAcχ (t e R). Furthermore, there are real numbers
λs< - λc ^0^λc <λu such that

sup \\eAst\\e~λst < oo, sup \\eAct\\e~λc^ < oo, sup \\e~Aut\\eλut < oo .
ί ^ O ίeR ί ^ O

A3') λu > kλ\ λs < - kλ\ and gc has the Ck extension property.

The spectrum of A is thus split into three pieces: a stable part (contained in the
half-plane Re(w) ?g λs\ an unstable part (contained in the half-plane Re(w) ^ λu\
and a central part (contained in the band |Re(w)| g λc). As above, we write
z = (zs, zc, z") the points of <ί, Bs

r, Bc

r, B
u

r the balls of radius r around the origin and
9{AS\ Q)(A% 9{AU) the domains of the operators A\ A\ Au. Using these
notations, we have:

Theorem 4.1. (Local center manifold theorem). Assume that the conditions AΓ,
A2, A3' above are fulfilled. Then, for sufficiently small r > 0, there is a Ck map
h: Bc

r^Bs

rxBu

r with ft(0) = 0, Dh(0) = 0, whose graph 1T ^ Br (the local center
manifold) has the following properties:

a) (Invariance) For all zoei^ such that z% e S){AC\ there exists a Cx curve z: R -> $
with z(0) = z 0 SMc/z ίftαί, as long as z(t) e Br, then z(t) e Ί ^ and Eq. (1.1) ftoWs. //
moreover z(t) e Brfor all ί e R , ί/zen z(ί) is ί/ze unique solution of Eq. (1.1) wiί/ι
these properties.

b) (Uniqueness) Ifz(t) is any solution ofEq. (1.1) such that z(t) e £r/or all teR, then
z(t)er for allteR.

In the case where the whole space S has the Ck extension property, an economic
way to prove this theorem is to use Theorem 1.1 twice. First, one shows the
existence of a local (center-stable) manifold *VC* tangent to the invariant subspace
Sc 0 Ss. Then, reversing the sign of the time t in Eq. (1.1), one applies Theorem 1.1
again to obtain a local manifold i^cu tangent to the invariant subspace SC@SU.
The local center manifold Ψ' is simply given by Ϋ"cs n ircu.

In the general case, one has to repeat the whole proof of Theorem 1.1, with
suitable modifications. This is a straightforward (but somewhat lengthy) task, and
we shall not go into details. Essentially, in Sect. 2.1, one has to deal with curves z(t)
defined for all t e R and verifying, instead of Eq. (2.2),

= j eAS(t-τ)fs(z(τ))dτ ,

zc(t) = eAC'ξ + ]eΛ°t-t-τψ{z{τ))dτ ,
o

(2.2')
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with ξ = zc(0) e Sc. Similarly, in Sect. 2.2, one has to show the existence of a map
h: SC^SS® Su and a flow φt: R x Γ - ^ Γ satisfying, instead of Eq. (2.4),

φt(ξ) = eAHξ + leAC«-*ψ{hs{ψM)), ΦM), h"{φ
0

hs(ξ) = J e-AST(hs(φτ(ξ)), φτ(ξ), hu(φτ(ξ)))dτ ,

h"(ξ) = - I e-A"T(hs(φτ(ξ)), φM), h"{φM)))dτ . (2.4')
0
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