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Abstract. The parallel propagator (associated with a Yang-Mills connection)
taken along all null geodesies from a field point x to null infinity is introduced as
a basic variable in Yang-Mills theory. It is shown that the Yang-Mills connection
can be reconstructed from this parallel propagator.

The Yang-Mills equations are expressed as an equation for the parallel propa-
gator. This equation can be given as a sum of two parts. The first of these, when set
equal to zero on its own, satisfies the Huygens property and is soluble. When the
second part is included, the Huygens property is destroyed. This leads to an
approximation scheme which at first order is soluble yet already captures much of
the non-linearity of Yang-Mills theory.

1. Introduction

In this note we wish to describe an alternate formulation of the standard Yang-
Mills (Y-M) equations on Minkowski space, M> in terms of a single matrix (or
group) valued function on a six dimensional subspace of the space of paths. We will
denote this function by G(path). More specifically this subspace is the space of null
geodesies beginning at each point xa of Jί and ending on future null infinity, J*'.
A natural parametrization for these paths are the coordinates xa of the starting
point of each path and the (complex) stereographic coordinates (C, ζ) which label
the sphere of generators of the future light-cone of xa, where the path ends. A path is
thus labeled by (xα, ζ, ζ). The function G(xa, C, C) is to be the parallel propagator,
(with the Y-M connection, ya\ of vectors in the fiber over xa taken along the (ζ, ζ)
generator to the fiber over */+, i.e.

G{x\ ζ, 0 = 9 exp Π yjxλ . (1.1)

We will show that (1.1) can be inverted and thus the connection ya(x) can be
reconstructed (mod choice of gauge) from G(xa, ζ, ζ). From this fact, the Y-M field
equations can be rewritten in terms of the G instead of the y.
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In terms of the new variables, the Yang-Mills equations divide into two parts.
The first part is already fully nonlinear, but nevertheless, taken as an equation on
its own, satisfies the Huygens principle in the sense that the field at a point depends
only on the data (and perhaps one or two derivatives) at the intersection of the light
cone of the point and the data surface. The second part destroys the Huygens
property. This leads to an approximation scheme which at first order is already
fully nonlinear but is nevertheless presumably integrable by virtue of the Huygens
property. The solution to the first part can be then inserted into the second part
and used to generate successive approximations to the full equations.

We hope that the nonlinearity at first order of this approximation scheme may
be of use in ascertaining features of Yang-Mills fields that are not sensitive to the
full complexities of the interactions but are nevertheless nonlinear such as, for
example, the bound states of the theory.

In Sect. 2 our notation and conventions are introduced, while in Sect. 3 we will
derive the inversion equations for (1.1). In Sect. 4 will be devoted to a description of
the Y-M equations in terms of G.

2. Notation

For simplicity we will consider a trivial GL(n, C) bundle B over Ji, with basis
vectors eα that transform as e'α = ̂ a

βeβ. Parallel transport is introduced by

Vae« = γίaeβ (2.1)

with

yί = yLdχa

the connection one-form. Co variant differentiation of a vector V = Fαeα, is then
given by

VaV"=V\a+Vβy«βa.

A vector, which is parallel transported along some path P with tangent vector va,
satisfies the equation

if Va V* = va{V\a + Vβfβa) = 0 . (2.2)

The Y-M curvature tensor (suppressing the matrix indices) is defined by

Fab = Ίb,a ~ Ίa,b ~ [>β, Ίb\ (2-3)

with [ , ] the matrix commutator.
Under a change of basis we have,

F'ab = SFabS

The Bianchi identities and the source-free Y-M field equations are respectively

VaF*ab = 0 (2.4)

and

VaF
ab = 0 (2.5)
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with the dual field defined by

and η the alternating tensor with ηOii3 = —1
We now recall several simple features of the light-cone structure on M. Let xa

be an arbitrary point of Ji\ the light cone from xa, Cx, is given by

/ = x

a + rta,

where r is an affine parameter along a null generator of Cx, and /α is a null vector
tangent to the generator, normalized by ίat

a = 1 with ta a unit time-like vector.
Since <a sweeps out the sphere of null directions at xα, it can be parametrized by the
complex stereographic coordinates (ζ, ζ) and be given a convenient representation
by

m o = [>/2(i + cor'([i + cα K + α *κ - α [-1 + «]). (2.6)
Note that an entire null-tetrad, (/Λ, nΛ, mfl, ma\ can be obtained from ta by

mα = άfα, mα = ftfβ, nα = r + ^̂ fβ . (2.7)

One also has

dma = 0, drha = 0 ,

dna=-ma, dna=-m\ dma = Sπf = rf + Γ .

The operators <3 and ^ are angular differential operators defined by

3η = P'-'diP'ηyδζ, 3η = P1+sd(P

with P = 1 + (C and 5 (the spin weight) being (0,1, - 1) respectively for (Γ, mα, mα).
(These operators are just the standard spin-connection on the sphere, spinors,
being in this context the spin-weight, s = 1/2 and —1/2 functions.)

The connecting vectorbetween two points on neighboring generators [(£, 0 ,
(ζ + dζ9 0 ] and [(£, C), (C, ζ + dζ)l of C x then become respectively

dya = rnf and ^ α = rmα .

Null infinity, J*, which is RxS2 and obtained by passing to the limit r -• 00, is
coordinatized by (w, C, 0 with ζ being the (complex) stereo-graphic coordinate on
the S2 factor. Each null geodesic acquires an end-point o n / + ; the end-point of
that one thru xa along Γ ( £ ζ) being (u, C, 0 = (xα4(C, 0 , C, 0

3. The Parallel Propagator

Our parallel propagator G(xα, ζ, 0 , can be defined in the following fashion:
Abstractly the parallel propagator is the^nap from the fiber of the Yang-Mills

bundle at x\ to the fiber over the point (u, ζ, ζ) = (x%(ζ, 0 , ζ9 ζ) at J+ obtained by
parallel propagation along the null geodesic thru xa with tangent vector /a(ζ, ζ).
With respect to a choice of gauge (i.e. a frame for the Yang-Mills bundle) the
parallel propagator G is represented by the non-singular matrix denoted by

GΛΛ CO,
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where the regular Greek indices index the Yang-Mills frame at xa and the
underlined indices index the frame a t / + .

Clearly the inverse, G ~*, is the parallel transport operator from J+ to xa along
ζ, ζ) and hence G satisfies the equation

r vM = fiβla - ΊLGI) = o (3.1)

or

DG-γaί
aG = 0 with D = rδ/dxa = d/dr .

This can be written in integral form as a path-ordered exponential integral

(3.2)

(Note that owing to the conformal invariance of the Yang-Mills equations, our
formalism remains essentially unchanged, if we choose a finite null-cone instead of

We thus see that knowledge of the connection y leads to the G(xa, ζ9 ζ) via the
path ordered integral, Eq. (3.2). We now use Eq. (3.1) to recover the connection
itself from G(xa, ζ, ζ)9 i.e., to invert the path integral formula.

We consider the G for two infinitesimally close points on the same null
generator, i.e., G(xα, ζ, ζ) and G(xa + ΛrΓ, ζ, ζ); it is clear, that from their difference
and from their definitions that

DG = yJaG

or

yar = DGG~1 , (3.3)

one of the components of y. The other components can be obtained by applying the
β and δ operators [see (2.7)] to (3.3), yielding

yam
a =

yam
a =

yan
a = rδδiGaG'1) + ̂ ^ (G^" 1 ) + T W ^ G ' 1 ) + n ^ G " 1 ) ,

or

ya = GaG'1 - mJhδ{GhG-γ) - mJhδ(GhG-χ) + {ak (3.4)

with

k = im'δiG.G-1) + maδ{GaG-1) + / ^ ( G . G " 1 ) ] .

Equation (3.4) is the reconstruction of the connection from knowledge of G.
Note the important point that if one constructs a new G by

, ζ , ζ ) 9 (3.5)

where g{xa) is an arbitrary matrix function of xa, the connection obtained from the
G' is just the gauge transform of the connection obtained from G. We can thus
consider the transformation (3.5) as a gauge transformation.
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Also note that if an arbitrary G(xα, £ ζ) (i.e. a G(xa, ζ, ζ) that was not necessarily
a parallel propagator) were to be inserted into (3.4) the resulting expansion for
y would depend on both xa and (£ ζ) and hence would not be a connection;
a proper connection would depend only on xa. It is easy to see from (3.1) and the
equations following (2.7) that both a necessary and sufficient condition for γ to
depend only on xa is

02(DGG-1) = O andc.c. (3.6)

We shall refer to these as the auxiliary conditions on G. (Under the assumption that
G is a global and regular function on the (£, ζ) sphere, one or the other of Eqs. (3.6)
are sufficient as, for example, the second equation implies that dya = 0 so ya is
global and holomorphic and therefore independent of ζ by virtue of a generaliza-
tion of Liouville's theorem. Alternatively the real equation δ2δ2(DGG~1) = 0 is
sufficient, by use of the maximum principle for theLaplacian on the sphere, since
this quantity is the only nontrivial component of δδya)

We will return later to the issue of the (£ ζ) dependence of y.

4. The Field Equations

We now consider the question of reexpressing the conventional Y-M equations in
terms of G. At the first level this is quite simple; one expresses the connection in
terms of the G, i.e. Eq. (3.4), which is then substituted into the Y-M equations. After
some manipulation, (using VbF

ab = 0<>4 VbF
ab = 0 together with the auxiliary

conditions) one obtains the following equation;

D3(0J) + D[_D2J, J ] + 2[D 2 J, DJ] = 0 (4.1)

or

D30J) + [D3J, J ] + 3[D 2J, Z)J] = 0 ,

where

J = G~1dG, J = G~1δG.

This equation, for G(xa, ζ9 ζ\ together with Eq. (3.6), is equivalent to the full
vacuum Y-M equations. (Note that by the identity δJ — dJ + [ J, J ] = 0 (4.1) is
real.) One can actually go a significant step further and perform the radial integrals
(i.e. eliminating the D derivatives) and obtain

dJ - ] dr{ ID2J, J ] r - ID2J, DJ ] r2 } = V , (4.2)
o

where <S? involves "constants" of integration; i.e., D3(& = 0. By use of the known
asymptotic behavior of the Y-M field in the neighborhood of,/+, the "constant"
of integration V can be expressed in terms of the free characteristic data given on
/ + . By a lengthy argument [1,2] one has that

_ 00

eg = -(SA + δλ) - [A, A] + 2 J dull, A~] , (4.3)
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where A is an arbitrary function on </+, i.e., A = A(u, ζ9 ζ) but, where in this
expression for #, the value of u is restricted to the intersection of Cx (the light-cone
from xa) with J>+. (Despite appearances, # is real.) This intersection is given by [3]

u = xVΛ(£ 0 (4.4)

so that

We thus finally have

5J - ] dr{[D2J, J-\r - [D2

o

= -(3A + 3A) -IA,A] + 1\ dull, A-\ , (4.5a)
U

with

J = G~1dG, J = G~1δG,

a matrix valued space-time scalar equation for the determination of G(xα, ζ9 ζ)
given the free data A = A(xα/α(ζ, ζ), ζ, ζ). Again, (4.5) despite appearances, is real
and can be rewritten in a manifestly real form as

ίΪJ + dJ+l dr({[DJ, J ] + c.c.} + {[D2J, DJ-\ + c.c.}r2)
o

= -2(βA + βA) + 2 J du(lA9 A] + c.c.), (4.5b)
u

with again

J = G~1δG, J = G~1δG.

5. An Approximation Procedure

Though Eqs. (4.5) appear to be quite formidable, a relatively simple perturbation
procedure is available so that a solution procedure exists for the determination of
the G at every order of the calculation.

This procedure starts with taking (4.5a) and ignoring the (radial) integral terms
on the left-hand side at first order, and solving for J. One uses for this solution, the
unique Green's function for the operators δ. To proceed further we must then solve
the equation δG = JG for G with the "first order" J. This equation, while not quite
a quadrature, requires the global solution of linear equations on the sphere and is
a standard ingredient of one of the solution procedures for the self-dual Yang-Mills
equations [5] (in which context J is just a function of xαία and (£, ζ) and the
equation is referred to as the Sparlingequation). With this solution for G we can
substitute the expressions for J and J = G~γδG into the (radial) integral expres-
sions of (4.5a) and run through the procedure again to determine the next approx-
imation and so on.

When (3.4) has_been used to reconstruct yα it will not in general be real or
independent of ((, ζ) except in the limit as the order of the approximation goes to
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infinity. We can however evaluate it at (ζ, ζ) = 0 in the gauge G(ζ = 0, ζ = 0) = 1
and take its real part; this will converge to the required solution (as will the
"raw" γa).

If we were to start with (4.5b) rather than (4.5a), we would have to solve the
harmonic map equations with source in order to pursue the approximation
scheme. We however do not know if a solution procedure exists for these equations.

When the integral terms on the LHS of (4.5a) are ignored, the equations satisfy
the Huygens property in the sense that the solution G at xa only depends on the
RHS of the equation, i.e., the data, at the intersection of the light cone of xa with the
data surface, null infinity.

We thus see that our reformulation of Y-M can be considered as a generalized
D'Adhemar formulation of Y-M. The perturbation solution is analogous to
a series of Penrose's Zig-Zag integrals [6]. It is the presence of the integral terms in
(4.5a) that prevents the Y-M equations from satisfying Huygens principle, namely
that data propagates along characteristic surfaces.

Remark 1. Note that J and J are invariant under the gauge transformation (3.5),
i.e., G'(xa, ζ, ζ) = g(xa)G(xa, ζ, ζ), and hence the solutions G, to (4.5), are not unique
and are given (at least) up to a gauge transformation. That there is no other
freedom in the solution is difficult to show rigorously; nevertheless a perturbative
argument clearly indicates that the solutions are unique up to these gauge trans-
formations. If this can be made rigorous then we have the important result namely;
Eq. (4.5), which was derived from the Y-M equations, is completely equivalent to
the Y-M equations. G(xa

9 ζ9 ζ) is then the Y-M parallel propagator and automati-
cally yields a connection (3.4). It would thus follow that the auxiliary condition (3.6)
is then automatically satisfied.

(In [7] further arguments are given for the derivability of the auxiliary condi-
tion (3.6) (in weaker form) directly from Eq. (4.1) and its integral (4.5). This weaker
form also requires globality on the sphere in order to imply condition (3.6) in total.
It is perhaps also worth mentioning that (3.6) follows directly from (4.5) and
globality in linearized theory, and so one would expect it to follow at least for
"small" solutions of the full Yang-Mills equations.)

Remark 2. In the special case of an Abelian gauge theory (i.e. Maxwell theory),
G(xα, ζ9 ζ) is a scalar which can be written as

The field equation (4.5), equivalent in this case to Maxwell's vacuum equations,
then becomes

ddF = -(βΛ + 'βA).

Since there is a simple unique Green's function [4] for the dd operator, it can be
immediately integrated for F, which when substituted into the equation for the
connection yields the well-known D'Adhemar solution of Maxwell's equations, i.e.,
the integral form of the solution of Maxwell's equations obtained from character-
istic data. The Sparling Equation version of the self (or anti-self)-dual Yang-Mills
equations [5] are also special cases of (4.5).

Remark 3. A similar programme can be executed in the context of GR using
light-cone cuts, etc. See [7, 8] for a discussion in a similar spirit.
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