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Abstract. In the current paper we study in more detail some properties of the
absolutely continuous invariant measures constructed in the course of the proof of
Jakobson's Theorem. In particular, we show that the density of the invariant
measure is continuous at Misiurewicz points. From this we deduce that the
Lyapunov exponent is also continuous at these points (our considerations apply
just to the parameters constructed in the proof of Jakobson's Theorem). Other
properties, like the positivity of the Lyapunov exponent, uniqueness of the abso-
lutely continuous invariant measure and exactness of the corresponding dynamical
system, are also proved.

Table of Contents

1. Introduction 217
2. Mappings of Class BV 219
3. Annihilating Segments 222
4. Non-Peripheral Spectrum of the P-F Operator 225
5. Continuity of the Invariant Density 1 227
6. Continuity of the Invariant Density II 230
7. Continuity of the Lyapunov Exponent 233
8. Appendix A: The Measure of the Central Segment 234
9. Appendix B: Positivity of the Lyapunov Exponent 235

References 236

1. Introduction

In [11] one of the authors (M.R.) presented a new proof of the following result of
Jakobson [8]:

* This paper was written during the author's stay at the IAS while supported by NSF grant
DMS-860 1978
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Theorem 1. Letfa(x) = 1 — ocx2,0 ^ oc ^2,bea one parameter family of mappings of
the unit interval There is a positive measure set of those α that fa has an absolutely
continuous invariant measure (abbreviation: a.c.i.m.).

In the course of the proof a set A^ of parameters α was constructed such that
for oceA^ there is an a.c.i.m. for/α.

When the present work was started, our main objective was to show the
continuity of the metric entropy, as α -> 2. This naturally lead to studying continu-
ity of the invariant measures and spectrum of the Perron-Frobenius operator for
maps of class BV. In the present paper we also include a number of related results:

1. A direct, simple proof that for oceA^ the Lyapunov exponent of/α is positive;
2. A proof that the density of the a.c.i.m. is an ZΛfunction for p e [ l , 2).

Throughout the paper we use the results of [11] quite extensively. Also, in the
part concerning BV class maps we refer the reader to [9] for an account of basic
facts about these maps.

Let us recall that in [11] A^ was constructed through a limiting process. First,
for every nonnegative integer n we constructed a family of segments sdn. The
segments of jtfn + 1 were constructed from the segments of jtfn by making deletions.
The union of the segments of $tn was denoted by An. The set A^ is simply the
intersection of all An. Thus, for any α e i ^ a number of objects was constructed:

1. A descending sequence of segments [ — 1,1] = / 0 => J^ => J 2 . . . => {0}; these
segments depend on α;
2. A sequence of integers 1 = s0 < sx < s2 < . . . such that the mappings
Ta,k =fΐ\h\Ik + ι> fc = 0, 1, 2, . . . are uniformly expanding; the expansion con-
stants -• oo exponentially with k and uniformly in α; the numbers s0, sl9 . . . , sn

are the same for all α in the same segment

def

The mapping Ta was defined as Tatk on the domain of Tatk (i.e. on M^k = Ik\h+i-
We proved that the mapping Γα belongs to class BV, and therefore has art a.c.i.m.
(cf. [9]). In the sequel we will show that the invariant measure for Ta is unique
among the absolutely continuous ones. Let us denote it by vα. Following the
original work of Jakobson, we define the a.c.i.m. vα for/α via the following formula:

oo sn— 1

v«= Σ Σ (/Λ*(vj/Λ/ik+i). (i)
n = 0 j = 0

This series defines an a.c.i.m. because the measure vα has a bounded density and the
series

00

Σ s*IW*+il (2)
k = 0

converges (uniformly in α). Up to a normalizing constant, this is the only a.c.i.m. for
fa (this fact will be evident in the sequel).

In Sect. 5 we show that the density of vα depends continuously on a in
ZΛtopology for any p e [1, oo), as α converges to the so-called Misiurewicz points.
Subsequently, (in Sect. 6) we prove an analogous statement for the density of vα for
p e [1, 2). Our results are, of course, limited to the points i n i ^ .
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A parameter α is called a Misiurewicz point if the set {/α"(0)}̂ °= t is at a positive
distance from the critical point 0. It is not difficult to show that Misiurewicz points
are dense in the set Λ^. They are also Lebesgue density points of the set A^.

Furthermore, we will show that the metric entropy which in this case equals the
Lyapunov exponent of the dynamical system (/α, vα) (oceA^) is continuous at
Misiurewicz points. We also show that the dynamical system (/α, vα) is exact. From
the results of Ledrappier [7] it follows that the natural extension of (/α, vα) is
Bernoulli. It shall be clear that the maps Γα have a uniformly exponential mixing
rate for all oceA^. An analogous statement for fa was recently proven by L.-S.
Young [12].

It is an open question whether for almost all oteA^ the Lyapunov exponent
along the orbit of 1 is positive. Again, the answer is well known to be positive for
Misiurewicz points. Also, recently Carleson and Benedicks have shown that this is
the case for the set of parameters constructed in their version of the proof of
Jakobson's theorem. It is also known that for all α e A^\

| (/β")'(l) |^ const. Λ»r (3)

for some A > 1, all nonnegative integers n and some positive γ. We expect that
there is a nonempty set of measure 0 of these OCEA^ such that the Lyapunov
exponent along the orbit of 1 is 0.

Our technique relies upon the possibility to estimate the non-peripheral spec-
trum of the Perron-Frobenius operator of piecewise expanding mappings of class
BV. Such estimates are directly connected with estimates of the rate of mixing and
continuity of the entropy, as it was explained in [10].

2. Mappings of Class BV

The class of mappings considered in [9] will be called class B V. Thus, a mapping
Γis of class BV if it maps /\S to /, where S is a closed set of measure 0; Γis assumed
to be differentiable and the function.

f for xeI\S (4)
g(x) = l \Γ(x

tθ, for x e S

satisfies Var(#) < oo and || g \\ „ < 1. Let ξ be the measurable partition of / into the
components of I\S. By enlarging S we can achieve that T is monotonic on the
components of I\S, the iteration Tn: /\Sπ->/, where Sn = {Jn.Zl T~S(S), is well
defined and the partitions

ξn = V τ~J(0 (5)
7 = 0

make sense. The function

gn = (g°T»-1)...(goT)g (6)

plays the role of g for the iteration. As it was shown in [9], Var(gn) < oo,

II9. II co ^ \\g\\% < l So T" is also of class BV.
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The Perron-Frobenius operator for a BV map T is an operator
P: Lι(m) -• L^m) defined as usual by the following formula:

PΦ{χ)= Σ g(y)Φ(y)- (?)
yeT'Hx)

P can also be considered as an operator on the space BV of functions of bounded
variation with the norm:

| |^| |Bv = max( | |0 | | L i ,Var(0)). (8)

It will also be useful to denote by BV0 the space of those φ e BV which have zero
integral. The following fundamental theorem was proved in [9]:

Theorem 2. There are constants A, B, KE (0, 1) such that for any φ e BV:

Var(Fψ) ^ AκnVsir(φ) + B\\φ\\Li (9)

for n = 12, . . . .

From [9] it follows that the constants A, B, K can be obtained if a finite partition
ζ and an integer n are given, so that numbers λζ and Dζ (defined below) satisfy the
following inequalities:

h =f II9nIIoo + maxVar^gH < 1 , (10)
Aeζ

Dζ

d= maxYarA(gn)/\Λ\< oo . (11)
Aeζ

The above formulas are important to us because we will find the partition
ζ independent of α such that both of the above constants are uniformly bounded for
all α 6 A o0. As a consequence, the constants A, B, K can also be chosen uniformly
with respect to a.

Theorem 3. There is p e (0, 1) and a constant C such that for any segment A a I and
NeZ + :

YMA{9n)ύC{pn + \A\), (12)

where C and p do not depend on a.

Proof. This proof is in principle the proof of the existence of the a.c.i.m. for Γ,
which was hinted at in Remark 5.1 of [11]. Therefore, we will just sketch some of
the steps, referring the reader to that paper.

Let π be the partition of/ into segments of equal length d. Just for this proof, the
meaning of s/n from [11] will be changed, to make the notation completely
analogous to the proof of Theorem 5.1 from that paper. Thus, let sίn denote the
partition ξn restricted to A and let srf'n be the partition generated by the following
inductive definition:

s/ί = T-H^ί-i) v(ξvπ) = ~ξn\A , (13)

where ~ξ = ξ v π.
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ί e t us introduce two sequences:

yn= Σ
1

ηn=

i t : J \Φn

Φ'n
S U P

(Φnf
\J\,

221

(14)

(15)

where φn = Tn. We will derive estimates oΐ(yn+1,ηn + 1)in terms of (yn9 ηn) in a way
analogous to the proof of Theorem 5 in [11].

For any J e s/'n9 Pen and k e Z + we set Jk(P) = Γ~ V ) nMknP. We notice
that for any J e ^ ί + 1 we have

sup
l

sup I
jk(P)

Let kx e Z+ be such that (cf. formula (5.10) of [11])

(16)

(17)

Let us choose d small enough, so that for every Pen one of the two cases holds:
either l ) ? c /fcl or 2) P intersects not more than two of the sets Mk. We obtain:

k Jk(P) \Ψn+l Jk(P)

1
(18)

where J(P) = φ~1(P)nJ. We notice that φn{J{P)) φ P for at most two P e π ,
namely the ones that satisfy *)P n dφn(J) Φ 0. Summing up over these P we obtain

The other Ps satisfy **) φn(Jk{P)) = P and allow the estimate

1 - 1 , 1 ._,
sup

So, we obtain

and, finally

fc,P J k (P) l

(Φn)

Φ'n'

\J(P)\

'\2iΦ'n)

\Λ\ .

Next we intend to estimate ηn+1. We have:

φn+ί < oψ
(Φn)2

T"

en
2

^ Δxx{Tik)) + Λo- 1 Φn

(Φn)
r\2

(19)

(20)

(21)

(22)

(23)
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Therefore, we can write:

ηn + 1 S Σ Λxx(Tik))\Jk(P)\ + Λό1^ (24)
J,k,P

Because of the obvious inequality

\Jk(P)\^ sup-j-\PnMk\ (25)
Jκ(P) \Ψn\

we obtain

rjn + i ^ Π n + Λo1^ , (26)

where

r = sup max £ Axx(Tik))\P n Mk\ . (27)
n Pen k

Reasoning as in the proof of Theorem 5 of [11] we obtain the inequality:

v π + 1 ^ P v M + c (w= 1 , 2 , 3 , . . . ) , (28)

where \n = (ym ηn) e R 2 and c e R 2 is a fixed vector satisfying the inequality:

| |c | | ^ const. \A\ . (29)

The matrix P is defined by the formula:

where

r= Σ J«,(Γ ( i k ))|Λ(P)| . (31)

We need the spectral radius of P to be < 1. This can be achieved by decreasing d, if
Λo > 4. Otherwise we use the same argument as in the proof of Theorem 5 in [11].

We also see from the definition and the estimates in [11] that yx is uniformly
bounded in α. •

As a corollary we obtain that if ζ is a sufficiently fine partition into segments
then the numbers λζ and Dζ are uniformly bounded for all α e A^.

3. Annihilating Segments

The purpose of this section is to introduce a condition which guarantees that the
Perron-Frobenius operator of a BV map restricted to BV0 is a contraction. From
the previous work on BV maps in [9] it is clear that this condition is equivalent to
the weak mixing property for the resulting dynamical system, if the invariant
measure is the unique a.c.i.m. However, we will need more concrete conditions
which assure that the contraction is uniform for all maps Γα, α e A^.

Let T be any BV map.
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Definition 1. Let ε > 0. A segment Ko c I is called an s-annίhίlatίng segment if and
for sufficiently large leΈ+ there are C > 0, δ > 0 such that for any segment K of
length > ε there is B e ξι and a subsegment L c B such that:

1. T\L) = Koand L ^ B a K;
2. \L\^δ;

mfL Qι

In the next section we will show that the existence of an ε-annihilating segment
for sufficiently small ε implies that the operator P: BV0 -• BV0 is a contraction.
Moreover, the contraction constant can be estimated in terms of the constants that
have already been introduced.

In this section we will concentrate on the proof of the following result:

Theorem 4. For every ε > 0 and for sufficiently small σ > 0 the map T = T2 (i.e. for
α = 2) the segment Ko = [ — σ, σ] is ε-annihilating.

2
Proof Step 1. We change the coordinates, using the map Φ:xι—•-arcsin(x). It is

π
well known that the map h = Φ° f2°Φ~1 is actually the map h: X H 1 — 2|x|. For
α = 2 the sequence of segments /„ becomes [ — 3"", 3~"]. Let us consider the

sequence Γn = Φ " 1 ^ ) = - sinί | 3~n j , sinί | 3~M 1 . Let U be the map defined

to be hn+\ on M'n = Γn\Γn+1{n = 0,1, 2, . . .). It is not difficult to see that

1. U\M'n has slope ± 2 B + 1;
2. \Iή\ ~ const.3"" for large n;
3. [/ = Φ°Toφ~\

Step 2. Let f be the partition into the components of all the sets M'k. We shall prove
that for sufficiently large n there is L α K0,L ^ Be ξn, such that Ko = Un(L).
Moreover, there is m0 such that for every m^m0 there is a segment L <= M^ and
n ~ const, m such that Un(L) = Ko. Indeed, there is a sequence of preimages Kt of
Ko under h monotonically converging to — 1, all contained in M'o (where U = h\
of length ^ Koβ

ι and distant from — 1 by ~ \/2ι. The image Ό(M'm) is a segment
of length ~ 2m const. 3 " m and its distance from — 1 is —̂ (2/3)w. It is clear now that
for sufficiently large / there is m such that Uι + γ{Mf

m) = hιU(M^) 3 Ko provided
Ko = [ — σ, σ] is short enough.

To prove the first of our claims it is sufficient to choose lγ and l2 so that lx + 1
and l2 + 1 are relatively prime and the corresponding Im. α Ko (j = 1, 2). Every
sufficiently large n admits a representation n = /^(/i + 1) + p2(l2 + 1), where
/?i, /?2 are positive integers. Now using the representation Un = (Ulί + X)P1 °(Uh + 1Y1

we can easily find the desired segment L.

Step 3. Suppose that K is a segment of length > ε. Let K' = Φ(K). There is εx > 0
independent of K such that | K'\ > εί. We inductively define a sequence of segments
Wn by requiring that Wo <=K',\W0\> εJA and dist(^0> 0) ^ £i/4. For n > 0 w e
define Wn to be the longest of the segments U(Mί n Wn-ί) for fc = 0, 1, We
claim that for some n < const, log (1/εi) the segment Wn contains a component of
M'm, where m is sufficiently large and fixed. Indeed, if Wn does not contain



224 M. Rychlik and E. Sorets

a component of M'mi then Wn is either contained in I\Γm+1 or in Γm. Let m be
a number so that

/ m + l -j oo -j \

(32)

is strictly less than 1. It is not difficult to prove by induction that for each n we have
I Wn + i I ̂  θ~x I Wn\. Indeed, suppose that, on the contrary, for each k the length of
UiMk^Wn) has length <θ~1\Wn\. We can write the following sequence of
inequalities:

In the case when Wn a I\I^+1 we sum up these inequalities for k = 0,1, . . ., m
and get a contradicion | Wn\ < \ Wn\. In the case when Wn c Im we sum up these
inequalities for k = m, m + 1, . . . and get the same contradiction. The inductive
proof has been completed.

The inequality \Wn+1\έϊ θ~1\Wn\ persists as long as Wn does not contain
a component of M'm. Therefore, n < constlogίl/βi) and this proves the claim.

For sufficiently large m the argument in Step 2 yields a subsegment L and an
iteration number / such that Uι(L') = Ko. Let L = Φ{L'). It is easy to see that this
segment has the desired properties. Bounded distortion (condition 3 of Definition
1) follows from the fact that none of the segments Wn can be too close to 0 and the
fact that T{k) has bounded distortion (uniformly with respect to α). •

Remark 1.

1. It is clear from the construction and the properties of T(k) that Ko is an
ε-annihilating segment for all α e A^ n [2 — ω, 2] for sufficiently small ω. More-
over, for fixed ε and sufficiently large / the choice of the constants δ and C can be
uniform for all parameters from [2 - ω, 2].
2. The density of vα is bounded away from 0 on [^(1), 1] = [1 — α, 1]. To see that,
let K be an ε-annihilating segment of Ta and S c K be an arbitrary non-empty
subinterval. From uniqueness of a.c.i.m. for Ta it follows that

where const, is positive and independent of S. It follows that the density of vα is
bounded away from 0 on K. The fa forward images of the annihilating segment
cover [/α(l), 1] by the proof of the last theorem.

3. The condition of exactness for/(or any piecewise monotonic mappings of an
interval preserving an absolutely continuous invariant measure) is equivalent to
the following: For every non-empty interval B

lim v(f"(B)) = 1 . (34)
«-> oo

It is clear that if A = [ — σ, σ] then/"(.4) covers the set [/(I), 1] (the support of v)
in a finite number of steps ( i f/=/ α and α e i j Thus (34) is true for A. Now, the
general statement follows from Theorem 4 and Definition 1.
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I

Indeed, let B be an arbitrary segment of positive length and let σ be such
that the segment A is |2?|/2-annihilating. Then for sufficiently large / there is
a segment B' a B such that T\B') = A and Tι is monotonic on B'. Also, there
exists m such that Tι{B') =fm{B'\ Let r be such that f(A) = [/(I), 1]. Thus,

i ( O

4. Non-Peripheral Spectrum of the P-F Operator

This section is crucial for the entire paper. Its goal is to estimate the spectral radius
of the P-F operator P: BV0 -> BV0 of a BV class mapping T. It was known (cf.
[9,6]) that this operator is a contraction, provided that the system possesses
mixing property. However, the work prior to this paper does not provide an
estimate for the contraction coefficient. It is apparent from the sequel that the need
for such an estimate appears naturally in the problem of continuity of the metric
entropy. A similar, simpler method was used in [10] to show continuity of the
metric entropy for expanding mappings with respect to the unique absolutely
continuous invariant measure.

For mappings of class BV the most important assumption we had to make is
that the map has an annihilating segment (cf. Sect. 3). One can view the existence of
an ε-annihilating segment as a way to quantitatively express the fact that the
system has topological mixing. It is described quantitatively as a choice of con-
stants <S, / and C for an arbitrary ε > 0.

Another ingredient we need in this section is the basic inequality:

Var(Pn(/>) ^ Aκn Var((/>) + B || φ ||Li . (35)

The way to compute the constants A, B and K for any BV class map has been
described in Sect. 2.

Theorem 5. The operator P: BV0 -> BV0 is a contraction in a suitable norm equiva-
lent to the norm of BV0. Moreover, there are constants D < 1 and I e Έ such that
II Pι IIBVO = D' These constants admit upper bounds depending on A, B, C, δ computed

for some fixed ε, which will be described later.

Proof Let us fix / e Z + as in the annihilating segment condition for some suffi-
ciently small ε (described later) and y > 0, R > 0. Let us consider a new norm on
BV0 described by the following equation:

. (36)

For any φ e BV0 let us consider the following two cases:

Case L Var(φ) ^y\\φ \\Lκ In this case the basic inequality yields

Var(P<</>) ^ (Aκι + £/y)Var(φ),

Λ | | P ^ | | L i ύ RWΦWϊ ύ (R/y) Var(φ) . (37)

So,

|| Pιφ II ^ max^K* + B/y9 R/y) \\ φ \\ . (38)

If B/y < 1, R/y < 1 and / is sufficiently large, the norm of φ is contracted.
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Case 2. Var(</>) ^ VHΦHL1- Let Ko be an annihilating segment. We may assume
that | |0 | | L i = 1 and obviously $φ+dm = \φ-άm = 1/2 (φ e BV0).

Let Σ1 = {xe I: φ+(x) ^ 1/4}. We claim that miΣ^ ;> l/(4y). Indeed,

- = $φ + dm= J φ+dm+ J φ + d m ^ y m ( Σ 1 ) + - m ( / \ Γ 1 ) . (39)
2 Ii I\Σχ 4

Hence, we can write

^ ^ ^ . (40)

This implies that m(IΊ) ̂  l/(4y).
Our next claim is that there are at least l/(4γε) disjoint segments of length

ε which contain a point of Σlm The proof is obvious.
We also observe that there are at most 8y disjoint segments such that on each

of these segments the variation of φ exceeds 1/8. Suppose that ε < l/(32y2).
This implies that Sy < l/(4yε) and there is a segment K of length ε such that
inϊκφ+ ^ 1/8. Consequently, there is a subsegment L+ aK,L+ a B e ξ\ such
that:

1. Tι(L+) = K0;
2. supL+gi/iniL+gi S C;
3. i n f L > + ^1/8;
4. \L+\^δ.

In a similar way we define a segment L_. It is not difficult to notice that || Pι ||Li < 1,
due to the fact that the segments L+ and L_ meet after / iterations and some part of
the measure φm will be "annihilated." A more precise estimate yields

ul-\c-H. (41)

Indeed, we always have | Pι φ \ ̂  Pι \ φ \ and because of cancellations, on Ko we have:

\Pιφ\ S Pι\Φ\ -2mm(mϊgιφ + ,Mgιφ\ ^ Pι\φ\-jmm(mighmϊg)i . (42)
\L+ L_ / 4 \L+ L- /

Integrating these inequalities we obtain:

\\PιΦ\\v S IIΦILi - ^ m ( X 0 ) m i n ( i n f ^ , i n f ^ , (43)
4 \L+ L_

and since

inf gx ^ C ~1 sup Qι ^ C ~1 ^ H ^ C

(41) follows. The basic ineqality yields

Var(Pty) g (Aκιγ + B)\\φ||Li ^ ((Aic'y + B)/K)||φ|| , (45)

and by (41) we get:

II P'φ II g max ( l - ^ , d ! ί !L±^") || φ y . ( 4 6 )
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The conclusion for Cases 1 and 2 is that if B/γ < 1, R/y < 1, B/R < 1, and / is
sufficiently large then Pι is a contraction with respect to the norm || ||. All other
claims follow easily, and the details are left to the reader. •

5. Continuity of the Invariant Density I

Let us recall that Pα (the Perron-Frobenius operator of Ta) is a bounded operator
either in L1 -topology or BV-topology. But it is not true that Pα depends continu-
ously on α in either topology. The density pα of the a.c.i.m. in an eigenvector of
Pα corresponding to the eigenvalue 1. We are going to show that pα varies
continuously in ZΛtopology for any p e [1, oo).

Proposition 1. As α -> 2, we have Pα -> P 2 in L(BV0, Lp)-topology for any p e [1, oo).
More precisely, if oc, β eJ e stfn then

\\Pβφ - Paφ\\Lp ^ const.(|S;ro | j8 - <*\1/p + |S;Γωi)Var((/>) , (47)

where ωo,ω1 are positive constants.

Proof. We can write:

P«Φ = Σ P*ΛΦ) > (48)

where

0 outside of Γα,fc(Mα>fc)

(Φ 9a, k) ° Tg, ^ on 7̂ α £ (A/α /̂) .

We have an obvious estimate

| | P β t k 0 | |p ^ sup ^α,fc sup 101 ^ const^lo * Var(0) . (50)

So the norms in L(BV0, Z/)-topology decay exponentially, uniformly in α e ^oo. To
show continuity we need to prove that for each k "the difference" Pak — PβΛ is
small in L(BV0, Z/)-topology, when \a — β\ is small and ot,βeJejtfn for suf-
ficiently large n.

Let K be a maximal subsegment of Mα>fc contained in the domain of the map
Haβ/ = T^1oTa and Mβ.tk for all β' e [ά, /?]. Since Supp(|Pαs/cφ - P^ f e φ|) =
Γ«,jk(Mα,fc) u Tβtk(Mβtk) for p e [1, 2) we can write:

- Pβ,kΦ\p = J I Λ α ^ + ί \Pβ,kΦ\p + J l^α,/c0 - Pβ,kΦ\p

Si S2 S 3

+ J

where

52 = Tβ,k(Mβ,k)\(Tatk(MΛtk) u Γα(K)), and

5 3 = ( Γ β f k ( M β i k ) n Γ μ ( M μ ) ) \ Γ a ( ί : ) .
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Noting that | P a Λ φ - Pβ,kφ\p ^ 2p-\\P^kφ\p + \PβtkΦ\p) on S 3 and changing vari-
ables of integration, we get:

~ Pβ,kΦ\P ̂  2?-1suV\φ\p(\Ma,k\K\ + \Mβ,k\Haβ(K)\)

M / u ) | + \Mβ,k\Hxβ(MaΛ)\)

ί
TΛK)

\Mβ,k\Hxβ(K)\)

β β g x Γ i . (51)
K

The last term of this inequality can be estimated using the following

Lemma 1. Suppose that H: [α, b~\ -> [c, d~\ is a homeomorphism and φ: R -+ IR is
a function with bounded variation on a segment U containing both [a, b~] and \_c,d~\.
Then

J \φ-φ°H\p^ dist(id, H - ^ V a r ^ ^ ) . (52)
[a,b]

Proof Just in this proof let μ be a measure on U such that φ(x) — φ(y) = \y

χdμ{t)
for a n y x,yeU9x ^'y.

First, in view of the fact that p ^ 1 we have the following obvious inequality:

\φ(x) - φ(H(x)y ^ \φ(x) - φ(H(x))\ Ύ^-HΦ)

^Varlj-HΦ) J dμ.
[x,H(x)]

Integration of this inequality over [α, b~] (with respect to the Lebesgue measure and
change of variables yield the following:

J \φ(x)-φ(H(xWdxSy^v-\φ) j J dμdx
[a,b] [a,b][x,H(x)]

^Var^O/Oj J dxdμ
U[t,H~Ht)]

^ Varg"1^) J dist(id, H'^dμ
u

This concludes the proof. •

Therefore the last term of the inequality (51) admits the estimate:

S\φ-(φ° Haβ)Hίβ\
PS 2p~1 V a r ' ( 0 ) d i s t ( ^ α , id)

K

, 1) (53)

for pe [1,2).
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Note that the ends of MΛik are Lipschitz with respect to α and let L be

the Lipschitz constant. Since -z-(T~k)= — δ(TaΛ) the ends of Huβ(K) move

with speed not exceeding sup^ 6 [ a β]\δ(Tβ> k)\. It follows that dist(dK, δMa k) ^
{L + s\xp\δ(Tβ.,k)\)\β-*\.

It is also easy to see that dist(//α/3, id) ^ const.sup \δ(Tβ>tk)\ \β — α|. Moreover,

) \ ) ° H a P . (54)

Combining these estimates with inequalities (3.18) in [11] we can easily complete
the proof. Indeed,

\\Pa,kΦ ~ PβΛΦL* ύ const. I Si Γ° |α - β\^ Var(φ), (55)

where ω0 > 0 is some constant. So, we can write:

\\Pa ~ Pβh(BYo.L*) S const.|α - β\"* Σ MΓ + c o n s t Σ |S*Γ ω i , (56)
k5Ξ n k>n

where ω1 > 0 is determined by (50), and, using the fact that \S'k\ ^ Λoin~k)\Sή\ for
k ^ n and | ^ | ^ Ao~n\Sn\ for k > n, bring the last expression to the form in the
statement of the proposition. •

Theorem 6. // α is a Misiurewicz point then there exists ω2 > 0 such that for any
φ e BV0 and β e A^ we have:

\\P*Φ - PβΦWis ̂  const.Iα - βΓVaτ(φ) . (57)

Proof. From construction of An in [11] it follows that for a Misiurewicz
point α there is J e An which contains α and β for any n rg const. log(l/|α — β\ω3).
We can also prove that \Sή\^ λn, where λ > 1 (for Misiurewicz points the
sequence sn grows linearly). Therefore, we can pick n in such a fashion
that \Sή\ύ const. |α - j81~ω3 ^ |S^ + x | . We immediately notice that |S»\ ^
const. |α — β\~ω3. Plugging these inequalities into the inequality from the last
proposition, one can easily show the desired inequality. •
We will need the following well-known fact:

Lemma 2. The norm of P in Lp-topology does not exceed HP11| Jo~1/p.

Proof The proof is based on Jensen's inequality and we leave it to the reader. •

Corollary 1. // supM | |Pnl H^ < oo then the operators Pn have uniformly bounded
norms in LP topology for p e [1, oo].

Let pa be the density of vα (the unique a.c.i.m. for TJ. We set out now to prove
the following

Theorem 7. The function A^OLV-*pae Lp(m) is continuous at Misiurewicz points.
Moreover, for every p e [1, oo) there is a constant ω4 > 0 such that if oce A^ is
a Misiurewicz point then:

\\P.-Pβ\\isύ c o n s t . | α - / ? Γ (58)

for all βe A^.
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Proof. This proof incorporates the same ideas as a corresponding proof in [10]. Let
h = pa — pβ, so that pa = pβ + h. Rewriting the equation Pa(pβ + h) = pβ + h, we
obtain:

(I-Pa)h = ud=(Pa-Pβ)pβ. (59)

One can easily see that u e BV0 and is uniformly bounded (i.e. Var(w) is uniformly
bounded with respect to oce A^). This follows from the uniform basic inequality
(see Sect. 2).

Therefore, we can write the von Neumann series expressing h in terms of u:

h=ΣP»au. (60)
n = 0

We can estimat the ZΛnorm of h by splitting the series into a finite part and the tail:

N oo

^ Σ \\PS\\LP+ Σ l l p " l l ^

^ c o n s t . N\\u\\LP+ X c o n s t . λn\\ u \\ B V o

^ const. AT || u \\LP + const.λN . (61)

From the definition and the previous theorem we known that | | M | | L P ^
const.Iα — β\ω2. Using an optimal choice of AT, we arrive at the desired inequal-
ity. •

6. Continuity of the Invariant Density II

Let pα be the density of the invariant measure vα (/α-invariant). It is not difficult to
show that this density admits the following representation in terms of the invariant
density pα, which has been proved to be continuous at Misiurewicz points:

M = 0 j = 0

where

P«,nj = \ V > . (63)
( 0 otherwise

The first result we intend to prove in this section was announced in [11] and is
analogous to a result proved in [1],

Proposition 2. The series (62) converges in Lp-topology uniformly with respect to
(xeΛ^for αί/pe[l,2).
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Proof. We may assume that; ^ 1; the case; = 0 is easy. By changing coordinates
we can easily show that

ί (fjy = J TTTSFΪ*"- < 6 4 )

Let / e Έ be such that st > j 2: S;_ t . Let i = s, — j . From our definitions it follows
that St=fi°fJ~1,l^n and i ^ sftl. Therefore the chain rule yields:

M ί j T i y i Γ W (65)

In particular, infFn K/ 7 ' " 1 ) ' ! ^ const, (we recall that β was a small constant, so that
Λo > 4β). Therefore, on Mα?n we have | ( / j ) ' | ^ const.|x|. This implies that

ί ir7#iF-Id m^C O n s t i r ^ I ^ const. | / , r ' . (66)

The last number converges to 0 exponentially uniformly in α e A^, as was shown in
[11]. Therefore, the infinite series (62) can be majorized in ZΛtopology by the
exponentially convergent series:

oo

ΣSn\h\2*-1. (67)
n = 0

(We recall that sn ^ βn2/2). •

Our next objective is to show that pa is continuous at Misiurewicz points. It is
clear that in order to prove this it suffices to show that each term of the series (62) is
continuous in ZΛtopology for p e [1, 2).

For this part of the proof it will be convenient to fix n and j and introduce the
following notation: Ta = / J | M α > π , ^ α = Mα>n for domain of Ta, @« = TΛ{2a\ and
Haβ = Tβ1 ° Γα. Let us also denote pa>nJ by σα. In this simplified notation we can
write:

(68)

Our goal is to estimate || σα — σβ \\Lp for two close parameters α and /? and p e [1, 2).
This estimate is somewhat similar to the estimate of the previous section.

Let K be the maximal segment contained in all the segments @an@β'
n Haβ'i^a) for every β' e [α, /?]. We can write

J | σ α - σ ^ | p ί ί m = J | a a - ^ | p J m + j | σ α - σ ^ | ί 7 J m . (69)

We have:

ί \σΛ-σβ\
pdm= J |σα|

pdm

J σ ^ -
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s.\κ ,\κ

Ί J 7ψψ^dm+ J

^ const. 2pί sup |pα | p j -—^din + sup\pβ\
p J -

^ const. (sup|/?α |p |^α\^l2~p + S UP \pβ\p\@β\κ\2~p)

Meanwhile,

(70)

The terms of the last formula can be estimated as follows. Let us pick positive
numbers q and r such that 1/q + ί/r = 1 and (p — l)r < 1. Then by Holder's
inequality

l / β l/r

1/q 1 / r

/q i / r

(72)

(73)

(74)

and

\l/r |^ | l/r-

We notice that if p is close to 2 then r has to be close to 1 and q has to be very large.
Therefore, we need the LP estimates of the previous section with large φ.
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Lemma 3.ι The following inequalities are true:

ί \Pβ — Pβ°Haβ\
pdm ^ dist(id, H^JIIBV

K

K I ™ β'e[oc,β]

άist(id9Hβa)Ssup\δ(T)\\oc-β\. (76)

It is clear now that we need estimates for δ(T\ Aax(T), and ΛXX(T).

Lemma 4. For any p e [1, oo) there is ω > 0 such that

δ(T\ Aax(T\ AXX(T) ^ const | Si | ω . (77)

Proof The proof follows from the possibility to represent/J'|Ma>w for; ̂  sn (j ^ 1)
as a composition:

fJ\MatH = Tls,ao . . . o Tl2,aoSluao(f\Ma,n), (78)

where the first s expanding maps form a β-homogeneous sequence in the terminol-
ogy of [11]. The proof of this lemma is then completely similar to the proof of
Lemma 3.1 and Theorem 3.4 of [11]. •

Combining all the estimates of this section we obtain

Theorem 8. For every p e [1, 2) there are positive constants ω 4 , ω5 such that for any
Misiurewicz point a and βe A^ we have

\\Pa,nj ~ Pβ,nj\\LP ύ const. |a - β\1/p\S^Γ , (79)

t - j δ Γ 5 . (80)

Remark 2. Our estimates allow us to prove continuity (but not Holder continuity)
of βa at the points α e l ^ c ^ . Construction of A^ is very similar to that of A^\
at the nth stage, instead of deleting only φ^iί — λ~^, λ~^~\) we also delete
arbitrarily small neighborhoods (e.g. ~ λ~^n) of the endpoints of IaJc. It is easy to
see that miA^) > 0, and continuity follows from the fact that |α — β\ < ε implies
that α, β e J e s/n for some n = n(ε\ which tends to oo when ε -• 0. As in the case of
A^, Misiurewicz points are dense and they are Lebesgue density points of A^.

Remark 3. The proofs presented here apply to A^ built near the special
Misiurewicz point α = 2. A complete proof for other Misiurewicz points requires
additional constructions.

7. Continuity of the Lyapunov Exponent

Let us recall the Rokhlin formula for the Lyapunov exponent,

Lyapunov exponent of/α = hVa = J log|/α'| dvα (81)
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converges uniformly. As a consequence of our estimates of the continuity of the
invariant density the Lyapunov exponent is continuous at the Misiurewicz points
α close to 2.

Theorem 9. The Lyapunov exponent of fa, as oc->2 and aeA^, tends to log 2.
Moreover, there is a constant ω > 0 such that if Γα is the Lyapunov exponent
computed for the parameter oce Λ^ and β is a Misiurewicz point sufficiently close to
2 then

\Γa-Γβ\^const\a-β\ω . (82)

Proof The formula (81) yields an explicit expression for the Lyapunov exponent of
fa in terms of the invariant measure.

A simple calculation shows that

Γ α - Γβ = J log \x\(βa - ββ)dm + l o g ^ . (83)
/ P

By the Holder inequality for p = 3/2 we obtain the following inequality:

Slog\x\(βa-ββ)dm{x)

1 / 3

βa-ββ\\L>,2. (84)

As a result, if β is a Misiurewicz point near 2 then we can apply the results of Sect.
6 to obtain the last statement of our theorem. •

8. Appendix A: The Measure of the Central Segment

The objective of this appendix is to estimate v(C), where C = ( — γ, y).

Lemma 5. The density offl(v\MΛ%n\ which we called pa%nj>forj Ξ {1, 2,. . . , sπ — 1}
admits the estimate

\p.,n,j(x)\ g const, n/j-^,2 • (85)

Proof As we have shown already, the map/ j - 1 |M α > M has bounded distortion.
Moreover, the density of the measure f#(v\Matn) is bounded by const.\x — 1|~1/2.
From the formula (62) for pa we know that the density pΛ,nj can be bounded by

const. [1 -f-u-Vjx)]-1'2

ΪΪI^mi ' (86)

Also, because of the bounded distortion,

|i - r ^ M I « \χ -/'"'(I)! K/'-TOΓ1

This yields the desired estimate. •

Proposition 3. Let C = ( — γ,γ). Then:

|v(C) - v(C)| S const. ylogAolβ , (87)

where β has the same meaning as in (78).
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Proof. From the definitions and the previous lemma it follows that

v(C) - v(C) = £ S"£ j p^jdm
n = 0 j=l CnfJ(Mx,n)

oo sn— 1

It is easy to see from the definitions of [11] that for j ^ sn — 1 we have
fj(MΛtn) nlt = 0, where / = maxm ^ „ k(m). Also we have

|/z | = const.|S,/(l)|" t ^ 4 " τ d e g S i ^ 4~τβn. (89)

Therefore, for n < (l/2τβ) log(l/y) we have/7(Mα?π) nC = 0. Hence, for sufficiently
small 7 we have the following estimate:

Sn-l \fj(T \ | l / 2

Iv(C) - v(C)| g const. £ Σ ' ^ ,„ (90)

We have an easy estimate \fj(Ia,n)\ S const.K/ 7 ' " 1 ) ' ^ ) ! |/α,π | 2. Combining this
with previous inequality, we obtain:

^ const. £ βn2\I«,n\
n^(l/2τjB)log(l/y)

^ const./lo ( 1 / / ? ) l θ 8 ( 1 / y )

= const, γ β . (91)

This concludes the proof. •

9. Appendix B: Positivity of the Lyapunov Exponent

There is a very short self-contained proof of the fact that for the parameters α e A^
the Lyapunov exponent is positive for/α(x) = 1 — ax2. One has to assume that the
measure v is obtained from v, as described above.

The properties below which follow from the construction will be useful:

1. sk ̂  const, k2 (fc ^ 1) .
2. \Ik\S const. λk for some λ e (0, 1).
3. \T\^A>\.

We define functions φ(x) = log | T'(x)\ and n(x) = sk, as x e Ik\Ik+1

(k = 0,1,2, . . .). To compute the Lyapunov exponent for/α we consider:

(92)
n(x) + n(Tx)+'- - + n{Tι~1x) '

This number is

^ log i {f«γ w ι , (93)

where JV is the denominator of Eq. (92). Hence taking / ̂  oo in (92) yields the
Lyapunov exponent of/α for v-almost every x. We can rewrite (92) as follows:
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(94)

The last limit exists for v-almost every x by the Ergodic Theorem, applied to (Γ, v).

The limit is positive, provided that the denominator does not blow up to oo. This is

true if j n(x)dv(x) < oo. But using Properties 1-3 we can see that

J n(x)dv(x) S const/1 + f k2λk) < oo . (95)
/ \ k=ί /

More precisely, Lyapunov exponent ^ \ogΛfin(x)dv(x). We would like to empha-

size that this inequality holds for the Lyapunov exponent computed at v-almost

every point. It is also true for almost every point with respect to v, since the support

of v is the union of/α-forward images of the support of v.

From the previous sections it follows that the measure v is unique (up to

a constant) and that the support of v is the segment [/α(l), 1]. Each point of/ or its

image belongs to this interval, so the Lyapunov exponent exists for almost every

point in /. Because v is unique, it is ergodic. This implies that the Lyapunov

exponent is a well-defined constant, depending o n α e i ^ only.
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