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Abstract. A quantum stochastic model for the Markovian dynamics of an open
system under the nondemolition unsharp observation which is continuous in time,
is given. A stochastic equation for the posterior evolution of a quantum
continuously observed system is derived and the spontaneous collapse (stochasti-
cally continuous reduction of the wave packet) is described. The quantum
Langevin evolution equation is solved for the case of a quasi-free Hamiltonian in
the initial CCR algebra with a linear output channel, and the posterior dynamics
corresponding to an initial Gaussian state is found. It is shown for an example of
the posterior dynamics of a quantum oscillator that any mixed state under a
complete nondemolition measurement collapses exponentially to a pure Gaussian
one.

Introduction

The time evolution of a quantum system under a sharp continuous in
time observation cannot be described by any Schrόdinger equation due to the
stochastic irreversible nature of von Neumann reduction of the wave packet at any
instant of measurement. An adequate model of the quantum unitary evolution
giving a continuous collapse by a conditioning with respect to the measurements
can be obtained in the framework of quantum stochastic (QS) calculus [1], firstly
introduced for output nondemolition processes in [2,3] and recently developed in
a quite general form in [4-6]. A stochastic wave equation for an observed
quantum system derived in [6] by using the quantum filtering method [5], provides
an explanation of pure quantum relaxation of an atom under a complete
observation [7] (Zeno paradox) and a Watch-Dog effect [8] for the reduced wave
function of a quantum particle under the continuous observation.
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In this paper we develop a rigorous quantum stochastic theory of unsharp
nondemolition measurements of continual families of arbitrary noncommuting
observables Rt x given sequentially in the real space-time (/, x) e R1 +d. In the case
d = 0 this defines the standard unitary dilation of an instrumental process for the
quantum measurements, which are continuous in time, considered within an
operational approach by Barchielli and Lupieri [4]. We give the direct proof of
stochastic evolution equation for the posterior states of a general quantum system
under a continuous indirect measurement of a noncommutative field-process
Rt = {Rt 5 X |xeRd}.Theobservedprocess Y(t) is supposed to be nondemolition in
the sense [5-8] of the commutativity [Y(r),X(t}] = 0 of the past observables
γΐ = { γ(r) \r^t] with the Heisenberg operators X(t) of the system for every t
and self-nondemolition (commutative) [Γ(r), Y(t)] = 0 for all r, t. In that case a
posteriori state can be found [5] for any initial prior state by the Takesaki
conditional expectations ε {X(i) \ Y*} on { Y(r) \r<^t}' restricted to the future von
Neumann algebras <£t = {X(s)\s^t}". We shall show that it is possible to
represent the open quantum system under observation within a class of quantum
stochastic evolutions in such a way that the observed commutative process Y(t)
for the sequential unsharp measurements of a noncommutative process Rt

is described as the sum of noncommutative Heisenberg operators
R(t) = U*(t)RtU(t) of the subsystem under the measurement and a classical
(commutative) white noise (error) e(t). The unitary evolution U(t) of such
systems perturbed by a singular interaction with a meter is described in a "Bose
reservoir" by a quantum stochastic Schrodinger equation [1], driven by a white
noise (force) f(t). Note that the force /(ί) responsible for the perturbation of the
system due to the measurements, may appear in the quantum Langevin equation
as well as the classical (commutative) white noise [5-8]. But the pair (<?,/) cannot
be described within the classical theory of generalized processes any more because
the error e (t) does not commute with/(ί) given the nondemolition condition for

It is interesting to note that stochastic equations of the particular diffusive type
of (13) and (19), in their normalized nonlinear version [5-8], have appeared in the
physical literature also in connection with phenomenological dynamical theories
of quantum reduction and spontaneous collapse [9-13]. The idea is that the wave-
function reduction associated to a continual measurement is some kind of
diffusion process and some particular equations of this type are postulated. Our
approach shows that this diffusion postulate as well as the continual counting
reduction [14] can be derived in the natural general form from the unitary
stochastic evolution of a big quantum system by the conditioning with respect to a
chosen nondemolition process under the continual measurement. The unsharp
self-nondemolition measurements and the objectifίcation problem are discussed
now intensively in the physical literature [1 5, 16] within the Davies-Lewis-Ludwigs
operational approach, but real progress in clarifying the connection between the
operational theory of continual measurements [14] and the spontaneous reduction
theories [9-11] can be done only by using the quantum stochastic and nonlinear
filtering methods [5-8] which are considered rigorously in this paper.

1. A Quantum Stochastic Model with Continual Unsharp Measurements

Let us consider the dynamical problem of a sequential observation in continuous
time t ̂  0 of a measurable family Lt = {Z^JxeΛ} of operators Lx = Lt κ,
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x = (t, xj in a Hubert space Jf7, where A is a Borel space with a σ-algebra jtf. We do
not suppose that the operators Lx are pairwise commutative or even self-adjoint or
normal. But we at first assume that they are bounded, Lxe <£(£?), almost
everywhere on the space R+ xA with respect to the product λ(dx) = dtdλ of a
positive measure dλ -•= λ (dx) on the Borel space A and the standard Lebesque
measure dt on R + . Here jSf(Jf) denotes the space of continuous (bounded)
operators in ffl.

One can consider for example the problem of the (indirect) measurement
of spin momenta Lt x = Lx, described in the Schrόdinger picture by the opera-
tors in J»f = C2 of spin projections Lx = ^M(dx)/λ(dx) = L*, where
M (E) = J£ Rxλ (dx) is an operator-valued measure M(E)e^ (C2) of the momen-
tum in a solid angle E a A with Rx = Lx + L* having the eigenvalues ± 1, and
λ(dx) is the standard solid angle measure dλ on the sphere A = {xeR 31 |x| = 1},
normalized to 4π.

Due to the absence of a joint spectral resolution for the noncommutative
family {Lx | xeA}, there is no possibility of measuring the corresponding physical
quantities in the usual (direct) sense. Moreover there is no way within orthodox
quantum mechanics and measurement theory to describe an observation which is
continuous in time even for a single self-adjoint operator Lx = L with a simple
spectrum or to predict the dynamics of the quantum system under such an
observation due to the absence of nontrivial mathematical models for nonin-
stantaneous measurements.

We shall show that these difficulties can be removed within the quantum theory
of open systems and indirect measurements, based on the quantum stochastic
approach [1,3]. The basic idea is that the quantum system under an observation
must be described as the subsystem of a big system, including a Boson field A as a
model of an observation channel coupled to the system by a singular interaction.
The measurement information about the physical quantities Lx under such
coupling can be continuously extracted in a nondemolition way from the
continually-sequential unsharp observation of the output field B = U^AU* given
by the direct measurements of the compatible complex observables Z — E + A%
with a vacuum noise A$ .

Let A (dx) be the Bose-field annihilation measure on /i = R+ x Λ , satisfying
the canonical commutation relations (CCR)

[A (Δ'), A*(Δ)] = λ(ΔnΔ'), VΔ, Δ'e j*(/i) (1)

in the Fock space 2? over the Hubert space L2 (Γ^ of square integrable functions
of x e Γi. One can realize [17] & as the space L2 (Γ) = 0M°°= 0 L2 (Γn) of functions/,
square integrable in the sense that

j ι/ωι 2A(#)= Σ f ί \f(χ1,...,χn)\2fiλ(dxi)<κ, (2)
n = 0 0 :g f „ < . . . < ίn < oo i = 1

of chains χ = (x^,..., xn), xt = (tt, xf), tί < ... < tn of all finite lengths
|/| = Λ = 0, 1 , . . . with respect to the natural measure λ(dχ) = Y[xeχλ(dx). We
identify the chains / e Γ as subsets {xλ,..., xn} c /], ^ < ... < tn and the time
ordered elements (xl9...,xn)eIT of the rc-cube Γ/1, so that Γ= (j^=0Γn is
considered as the direct union of the sets Γn = {(xί,..., xn) \ t± < . . .</„} . Then
the annihilation operator A (Δ) of the Boson quanta in a measurable region Δ e /]

(3)
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whfere / u x is defined as the chain (x1 , . . . , xt , x, xt + 1 , . . . , xn) of length n + 1 for
almost all x = (/, x), namely if tφ {tί , . . . , /„}.

One can easily find that the operator (3) is adjoint to the creation operator
of the quanta in Ae^ί/i),

Σ f(χ\x)9 Z (Δ)=*nΔ, (4)

with respect to the scalar product (2) and satisfies the CCR (1), where χ\x = (x± ,
. . . , xt_ 19 xi+ 1 , . . . , xπ) is the complement of the elementary chain xeΓ^ in the
chain / e Γn with xt = xeχ.In the following we shall regard the operators A (Δ),
A* (Δ) acting as (3), (4) in the Hubert space J f (x) ̂  of square integrable vector-
functions h\Γ-+ J^ with the invariant domain ^ = lj^>i^(^), where

Let us consider the quantum stochastic evolution Ut9 ίeR + in
given by the Hudson-Parthasarathy operator equation [1,17]
</£7 + AΓί/Λ - (LrfA* - L*rfA) C7 for £7(0 = £7* having in our (nonstationary)
case the form

dU* + KtU*dt= f(LxdA*(t9dx)-L*dA(t9dκ))U*9 Ug = I, (5)
Δ

where Kt = ίHt + ̂  JA*xA *dλ, the integral is taken over xeΛ,
A(t,E) = A([0,t)xE'), and dA(t,E) = A(t + dt,E) - A(ί,E) is the forward
differential of the process A (t9 E) for fixed Eestf. The necessary condition for the
unitarity £7f* = U~ 1 of the family Ut, t > 0 satisfying the quantum stochastic
differential equation (5) is [1] the self-adjointness of the operators Ht (Hamil-
tonian) in Jf and that the integrals §ΛL*xLt xdλ exist and equal K*t + Kf .

The solution of Eq. (5) can be described [17] explicitly in terms of the quantum
stochastic multiple integral in Fock scale provided the conditions

J | |fl J A < o o , f $\\LttJ
2dtdλ«x)9 V*eR + (6)

ί<s ί<s A

hold which are sufficient for the existence and uniqueness of the unitary solution
£7f of Eq. (5) with #, = #*.

Let us define the output observed process Y (f) of unsharp measurements of the
continual family {Lx + L^\xeΓ1} as the time dependent selfadjoint operator-
valued measure Y(t9 E), EE& on some σ-semi-ring & £ ̂  with λ(E) < oo given
by the quantum stochastic (forward) differential

dY(t9 E) = M(t9 E) dt + dQ (t, E) 9 F(0, E) = 09 (7)

where M(ί,£) = JEC7 t(L t f X + L*JC7*^, Q(t9E) = A(t9E) + A*(t9E). In the
case of the initial vacuum state |6> eJ^ of the Bose field and J* generating jtf, the
generalized processes 7X(0 = dY(t,dx)/dtdλ can be regarded as a complete
indirect observation of noncommuting operators Rx = Lx + LJ , x e /i given by
the instantaneous sequential measurements of the commuting operators
Y(dx) = dY(t,dx). Indeed the differentials dQ(t9E) for all measurable E c Λ
in that case are statistically equivalent to Wiener increments with zero
mean values <0 1 dQ (t, E) \ 0> = 0 and minimal covariances
<Q\dQ(t9E')dQ(t,E)\θy = dtλ(Er\E') compatible with the CCR (1). They are
independent of the operators M(t,E) = §ERx(t)dλ, defined at the infinitesimal
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volume E = d\ by the Heisenberg operators Rx(t) = UtRxUt* as
M(t,dx) = Rx(t)dλ. Hence the differences between the increments
dY(t9 dx) = Y(t + dt9 dx) - Y(t9 dx) of the form (7) and the operators R^(t)dtdλ
are just independent Gaussian variables dQ (t, dx), defining the minimal random
error of the measurement of the noncommutative family R t = {Rt^\xeΛ} in the
continuous time teR+ as white noise Q(ί) = {Qx(t)\xeΛ}. One can consider
Y(t9E\ Ee3$ as a coarse-graining Yt(t) = Y(t,Et) of the family Y(t,E), Eejtf,
corresponding to a σ-partition ^ = {Eie^\ίeI} of a measurable subset

The following theorem shows that the QS equation (5) up to the Hamiltonian
Ht corresponds to the unique Evans-Hudson diffusion [l8\j(t,X) = UtXUt*9

Xe<£, over a von-Neumann initial subalgebra & c <£(&) satisfying the non-
demolition principle

[X(s)9B(t9E)]9 W

for all X(t) =j(t,X) respectively to the given output field

A (t,E), Eesf.
0 £

Theorem 1. a) Letj(t):&-*g'(3e'®&),teR+bea family of the unίtal *-re-
presentations of a unital *-algebra <£ £ jSfp?7) having the (^-differentials

dj(t,X} = δ(t,X)dA*(t) + δ*(t,X)dλ(t) + γ(t,X)dt,

where dA*δ = $ΛdA*(dx)δx, dAδ* = $ΛdA(dx)δχ, δx(t,X*) = δ*(t,X)*,
γ(t, X*) = γ(t, X)* are the linear structural maps & -> <e(3? ® &\ Then

(i) δ*(t,X*X) =j(t,X*)δΆ(t,X) + δ*(t,X*)j(t,X),
(ii) δ* (t, X*X) = j (t, X*) δf (t, X) + δx (t, X*) j (ί, X) ,

(iii) γ (t, X*X) = δ(t,X)*δ (t, X) + j (t, X)* γ (t, X) + γ (t, X)* j (t, X) ,
where δ(X)* δ(X) = lλδτ(X)* δκ(X)dλ, δx (t, 7) = 0 = δ* (t, I), y ( t , I ) = Q.
b) The family (X(t) =f(t,X)\Xe^C] satisfies the nondemolίtion condition

[X(s),Y(t,E)] = 0, Vs^t (8)

with respect to the given complex output fields Y(t,E)e{B(t,E), B*(t,E}},

dB(t,E) = dt \j(t,Lx)dλ + dA(t,E),

E

if and only if δ and 5* are the inner differentiations:

δ^X) =j(t9[X9LttJ)9 δ*(t9X) = j ( t 9 [ L f ^ 9 X ] ) 9

x] + [L*9X\Lx)dλ9

where β(t9 X*) = β(t, X)* is a j (^-differentiation <e

)9 β(t9f) = 0.

c) In the inner case β(t,X} = j ( t , i [ H t , X ] ) 9 Hte^, these conditions together with
(6) uniquely define the quantum Markov spatial flow j(t9 X) = UtXU* given by the
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stochastic equation (5). Moreover, the output fields B(0,B*(ί) and, hence, the
real nondemolition process Y (t) = B (t) + B* (f ) are locally unitary equivalent to
the input fields A(0, A*(0 a«rf to the commutative process
Q(0 = {β(ί,£)|£e^}: B(0 - C^AίO t/*, B*(0 = U^tfU* in the sense

B(t,E} = UsA(t,E)U?, B*(t,E) = UsA*(t,E}U? \/s ^ t. (9)

In particular, Y(t,E) = UtYt(E)U* for all Ee@, where Yt(E) = Q([0,t)xE)

Proof. The increments dX(t) = X(t + di) — X ( t ) of the linear *-maps
j(t):X\-+X(t\ j(t,X*)=j(t,X)* uniquely define the linear *-map
y(f)\Se^>&(3ie®y) and the adjoint maps δ(t), δ*(t) due to the linear
independence of the differentials dt and dA*(t)9 dΔ(t). An application of the QS
Ito formula [1] to the conditions j(t,I) = I, j(t,X*X) =j(t,X)* j(t,X) gives
y(t,I] = 0, δ(t,I) = 0 = δ*(t,I), and

d(X(t)*X(t)) = dX(i)*dX(i) + dX(t)*X(t) + X(t)*dX(t)

= [δ(t,XY δ(t,X} + y(t,X)*j(t,X) +j(t,X)*y(t,X)]dt

+ (δ(X)*j(X) +j(X)*δ(X)) dλ + (δ(X)*j(X) +j(X*) δ(X)) rfA*.

Comparing this with the QS differential

dj(t,X*X) = δ*(X*X) d\ + δ(X*X) rfA* + y(X*X)dt,

we obtain the conditions (i), (ii), (Hi), found in [18] for the Markovian case.
If 7(0 is a nondemolition process respectively to X ( t ) , then

)9 Y(s)] = [X(t + dt\ Y(s)} - {X(t\ Y(s)} = 0, VtZs,

and hence

[γ (t, X), Y(s)] = [δx (t, X), Y(s)] = [δ* (t, X}, Y(s)] = 0 , Vί ^ s

due to the commutativity of dt, dA* (t, E), dA (t, E) with Y(s), s ^ t. Applying the
QS Ito formula to the condition [X(t}, Y(t)} = 0 for 7(0 e {B(t, E), B* (t, E)} we
obtain

d[X(t), B(t, E)} = dt J ([X(t)9 Lx(0] - δ, (t, X}} dλ^Q,
E

d[X(t\ B* (t, E)] = dt j ([X(t), I* (/)] + δ* (t, X)) dλ = Q,
E

i.e. δx (X) = [X, Lx], ό* (X) = [L*,X] for almost all x e ̂  due to [dX(ί), Y(t)] = 0,
Lx(ί) =y(ί,L,.J, I*(0 =j(t,L*x). This together with β(X) =j(i[H,X]) gives
γ(t,X)=j(t,yt(X)), where

γ,(X) = i[Ht,X] + 1 I (L*X[X,LX] + [L*X,X] Lx)dλ
Z Λ

is the solution of the equation

yt(X*X) = f [L*,Jf] [JT,LJrfλ - JT*y t(-Y) - yt(X)*X,

uniquely defined up to a *-differentiation βt (X) = / [/ίf , JΓ|, Ht = H* . The unique
solution j (t, X) = UtXU? of the derived nonstationary Langevin equation under
the boundness conditions (6) was found in [17], Corollar4.
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Let uέ denote by U(s9 t),s^ t the solution of the quantum stochastic evolution
equation (5) on the interval (t, s] with U(t9 t) = /under the integrability conditions
(6). The operators U(s,r) commute with YΓ, r ^ s, due to commutativity of
YΓε{A(r),A*(r)} and the operators L ί? L*, dA(t), dA*(0, te[r,s) generating
U(s,r). Hence UsYtU* = UtYtU* because U* = U(s,t)*U* for any s > t and
because of unitarity of U(s9 1). Using the quantum Ito formula [1] one can easily
find

dY(t,E) = d(UtYt(E)U*) = dUtYt(E)U* + UtdYt(E)U* + UtYt(E)dU*

+ dUtdYt(E)U* + dUtYt(E)dU* + UtdYt(E)dU* + dUtdYt(E)dU*9

dE (0 = dA (0 + t/f Lt U* dtdλ , rfB* (/) - </A* (0 + UtL* U* dtdλ ,

rf7(£) = rfβ(£) + dt j t/(Lx + L*) l/*έ/A = dQ(E) + M(£)Λ
£

for Y(t,E) = B(ί,E) + B*(t,E), Ee& due to the only nonzero infinitesimal
multiplication dA (t, E')dA*(t, E) = dtλ(EnE')9 where M is defined by (7). The
relation (8) for the process (7) is a simple consequence of (9) and [X, Q (Δ)] = 0 for
any Ae^(/i) and

[X(s\ Y(t9E)] = [C/S^C/S*, U,Yt(E)U*] = US[X, Yt(E)]U* = 0. D

Remark 1. Considering instead of Y(f) = UsQ(t)U* the sequential measure-
ments of the output momentum process Y(f) = Us\(t)U*9 s ^ /, defined by
K(ί,£) = |(^(ί,£)-^* (/,£)) as

έ/7 (ί, £) = ΛΓ (ί, £) Λ + rfF(ί, £) , Ee Λ,

where JV(/, J51) = { \E U(LtiX — L*x) Ut* dλ, one can extract the information about
the noncommuting self-adjoint operators Sx = \(LX — L*). Moreover, by dou-
bling Λ - > Λ x { — ,+}the space Λ and considering the family [Lί}X5 _ , L ί>X) +} with

A,x,+ = A,x/l/=f=2 instead of {L f fX} one can realize the continuous time-
sequential indirect observation of the pairs of operators

/?,,+ = -4 (/,, + !*), RX,_=~(LX-L*), xeK+xΛ

by the measurement of the two commutative output processes Y+(0
= ^ooQ+(0^* Here Qτ(0 = A τ(0 + A* (0 are given by the indepen-
dent Boson measures ^τ on j/(R+ xyί) as ^4τ(ί, E) = ^+([0, t)xE), Eeϊffl, and
Ut satisfies Eq. (5) with two-fold quantum stochastic integral over Λ x { — , + }

instead of A which can be written again as (5) in terms ofA= —= (A+ + iA..). The

complexified observable process Z = —= (Y+ + iY_) defines the unsharp obser-

1/2
vation Z(t9E) = B(t,E) + Aξ(t9E)9 Ee&, of the nondemolition output field

B (t) = Ut A (t) Ut* , where A ί = -7̂  (̂ 4 ΐ + M * ) is the creation measure on /^ of a
1/2

Bose-noise field. In the case $ = ««/ such the continuous measurement gives a
complete nondemolition sequential observation [3] of the non-Hermitian
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operators Lx in terms of the complexified output process Z(ί) = UtV/(t)Ut*
having the stochastic differential

(10)

where Lx(t) = UtLt KU* and W(0 = =(Q + (0 + 'Q-(0) = A ( f ) + AJ(0 is
1/2

the complex Wiener process in Fock space over L2(R+ xAx{ — , + }) with
multiplication table

dW*(t9E)dW(t9E') =-dtλ(EnE') = dW(t9E')dW*(t9E)9

dW(t9E)dW(t9E'} = 0, dW*(t,E} dW*(t,JS") = 0.

2. A Posteriori Quantum Dynamics Under the Continual Measurements

Let us consider the quantum diffusion./ (t): & -> !£ (3tf ® 2?) of the system over a
unital *-algebra & in #f, together with the given nondemolition output fields
dB(t) = L(t)dtdλ + dλ(t)9 dR*(t] = L*(ϊ)dtdλ + dA*(t). The operators
j(t,X) = X(t) under the conditions of Theorem 1 satisfy the quantum Langevin
equation

dX(t) - dt f \ (LJ(0[^(0,LX(0] + [L*(/),^(0]^X(0)^ (11)
Λ ^

= i[H(ί)9 X(t}]dt +\(dA*(t,dx) [X(t)9 Lx(t)] + [I*(t), X(t)] dA (t, dx)),

having the unique solution X(t) = UtXU?, where Ut*9 / e R + are the unitary
operators defined by the QS equation (5), and

K(t)=UtKtU*9 K*(t)=UtK*U*9 Lx(t)=UtLx,tU*, L*(t) = UtL*tU* .

The equation (11) can be obtained from (5) by using the QS Ito formula

d(UtXU*) = dUtXU* + UtXdU* + dUtXdU*

and the Hudson-Parthasarathy multiplication table [1]

dA*(t,E)dA(t,E') = 0, dA(t,Ef) dA*(t9E) = dtλ(E^Er),

dA(t9E)dA(t9E') = Q9 dA*(t9E) dA*(t9E') = 0, ME,

The a posteriori dynamics of the system under the observation (7) with a given
initial state φQ is the dynamics φQ\-^πt, teR+ of the a posteriori state πt on Jίf,
giving the posterior mean values xt = πt {X} ofXe 5£ as stochastic functions of the
trajectories of the observed process Y f = {Y(r)|r ̂  ί}. According to [5] the a
posteriori state is defined by the conditional expectation ε {X} (f) = εt (X(i) \ Y f}
on the commutant Jft = {Y (r) | r ̂  t}' m£f(Jf®^)9 which contains Y f and X(t)
due to the nondemolition property (8). By Theorem 1 the operators ε {X} ( i ) e J f t

r

have in the Schrόdinger picture the form

(12)
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since Ut*iVt

f Ut commutes with Jέf (Jf ) (x) 7. As a map πt : & -> ̂  into the Abelian
algebra ̂  =Ut*^Vt'Utc: &(&) generated by {Yr | r ̂  /} on J% the a posteriori
state satisfies a nonlinear stochastic equation with respect to Y (/), obtained for the
first time as the quantum filtering equation in [5,6]. Here we shall derive a
linear quantum stochastic equation for a nonnormalized posteriori state
φt{X} = ρtπt{X}9 where ρt is a positive stochastic functional ρί = ρ(Yί) of
Yr = Q (r), r ^ t. Moreover, we shall prove that the stochastic normalization
factor ρt can be taken as the probability density ρ(V) of the trajectories
\* = {\(r)\r^t} of the observed process Y' with respect to the standard
probability measure v of a Wiener process w, represented in the Fock space 3F as Q
with respect to the vacuum state |0> e 3F. Once the density operator ρt = <j>t {/} is
found by the solution of the linear posterior evolution equation, the density
function ρ(vr) = ρ™ is given by the Segal (duality) transformation Qi— >w of the
observable process Qf = t/^Y'C/, in the Schrόdinger picture.

We shall say the nondemolition observation is complete for the quantum
diffusion, described by the stochastic evolution equation (11), if the subsets EeS8
in (7) generate the σ-algebra &ί. Let us see now in that case the posterior dynamics
is not mixing: πt = ft φ0 ft* , i.e. it is defined as πf{X} = (φϊ\Xφΐ), for
Φ0 {X} = (ψ\ Xψ) by a posteriori stochastic propagator Γf

w :ψe^f\-^φ^=T^ψ.
We show the renormalized propagator Ft (w) = |/ρj* Tt

w also satisfies a linear
stochastic wave equation dF + KFdt = Lί/wF in J f, given in the Fock space
representation by the operator evolution equation in

dFt + KtFtdt = f Lt,xFtdYt(dx) , FO = /, (13)
A

where Ltd\t .= $ΛLt,xdYt(dx) = LtdQ(t), (Ft(yt)ψ\Ft(vt)ψ) = ρf. The proof is
given in Lemma 1 and Lemma 2 in terms of Φt [X^ = Ft*XFt .

Firstly let us note that the wave propagator Ft : Jft -> Jft ® Jίt as any other
adapted Wiener functional of Y is defined in the Fock representation Ft = Ft\Qy
by the generating functional /£ = ̂ F^) \\xeχg(^)λ(dx) coinciding with the
Wick symbol </|^f|/> = F*g for g =/ + /*, where |/> eJ^ is the coherent state

\J/\AJ — e l i y V - V ? 117 II — J I . / W I Λ V W V
x e χ

for a/: /\ -> C with ||/||2 < oo, denoted below as/2 = ||/||2, if/* =/ It helps to
prove the

Lemma 1. JTze solution Ft of the stochastic equation (13) satisfies the equivalency
condition /£|0> = t/f*|0> respectively tojhe vacuum |0>eJ^ wzY/z /A^ unitary
propagator C7f* defined by Eq.(5), i.e. ̂ /z = t/^Λ /9r all h = ψ ® |0>, w/zere

Proof. To this end we remark that j/-measurability coincides with J*- measura-
bility in this case and the equation for Ft* = Ut*\Qy with F0* = 7 can be simply
obtained by allowing the right-hand side of (5) to act on the Fock vacuum |0>.
This gives

where Ltί/A*(/) = $ΛLtίXdA*(t,dx) due to *J^-measurability of the map
>L ί>x for almost all /, the commutativity of the increments
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= dA(t,E) with t/f* and with Ft and the annihilation property
dBt(E)\θy = 0 = dA(t9EJ\θy for all Eetf. The equation for the Jί?(Jf )-valued
symbol F*g = (^I/JO)^2/2 of the nonunitary classical stochastic evolution Ft

defined by (hg \ Fth'Q) = (ψ\Ft

g ψ') for all hg = ψ® e*2/2 \ g\ A'0 = '̂ ® |0>, is given

bY £̂/J + A;/J = fl^/^ax)<tt, g = g*eL2(Γί). (14)
αί ^

This coincides with the equation for <# | Ut* |0> eg2/2 = F*t having the same form
as (13) with F*t instead of Ft and G, = {£ g(r)dr, g(/) =' f (0 + f*(/) instead of
Y, = B, + B* , Bt(E) = A (t, E\ Ee$$, and the initial operator F*Q = I. It means
that F*t = Ff and U* \ 0> = Ft \ 0> due to the uniqueness of the solution of Eq. (1 3)
proved in [17] under the conditions (6). D

Secondly, let us find the QS Langevin equation for the process
Xg(t) = UtXgUt*,Xg = e\X, wheregε£j(7i) is a J*(R+)(χ) ̂ -measurable square
integrable function and eg =- eq(9t) -= egt is the Wick ordered exponential

ί
eβt =: exp J I g (r, x) dQ (r, dx) == e"*(gt) ea(βt)

0 A

of the observable yt (g) = Jo g dΎ = q (gt) in the Schrόdinger picture, correspond-
ing to the product eg(χ) = Y\xeχff(x)9 χεΓ in the Fock representation of
eg = eg\θy. Here and below ̂ eL^/J) denotes the projection of^with^(x) = 0,
if xφ[Q9t)xE for every Ee3$, otherwise gt = g, and
**(&) = $9t(x)A*(dx) = a(gf)*9 q(gt) = (<* + «*)(&)• Taking into account that
this exponential is defined by the equation del

g = elg(t}d\t with e0 = 1, we can
obtain for G(i) = UtX*gU* = eg(ί)X(i)9

dG + (GK+ K*G}dt = dt J {L? GLX + (I* G + GLx)g(x)} dλ
Λ

+ J {[I* , G] dff(Λ) + dB* (dx) [G, LJ + g (x) (ώϊ(dk) + dB* (dx))G}
A

using the quantum Ito formula d(eX) = deX + edX + J^JZ for eg (t) = Ute
l

g Ut*
and (11). It helps to write the equation for the vacuum expectation operator

= <0|G(0|0> = Fte'gXF*9 Φ^I} = Pgt>= Φg

s

t{/}, V^ ̂  t

a s έ G + G J f + Λ : σ | 0 = 0 L G L + L G + G L g 0 , o r
equivalently

= f Φ'β {L*XZL(,X + (JTL(>X + l*,X) g(t, x)} JA . (15)
A

Equation (15), with Φg{X} = X, defines both the prior quantum Markovian
dynamics [19] M*:X\->FtXFt* as Mt = ΦQ and an operator-valued generating
functional Pg = F^egF* = lim^^ Φg{I} of factorial (normal ordered) moment
operators

:\θy = δnPg/δg(xl) . . . δg(xn)\g=0

for the measurements at tm < ί, xme^i, m = 1, . . . , n of generalized derivatives
γ(x) = Y(dx)/λ(dx) = 7X(0 of the measure Ύ(dx) on J*(R+)® a. It follows
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from the Weyl representation

t ί 1 ) 2

e*g(q) = exp J U g (r, x) </7r (Jx) - - J # (r, x)2 dλdr \ = e

q(dt}-g</2 (16)
0 l Λ ^ Λ J

of the Wick exponent ̂  =: eβ(gt):, that Eq. (15) defines the characteristic operator
of y(gt) = $gt(x) Y(dx) = Utqt(gt) U*\

Let us denote by \t = {vt(E) \Ee&} a stochastic trajectory vt(E} : Ω -> R of the
process Y, in the Wiener representation vt (E) = Yt (E, ω) and by vt (g) = Jo g^v? Λe
Wiener integral of g(x), xeΓ^. Now we prove the absolute continuity
It{X}(dω) = Φt{X}(υt)dμ(ω) of the corresponding instrument [20] It{X}(E),

with respect to the standard Wiener measure dμ(ώ).

Lemma 2. The solution of Eq. (15) is given by the expectation

Φl{X] = j e9*®-*12 Φt{X] (vt}dμ(ω) (17)
Ω

of a stochastic mapΦf : X\-+ Φt {X} (vt) as the nonanticipating function Φ™ = Φt(vt)
°f vr? r < t, normalized by a stochastic operator-function Pt

ω = P(vt) and the
factorial exponent (16) of the representation

Proof. Let us take Ω as the spectrum of the commutative field measure Q (dx),
denoted as w(dx) in the standard Wiener representation ω(/) = J/(x) w (dx\
/e L2 (/]) and μ as the Gaussian probability measure on Ω with the correlations

Jvι;(Δ)w(Δ/)φ(ω) = Λ(ΔnΔ') = <0|β(Δ)β(Δ')|0>

induced by the Fock vacuum state. Then ω(gt) = vt(g) as q(g^) = yt(g) for every
J*-measurable #:/^->R, and due to t/ f*|0> = Ft\θy and the commutativity
e*gFt = Fte

l

g one can obtain

Φ*g{X} = <0| Ut

= J^(ω) f f ( ω ) XFt(ω) dμ(ω) =
Ω Ω

Here Ff(ω) = Ft

ω is the solution Ft = Ft

q of Eq.(13) as the functional of
y,(£) = q(\r(E)\ r < /, EE & in the Wiener representation, where ί r ( E ) is the
indicator of [0, r) x £", and ^(ω) = e

vt(β)"βί/2 is the Wick exponent (16). Due to
arbitrariness of ^(R+)(χ) ̂ -measurable g, it defines the posterior map
Φt = Φt(yt) in (17) as the classical conditional expectation

Φ, {X} (vt) = J F* (ω) XFt(ω) dμ(ω \ vt) (18)
Ω

with respect to the σ-algebra on Ω, generated by the data vr(E) = n>([0, r) x E).
re[0, /)> Eeέ%. It is given by integrating on Ω with the Gaussian conditional
measure dμ(ω \ vt) = dμ(ω)/dμ(vt), where dμ(vt) is the induced Gaussian proba-
bility measure on the trajectories vf = {v (r) | r < t} = wf | & of the standard Wiener
measure w (/, E) = w([0, t) x E) on &3E. Hence the probability measure of the
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data v' for the nondemolition observation (7) with a given initial wave function
ψεtf has the density

ρ» = l\Ft(ώ)ψ\2 dμ(ωIvt) = (ψ\P(vt)ψ} = ρ(vt),

where P(vt) = Φt{I}(v) = Pt

ω. The non-Gaussian measure dv = ρdμ defines the
factorial generating functionals Q*g = <^Cy)> for the process Y* as (ψ \ Φg{I} ψ)
and the mean values <JT(f)> of the operators X(i) at the initial states ψe^f as
(ψ I Φf

(0) [X] ψ) by the averaging
(ψI ΦJ{AΓ} yO = jV^)-.t

2/2 Λt W(ι;ί) Λ(I?|) = φtg{χ}

of the product ̂  (t;t) πt {X} (vt\ where πf {X} (vt) = (ψ\Φt {X} (vt) ψ)/ρ (vt), over all
the observed in the past trajectories vr. D

Let us derive the corresponding linear stochastic equation for the non-
normalized posterior map (18) X\-+ Φt {X} defining the a posteriori transforma-
tion φ0 h-> φ0 o Π for any initial φ0 by Πt {X} = Φt {X}/ρt ,Qt = Φo {%}• ̂ n Λe case
of a complete nondemolition observation it can be obtained in the Schrόdinger
picture from (13) in the same way as (11) from (5) by using Ito's formula for
F*XFt = Φt{X}:

FtxKt + K*X - J L*xXLt^dλFtdt

A

In the general case the stochastic differential equation for (18) gives the following

Theorem 2. The conditional expectation (18), defining in (17) the absolutely
continuous operational measure Φt {X} (vt) dμ(ώ) with respect to the Wiener process
vt(ώ)9 represented in Fock space by Yf = {Yt(E)\ EE &}, satisfies the linear
stochastic equation

dΦt{X} + Φt \XKt + K*X- J L*xXLt,xdλ\ dt
( A ' ' J

= $Φt{XLt,x + L*xX}dYt(dx) (19)
A

corresponding to Eq.(l5) for the Wick symbol Φg{X} = <f\_Φt\f>, 9 = 291 ft.
Here Lt x are ̂ -measurable operator-valued functions ofxeΛ, Lt x = 0, ifx φ Efor
any Et£&, defined for almost all t as a conditional averaging ofLttX with respect to

®-**by lLt,κ g(x) dλ = J Lt,x £(x) dλ
Λ A

for any ^-measurable square-integrable g:Λ\-+R andf(t, x) is defined sίmilary by

the averaging of f(t, x). In particular, Lt x — ( . §E.Ltxdλ for all xeEt, if

I ίel} is a σ-partition M = £ί6 /^ of M c A and λ(Eί) Φ 0.

Proof. By the classical Ito's formula

d(e>Φt{X}) = de'gΦt{X} + e'gdΦ,{X} + de'gdΦt{X}

= lg(t,x)e'gΦt{X+XLt,x + L*xX} dYt(dx) - e'gΦt{XKt + K*X}dt
Λ

+ e'gΦ,
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we obtain from (19) Eq. (1 5) for Φ*g [X] = <0 1 e\ Φt {X} \ 0>, if we take into account
that <0| dYt(E)\θy = Q,\/Eε@ and

f (XLt^ + L*XZ) g(t, x) <M = f (XLt^ + Lf^X) g(t, x) dλ
Λ A

due to J'-measurability of g(t, •)• Hence Eq. (19) describes the conditional mean
value (18) in the Fock representation wίι-^Qί with respect to the probability
measure φ(wf) induced on Jίt by the vacuum state:

f*XwO#W(wO^(w') = <$\elΦt{X}\Qy. G

Remark 2. In the case of the output momentum process, described in the
Schrόdinger picture by Yt(E) = V (t, £), E eJ^, one can obtain in thejjame way the
posteriori equation for the non-normalized linear stochastic map Φt in the form

dΦt {X} + Φt \XKt + K*X - { L*κXLtίX
{ Λ ' '

dt

Then by doubling the space A and considering the time-continuous measure-
ment of the commutative family Yt τ = Qτ (f) as in Sect. 1, one can obtain the
posteriori equation, corresponding to the complex observation Zt(E) = W(t, E},

dΦt{X} + Φt \XKt + K*X- j L*xXLt xdλ\ dt
ί Λ ' ' J

= I Φt {XLt,%} dZ* (dx) + f Φt {Lf^X} dZt(dx) . (20)
Λ A

In the case OS = j/ of complete complex observation this equation has a
factorizable solution Φt{X} = F*XFt, \IXe3?, where Ft, satisfies the stochastic
Eq. (13) in the complexified version

ί + KtFtdt = J LtJtdZf (dx) , Zt = ±= (Yίf + + ιΎtt _) .
A ]/2

3. A Continual Observation of CCR Quasifree Diffusion

Let Ξ be a symplectic it-space, i.e. a complex space with involution

and skew-symmetric bilinear It-form s:ΞxΞ-+C, such that s(ξ*9ξ) is purely
imaginary for all ξeΞ:

We denote by 9ί Ξ the real space of the vectors ξ = ξ*, by Θ a separating space of
complex-valued linear functional 9:ξt-+3 (ξ), on &Ξ enquiped with the weak*
topology, 30 = {3eΘ 1 5 + 3* = 0}, where 3* (ξ) = 9(ξ)*9 Vξ elR^and by R(ξ)9
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ξ e z an operator ίf-representation R (ξ)* = R(ζ*) of the canonical commutation
relations (CCR)

] = *(£,£'), V£e£ (21)

in a Hubert space 3f associated with a Gaussian state

0o{*Λ(0} = «'*(0-"aMo(ί). (22)

Here /50e36> is defined by the expectation 90(f) = 00 {/?(£)} of 7? and the
quadratic form £2 = <£,£>» satisfying the Heisenberg inequality

is defined by the symmetric covariance form

One can realise R(ξ) — $0 (ξ) as double real part 2 91 ̂ 4 0 = (A0 + A$)(ξ)of the
creation operator Aξ (ξ) = A0 (ξ *)* with the vacuum state φ0 [X] = (ψ0 \ Xψo) in
an initial Fock space jff = ̂ 0 over the Hubert space # = Ξ*9 associated with the
scalar product

, 9 9 , .

Indeed, the adjoint operators A0(ξ*)9 Aξ(ξ) satisfying the CCR

generate ̂ 0 by the unitary representation

X ( ξ ) = e'*o«)-«2/2 eiA*w eiA^\ ξeKΞ (23)

of the Weyl operators X ( ξ ) = exp {iR(ξ)} on ψQ:

We shall identify the dual space Θ with the completion of Ξ in the

(nondegenerate) norm \ζ\ = <£U>1/2 = ]/(9lί)2 + (3f)2 on S1, such that
= <f , θ>. Denoting j :ξt-+jξ = ξ the canonical bounded map Ξ-+H,

one can express the scalar product (ξ \ η) through the complex metric bounded
operator g = j*j as (ξ\η) = <c^*,g//>. Here 9 = g//60, V^eS is the complex
functional 9 ( ξ ) = (ξ*\η) = <ί,g//> defining together with 9*(ξ)
= <ζ\ g^/>* = (η \ζ) Λe S-functional 2919 = ^ + 5*- 23lη + s3^, where
s : 91 Ξ -> Θ is the skew-symmetric operator <£, s?/> = s(η,ξ)9\sη\^2\η\ due to
the Heisenberg inequality.

Let us consider the quantum diffusion of CCR algebra under the continuous
measurement of the unbounded operators Lx = R(ζx), xeR+ xA, defined by a
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family !{ζx\xeR+xΛ} of vectors in Ξ9 weakly square integrable:
J0ετ(9 t t,8)dτ < oo for all teR+ and θe<9, where

Sf(0 = S'tfRO + ι'S*(30 = 9(Ctt)* for all ζeΞ. Moreover, we shall suppose
that the integral (24) is a weak* continuous function of 3eΘ such that

for every square integrable function f : A -> C, where ζ/f is an element of £ denoted
as §ΛζftXf(x)dλ. We shall suppose also that the Hamiltonian Ht of the system under
the observation is given in the Fock space Jf by the normal ordering Ht =: ht(R):
of a quadratic form vt(9) + iωt(9, 5) = A f (θ). This means

(ψη\Htψn) = vt(9) + ± ωt(θ,S), 5 - S0 + 2W(gi7),

where ^ = exp{ — %(η\ή) + ̂ oίί)} Ψo> Ψo^^ is the normalized vacuum:
AQ ψ0 = 0, (^o I ^o) = 1 in the initial space ffl — 3F$ .

Let us suppose that {vt \ teR+} is a locally integrable family of ίf-linear forms
ϋί(θ) = <θ,ι\) and {w ί | /eR+} is a locally integrable family of real symmetric
bilinear forms on 3(9 such that

ί t
Mi = f \vr\dr<ao, \ω\\ = $\ωr\dr<co Mt < oo,

0 0

where \vt\ = ]/ϋ*9 v? = <vt9vty9 \ωt\ = sup{ω;(θ',9) | |θ'| < 1, \9\ < 1}. Assum-
ing the weak* continuity of the linear functions υt(9) and ωf(9', 9) on 09 9,
V9'e<9, we identify ϋf(5) with 9(vt), v.e^ίΞ and ωt(θ'5θ), with
9'(ωt&) = <9', β)tθ>, where ωr is a symmetric and hence bounded operator on the
Hubert space Θ. The quadratic form of Ht9 corresponding to

i[Ht,R(ξ)] = vt(*ξ) + R (ωfsί), VξεΞ

gives together with ί[R(ξ\LttX] = s(ξ,ζttj, ί[L*x,R(ξ}} = *(£,%,£) the linear
quantum Langevin equation (11) for X(t) =j(t, R(ζ))'

dR(t,ξ) + R(t9iκt*ξ)dt = dP(t9ξ) + υt(*ξ)dt. (25)

Here dP(t9ζ) = /fΛ{j(ί,C* x)dA(t,dx) - S(ζ9ζtJdA*(t9dx)}9 κt:3Θ^KΞ is
the linear imaginary operator κt = %γt+iωt, where γt = εt — sf is given by
the weak* continuous function y f(θ',θ) = 2/3ef(θ',θ) of 9, θ'e3<9,
s/(κ fa) = ιc f(θ/,θ) = <θ',κ ίa>,

Λ f(θ /,S) = /3et(9/,5) + /ω f(a',S), Vθ, « /e3Θ.

The following theorem gives the solution of the operator equation (25) together
with an integral of a J*(R+)(x) ̂ -measurable locally squareintegrable function
g : 7] -> R over the differential

) = Λ (ί, C (£) + ζf (E)) + rfβ (£) (26)
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Herb ζt (E) e Ξ, ζ* (E) = \E ζ* xdλ = ζt (£)* is defined for any E for which λ (E) < oo
due to weak* continuity on Θ3& of the integral $E&(ζt,*)dλ. Note, that the
corresponding unitary quantum stochastic evolution (1.5) with unbounded
operator

exists only if(ψ0\Kt\ ψoy = ̂ Λ\\ ζt,x \\2dλ = kt(0) < oo for almost all t. The Wick
symbol &t(θ) = (ψn\Ktψ^) is defined in this case as

kt (5) = kt (0) + ivt (θ) + \ fe (5, 9) + ίωt (θ, 3)), Vθ = 50 + 2 9Ϊ (gι/) .

In this theorem we use the notations \ - \\, | \*2 for the norms

l/2

0 \0 yl

where \ξ\ = (ξ,ξy112 for a ^e9ί5', and |ιc f | = |/ ιe f | means the norm
I κt I = sup { I κt& I/I 5 1 } of the real operator iκt on the Hubert space θ. Let us also
denote gt(r) = g(r)9 r < /, gt(r) = 0, f t ( r 9 x ) = 0 =f*(r,x)9 Vr ^ ί, and

f * ( r , x , ξ ) =g(r,x) + i5(ίr,C?.z) =/(r,x,ί»)*, r < t.

Theorem 3. Let Eg. (25, 26) /or the quantum diffusion on the CCR algebra be
defined by v t E WE, ωt : θ -> 9ί .H1 α«d ̂  e Θ Λ WC/Z that

M i < o o , 1/κl^oo, |Γ+ΓΊ2<oo, V ί e R + ,

wAer^ Λ: H^ (fx e Ξ is a weakly J* (R + ) (x) J ̂ -measurable function ofx = (t, x), defined
byζt?> — ζt%f°r every geL@ (A). Then Eq. (25) has a unique solution, defined in the
Hilbert space #? ® 3P = J 0̂ ® L2 (Γ) by the quantum stochastic integral

R (t, ξ) + y (9t) = \s(vr, ξr) dr + R(ξ (ί)) + a (f*) + a* (β (27)
0

along the trajectories ξr = φ^(t,ξ), re[0, t) of the backward predual differential
equation

r, x) (ζ,x + ζ?,x) dλ ,

with g = 0 corresponding to y (gt) = 0. TTze output integral

of a ^(R+) x fflweasurable function geL2

m(Γ^) over the differential (26) w given
also by the quantum stochastic integral (27) along the trajectory ξr = φ(

r

9)(t,Q) of
Eq. (28) with ζ = 0, corresponding to R(t, ξ) = 0.

Proof. First we write the weak solution of Eq. (28) in the standard form

ξ, = φ,(t)ζ + lg(s,x) φr(s) (ζ,x + ζ*,J dsdλ ,
r A
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where φr(t)ζ = φ(

r

0)(ί,ξ) is the solution of Eq. (28) with g = 0. The resolving
operator φr(t) exists as the chronologically ordered exponential

00

V r ( 0 = Σ I'"! κtis ...κtnsdt1 ... dtn
n = 0 r ϊ g f ι < ... <ίn<ί

due to the estimate | φr(t) \ = sup {[ φr (f)ξ \ \ \ ξ \ < 1} ^

^ Σ Is| ' f f \ κ t ί \ . . . \Kjdt,. ..dtn^Qχp{\2ω-ίy\\}

because |s| ^ 2. Hence one can obtain the existence of (ξr, 9> for every re[0,
and Beθ due to the estimate

1/2

Now we integrate the left-hand side in (27), taking into account (26) and (28):

R (t, ξ) + J J g (r, x) (R(r,2$iζr(dx))dr + dQ(r, dx))
0 A

= R(t,ξ)+\ (25R if g(r,x)dA(r,dx)} - R(r, 4 - iκrsζr)
o V U J

f (291 if (<7(r,x) + «(ξr,C* J) ̂ (r,Jx)} - ι>r(sfr)A
o V U J /

where dR(r, ξr) is the quantum stochastic differential dR(r, ξ)\ξ=ξr, satisfying (25)
for t = r. This proves Theorem 3.

Note that the solution R (t, ξ) of Eq. (25) given by (27) for g = 0 preserves the
CCR (21) and satisfies the nondemolition principle

[R(t,ξ),Yβ(t)] = 0, VξeΞ, geLM), (29)

where Yg(t) = ^\Λg(r,
It can be proved by using the quantum Ito formula and

[dR(t,ς),dR(t,ξ*)] = [dP(t,ξ),dP(t,ξ*)] = yt(sf

[dR(t,ξ), dYβ(t)} = [dP(tξ), dQ,(t)} = is(ξ,(ζt + ζϊ

Indeed, if [R(t,ξ), R(t,ξ*)] = 4 s(ξ,ξ*), then from (25) it follows

[dR(t,ξ), R(t,ξ*)] = κj(*ξ,sξ*)dt, [R(t,ξ\dR(tξ*}} = -κt(aξ,sξ*)dt,
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tmdιd[R(t9ξ)9R(t9ξ*)] = (κ]-κt + γt)(*ξ,*ξ*)dt = 0;

d[R(t9ξ)9 Yg(t)} = [dR(t9ξ)9 Yg(t)] + [R(t9ξ)9 dYg(t)] + [<tt(ί,0, rfrg(0]

= [R (ί, ί ), Λ (ί, (ζf + ζ *) g (0] dt + is (ξ, ζt + C *) g (0) A = 0,

if [*(*,{), 7,(0] = 0 and, hence, [dR(t9ξ)9 Yg(t)] = 0.

Remark 3. Let Ξ = Ξ~ 0 Ξ+ be an orthogonal decomposition of Ξ with respect
to the complex scalar product <£*,;/>, such that

One can take 5"+ correspondingly as the negative and positive subspaces of the
Hermitian form 2s(Wξ,3ζ) = is(ξ9ξ*):

which is uniquely defined in the case of nondegeneracy: s(ξ,η) = Q9

VηeΞ=>ξ = 0, but it is not obligatory. If ζxeΞ~ for almost all xeΓl9 and
ω (ξ*, η) = 0 for ξ e Ξ~ , η e Ξ+ , then the quantum Langevin equation (25) can be
written in the complex linear form

dL(t9ξ) + L(t,κtcξ)dt = dA(t9 ξ) + ηt(cξ)dt9 (30)

where dA(t9ξ) = ilΛs(ξ9ζ*JdA(t9dx)9 L(t9ξ) = R(t9ξ)9 cξ = ί*ξ,
ηt(cξ) = υt(*ξ)9 VξεΞ~ and L(/,ί) = 0, dA(t9ξ) = 09 cξ = 0, ηt(cξ) = 0,
VξeΞ+. Equation (10) for a complex observation can be written in these terms as

dZ(t,E) = L(ζ(E))dt + dW(t,E),

4. A CCR Quasi-Free Posterior Dynamics and Continuous Collapse

The solution (27) obtained for the quasi-free diffusion (25) with the continuous
observation (26) of CCR gives the possibility to solve easily Eq. (1 5) at least for the
initial Weyl operators Φ g { X ] = eiR(ξ) = X(ξ). To this end let us represent the
product X(ζ)®βg of the operator (23) on ffl = ̂ Q and the Wick exponent
έg = e

q(gt)~βt/2 of the integral yt(g) = q(gt) on & = L2 (Γ) as the exponent of an
operator in Heisenberg picture:

G(t,ξ) = e

b*(

where y(gt) = Jo J^ g(r,\) dY(r,dx). The exponent of the operator (27) at iξ

R(t9 iξ) + y(gt) = ίj s(vr9 φP(i))dr + R(φ^(t)) + a(f*) + α*(y?)} (iξ)

can be written in normally ordered form with respect to

a*(f(iξ)) = a*(g-is(φ<°\t9iξ)9ζ))9 a(f*(iξ)) = a(g -

as
G(t9ξ) = cg(t) exp{Λ(^>(0) + a(f*) + a*(β} (iξ)
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Here cg (t) = exp {ft s (vr, ξ r ) dr - g?/2} , g2 = ft fΛ g (r, x)2 dr dλ and

/<(£) = lncβ(ί) + ̂ l2(<D, \ft\
2(ξ) = ] $f*(r,x,ξ)f(r,x,ξ)drdλ

Δ 0 A

is given by an integral over the trajectories ξr = φ^(t9ξ):

3(0 = f \*(*r+ 3C?g(r),ίr) + \ fir(s£r,s£,)} dr, (31)

where ζ? g (t) = §Λ ζft x g (t, x) Λl = ζf g (/) for every ^-measurable function
g(t):\eΛ\-+g(t,x). Hence the operator-function Φ^ξ) = Φt

g{X(ξ)}9 being the
vacuum expectation <0| G(t,ζ)\Qy is defined in ̂  by

Φl(ξ) = exp {^(ιί) + R(φ^(t9 iξ»} , (32)

since e^^jO) = |0> for every /, where f* (x) =/* (x) on xe[0,0x^ and
Jί(r, x) = 0, if r > ί. One can easily verify that (32) satisfies Eq. (15), written in the
CCR quasi-free case for X = X(ξ) in the differential form

(33)

This form of the main equation follows from the relations

[R(ζ),X(ξ)] = s(ζ,ζ)X(ξ), ί (X(ξ)R(ζ) + R(ζ)X(ζ

defining the derivative <£, 3> of X(ζ) = eiR(ξ} and the right-hand side in (15) by

X(ξ)R(ζ) =

and also from the definition of the quasi-free Hamiltonian evolution in terms of
the Weyl operators (23):

[H,X(ξ)] = (s(vt,ξ) - <ω fs&/3» X(ζ).

Thus we obtain the solution Mt(ξ) = Φ*o(ξ) of the Lindblad equation for the
CCR quasi-free case in term of the characteristic operator Mt (X(ζ)} of a prior
dynamical map φ0i—> φ0 M\ having the differential form (33) with zero right-hand
side, as well as the operator-valued generating functional Pg = Φ™ (0) for the
factorial moments of the observable process (26).

A posterior quasi-free dynamics of the CCR-algebra under the continual
observation (26) is described by the characteristic a posteriori function
Φt(ξ) = Φt{X(ξ)} with the Wick symbol </|Φ t(ί)l/> = &β(ξ), g =/+/* of
the Gaussian form (32). Hence the operator-valued function Φt(ξ), normalised on
the probability density operator Pt = Φf(0), in the CCR quasi-free case can be
represented as the normal ordered functional (34) of yt = bt + bf instead of
g = gt, where ξr = ξr(y), instead of ξr = φp}(t,ξ), defined by the solution
ξr(y) = φ (

r

y ) ( t , ξ ) of the backward stochastic equation

-*/-&+ iκrsξrdr = J (ζ>x + C,!x) dYr(dx), ξt = ξ. (34)
Λ
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In order to find the operator Φt(ξ) = Φt(ξ,yt) in the form of a function
Φt(ξ, vt) of the trajectories υt(g) = ω(gt) of the observable process yt(g) = q(gt),
let us solve Eq. (19) with X = X(ξ), having in the quasi-free case the Wick symbol
(33) inJf = « 0̂ . It can be done in terms of

φf(ξ) = (ψη\*t(ζ)ψη)9 9 = θ0 + 2*(gι/),

by solving the linear stochastic differential equation, corresponding to (33)

idφt(ζ) t9 ,

= f 2 3 Γ ί f X , / 5 + | ί ( ί ) dYt(dx), (35)

as the equation for a posterior characteristic function φt(ξ) = φ^{Φt(ξ)} = <j)f(ζ)
with a Gaussian $0(ξ) = exp{/9(^) — ξ2/2} = φ^(ζ). The stochastic function
φ^(ζ) defines the operator-valued function Φt(ξ) as the normal ordered form
:φt

R(ξ): of the initial operators R - θ0 = A0 + Aξ in tf = Jv

Theorem 4. Let the initial state φ0 of the CCR (21) with a linear quantum stochastic
evolution (25) have the Gaussian characteristic function (22). Then a posteriori
nonnormalisedstate φt(ξ) = φ0 {Φt(ξ}} = φt{X(ξ)} under the continuous nonde-
molition observation (26) also has a Gaussian form

φt(ξ) = ρt exp {/a, (f) - ^ A (ξ, ξ)} (36)

Here

& = e x p f f (θr(29ϊζ.x dYr(dx)-~§r(^ * J Γ J J I / N '»•*• 7

0 A

is the probability density ρt = φt(ΰ) = Q(yt) of the observation up to time t,
§t(ζ) = (ζ, Sty is the linear stochastic functional &t = $t(yt) of the posterior mean
value ofR(t,ξ), satisfying the linear filtering equation

dSt (ζ) + 3t (i κtsξ)dt = l2K (ξΛ kt £#x ydΫt (dx) + υt (si) dt (37)

with $o = V dΫt(dx) = dYt(dx)-2dt\Λy{ζt^dλ, kr = pt + is, and
pt(ξ,ξ) = <£,ptO is the quadratic form of the posterior covariance of R(t,ξ),
satisfying the Riccati equation with pQ (ξ, ξ] = (ξ, ζ}:

£.pt(ξ,ξ) + 2pt(ξ,iκtaξ) = et(sξ,*ζ)-l \2K(ζ,itζ&\2dλ. (38)
ai Λ

Proof. Let us find from (35) a stochastic equation for %t(iξ) = In φt(ξ), using the
Ito's formula dλt(iξ) = φ~ ^ dφt - ±(dϊt(iξ))2, and

2κt(%(iξ), sξ) - v(sξ,sξ)}dt
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due to (dYt(dx))2 = dtdλ, where %(ζ) = d λ t ( ξ ) ,

A A

κt(99sξ) = $ <2KΓ f f x,9> <z3ζ*xX>^ = <κX,#>

It gives a quasilinear stochastic equation of the first order for λt(ξ):

dϊt + {s(ξ,υt) + </ιcX,/ί;> - ^ St(sξ9sζ)}dί

= f {<2SRζ,«Λ'> + <3£?.,,sf>} dYt(dx)-\μt(λ'tJ't)dt,
A ' ' ^

where κt = κt — κt and εf = εf — v f . This equation has a quadratic form solution

where

7 1 ^> T Q* /A\«In ρf = aλt (0) =

t = 4(0) = i(2p,9iCr,x + β3f,,,) </7r(Λ) - {fo/i, - ιsκ,τ) ί, - s»,

t = dλ'ί = - {pr/ΐtPί + sβ.s + /(p^s-sfc/p,)} Λ,

where /cτ(s^, p£) = /c(p<^, sf ). Using the integral form of the symmetric *-weakly
continuous operators μt,vt:Θ-*Ξ, one can obtain the stochastic integral
representation of Inρ, = Jo dλt(0) in Theorem 4 as well as Eq. (37) and (38) for
St(ξ) = <ί,5t> andΛ(ί,ί) = <ί,pfί> with k, - p, + ΐ s due to sτ = -s,

Ξ. D

Let's point out that quantum filtering equations (37), (38), represented in the
short from

•A,

= 1, (39)
Ui

where at = μtpt + /κ fs, give λ t ( ξ ) = lnφt(jξ) in the form of the integral

<S(f, rf¥> + (εr(sξ,s|) - μr(pr(ζ),pr(ξ))) dr (40)
o
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over'the stochastic trajectories <fp = φr(t, ξ) of the backward linear Eq. (34) with
A (<ί) = $r + P,4, «fo = PoC, ί) and

A

Indeed, if d- ̂  = <f r — <f r_dr is the backward stochastic differential in (34), then
+ <£,</-£> and

d(pr(ξr,ξr)) = 2pr(ξr,d_ξr)+pr(ξr,ξr}dr.

Using Eq. (39) and writing Eq. (34) in the form J_ <fr = α r<f rdr -2<3{ζrdΎr with
respect to

rf?Γ(<fc) = rfyr(dx) + <p r<f r, 2JRΓ Γ f X > rfrrfλ

one can obtain by integrating by parts of the difference

5 lo2 =

dr

, /Of))) Λ - In ρt ,J

which gives (40) with lnρ( = fc($(29lζ)dY -$μ($,S)dr).

Remark 4. Let us consider the case of the complex observation (10). Then the
stochastic differential equation

>Z,(dx) + 23 f s(ξ,ζϊtj $t(ξ)dZ,(dx),
A A

corresponding to (20), has the Gaussian solution (36) defined by the density

ρt = exp J J29Ϊ j $r(f?,x) dZr(dx) - έr($r,$r) dr\,
0 (- A J

where ef(θ,θ) = J^|θ(^[x)|2έ/λ, and by the linear filtering equation

d§t(ξ) + $t(iκtsξ)dt = 29ί jX^kjζ^M dZt(dx) + ι?f

where </Zf(E) - ί/Z^E) - ΛίE^(Γf,x)^ and

»^ ^ ^Λ I 9 n f(f /if S(f^ — P fs(f s<f^ 2ε fk cf k^cf")

where kr = pt + |s, kt* = pr — ^s.
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In the case of the complex Langevin equation (30), corresponding to iκt s = fe rc
on the invariant subspace Ξ~, the posterior quasi-free dynamics with complex
observation can be described in terms of the complex parameters κt = %εt + /ωf ,

*/ = 2«l- ίωf>

χt = $t\Ξ- lt = k*\Ξ-; χt(ξ) = 09 \tξ = 0, MξeΞ+ .

In this case Λ t f Θ f ) = & exp {/(#«) + £«')) - <ίf,

= exp
to t A J

ηt(cξ) dt,

d . ( 1 \ / 1 \ 1
^ Pi + PrKfC + CJC/P, + (̂  - ^

where er = κf + fc/ on 5", έ/Z^ί) = dZt(E) - dt$Eχt(ζttX)dλ, and p, = lt + ̂ c.

Example. Let us consider the stationary case εt = ε, ωt = ω and a complete
observation when «s/ = ̂ , βf = ε is invertible and ω satisfies the c-commutativity
condition ωcε = εcω with ε. One can easily prove that the last equation describes
the continuous collapse of a posteriori state to a Gaussian pure (coherent) state φ^
with the minimal uncertainty p^ =^ε~ 1 | εc | , where

= β"1 / 2 |c|β"1 / 2 = |cβ|β"1, c = ε1/2cε1/2, |c|-(c2)1/2.

Indeed, if ωcε = εcω, then ω|cβ| = |εc|ω, because from the commutativity of c
with ε~ 1 / 2ωε~ 1 / 2 there follows the commutativity of |c| with ε~1 / 2ωε~1 / 2 and
ω|cε| = ωε~1 / 2 |ε1 / 2cε1 / 2 |ε1 / 2 = ε 1 / 2 |ε 1 / 2cε 1 / 2 |ε~ 1 / 2ω = |εc|ω. Hence the Ric-
cati equation

^Pί + /(fcωc - cωpt) + ptβpf = ̂  cεc ,

corresponding to ε = ε — ε = 0, has the unique stationary positive solution
Poo'Pooωc^cωp^p^εp^ = iε" 1 / 2 |c | 2ε~ 1 / 2 = ̂ cεc. The convergence p^poo
follows from properties of the Riccati equation with unique stationary solution
Poo > 0. Thus in the case ε= εl and ω = ωl the positive solution pf corresponding
to PO = 1 has the form

c 1 + , 2- c

andp^ =i |c | ,p f «?«, + |c |q 0 έΓ ε | c | ί for t > i,if |c| > 0. Hence p, = p^ only in
the purely quantum case | c | = 2, and pf -> 0 only in the purely classical case c = 0
when pf = 1/(1 +εt).

This result was obtained in [3] for the case of positive definite c > 0 (a stable
quantum system), when the stationary quantum linear filter

ί> (dZt(d*) - χt(ζj dtdλ) ,
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corrdsponding to (f,x = Cx, K = ^ε + iω, 1 = ̂ (|c| — c) and vt = 0, does not
depend on the observable process Zf: 1 = 0, if c ̂  0. The a posteriori state for the
Gaussian initial wave function ψ0 tends asymptotically to the ground state even
without observation as the coherent a priori state: χt(ζ) = χ0(e~κctξ) -> 0.

In the contrary case c < 0,1 = | c |, corresponding to the unstable system, the
complete nondemolition observation is needed to keep the system in a state with
the minimal uncertainty relation. This explains why the quantum open (unstable)
oscillator, corresponding [2] to the case Ξ~ = C = Ξ+ with | c | = 2, tends
asymptotically to the pure Gaussian state under the continuous observation of its
amplitude L = R(ζ), given by the measurement of the complex nondemolition
process Z(i) = L(t) + W(t).

Conclusion

The developed axiomatic quantum measurement theory based on the nondemo-
lition principle as the superselection rule for the output processes abondones the
von Neumann projection postulate as a redundancy. It treats the reduction of the
wave packet not as a real dynamical process but rather as the statistical evaluation
of the a posteriori state-vector for the prediction of the probabilities of the future
measurements conditioned by the past observation.

There is no need to postulate a nonstandard, nonunitary and nonlinear
evolution for the contineous state-vector reduction in the phenomenological
quantum theories of spontaneous localization [9-13]. The nonunitary stochastic
evolution giving the contineous reduction and localization of the posterior state-
vector can be [5-8] and has been rigorously derived here within the quantum
stochastic theory of unitary evolution of the correspondent compound system,
the object of the measurement and an input Bose field in the vacuum state.

Acknowledgements. I am grateful for the hospitality and stimulating discussions to Professor
R. Hudson from Nottingham University where this paper was begun and to Professor W. von
Waldenfels from Heidelberg University where it was finished.

References

1. Hudson, R. L., Parthasarathy, K. R.: Quantum Ito's formula and stochastic evolution.
Commun. Math. Phys. 93, 301-323 (1984)

2. Belavkin, V. P.: Optimal measurements and control in quantum dynamical systems.
Technical Report 411, Institute of Physics, Copernicus University, Toruή, February, 1979

3. Belavkin, V. P.: Quantum filtering of Markovian signals with quantum white noises.
Radiotechnika i Electronica 25, 1445 (1980)

4. Barchielle, A., Lupieri, G.: Quantum stochastic calculus, operation valued stochastic
processes and continual measurement in quantum mechanics. J. Math. Phys. 26, 2222-2230
(1985)

5. Belavkin, V. P.: Nondemolition measurements, nonlinear filtering and dynamic grogram-
ming of quantum stochastic processes. In: Blaquiere, A. (ed.), Modelling and control of
systems, pp. 245-265. Berlin, Heidelberg, New York: Springer 1988

6. Belavkin. V. P.: A new wave equation for a continuous nondemolition measurement. Phys.
Lett. A 140, 355, 359 (1989)

7. Belavkin, V. P.: A posterior Schrodinger equation for continuous nondemolition measure-
ment. J. Math. Phys. 31, 2930-2934 (1990)



Quantum Continual Measurements and Collapse on CCR 635

8. Belavkin, V. P., Staszewski, P.: Nondemolition observation of a free quantum particle. Phys.
Rev. A45, 1347-1356 (1992)

9. Gisin, N.: Quantum measurements and stochastic processes. Phys. Rev. Lett. 52, 1657-
1660 (1984)

10. Ghirardi, G. C, Rimini, A., Weber, T.: Phys. Rev. 34D, 470 (1986)
11. Diόsi, L.: Continuous quantum measurement and Itό formalism. Phys. Lett. A129,419-423

(1988)
12. Pearle, P.: Combining stochastic dynamical state-vector reduction with spontaneous

localization. Phys. Rev. A39, 2277-2289 (1989)
13. Ghirardi, G. C., Pearle, P., Rimini, A.: Markov processes in Hubert space and continuous

spontaneous localization of systems of identical particles. Phys. Rev. A 42, 78-89 (1990)
14. Barchielle, A., Belavkin, V. P.: Measurements continuous in time and posteriori state in

quantum mechanics. J. Phys. A. Math. Gen. 24, 1495-1514 (1991)
15. Busch, P., Lahti, P. J.: Some remarks on unsharp quantum measurements, quantum non-

demolition, and all that. Annal. Phys. 7, (5), 369-382 (1990)
16. Busch, P.: Macroscopic quantum systems and the objectification problem. In: Lahti, P.,

Mittelstaedt, P., (ed.). Symposium on the Foundations of Modern Physics. Singapore: World
Scientific 1990

17. Belavkin, V. P.: A quantum nonadapted Ito formula and stochastic analysis in Fock scale. J.
Funct. Anal. 102(2), 414-447 (1991)

18. Evans, M., Hudson, R. L.: Multidimensional quantum diffusions. In: Proc. of Third
Quantum Probability Conference, Oberwolfach, 1987. Berlin, Heidelberg, New
York: Springer 1988

19. Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys.
48, 119-130(1976)

20. Davies, E. B.: Quantum theory of open systems. London: Academic Press 1976

Communicated by H. Araki






