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Abstract. A quantum stochastic model for the Markovian dynamics of an open
system under the nondemolition unsharp observation which is continuous in time,
is given. A stochastic equation for the posterior evolution of a quantum
continuously observed system is derived and the spontaneous collapse (stochasti-
cally continuous reduction of the wave packet) is described. The quantum
Langevin evolution equation is solved for the case of a quasi-free Hamiltonian in
the initial CCR algebra with a linear output channel, and the posterior dynamics
corresponding to an initial Gaussian state is found. It is shown for an example of
the posterior dynamics of a quantum oscillator that any mixed state under a
complete nondemolition measurement collapses exponentially to a pure Gaussian
one.

Introduction

The time evolution of a quantum system under a sharp continuous in
time observation cannot be described by any Schrédinger equation due to the
stochastic irreversible nature of von Neumann reduction of the wave packet at any
instant of measurement. An adequate model of the quantum unitary evolution
giving a continuous collapse by a conditioning with respect to the measurements
can be obtained in the framework of quantum stochastic (QS) calculus [1], firstly
introduced for output nondemolition processes in [2, 3] and recently developed in
a quite general form in [4-6]. A stochastic wave equation for an observed
quantum system derived in [6] by using the quantum filtering method [5], provides
an explanation of pure quantum relaxation of an atom under a complete
observation [7] (Zeno paradox) and a Watch-Dog effect [8] for the reduced wave
function of a quantum particle under the continuous observation.
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In this paper we develop a rigorous quantum stochastic theory of unsharp
nondemolition measurements of continual families of arbitrary noncommuting
observables R, , given sequentially in the real space-time (¢, x) e R! *4. In the case
d = 0 this defines the standard unitary dilation of an instrumental process for the
quantum measurements, which are continuous in time, considered within an
operational approach by Barchielli and Lupieri [4]. We give the direct proof of
stochastic evolution equation for the posterior states of a general quantum system
under a continuous indirect measurement of a noncommutative field-process
R, = {R, ,|xeR?}. The observed process Y () is supposed to be nondemolition in
the sense [5-8] of the commutativity [Y (r), X (z)] = 0 of the past observables
Y' = {Y(r)|r < ¢} with the Heisenberg operators X (¢) of the system for every ¢
and self-nondemolition (commutative) [Y (r), Y ()] = 0 for all r, ¢. In that case a
posteriori state can be found [5] for any initial prior state by the Takesaki
conditional expectations ¢ { X(¢)| Y*} on { ¥ (r) | r < ¢}’ restricted to the future von
Neumann algebras &, = {X(s)|s=¢}". We shall show that it is possible to
represent the open quantum system under observation within a class of quantum
stochastic evolutions in such a way that the observed commutative process Y ()
for the sequential unsharp measurements of a noncommutative process R,
is described as the sum of noncommutative Heisenberg operators
R(t) = U*(t) R,U(¢) of the subsystem under the measurement and a classical
(commutative) white noise (error) e(r). The unitary evolution U(¢) of such
systems perturbed by a singular interaction with a meter is described in a “Bose
reservoir’” by a quantum stochastic Schrodinger equation [1], driven by a white
noise (force) f(¢). Note that the force f(¢) responsible for the perturbation of the
system due to the measurements, may appear in the quantum Langevin equation
as well as the classical (commutative) white noise [5—8]. But the pair (e, /) cannot
be described within the classical theory of generalized processes any more because
the error e () does not commute with f(¢) given the nondemolition condition for
R(t)and Y(z) = R(¢) + e(2).

Itis interesting to note that stochastic equations of the particular diffusive type
of (13) and (19), in their normalized nonlinear version [5—8], have appeared in the
physical literature also in connection with phenomenological dynamical theories
of quantum reduction and spontaneous collapse [9—13]. The idea is that the wave-
function reduction associated to a continual measurement is some kind of
diffusion process and some particular equations of this type are postulated. Our
approach shows that this diffusion postulate as well as the continual counting
reduction [14] can be derived in the natural general form from the unitary
stochastic evolution of a big quantum system by the conditioning with respect to a
chosen nondemolition process under the continual measurement. The unsharp
self-nondemolition measurements and the objectification problem are discussed
now intensively in the physical literature [15, 16] within the Davies-Lewis-Ludwigs
operational approach, but real progress in clarifying the connection between the
operational theory of continual measurements [14] and the spontaneous reduction
theories [9—11] can be done only by using the quantum stochastic and nonlinear
filtering methods [S—8] which are considered rigorously in this paper.

1. A Quantum Stochastic Model with Continual Unsharp Measurements

Let us consider the dynamical problem of a sequential observation in continuous
time ¢+ =2 0 of a measurable family L, = {L, ,|xe A} of operators L, =L, ,,



Quantum Continual Measurements and Collapse on CCR 613

x = (¢, x) in a Hilbert space #, where 4 is a Borel space with a o-algebra .o/. We do
not suppose that the operators L, are pairwise commutative or even self-adjoint or
normal. But we at first assume that they are bounded, L, e ¥ (), almost
everywhere on the space R, x 4 with respect to the product A(dx) = dtd of a
positive measure d:= A(dx) on the Borel space 4 and the standard Lebesque
measure df on R, . Here # (/) denotes the space of continuous (bounded)
operators in #.

One can consider for example the problem of the (indirect) measurement
of spin momenta L, , = L,, described in the Schrodinger picture by the opera-
tors in # = C? of spin projections L, =3M(dx)/i(dx)= L¥, where
M (E) = [z R A(dx) is an operator-valued measure M (E) € & (C?) of the momen-
tum in a solid angle E = A with R, = L, + L} having the eigenvalues +1, and
A(dx) is the standard solid angle measure dA on the sphere 4 = {xeR3||x|=1},
normalized to 4.

Due to the absence of a joint spectral resolution for the noncommutative
family {L, |x € A4}, there is no possibility of measuring the corresponding physical
quantities in the usual (direct) sense. Moreover there is no way within orthodox
quantum mechanics and measurement theory to describe an observation which is
continuous in time even for a single self-adjoint operator L, = L with a simple
spectrum or to predict the dynamics of the quantum system under such an
observation due to the absence of nontrivial mathematical models for nonin-
stantaneous measurements.

We shall show that these difficulties can be removed within the quantum theory
of open systems and indirect measurements, based on the quantum stochastic
approach [1, 3]. The basic idea is that the quantum system under an observation
must be described as the subsystem of a big system, including a Boson field 4 as a
model of an observation channel coupled to the system by a singular interaction.
The measurement information about the physical quantities L, under such
coupling can be continuously extracted in a nondemolition way from the
continually-sequential unsharp observation of the output field B = U, AU} given
by the direct measurements of the compatible complex observables Z = B + A%
with a vacuum noise 4§ .

Let A (dx) be the Bose-field annihilation measure on /; = R, x 4, satisfying
the canonical commutation relations (CCR)

[4(A), 4*(A)] = L(AnA), VA, Aes(I) (1
in the Fock space & over the Hilbert space L? (I;) of square integrable functions
of xe I . One can realize [17] & as the space L (I") = @), L* (1) of functions f,

square integrable in the sense that

J1£ 001 2(dy) = ZOI“'O ) If(xl,---,xn)lzl—lll(dxi)<00, (@)

n= Stp<...<th<® i=
of chains x = (x;,...,x,), x;=(,x), t;<...<t, of all finite lengths
|x|=n=0,1, ... with respect to the natural measure A(dy) = [ [..,4(dx). We
identify the chains yeI” as subsets {x,,...,x,} <[], t; < ... <t, and the time
ordered elements (xy,...,x,)el7 of the n-cube I7, so that I'= ()1, is
considered as the direct union of the sets I}, = {(xy,...,x,)|#; <...<t,}. Then
the annihilation operator 4 (A) of the Boson quanta in a measurable region A e I}

' A 6 [ £ 1), 3)
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where y L1 x is defined as the chain (x,, ..., X;, X, X;4 1, .., X,) of length n + 1 for
almost all x = (7,x), namely if ¢ {¢,,...,1,}.

One can easily find that the operator (3) is adjoint to the creation operator
A*(A) of the quanta in Ae o/ (I7),

(A*A) ) () = Z(A)f(x\X), 1) =xnA, “
xXeyx
with respect to the scalar product (2) and satisfies the CCR (1), where y\x = (x,,
cevs Xio1s Xig1s -+ -5 X,) 1S the complement of the elementary chain xe I in the
chain y e I, with x; = xey. In the following we shall regard the operators 4 (A),
A*(A) acting as (3) (4) in the Hilbert space s ® & of square integrable vector-
functions 4:I'— # with the invariant domain 2 = | J,, 2 (&), where

D) ={he X @F | [ | h(x) > Aldy) < 0} .

Let us consider the quantum stochastic evolution U,, teR, in # ® F,
given by the Hudson-Parthasarathy operator equation [1,17]
dU + KUdt = (LdA* — L*dA) U for U(t) = U* having in our (nonstationary)
case the form

dU¥ + KUrdt = [ (L,dA*(t,dx) — LXdA(t,dx) U¥, Ut=1, (5
A

where K, =iH,+% [L* L, ,di, the integral is taken over xed,
A(LE) = A([O t)xE), and dA (t,Ey=A(t+dt,E)— A(t,E) is the forward
differential of the process 4 (¢, E) for fixed E e .«Z. The necessary condition for the
unitarity U* = U, ! of the family U,, ¢ > 0 satisfying the quantum stochastic
differential equation (5) is [1] the self-adjointness of the operators H, (Hamil-
tonian) in # and that the integrals [, L} L, , dJ exist and equal K; + K*.

The solution of Eq. (5) can be described [17] explicitly in terms of the quantum
stochastic multiple integral in Fock scale provided the conditions

| IH,|dt <0, [ [IL,I?dtdi <0, VseR, ©)
t<s t<s A
hold which are sufficient for the existence and uniqueness of the unitary solution
U, of Eq.(5) with H, = H}*.

Let us define the output observed process Y (¢) of unsharp measurements of the
continual family {L + L¥|xel;} as the time dependent selfadjoint operator-
valued measure Y (¢, E), E€ % on some o-semi-ring # < o/ with J(E) < oo given
by the quantum stochastic (forward) differential

dY(t,E)= M (t,E)dt + dQ(t,E), Y(0,E)=0, ™

where M (t,E) = [y U, (L, +L}¥)U*di, Q(t,E)=A(t,E)+ A*(t,E). In the
case of the initial vacuum state |0 € # of the Bose field and # generating o7, the
generalized processes Y, (¢) = dY (¢, dx)/dtd)\ can be regarded as a complete
indirect observation of noncommuting operators R, = L, + L¥, xe I given by
the instantaneous sequential measurements of the commuting operators
Y (dx) = dY (t,dx). Indeed the differentials dQ (r, E) for all measurable E = 4
in that case are statistically equivalent to Wiener increments with zero
mean values 0]dO (t, E)|0> =0 and minimal covariances
<01dQ(t, E")dQ(t, E)|0) = dtA(EnE") compatible with the CCR (1). They are
independent of the operators M (¢, E) = [ R, (¢)d2, defined at the infinitesimal
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volume E=dx by the Heisenberg operators R,(¢)= UR.U¥* as
M(t,dx) = R, (t)dAi. Hence the differences between the increments
dY (t,dx) = Y (¢t + dt,dx) — Y (¢, dx) of the form (7) and the operators R, (¢)dtdA
are just independent Gaussian variables dQ (¢, dx), defining the minimal random
error of the measurement of the noncommutative family R, = {R, ,|xe 4} in the
continuous time re R, as white noise Q(r) = {0, (t)IxeA} One can consider
Y(t, E), E€eZ# as a coarse-graining Y;(t) = Y (¢, E;) of the family Y (¢, E), Ee <,
corresponding to a o-partition & = {E;e/|iel} of a measurable subset
M = ZEl o= A.

The following theorem shows that the QS equation (5) up to the Hamiltonian
H, corresponds to the unique Evans-Hudson diffusion [18] j(¢, X) = U, XU*,
Xe %, over a von-Neumann initial subalgebra & = ¥ (o) satisfying the non-
demolition principle

[X(s),B(t,E)], Vi<seR,, Ees

for all X(¢) = j(t, X) respectively to the given output field

t

B(t,E)=| [ L,(r)drdA+ A(t,E), Eed.

0 E
Theorem 1. a) Let j(t): ¥ - L (# ® F), teR, be a family of the unital *-re-
presentations of a unital *-algebra ¥ < ¥ () having the QS-differentials

@, X)=0(tX)dA*(t) +0*(t, X)dA(t) + y(t,X)dt,

where dA*8 = [,dA*(dx)0,, dAS* = [,dA(dx)d,, O,(t,X*)=0}(t,X)*
y(t, X*) = v(t, X)* are the linear structural maps & - ¥ (%” ®F). Then
@) 6,6, X*X) =j(t,X*)5,(t, X) + 6} (1, X*) j(1, X),
(i) 0F (2, X*X) = j (£, X*) 0¥ (&, X) + 8, (1, X*) j (1, X),
(i) y (¢, X*X) =d(, X)* 6 (£, X) + j (£, X)* y (1, X) +y (1, X)* j (1, X),
where 8(X)* 86(X)=[,0,(X)* 6,(X)dA, 6,(t,)=0=25%(t,I), y(t,]) =0.
b) The family {X(t) = f (¢, X)| X s } satisfies 'the nondemolition condition

[X(s), Y(1,E)]=0, Vs=1 ®
with respect to the given complex output fields Y (¢, E)e{B(t, E), B*(t,E)},
dB(t,E)=dt [ j(t,L)dA+ dA(t,E), L%,
E

dB*(t,E)=dt [ j(t,L¥) d\ + dA*(1,E), L*e%
E
if and only if 6 and 8* are the inner differentiations:
0 (6, X) =j(IX, Ly, 65 (6, X) =j(4[LE, XD,
Y. X) = B X) + 1 [ LEX, L] + (L3, X1 L) d1,
A
where [ (t, X*) = B(t, X)* is a j(t)-differentiation ¥ — L (H Q@ F ):

ﬁ(t’X*X) ='j(t’X*)ﬁ(taX) +ﬂ([,X*)j(t,'X),' ﬁ(tal) =

¢) In the inner case f(t,X) = j(t,i[H,, X)), H,e &L, these conditions together with
(6) uniquely define the quantum Markov spatial flow j(t, X) = U, XU* given by the
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stochastic equation (5). Moreover, the output fields B(t), B*(¢) and, hence, the
real nondemolition process Y (t) = B(t) + B*(t) are locally unitary equivalent to
the input fields A(t), A*(t) and to the commutative process
Q(t)={QE)|Ec®}: B(t) = U,A(t) U¥, B*(t) = U, A*(t) U* in the sense

B(t,E) = UA(t, E)U*, B*(t,E) = U, A*(t, E)\U* Vs>t. ©)

In particular, Y (t,E) = U Y,(EYU* for all Ec%B, where Y,(E)= Q(0,?)x E)
= 0(1, E), Q(dx) = A(dx) + A*(dx), xe1;.

Proof. The increments dX(t) = X(t+dt) — X () of the linear *-maps
Jj@): X X(@), jit,X*)=j(tX)* uniquely define the linear #*-map
() ¥ > L (H# R®F) and the adjoint maps &(¢), 6*(¢) due to the linear
independence of the differentials df and dA*(¢), dA (¢). An application of the QS
Ito formula []] to the conditions j(t,I) =1, j(t, X*X) =j(t, X)* j(t, X) gives
y(t,1)=0,0(1)=0=40%(,1), and

dX@)*X (@) =dX(@)*dX () + dX(@)* X () + X ()*dX (1)
=[6(,X)*6(1, X) +» (1, X)* j(t, X) +j (1, X)* y (¢, X)] dt
+ (0(X)*j(X) +j(X)*d (X)) dA + (6(X y* j(X) + j(X*) (X)) dA*.
Comparing this with the QS differential
dj(t, X*X) = 0*(X*X) dA + 6 (X*X) dA* + y(X*X)dt,

we obtain the conditions (i), (ii), (iii), found in [18] for the Markovian case.
If Y(¢) is a nondemolition process respectively to X (¢), then

[dX (), Y()] =[X(+d), Y()] - [X(), Y(9)]=0, Ve=s,
and hence
(@ X), Y&l = [6,(t, X), Y(5)] = [65(. X), Y(9)] =0, Vtzs

due to the commutativity of dt, d4* (¢, E), dA (¢, E) with Y (s), s < t. Applying the
QS Ito formula to the condition [X (¢), Y(#)] = 0 for Y(¢)e {B(t, E), B*(1, E)} we
obtain
d[X(¢), B(t, E)] = dt [ (X (1), L()] — &, (, X)) dA =0,
E

d[X(0), B*(t, E)] = dt [([X (1), L¥ (D] + 05 (1, X)) dA =0,
E

re. 0, (X)=[X,L,], o (X)=[L}, X] for almost all xe I] dueto [dX(¢), Y(¢)]=0,
L,(t) =j(t L,,), Lf(t) = j(t, L¥,). This together with f(X) = j(i[H, X]) gives
¥ (8, X) = j(,7.(X)), where

7(X) = i[H, X + 5 | (LY.L + L2, X] L,)dA
A
is the solution of the equation
7 (X*X) = [[L¥, X][X, L) dA — X*y,(X) — 3. (X)* X,

uniquely defined up to a *-differentiation §,(X) = i[H,, X], H, = H*. The unique
solution j (¢, X) = U,XU;* of the derived nonstationary Langevin equation under
the boundness conditions (6) was found in [17], Corollar 4.
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Letus denote by U (s, 1), s = ¢ the solution of the quantum stochastic evolution
equation (5) on the interval (¢, s] with U (¢, t) = T'under the integrability conditions
(6). The operators U(s,r) commute with Y,, r < s, due to commutativity of
Y, e {A(r), A*(r)} and the operators L,, L}, dA(¢), dA*(¢), t€[r,s) generating
U(s,r). Hence U,Y, U} = UY,U* because U* = U(s, t)*U* for any s > ¢t and
because of unitarity of U (s, ¢). Using the quantum Ito formula [1] one can easily
find

dY(t,E) = d(U Y,(E) U*) = dU Y, (E) U* + UdY,(E)U* + U Y, (E)dU*
+ dU,dY,(E) U¥ + dU,Y,(E)dU}* + U,dY,(E)dU* + dU,dY,(E)dU},
dB(t) = dA (1) + UL, U*dtd),  dB*(t) = dA*(¢) + UL* U*dtda,
dY(E) = dQ (E) + dt i— U(L,+ L¥) U*d). = dQ (E) + M (E) dt

for Y(¢t,E) = B(t,E) + B*(t,E), E€ % due to the only nonzero infinitesimal
multiplication d4 (¢, E")dA*(t, E) = dtA(EN E'"), where M is defined by (7). The
relation (8) for the process (7) is a simple consequence of (9) and [X, QO (A)] = 0 for
any AeZ(I]) and Xe L (H) R I;:

[X(s), Y (1, B)] = [U, XU, U; Y (E) U] = Ui [X, Y(E) U = 0. O

Remark 1. Considering instead of Y (¢) = U,Q(¢) U the sequential measure-
ments of the output momentum process Y (¢) = U,V (¢) U, s = ¢, defined by
V(l7 E) = %(A (t’ E) - A*(t’ E)) as

dY(t,Ey=N(t,E)dt+ dV(t,E),” Ee%,

where N (1, E) = + [ U (L, , — L¥,) U*dA, one can extract the information about
the noncommuting self-adjoint operators S, = +(L,— L*). Moreover, by dou-
bling 4 - A x { —, +} the space 4 and considering the family [L, , _, L, , .} with
L ,:=L,,/))F2 instead of {L,,} one can realize the continuous time-
sequential indirect observation of the pairs of operators

1 1
—= (L, + L¥ R, _=—(L,— L}, R, x4
l/5( x+ x)? X, l/il( x x) X€ +
by the measurement of the two commutative output processes Yz (f)
=U,Q:(t)Us. Here Q:(t) =A;(¢)+A%(t) are given by the indepen-
dent Boson measures A; on &/ (R, xA)as A (t,E) = A ([0,t)xXE), E€ %, and
U, satisfies Eq. (5) with two-fold quantum stochastic integral over 4 x {—, +}

Rx,+ =

instead of A4 which can be written again as (5) in terms of 4 = % (A4,+iA_). The
complexified observable process Z = % (Y, +iY_) defines the unsharp obser-
vation Z(t,E) = B(t,E) + A§(t,E), E€ %, of the nondemolition output field

1 (A% +iA*) is the creation measure on I; of a
2

%

Bose-noise field. In the case 4 = .o such the continuous measurement gives a
complete nondemolition sequential observation [3] of the non-Hermitian

B(?) = UA(¢) U*, where A =
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operators L, in terms of the complexified output process Z(t) = UW(¢) U*
having the stochastic differential
dZ(t,E)=dt | L,(t)dA + dW(1,E), Ee®A, (10)
E

1

%
the complex Wiener process in Fock space over L?(RyxAx{—,+}) with
multiplication table

dW*(t,E)dW (t, E') = dt\(ENE') = dW (1, E') dW* (1, E),
AW (t,E)dW (t,E') =0, dW*(t,E)dW*(t,E') =0.

where L, (1) = UL, U* and W (1) = —=(Q+ () +iQ_(1)) = A (1) + AF(?) is

2. A Posteriori Quantum Dynamics Under the Continual Measurements

Let us consider the quantum diffusion j(¢): & - & (# ® & ) of the system over a
unital *-algebra % in J#, together with the given nondemolition output fields
dB(t) = L(¢t)dtdA + dA(t), dB*(t) = L*(¢t)dtdi + dA*(t). The operators
j(t,X) = X (¢) under the conditions of Theorem 1 satisfy the quantum Langevin
equation

dx (1) —dt i %(Li‘(t)[X (0, L (O] + [L3 (1), X ()] L (1)) dA 11)
= i[H(0), X()]dt + [ (dA*(t,dx) [X (1), L (O] + [L¥ (1), X(1)] dA (¢, dx)),

having the unique solution X (¢r) = U, XU}*, where U*, teR, are the unitary
operators defined by the QS equation (5), and

K@) = UKU*, K*(t)=UK}U*, L(0)=UL, U* L¥t)=UL:U*.
The equation (11) can be obtained from (5) by using the QS Ito formula
d(UXU¥) = dUXU* + U XdU¥ + dUXdU*
and the Hudson-Parthasarathy multiplication table [1]
dA*(1,E)dA(t,E') =0, dA(t,E")dA*(t,E) = dtA(ENE'),

dA(t,E)dA(t,E') =0, dA*(t,E)dA*(t,E)=0, VE, E'ed.
The a posteriori dynamics of the system under the observation (7) with a given
initial state ¢, is the dynamics ¢,+— #,, t€ R, of the a posteriori state %, on &£,
giving the posterior mean values %, = &, { X'} of X'e & as stochastic functions of the
trajectories of the observed process Y'= {Y(r)|r < t}. According to [5] the a
posteriori state is defined by the conditional expectation e {X}(¢) = ¢, {X(2)|Y'}
on the commutant A, = {Y(r)|r £t} in & (# ® & ), which contains Y* and X (7)

due to the nondemolition property (8). By Theorem 1 the operators ¢ {X} (t) e A}’
have in the Schrédinger picture the form

Ure{X} () U, = U¥e, {UXU*|Y) U= I®4{X}, YXe&  (12)
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since U* ;' U, commutes with & (#) ® I. As a map #,: & — .4, into the Abelian
algebra A, = U* #,'U, ¢ & (¥ ) generated by {Y,|r <t} on &, the a posteriori
state satisfies a nonlinear stochastic equation with respect to Y (¢), obtained for the
first time as the quantum filtering equation in [5,6]. Here we shall derive a
linear quantum stochastic equatlon for a nonnormalized posterlorl state
$.{X} = ¢,7,{X}, where g, is a positive stochastic functional g, = ¢(Y’) of
Y, =Q(r), r = t. Moreover, we shall prove that the stochastic normalization
factor g, can be taken as the probability density §(v’) of the trajectories
v'={v(r)|r<t} of the observed process Y' with respect to the standard
probability measure v of a Wiener process w, represented in the Fock space F asQ
with respect to the vacuum state |0) e #. Once the density operator g, = ¢,{I} is
found by the solution of the linear posterior evolution equation, the density
function g (v') = g} is given by the Segal (duality) transformation Q+> w of the
observable process Q' = U*Y'U, in the Schrodinger picture.

We shall say the nondemolition observation is complete for the quantum
diffusion, described by the stochastic evolution equation (11), if the subsets Ec %
in(7) generate the g-algebra, ;z% Let us see now in that case the posterior dynamics
is not mixing: 7%, = T,¢,T;*, ie. it is defined as n}{X} = (¢¥|Xo}), for
o {X} = (| Xy) by a posteriori stochastic propagator T“’ veH oY =T"y.
We show the renormalized propagator E (W) =|/o;'T," also satisfies a linear
stochastic wave equation dF + KFdt = deF in %, glven in the Fock space
representation by the operator evolution equation in # ® &

dF, + K, Fydt = th,xFrdYt(dX), k=1 (13)

where L,dY,= [, L, ,dY,(dx) = L,dQ(?), (F, (w)z//IF(w) w) = 9;. The proof is
given in TLemma1 and Lemma 2 in terms of & AX} = E*XE,

Firstly let us note that the wave propagator f: A4 — # @ .#, as any other
adapted Wiener functional of Y is defined in the Fock representation F' = £|0)
by the generating functional F} = [ F*(x) [ ].c, g(x)/l(dx) coinciding with the
Wick symbol {f|F|f> = F; for g =f+ f* where |f)€eZ is the coherent state

>0 =e W2 TT £, IF12 = 1/ (0)]? 4(dx)
fora f: I' > C with | f'||*> < 0, denoted below as f2 = || f||2, if f* = f. It helps to
prove the

Lemma 1. The solution F, of the stochastic equation (13) satisfies the equivalency
condition E|0> = U, *|0> respectively to the vacuum |0) € F with the unitary
propagator U¥ defined by Eq.(5), i.e. Eh= U*h for all h =y ® |0, where
veH,t=0.

Proof To this end we remark that «/-measurability coincides with %- measura-
bility in this case and the equation for F* = U*|0) with F} = I can be simply
obtained by allowing the right-hand side of (5) to act on the Fock vacuum [0).
This gives

(L dA*(1) — LF dA (1)) U¥|0) = (L, dA* (1) + L, dA (1)) U¥|0> = L, dY,F*,

where L,dA*(t) = [,L, ,dA*(t,dx) due to +Z%-measurability of the map
L;:x—L,, for almost all ¢ the commutativity of the increments
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dB,(E) = dA(t,E) with U* and with F and the annihilation property
dB,(E)|0> =0 =dA(z, E) ]O> for all Ee . The equation for the £ (#)-valued
symbol F = <g|F |0> e9*? of the nonunitary classical stochastic evolution £
deﬁnedby(h |Ehy) = (w|Fjy')forallh, =y ® e’ M2 g> hy =y ®|0>,1sg1ven

b
Y d
dt
This coincides w1th the equation for {g| U*|0) e9’/> = F* having the same form
as (13) with F*, instead of £, and G, = {6 8(ar, g(1) = f (¢) + £*(¢) instead of
Y, =B, + B}, B L(E) = A(t, E) E e% and the initial operator F}*; = I. It means
that E ’f‘ =F? and U*|0> = £|0) due to the uniqueness of the solutlon of Eq. (13)
proved in [17] under the condltlons 6). O
Secondly, let us find the QS Langevm equation for the process
X,()=UX,U*, X, = ¢, X WheregeLQ(F) isa #(R,) ® #-measurable square
1ntegrable function and e =:¢?0):= ¢, is the Wick ordered exponential

F+KF = L. Eg@x)di,  g=g*el*(@)). (14)

t
5 — Xp _f j g(r’ x) dQ (r, dX) = ea*(gt) ea(gc)
04

of the observable y,(g9) = [;8dY = ¢(g,) in the Schrédinger picture, correspond-
ing to the product e,(y) = er 9(x), xeI' in the Fock representation of
e, = ¢,|0>. Here and below g.€ L5 (I7) denotes the projection of g with g,(x) =

if x ¢[0,1)x E for every Ec 4, otherwise 9. =9, and
a*(g) = | 9: (x) A*(dx) = a(g9*, q(9,) = (a + a*)(g,) Taking into account that
this exponential is defined by the equation dé; = é; g(1)dY, with é, = 1, we can
obtain for G (1) = U X, U* = é,(t) X (1),

dG + (GK+ K*G)dt = dt | {L*GL,+(L¥G + GL,) g(x)} dA
+ [ {[L}, G1dB(dx) + dB*(dx) [G, L,] + g (X) (dB(dx) + dB*(dx)) G}
A

using the quantum Ito formula d(éX) = déX + édX + dédX for é,(t) = U,é,U*
and (11). It helps to write the equation for the vacuum expectation operator

Di{X} =<0|G(1)|0) = Fé,XF*, @{I}=P,=d;{I}, Vst
as {0|{dG+ (GK+ K*G)dt} (1)|0) = dt{0|{L*GL + (L*G+GL)g} (1)|0), or
equivalently
& @1 (x) + KX + XK}
—ffp {L} XL, ,+ (XL, .+ L}, X) g(t,x)} dA. 195)

Equation (15), with &2 {X} = X, defines both the prior quantum Markovian
dynamics [19] M*: X+ F,XF* as M'= @} and an operator-valued generating
functional P, = F, é,F} = lim,_, , ®;{I} of factorial (normal ordered) moment
operators

O: ¥(xy) ... Y(x):10) = 8"P,/0g (x,) ... 09 (%) |40

for the measurements at ¢, < ¢, x,ed, m=1,...,n of generalized derivatives
Y (x) = Y(dx)/A(dx) = Y.(t) of the measure Y (dx) on Z(R,)® %. It follows
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from the' Weyl representation
t
é(q) =exp | {f 9(r,x)dY, (dx) — % §9(r,%)? dldr} = 1@ di2  (16)
0 ‘4 A

of the Wick exponent &} =: e2¢”:, that Eq. (15) defines the characteristic operator
0,{X} =<0[e”@ X (1)|0) Ofy(gt) = [g.(x) Y(dx) = U,q,(9) U*:

01{X} = Fe@ XF* = ¢ 92 @} {X}.

Let us denote by v, = {v,(E) | E€ 4} a stochastic trajectory v,(E): 2 — R of the
process Y, in the Wiener representation v,(E) = Y,(E, w) and by v,(g) = [¢ gdv the
Wiener mtegral of g(x), xelI;. Now we prove the absolute continuity
L{X}(dw) = &,{X} (v,))du(w) of the corresponding instrument [20] Z,{X} (E),
Ee % with respect to the standard Wiener measure du(w).

Lemma 2. The solution of Eq.(15) is given by the expectation
(X} = [ €075 8{X} (0) du(@) (17)

of a stochastic map ®: X+ &,{X } (v,) as the nonanticipating function ®;° = ®,(v,)
of v,, r <t, normalized by a stochastic operator-function P® = P(v,) and the
factorlal exponent (16) of the representation q(g,)— v,(g).

Proof. Let us take Q as the spectrum of the commutative field measure Q (dx),
denoted as w(dx) in the standard Wiener representation w(f) = [ f(x) w(dx),
feL?(I;) and u as the Gaussian probability measure on 2 with the correlations

‘I?W(A)W(A)dﬂ(w) = A(AnA) =<0]2(4)Q2(A)]0)

induced by the Fock vacuum state. Then w(g,) = v,(g) as q(g,) = y,(g) for every
2B- measurable g:I; >R, and due to U*|0) = £|0> and the commutativity
‘F Eét é, one can obtaln

@} {X} = (0| U,é, XU¥|0) = <0|é £* X F;|0)
= [ & (w) £*(0) XE;(0) du(w) = ;‘2 e @912 [k () X F; () du(w).
Q

Here E(w)=F® is the solution F, = F? of Eq.(13) as the functional of
Y.(E)=q(, (E)) r<t, E€e4 in the Wlener representatlon where 1,(E) is the
indicator of [0,7) X E, and é}(w) = e*@~ 5¢/2 is the Wick exponent (16) Due to
arbitrariness of Z(R,)® gg measurable g, it defines the posterior map
@, = @,(y,) in (17) as the classical conditional expectation

b, {X} (@) = ;{ E¥ () XE (o) du(o|v,) (18)

with respect to the g-algebra on Q, generated by the data v,(E) = w([0,r) X E).
ref0,t), Ee 4. It is given by integrating on Q2 with the Gaussian conditional
measure du(w|v,) = du(w)/du(v,), where du(v,) is the induced Gaussian proba-
bility measure on the trajectories v' = {v(r) |r <t} = w'| % of the standard Wiener
measure w (¢, E) = w([0, t) X E) on 4> E. Hence the probability measure of the
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data v’ for the nondemolition observation (7) with a given initial wave function
w € has the density

0® = [|F (@) y|*du(w|v) = (y | P)y) = 6(v),

where P(v,) = &,{I} (v) = P?. The non-Gaussian measure dv = gdu defines the
factorial generating functionals g, = (é}(y)) for the process Y as (v | @, {I} y)
and the mean values {X(¢)) of the operators X (¢) at the initial states y € # as
(v | 22{X} y) by the averaging

WD {X}y) = [ @52 1, (X} (v) dv(v) = L {X}

of the product é! (v,) #,{ X} (v,), where 7,{X} (v,) = (v | ®,{X} (v,) ¥)/6 (v,), over all
the observed in the past trajectories v'. [J

Let us derive the corresponding linear stochastic equation for the non-
normalized posterior map (18) X+ @L{X } defining the a posteriori transforma-
tion ¢+ @ o I1 for any initial ¢, by I1,{X} = @,{X}/d,, 8, = ¢o{P.}. In the case
of a complete nondemolition observation it can be obtained in the Schrodinger
picture from (13) in the same way as (11) from (5) by using Ito’s formula for
F*XF, = &,{X}:

d(E*XE) + F,(XK, +K*X— | L;*jxXLt,xd,Q Fdt
A

= | B* (XL, + L} X) FdY,(d).
A
In the general case the stochastic differential equation for (18) gives the following

Theorem 2. The conditional expectation (18), defining in (17) the absolutely
continuous operational measure @,{X } (v,) du(w) with respect to the Wiener process
v,(w), represented in Fock space by Y,= {Y,(E)|Ec%}, satisfies the linear
stochastic equation

o, (X} + &, {XK, +K}X — | L¥* XL, , di} dt
A
= [ . {XL, ,+ L} X} dY,(dx) 19
A

corresponding to Eq.(15) for the Wick symbol ®,{X} = <f|_<f5,|f>, g=2Rf.
Here L, , are #-measurable operator-valued functions of xe A, L, , = 0, if x ¢ E for
any E€ %, defined for almost all t as a conditional averaging of L, , with respect to

% < o by VL, g(x)di= [ L, g(x)dA
A A

for any B-measurable square-integrable g : A R and f(t,X) is defined similary by
the averaging of f(t,X). In particular, L, , = TE) [, LixdA for all XeE;, if
B = {E;ed |iel} is a o-partition M = Y ;. E; of M = A and A(E;) * 0.
Proof. By the classical Ito’s formula
d@id,{X}) = dé!d,{X} + é!db,{X} + déidd,{X}
= /jlg(t, x) &:D X + XL, ,+ L¥ X} dY,(dx) — é:®,{XK,+ K* X} dt

+ 6, { [(LE XL+ (VL + LX) g1, x) A dr
A



Quantum Continual Measurements and Collapse on CCR 623
we obtain from (19) Eq. (15) for @1 {X} = <0|é}®,{X}|0), if we take into account
that (0]dY,(E)|0> =0, YE€ % and

[ (XL, o+ L¥.X) g(t,%) dd = | (XL, .+ L¥,X) g (1, %) di

A A
due to #-measurability of g (¢, -). Hence Eq. (19) describes the conditional mean

value (18) in the Fock representation w'— Q' with respect to the probability
measure du(w') induced on ., by the vacuum state:

[é;w) B{X} (W) du(w') = <0]é;B,{X}[0y. O

Remark 2. In the case of the output momentum process, described in the
Schrédinger picture by Y,(E) = V (1, E), E€ %, one can obtain in the same way the
posteriori equation for the non-normalized linear stochastic map &, in the form

dd, (X} + &, {XK, +K*X— | L;';,XL,,xd/l} dt
A

I —_

- [ @ — L} X} dY,(dx).
A

Then by doubling the space 4 and considering the time-continuous measure-
ment of the commutative family Y, ; = Qz (¢) as in Sect. 1, one can obtain the
posteriori equation, corresponding to the complex observation Z,(E) = W (t, E),
Ec#B of L,={L,,|xeA}:

ad, (X} + &, {XK, + KX — | L;';,XL,,xdx} dt
A

= | &,{XL,,} dZ}(dx) + | &,{L¥ X} dZ,(dx). (20)

A

In the case # = o/ of complete complex observation this equation has a
factorizable solution &,{X} = F*XF,, YXe &, where F,, satisfies the stochastic
Eq.(13) in the complex1ﬁed version

df, + K Fdt = [ L, FdZy (dx), Z,=—= (Y, ++iY, ).
A

1
/2
3. A Continual Observation of CCR Quasifree Diffusion

Let = be a symplectic #-space, i.e. a complex space with involution
ledwlleE, =&, QLGP =Y Aré, VYieC
and skew-symmetric bilinear #-form s:Zx & — C, such that s (&% &) is purely
imaginary for all e 5
5 E) = —s(hE),  sEPO*=5(,EH).

We denote by R Z the real space of the vectors £ = £*, by @ a separating space of
complex-valued linear functionals §: &+ 9(¢), on RE enquiped with the weak*
topology, 30 = {3€0 |3 + 3* =0}, where 3*(¢) = 3(¢)*, Vée RE and by R (¢),
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EeFan operator #-representation R (£)* = R(¢*#) of the canonical commutation
relations (CCR)

[RE),REN =75¢,¢H, Vees e1)

in a Hilbert space # associated with a Gaussian state
Go (€70} = e%O7HE = 44(¢). (22)

Here i3,€ 30 is defined by the expectation 9,(¢) = ¢ {R(£)} of R and the
quadratic form &2 = (&, &), satlsfylng the Heisenberg inequality

En =GPz sEn?, Ve qeRE,
is defined by the symmetric covariance form

(> = 5 Bo R RO+ R RE)} — 90(&) 90 1)

One can realise R(&) — 94 (&) as double real part 2R A, = (4, + A4F) (&) of the
creation operator A% (£) = A0 (&%)* with the vacuum state ¢y {X} = (v, | Xw,) in
an initial Fock space s# = &, over the Hilbert space H = Z*, associated with the
scalar product

Eln) = 8% +5 560, V&, neE,

Indeed, the adjoint operators A, (&%), A% (&) satisfying the CCR
[40(%), 45D = (1),

generate &, by the unitary representation
X (&) = ei%0@ =82 5iA8Q) pido®  FeRE (23)
of the Weyl operators X (&) = exp {iR(£)} on y,:
XOwyo=00()eOy,, X X&) =e""IX(n+&),

and (‘//0|X(6)“//0) = $o($).
We shall identify the dual space ©® with the completion of Z in the

(nondegenerate) norm [¢| = &%, &)1 =1/ (RE)* + (3¢)* on &, such that
(&) = <&, 9). Denoting j: £ jé = & the canonical bounded map = — H,

1312 =(1&) = I€!2+§S(é,f“) =[&I7 +5(RE, 30

SIEP + [s(REIO < E12 +2IREN3E] = 21817,

one can express the scalar product (¢|#) through the complex metric bounded
operator g = j*j as (&|n) = <£% gn). Here 3 =gne®, YneX is the complex
functional — 9(&) = (&*|n) =<&,gn)y  defining  together  with  3%(&)
= (&%, gn>* = (7|¢) the #-functional 2RI =3 + 3*=2Ry + sTJy, where
s:RE — O is the skew-symmetric operator {(&,sy> = s(1,&), |sy| < 2|#| due to
the Heisenberg inequality.

Let us consider the quantum diffusion of CCR algebra under the continuous
measurement of the unbounded operators L, = R({,), xeR, x4, defined by a
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ol

family '{(,|xeR,xA4} of vectors in &, weakly square integrable:
[6e.(9% 9)dr < o for all teR, and €O, where

&(9%9) = §9“(Ct,x) §(¢iDdi= f I<CE e DI dA, 24)

34 () = 9RO + zS"(SQ) 3((*H* for all (e E. Moreover, we shall suppose
that the integral (24) is a weak™* continuous functlon of 3€ O such that

{ SX) 9 dh = L9

for every square integrable function f: 4 — C, where {}fis an element of = denoted
as [,}, f(x)dA. We shall suppose also that the Hamiltonian H, of the system under
the observation is given in the Fock space # by the normal ordering H, =: 4,(R):
of a quadratic form v,(%) + 3®,(9, 9) = A,($). This means

1
Wyl Hoyy) = 0,(9) +5 @.(8,9),  9=35+2%R(@n),

where y, = exp{— 2(77|17) + A§ (M)} wo, WoeH is the normalized vacuum:
Aowo =0, (Wolw,) =1 in the 1n1t1al space H = F,

Let us suppose that {v,|teR .} is a locally integrable family of #-linear forms
v,(9) = <{3,v) and {w,|7eR,} is a locally integrable family of real symmetric
bilinear forms on IO such that

t t
ol = [Inldr <o, ol =]lold <o Vi<wo,
0 0

where [v,| = |/v7, v7 = v, 0, ), |@,| = sup {@, (3, 9)||9'] < 1,]8| <1}. Assum-
ing the weak* continuity of the linear functions v,(9) and ®,(9',9) on @339,
V3 e®, we identify v,(9) with 3(v,), v,eRE and w,(¥,9), with
¥ (0,9) = (¥',0,9), where w, is a symmetric and hence bounded operator on the
Hilbert space 6. The quadratic form of H,, corresponding to

i[H,, R()] = v.(s8) + R(@,88), Ve&

gives together with i[R(&), L, ] =s(&, ¢, ), i[LF,, R(E)] = s(f,,&) the linear
quantum Langevin equation (11) for X' (¢) = j(t, R(é)):

dR(1,&) + R(t,ix,sE)dt = dP(1,E) + v,(s&)dt. 25)

Here dP(4,¢) = if{s(& () dA (1, dx) — s (6.4, ) dA* (t,dW)}, 1,30 > RE s
the linear imaginary operator k, =31y, + iw,, where y,=¢ — ¢ is given by
the weak* continuous function y,(3,93)=2i3¢(3,3) of I, 3'€3J0O,
9 (., 9) = (9, 9) =<9, ., 9),

1, (9,8) =i36,(9,9) + i, (¥,93), VI, «€30O.

The following theorem gives the solution of the operator equation (25) together
with an integral of a Z#(R,) ® %#-measurable locally squareintegrable function
g:I; - R over the differential

dY (1, E) = R(t,{,(E) + (7 (E)) + dQ(E). (26)
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Here(,(E)e E,(H(E) = [p{f dA = {,(E)*is defined for any E for which A(E) < oo
due to weak* continuity on @39 of the integral [;9((,,)dA. Note, that the
corresponding unitary quantum stochastic evolution (1.5) with unbounded
operator

K= [ R@G) R0 di+ i,
A

exists only if (o | K, | wo> = 3[4 | {i.x |2 dA = k,(0) < oo for almost all . The Wick
symbol k,(3) = (v, | K,v,) is defined in this case as

k,(3) = k,(0) + iv,(9) + % &N +iv,(9,8), V8=39,+2%R(gn).

In this theorem we use the notations | - |5, | - [} for the norms
t t 1/2
Ikl = [ 1K, 1dr,  |E1: =<§ j|é,yx|2dldr> :
0 04

where |&| =< EXY? for a EeRME, and |x,| =|ix,| means the norm
|%,| = sup {|x,3|/| 3|} of the real operator ix, on the Hilbert space . Let us also
denote g,(r) =g(r), r < t,g,(r) =0, f,(r,x) =0 = f*(r,x), Vr = t, and

JEEx0)=9x)+is(C, 00 =frx,E)% r<t1.

Theorem 3. Let Egq.(25,26) for the quantum diffusion on the CCR algebra be
defined by v,e RE, 0,: @ - RE and {, € O such that

o]y <o, |ix|} <oco, |[{+F]3<o0, VieR,,

where x— (€ 5 is a weakly B (R ,.) ® %-measurable function of x = (1, X), defined
by §.g = {,g for every ge L (A). Then Eq. (25) has a unique solution, defined in the
Hilbert space # @ F = F,® L*(I") by the quantum stochastic integral

t

R(,E) +y(9) = £S(vr,€r)dr + RE®) +a(f*) + a*(f) @7

along the trajectories &, = ¢ (t,¢), re(0,t) of the backward predual differential
equation

—£r+ ikrsér = jg(r,x) (Zr,x—‘_zr"t,x) d’%
A
ét=é€E, é(t)=¢gg)(t9é)=é05

with g = 0 corresponding to y(g,) = 0. The output integral

y(g) = (I) £ g (t,x) dY (r, dx)

(28)

of a B (R,) x B-measurable function ge L% (I;) over the differential (26) is given
also by the quantum stochastic integral (27) along the trajectory &, = @9 (t,0) of
Eq. (28) with & = 0, corresponding to R(t,&) = 0.

Proof. First we write the weak solution of Eq. (28) in the standard form

L=+ ] ig(s, X) @,(5) ((s,x+ {5 dsdi,
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where @, ()& = {9 (1, &) is the solution of Eq.(28) with g = 0. The resolving
operator ¢, () exists as the chronologically ordered exponential

o0

o, (=Y ff ®,s... Kk sdt, ... di,

n=0 rsty<...<t,<t

due to the estimate | @, (¢)| = sup{|o,(1)¢|]|E] <1} <

S Y Uslm e | Ikl k| dey L d, S exp {20 — iyl )
n=0

0<t1...ta<t

because |s| < 2. Hence one can obtain the existence of {&,, 3> for every re|0, t)
and 3€ 6 due to the estimate

(G SIS 10,0 E8) ]+ [ [19(5:3) (0,6 29T, 85 dsa
o t 1/2
<IENaH 031+ 1gls 1T+ T (101 6) 812 )

SUSI+1gla 1T+ Yt —r 9] exp {20 —iyli}.

Now we integrate the left-hand side in (27), taking into account (26) and (28):
R(t,&E) + [ [g@r.x) (R(r,2RE,(dx))dr + dQ (r, dx))
04
=R(t,¢&) + f (Z‘R {f g(r,x)dA(r, dx)} — R(r, ¢, —ix,s¢) dr>
0 v\
= RO+ (2 {[ 9.0 dA G, a0 + ARG ) + RO im5,) )
0 4

= ROP )+ [ (22 {] 000+ 156, 8.0) dAC. 0| — 0,68 dr).

where dR(r, {,) is the quantum stochastic differential dR (r, {)| .- . , satisfying (25)
for ¢t = r. This proves Theorem 3.

Note that the solution R(¢, ¢) of Eq. (25) given by (27) for g = 0 preserves the
CCR (21) and satisfies the nondemolition principle

[R(1&), Y,(0]=0, V¢eZ, geLj(l)), (29)

where Y, (1) = [§ [49(r,x)dY (r,X).
It can be proved by using the quantum Ito formula and

[dR(1,8), dR(t,&))] = [dP(1,$), dP(1,E%)] = (s, s dt,
[dR(1,8), dY,(D)] = [dP(1£), dQ, ()] = is (S, (€, + &) g(1)dt.

Indeed, if [R(2,&), R(t, &%) = % s(&, &%), then from (25) it follows

[dR(t,8), R(t,E)] = re] (s&, ) dt,  [R(1,8),dR(1E))] = —k,(s&,sEH)dt,
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and d[R(2,€), R(2,¢%)] = (] — e, +7,) (¢, 8EF) dt =
d[R(2,8), Y, ()] = [dR(2,©), Y, (D] + [R(2,©), dY, (0] + [dR(2,$), dY, (1)
=[R(%,0), R(t, (&, +ED g(D)dr +is(S, &+ &) g () dt = 0,
if [R(t,€), Y,(t)] = 0 and, hence, [dR(t, &), ¥, (£)] = 0.

Remark 3. Let £ = Z~ @ E* be an orthogonal decomposition of = with respect
to the complex scalar product {&* n), such that

Coni=nodl, s n=0=s#x"%, VleZ", neZ’.
One can take Z¥ correspondingly as the negative and positive subspaces of the
Hermitian form 2s(R&, JE) = is (&, EF):
c(E%&)=is(E%, &) >0, VieE™,

which is uniquely defined in the case of nondegeneracy: s&n) =0,
YneE=¢=0, but it is not obligatory. If { €=~ for almost all xel], and
w (&% n)=0foreEZ",neE™, then the quantum Langevin equation (25) can be
written in the complex linear form

dL(t,&) + L(t,x,cé)dt =dA(t, &) + n,(cé)dt, 30)

where dA(4,&) = ifs(&, (E,) dA (L, dx), L(z,¢) = R(1,9), c&=1is¢,
1,(c) = v,(s¢), VEeE™ and L(1,{) =0, dA(t,{) =0, ¢£=0, 7(cf)=0,
Vée E*. Equation (10) for a complex observation can be written in these terms as

dZ(t,E) = L({(E))dt + dW(t,E), Ee%.

4. A CCR Quasi-Free Posterior Dynamics and Continuous Collapse

The solution (27) obtained for the quasi-free diffusion (25) with the continuous
observation (26) of CCR gives the possibility to solve easily Eq. (15) at least for the
initial Weyl operators @, {X} = ¢®® = X (&). To this end let us represent the
product X()®¢é, of the operator (23) on % F, and the Wick exponent
é; = e19979/2 of the integral y,(g9) = q(g,) on & = L*(I') as the exponent of an
operator in Heisenberg picture:

G(1, &) = &P X (1,&) @) = eR(t‘i¢)+y(yt)—g%/2,

where »(g,) = {5 [4 g (r,x) dY (r, dx). The exponent of the operator (27) at i¢

R(6) + 3(0) = {] 50, 02 0)dr + REpl (1) + a9 + a* ()} )

can be written in normally ordered form with respect to
a*(f(i&)) = a*(g—is(p?(,i8),0)), a(f* (i) = a(g—is((* ¥ (1, i)

as

G(1,¢) = ¢, () exp {R(p§ (1)) + a(f*) + a* ()} (&)

= olalid) o (fe(iO) Y G o9 (1, ié)) PLICA{C N



Quantum Continual Measurements and Collapse on CCR 629
Here c,(¢) = exp {j‘os(v,, &) dr—g2[2}, g7 = (6 {4 9(r,x)* drdi and
L) =Inc, () +5 |f| ©, 1£P©= i /flf*(r,X,f)f(r,x,f)drdi
is given by an integral over the trajectories &, = 9 (¢, &):
L&) = f {S(U + 38 g, ¢) + &.(s¢,, 8¢, )} dr, (31)
where fg(r) = [,{f,g(t,x)dA =(}g(t) for every %- measurable function

g(0):xed—g(t,x). Hence the operator-function @,(¢) = @, {X(£)}, being the
vacuum expectation 0| G (z,£)|0) is defined in # by

@, (&) = exp { (i) + R(p (1,i&))}, (32)
since e*UD|0> =|0> for every f, where f*(x) = f*(x) on xe[0,f)x A and
f(r,x) = 0,if r > t. One can easily verify that (32) satisfies Eq. (15), written in the
CCR quasi-free case for X = X (¢) in the differential form

d
i 5 PO + {50, — (ks 0> + 56650 | 84O
=23 (€a(0, 10+ 5¢) 940

This form of the main equation follows from the relations

(33)

[R(©), X ()] = s(C, ) X(Q), % X RO+ RO X&) =<L0>X(©)
defining the derivative {{,d) of X (&) = ¢'*© and the right-hand side in (15) by

REO*XQ) + X REQ) == «5 <C 0+ 5 Sé>X(é)

and also from the definition of the qua31-free Hamiltonian evolution in terms of
the Weyl operators (23):

[H, X ()] = {s(v:,&) — {e;8¢,i0)} X(O).

Thus we obtain the solution M*(¢) = @f (&) of the Lindblad equation for the
CCR quasi-free case in term of the characteristic operator M*{X (£)} of a prior
dynamical map ¢, ¢, M*, having the differential form (33) with zero right-hand
side, as well as the operator-valued generating functional P, = ®@,°(0) for the
factorial moments of the observable process (26).
A posterior quasi -free dynamics of the CCR-algebra under the continual
observation (26) is described by the characteristic a posteriori function
®,(8) = &, {X(¢)} with the Wick symbol (f|®,(&)|/> = @(&), g =F+]* of
the Gaussian form (32). Hence the operator-valued function Q,(f ), normalised on
the probability density operator P, = &,(0), in the CCR quasi-free case can be
represented as the normal ordered functlonal (34) of y,= b, + b} instead of
g=g,, where & =¢.(y), instead of & = @ (1, &), defined by the solution
() = 9P (1, &) of the backward stochastic equatlon

—d & +ixsédr = [ G+ dY,dx),  &=¢. (34
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Ih order to find the operator @,(¢) = @,(¢, y,) in the form of a function
@, (&, v,) of the trajectories v,(g) = w(g,) of the observable process y,(9) = ¢(g,),
let us solve Eq. (19) with X = X (&), having in the quasi-free case the Wick symbol
(33) in S = . It can be done in terms of

L&) = (| B, (E) y,),  §=290+2R(gn),

by solving the linear stochastic differential equation, corresponding to (33)
id (&) + {500, &) — Cki5E,0) + 5 2(5850)} 6,0 d
= [23(00 0+ 56)6.0) dn v, (35)
A

as the equation for a posterior characteristic function é,(&) = ¢*{D,(¢ )} = (%)
with a Gaussian @, (&) = exp {i9(&) — &2/2} = ¢*(¢). The stochastic function
¢>, (é) defines the operator-valued function @,(¢) as the normal ordered form
PR (&): of the initial operators R — 9, = A, + A} in # = F,.

Theorem 4. Let the initial state ¢ of the CCR (21) with a linear quantum stochastic
evolution (25) have the Gaussian characteristic function (22). Then a posteriori

nonnormalised state $,(E) = ¢o {B,(€)} = G, {X (&)} under the continuous nonde-
molition observation (26) also has a Gaussian form

3O = b exp {id, ) — 5 GO} (36
2
Here
t 7 14 -~
P[] {5QRELdT@) ~ 58,007 drdi

is the probabzlzty density 8, = $,(0) = 0(»,) of the observation up to time t,
8,(&) = <&, 8,) is the linear stochastic functional §, = 8,(y,) of the posterior mean
value of R(t, é) satisfying the linear filtering equation

d9,(&) + 8,(ix,s&) dt = [2REAK,TE D AT, (dx) + v,(sE) dt 37

with  9g=9,, d¥(dx)=dY,(dx)—2dt[,R  dA  k=p +73s and
P&, &) = K& &) is the quadratic form of the posterior covariance of R(t,¢),
satisfying the Riccati equation with py(&,&) =<, E):

ipt(é,é) + 2p, (&, iK,8E) = ¢,(s¢,8¢) — f I2REKGEOPdA. (38)

Proof. Let us find from (35) a stochastic equation for 1,(i€) = In ¢, (&), using the
Ito’s formula d/,(i¢) = ¢, 1 dp, — L (d4,(i¢))?, and

(d4,(i0)* = (¢ ' d,)* = dl£ {QRE A + (ST 88y di
= {A (L&), L) + 27, (£ (i€), s&) — 7(s¢,88)} dt
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due to (@Y,(dx))? = dtdA, where £ (&) = 04,(¢),
A (9,9) = [ Q2RE, ., 9>2dA, ¥,(s,88) = [ (I, x,8E)? dA,
A A

£ (9,88) = | QR ., 9) IS8y, 88) di = <RysE, 9)

A

It gives a quasilinear stochastic equation of the first order for ,(¢):
di, + {s(Ev) + <iRisE DY — 3 &8, sE)} dr
= (@R 2> + (3TsE) dYild) — 3 E K dr,
where K, = k, — K, and &, = ¢, — v,. This equation has a quadratic form solution

1O =In g+ 5,0 + 1 pCEO. L@ =6+ & X =,
where
din g, = d40) = | QRE,...9,> dV,(dx) — 5 (8., 8,)dr,
d‘gt = dI;(O) = f(2pzm§_t,x+55§—z,x) dy,(dx) — {(ptﬁt“ iSK,') 'gt_svt} dt,

dp, = ’ﬁ, == {ptﬁtpt +s&s + i(pt’zts_s'thpt)} dt,
where KT (s&, p&) = £(pé, s&). Using the integral form of the symmetric *-weakly
continuous operators f,,v,:® — Z, one can obtain the stochastic integral

representation of Ing, = I6 dZ,(0) in Theorem 4 as well as Eq. (37) and (38) for
9.(6) = <& 8,> and p,(£,¢) = (& pi&) with k, = p, + §s due to sT = —s,

RBERD — 280,650 + 76650 = [ (29(& (p+55) @)k
2£R<é, (n+39) c‘;{x>= (2D R, +530,5, EeRE. D

Let’s point out that quantum filtering equations (37), (38), represented in the
short from

d9,() + 9, (@ &) dt = [ 2R k) dY,(dx) + v,(s€) dt,

%Pt(é,é) +2p(C 4 8) = £(8E,80) + (P S pS), Po=1,  (39)

where @, = fi,p, + i&,s, give £,(¢) = In ¢, (1 ¢) in the form of the integral
s 1
Zt(é) =99(So) + 2 53

+ {6 +3 66850 - R G.ELEN df @)
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over'the stochastlc trajectories &, = @, (¢, &) of the backward linear Eq. (34) with
pr(é) +prér9 Eo—(ﬂo(t é) and

dY, = v,a’t+SjC_}fx dY,(dx).

Indeed, if d_ & is the backward stochastic differential in (34), then
d<gr5£> <érsd'§>+<§,-,d f)and
d(p,(&.8)) =2p,&.d &)+ p,&. &) ar.

Using Eq. (39) and writing Eq. (34) in the form d_¢&, = &, &, dr — 2R, dY, with
respect to
dY,(ax) = dY,(dx) + <p,&,, 2RE, > drdd

one can obtain by mtegrating by parts of the difference

Zt(é) In Qt_‘go(fo) __
5.6) — 90(&) + %p,(é, -3 &=[{({&ds+ypcar)+ . &rep)
{¢s&.ary — 2mgan, 9+ (@Ep&> + 5 5EH - i 90)) ]

-
J <SE.dY) — SQRDAY +5 (L3O + 7.9~ (6. 5O dr}
K

[csean + 3 @685~ a(5), 5O ar} ~ nci,

which gives (40) with Ing, = [$(SQ R dY — 4 (9, 9) dr).

Remark 4. Let us consider the case of the complex observation (10). Then the
stochastic differential equation

i3+ {5(00,8) = <KisE,0) + 5 56E.50)] 6,E)
= 2 [ (09O 20 + 23 [ 5. 0 dZ, ),
corresponding to (20), has the Gaussian solution (36) defined by the density
6, = exp j) [2918,@0) az,@0 — 5.5,.5) ar},

where &(9,9) = [ ,19((},)|? dA, and by the linear filtering equation
d9,(&) + 9,(ix,s&)dr = 2R [ <&k, M dZ,(dx) + v,(s&) dt,
A

where dZ,(E) = dZ,(E) — dt [ 3,(,.,) dA, and
& &) + 27,6 iw,5E) = 6,(5,56) — 26,k E K,

where k, = p, + £s, kf =p, — &s.
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In the case of the complex Langevin equation (30), corresponding to ik, s = k,¢
on the invariant subspace =, the posterior quasi-free dynamics with complex
observation can be described in terms of the complex parameters k, = 1 ¢, + i,,

t—L1ls _ 7
kKl =1¢ —io,,

Zt='gt,‘:'_’ L=k{Z"; £ =0 LE=0, VieZ".
In this case §,(§ @ &F) = &, exp {i(# () + 7:(E%) — <% plD},

b= {[ 2R 2@ az.@0 - 5.2 20} ).

0

A5 (&) + 7. (e,el)dt = | LET > dZ,(dx) + n,(c&) dt,
A

1 + + i +< _1 ) ‘< 1 >—1

dt P: + P;K,C + CK/ P, P: 20 & Pt—2c —2C8tc,

where & = &, + &/ on £, dZ,(E) = dZ,(E) — dt [z 7.({,.x) d4, and p, =1, + %c.

Example. Let us consider the stationary case & =g, @, = @ and a complete
observation when &7 = 4, § = ¢ is invertible and  satisfies the c-commutativity
condition wce = gcw with &. One can easily prove that the last equation describes
the continuous collapse of a posteriori state to a Gaussian pure (coherent) state ¢,
with the minimal uncertainty p,, = &~ '|ec|, where

—1/2|6|8—1/2 — ICSIS_I, 6= 81/2C81/2, |6| — (62)1/2.

g lec|=¢
Indeed, if wce = ecw, then w|ce| = |ec|w, because from the commutativity of €
with e~ 12 we~1/? there follows the commutativity of |€| with ¢~ 2 we~ Y/ and
o|ce| = we 1?7 |g1 2 cgl?| g2 = gl/2|g'2 cgl/?|g” 2 = |ec| w. Hence the Ric-
cati equation

d

. 1
7P T i(poc—cop) +p.ep, =7 cec,

corresponding to § =¢ — £ =0, has the unique stationary positive solution
P Pu®C = COP,, PP = 5& ?|€|?e 12 = Lcec. The convergence p, — p,,
follows from properties of the Riccati equation with unique stationary solution
P > 0. Thusin the case ¢= &1 and w = w1 the positive solution p, corresponding
to po = 1 has the form

el 144, B 3 _2—¢]
| 2 1_qt9 qz_qO CXp{ 8|C|f}, q0_2+lc|a

andp, = 1lcl,p, & p, + |c|qoe ¢!l for £ > 1,if|c| > 0. Hence p, = p,, only in
the purely quantum case [¢| = 2, and p, — 0 only in the purely classical case ¢ = 0
when p, = 1/(1 + &1).

This result was obtained in [3] for the case of positive definite ¢ > 0 (a stable
quantum system), when the stationary quantum linear filter

A7 (&) + £ (ke dt = ,j1 QUE,GD (dZ,(dx) — 7,(Cy) didd),
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corrésponding to {,, ={,, k =4¢+iw, 1 =4(|¢|] —¢) and v, =0, does not
depend on the observable process Z,:1 = 0, if ¢ = 0. The a posteriori state for the
Gaussian initial wave function v, tends asymptotically to the ground state even
without observation as the coherent a priori state: 7,(&) = yo (e *°*¢) - 0.

In the contrary case ¢ < 0, 1 = |¢|, corresponding to the unstable system, the
complete nondemolition observation is needed to keep the system in a state with
the minimal uncertainty relation. This explains why the quantum open (unstable)
oscillator, corresponding [2] to the case &~ = C = E" with |¢| =2, tends
asymptotically to the pure Gaussian state under the continuous observation of its
amplitude L = R({), given by the measurement of the complex nondemolition
process Z(t) = L(t) + W (¢).

Conclusion

The developed axiomatic quantum measurement theory based on the nondemo-
lition principle as the superselection rule for the output processes abondones the
von Neumann projection postulate as a redundancy. It treats the reduction of the
wave packet not as a real dynamical process but rather as the statistical evaluation
of the a posteriori state-vector for the prediction of the probabilities of the future
measurements conditioned by the past observation.

There is no need to postulate a nonstandard, nonunitary and nonlinear
evolution for the contineous state-vector reduction in the phenomenological
quantum theories of spontaneous localization [9—13]. The nonunitary stochastic
evolution giving the contineous reduction and localization of the posterior state-
vector can be [5—8] and has been rigorously derived here within the quantum
stochastic theory of unitary evolution of the correspondent compound system,
the object of the measurement and an input Bose field in the vacuum state.
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